US20020176933A1 - Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel - Google Patents

Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel Download PDF

Info

Publication number
US20020176933A1
US20020176933A1 US10/011,352 US1135201A US2002176933A1 US 20020176933 A1 US20020176933 A1 US 20020176933A1 US 1135201 A US1135201 A US 1135201A US 2002176933 A1 US2002176933 A1 US 2002176933A1
Authority
US
United States
Prior art keywords
paste
insulating film
transparent insulating
manufacturing
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/011,352
Inventor
Tastuo Mifune
Tomohiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. reassignment MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAYASHI, TOMOHIRO, MIFUNE, TASTUO
Publication of US20020176933A1 publication Critical patent/US20020176933A1/en
Priority to US10/422,109 priority Critical patent/US6875463B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/38Dielectric or insulating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Paste for a transparent insulating film of a plasma display panel, the paste including powder glass contains lead oxide, silicon oxide, boron oxide, barium oxide, and aluminum oxide, solvent, and resin.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to paste for a transparent insulating film, a plasma display panel, a method of manufacturing paste, a method of manufacturing a transparent insulating film, and a method of manufacturing a plasma display panel. [0002]
  • 2. Description of the Related Art [0003]
  • First, referring to FIG. 1 showing a structural diagram of a plasma display panel, the configuration of a conventional plasma display panel will be discussed. [0004]
  • The plasma display panel is constituted by scanning [0005] electrodes 1, maintaining electrodes 2, a black stripe 3, a transparent insulating film 4, an MgO film 5, a phosphor 6, a rib 7, a ground surface dielectric 8, and data electrodes 9. Voltage is applied between the scanning electrodes 1 and the data electrodes 9 to discharge, and light emitted from the phosphor 6 passes through the transparent insulating film 4 and acts as image light.
  • Light can be emitted at a desired position of the phosphor (equivalent to a pixel) to obtain an image by selecting desired data electrodes [0006] 9 and scanning electrodes 1 and applying voltage.
  • The transparent insulating film [0007] 4 is about 50 μm in thickness and requires dielectric withstand voltage characteristics and optical characteristics. To be specific, dielectric withstand voltage can be obtained under a voltage of about AC 400V and an optical clouding degree (Hayes value, simply referred to as Hayes) is minimized.
  • A method of manufacturing a conventional transparent film will be discussed. A conventional transparent insulating film is obtained as follows: paste is manufactured by using powder glass having D10 of 0.5 μm, D50 of 1.6 μm, and D90 of 3 μm, the paste is applied by screen printing and die coating with a thickness of 50 μm, and drying and firing are performed. [0008]
  • Although a transparent insulating film manufactured by such a method has a dielectric withstand voltage of a passing standard, large Hayes of about 30% appears. The Hayes mainly depends upon a particle size of powder glass used as a material. Besides, a plasma display having a transparent insulating film with large Hayes is configured as if an image was seen through ground glass. Hence, an image becomes less sharp. [0009]
  • Additionally, when powder glass with D10 of 0.5 μm, D50 of 1.0 μm, and D90 of 1.5 μm is used, Hayes is expected to decrease, thereby improving the performance of a plasma display However, particles are likely to cling together because they are small. Thus, it has been difficult for a conventional method to achieve dispersion to a first particle level, that is, to disperse particles one by one. Namely, although powder has a particle size distribution of FIG. 4([0010] a) , when paste is manufactured by a conventional method, a particle size distribution is shifted to a larger one indicated by a solid line of FIG. 4(b).
  • Further, a strong dispersing process of sand mill and the like is provided as a means of forcefully dispersing particles. However, such a dispersing process destroys particles of powder glass during dispersion. Moreover, physical properties are changed when particles are destroyed, resulting in deterioration in characteristics such as transmittance of light and dielectric withstand voltage. Namely, although powder has a particle size distribution of FIG. 4([0011] a), when paste is manufactured by the conventional method, a particle size distribution is distorted as indicated by a broken line of FIG. 4(b).
  • SUMMARY OF THE INVENTION
  • The present invention is devised in view of the above conventional problems and has as its object the provision of paste for a transparent insulating film, a plasma display panel, a method of manufacturing paste, a method of manufacturing a transparent insulating film, and a method of manufacturing a plasma display panel that achieve more superior characteristics such as transmittance of light, Hayes, and dielectric withstand voltage. [0012]
  • The 1st invention of the present invention is Paste for a transparent insulating film of a plasma display panel, said paste including powder glass, which contains lead oxide, silicon oxide, boron oxide, barium oxide, and aluminum oxide, solvent, and resin. [0013]
  • The 2nd invention of the present invention is the paste for a transparent insulating film according to 1st invention, wherein said powder glass has a composition of boron oxide in 20 to 30 wt %, barium oxide in 15 to 20 wt %, and aluminum oxide in 3 to 6 wt %. [0014]
  • The 3rd invention of the present invention is the paste for a transparent insulating film according to 1st invention, wherein said powder glass contains copper oxide. [0015]
  • The 4th invention of the present invention is Paste for a transparent insulating film of a plasma display panel, said paste including powder glass, which contains bismuth oxide, silicon oxide, boron oxide, barium oxide, and aluminum oxide, solvent, and resin. [0016]
  • The 5th invention of the present invention is the paste for a transparent insulating film according to 4th invention, wherein said powder glass contains zinc oxide. [0017]
  • The 6th invention of the present invention is the paste for a transparent insulating film according to 4th or 5th inventions, wherein said powder glass has a composition of boron oxide in 20 to 30 wt %, barium oxide in 15 to 20 wt %, and aluminum oxide in 3 to 6 wt %. [0018]
  • The 7th invention of the present invention is the paste for a transparent insulating film according to 4th invention, wherein said powder glass contains copper oxide. [0019]
  • The 8th invention of the present invention is a plasma display panel, comprising: [0020]
  • a glass substrate; [0021]
  • an electrode pattern formed on said glass substrate; and [0022]
  • a transparent insulating film applied on said electrode pattern, [0023]
  • wherein said transparent insulating film is formed using the paste for a transparent insulating film according to 1st invention. [0024]
  • The 9th invention of the present invention is a plasma display panel, comprising: [0025]
  • a glass substrate; [0026]
  • an electrode pattern formed on said glass substrate; and [0027]
  • a transparent insulating film applied on said electrode pattern, [0028]
  • wherein said transparent insulating film is formed using the paste for a transparent insulating film according to 4th invention. [0029]
  • The 10th invention of the present invention is a method of manufacturing paste, comprising the steps of: storing powder glass, solvent, and resin in a storage section; and [0030]
  • rotating a plate at a peripheral speed of 40 m/s or more, said plate being disposed in said storage section so as to be substantially in parallel with or inclined to a bottom of said storage section. [0031]
  • The 11th invention of the present invention is the method of manufacturing paste according to 10th invention, wherein said powder glass has a dispersed particle size such that D10 is 0.4 to 0.6 μm, D50 is 0.8 to 1.2 Jm, and D90 is 1.4 to 1.8 μm. [0032]
  • The 12th invention of the present invention is the method of manufacturing paste according to 10th invention, wherein said powder glass has a dispersed particle size such that D10 is 0.2 to 0.8 μm, D50 is 1.0 to 2.0 μm, and D90 is 2.5 to 4.0 μm. [0033]
  • The 13th invention of the present invention is a method of manufacturing paste, comprising the steps of: [0034]
  • storing powder glass, solvent, and resin in a sand mill storage section; and [0035]
  • operating a sand mill disposed in said sand mill storage section at a peripheral speed of 10 m/s or less. [0036]
  • The 14th invention of the present invention is the method of manufacturing paste according to 13th invention, wherein said powder glass has a dispersed particle size such that D10 is 0.4 to 0.6 μm, D50 is 0.8 to 1.2 μm, and D90 is 1.4 to 1.8 μm. [0037]
  • The 15th invention of the present invention is a method of manufacturing paste, comprising the steps of: [0038]
  • storing powder glass, solvent, and resin in a storage section; and [0039]
  • rotating a cylinder at a peripheral speed of 20 m/s or more, said cylinder having a hole or a slit on a side and having a bottom disposed in said storage section so as to be substantially in parallel with or inclined to a bottom of said storage section. [0040]
  • The 16th invention of the present invention is the method of manufacturing paste according to 15th invention, wherein said powder glass has a dispersed particle size such that D10 is 0.2 to 0.8 μm, D50 is 1.0 to 2.0 μm, and D90 is 2.5 to 4.0 μm. [0041]
  • The 17th invention of the present invention is a method of manufacturing a transparent insulating film, comprising the steps of: [0042]
  • manufacturing paste by using any one of the methods of manufacturing paste according to 10th to 16th inventions; and [0043]
  • applying said manufactured paste on a glass substrate having an electrode pattern formed in advance, and drying and firing said paste. [0044]
  • The 18th invention of the present invention is a method of manufacturing a plasma display panel, comprising the steps of: [0045]
  • forming an electrode pattern on a glass substrate; and [0046]
  • manufacturing a transparent insulating film on said glass substrate having said electrode pattern formed thereon by using the method of manufacturing a transparent insulating film according to 17th invention. [0047]
  • The 19th invention of the present invention is the method of manufacturing a plasma display panel according to 18th invention, wherein a scanning electrode formed by using said electrode pattern has b value of 5 or less. [0048]
  • Besides, solvent of the present invention may contain at least one of diethyl Carbitol, Carbitol acetate, butyl Carbitol acetate, α-terpineol, and diethyl oxalate. [0049]
  • Also, resin of the present invention may contain at least one of ethyl cellulose, nitrocellulose, and polyvinyl butyral. [0050]
  • Additionally, powder glass may further contain lead oxide, boron oxide, and so on. Besides, lead oxide glass has been used as a material composition of a conventional transparent insulating film. This is mainly because lead oxide is excellent in flowability during a heating operation and a minute transparent film can be readily obtained with excellent transmittance of light and dielectric withstand voltage. However, in view of the influence on the environment, the replacement from lead oxide glass to non-lead oxide glass has been demanded regarding a transparent insulating film material. Bismuth oxide boron monoxide glass or the like is applicable as a candidate material. However, this material is influenced by the destruction of particles more than lead oxide glass when paste is manufactured, and dispersion is highly carried out. Hence, when particles are destroyed by using a strong dispersing process, transmittance of light and dielectric withstand voltage are largely reduced. The paste of the present invention, which is highly dispersed using bismuth oxide boron monoxide glass without destroying particles, has a small environmental load as well as excellent transmittance of light and dielectric withstand voltage. [0051]
  • According to the present invention, characteristics shown in FIG. 4([0052] c) are obtained, and powder is substantially equal to paste in particle size distribution in a preferable manner.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a structural diagram showing a plasma display; [0053]
  • FIG. 2 is a sectional view showing the configuration of an agitator according to [0054] Embodiment 1 of the present invention;
  • FIG. 3 is a sectional view showing the configuration of a sand mill according to [0055] Embodiment 2 of the present invention;
  • FIG. 4 ([0056] a) is an explanatory drawing showing a particle size distribution of powder;
  • FIG. 4([0057] b) is an explanatory drawing showing a particle size distribution of paste manufactured by the conventional method;
  • FIG. 4([0058] c) is an explanatory drawing showing a particle size distribution of paste manufactured by a method of the present invention;
  • FIG. 5 is an explanatory drawing showing a method of manufacturing paste according to [0059] Embodiment 3 of the present invention; and
  • FIG. 6 is an explanatory drawing showing a method of manufacturing paste according to Embodiment 4 of the present invention.[0060]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following will discuss embodiments of the present invention in accordance with accompanied drawings. For understanding, paste as comparative examples (Comparative Examples 1 and 2) will be described. [0061]
  • (Comparative Example 1) [0062]
  • Powder glass having a softening point of 590° C. was used when D10 was 0.5 μm, D50 was 1.7 μm and D90 was about 3.5 μm. The powder glass was mainly composed of lead oxide, boron oxide, and silicon oxide. The powder glass and butyl Carbitol acetate solvent, in which ethyl cellulose had been melted in advance, were mixed by a mixer. Dispersion was performed by a three-roll disperser and pasting was carried out. [0063]
  • The paste was diluted with butyl Carbitol acetate, and a dispersed particle size was measured by a laser particle size distribution analyzer. As a result, it was found that D10 was 0.5 μm, D50 was 1.7 μm, and D90 was 3.5 μm and powder glass was dispersed to a first particle level. [0064]
  • The paste was applied by screen printing and was fired at 600° C. at maximum after being dried. Thus, a transparent insulating film was formed. [0065]
  • Although the transparent insulating film, which was obtained by the above method with a thickness of 50 μm, had dielectric withstand voltage of AC400V or more, the used powder glass was large in particle size. Therefore, a film had a low filling density, a Hayes value was 40%, and optical characteristics were rejected (see [0066] Experiment 1 of Table 1).
    Comparative
    Example 1 Comparative Example 2
    Experiment 1 Experiment 2 Experiment 3
    Powder glass particles D10:0.5 D10:0.8 D10:0.5
    size (μm) D50:1.7 D50:1.5 D50:1.0
    D90:3.5 D90:2.5 D90:1.5
    Dispersed particle size D10:0.5 D10:0.8 D10:0.7
    (μm) D50:1.7 D50:1.9 D50:1.7
    D90:3.5 D90:3.8 D90:3.9
    Hayes value evaluation 40 42 44
    (%) Rejected Rejected Rejected
    (dispersing (dispersing
    defect) defect)
  • Hayes was measured by a method according to JIS K 7361. A definition equation was Hayes value (%)=diffuse transmittance/total light transmittance×100. A passing level of Hayes was 30%. [0067]
  • (Comparative Example 2) [0068]
  • The transparent insulating film obtained in Comparative Example was rejected because a Hayes value was large. Hence, used powder glass was exchanged with powder glass smaller in particle size, and an experiment was conducted using the same steps. The results were shown by [0069] Experiments 2 and 3 of Table 1.
  • According to the results of Table 1, when used powder glass had a smaller particle size, sufficient dispersion was not made by three-roll dispersion. Further, since particles were likely to cling together, a dispersed particle size was increased and a Hayes value did not reach a passing level. The results were worse when using powder glass having a smaller particle size. [0070]
  • The following will discuss embodiments of a method of manufacturing paste, a method of manufacturing a transparent insulating film, and a method of manufacturing a plasma display panel according to the present invention. Additionally, paste for a transparent insulating film and a plasma display of the present invention will be also discussed while the method of manufacturing paste, the method of manufacturing a transparent insulating film, and the method of manufacturing a plasma display panel will be discussed. [0071]
  • (Embodiment 1) [0072]
  • In order to improve a Hayes value, the inventor studied a dispersing process using powder glass small in particle size. [0073]
  • Powder glass was mixed with solvent, in which resin had been melted in advance, by a mixer. A material component of powder glass, resin, and a material component of solvent were the same as those of Comparative Example 1. A particle size distribution is also equal to that of Comparative Example 1. A composition ratio of powder glass, resin, and solvent was 60%, 5%, and 35%. The mixed powder and solvent were put in an agitator of FIG. 2 and stirring was carried out. [0074]
  • The agitator was composed of a stirring blade (plate) [0075] 10 and a vessel (storage section) 11. Shearing force is applied to the paste 12 by rotating the stirring blade 10 at high speed so as to perform stirring and dispersion.
  • A treating amount was set at 200 ml per batch. Table 2 shows the relationship between a peripheral speed of the [0076] stirring blade 10 and treating time, a dispersed particle size, and a Hayes value.
    Peripheral Peripheral Peripheral
    speed: 30 m/s speed: 40 m/s speed: 50 m/s
    Powder glass particle D10:0.5 D10:0.5 D10:0.5
    size (μm) D50:1.0 D50:1.0 D50:1.0
    D90:1.5 D90:1.5 D90:1.5
    After one-minute D10:0.7 D10:0.5 D10:0.5
    treatment D50:1.7 D50:1.0 D50:1.0
    D90:3.9 D90:1.5 D90:1.5
    After three-minute D10:0.7 D10:0.5 D10:0.5
    treatment D50:1.7 D50:1.0 D50:1.0
    D90:3.9 D90:1.5 D90:1.5
    after five-minute D10:0.6 D10:0.5 D10:0.5
    treatment D50:1.4 D50:1.0 D50:1.0
    D90:3.0 D90:1.5 D90:1.5
    Hayes value (%) 31 15 15
  • According to Table 2, when stirring was carried out at a peripheral speed of 40 m/s or more, paste was obtained with extremely good dispersion. A Hayes value measured after the paste was applied, dried, and fired was 15, which was a remarkably good result. Further, dielectric withstand voltage reached a passing level. [0077]
  • Meanwhile, it was found that stirring with a peripheral speed of 30 m/s or less could not obtain sufficient dispersion. [0078]
  • Moreover, when powder glass had a particle size of D10: 0.3 to 0.5 μm, D50: 0.8 to 1.2 μm, and D90: 1.4 to 1.8 μm, the same results were obtained as the present embodiment. [0079]
  • Besides,when the solvent contained at least one of diethyl Carbitol, Carbitol acetate, α-terpineol, and diethyl oxalate, the same results were obtained. [0080]
  • Moreover, when the resin contains at least one of ethyl cellulose, nitrocellulose, and polyvinyl butyral, the same results were obtained. [0081]
  • (Embodiment 2) [0082]
  • In order to improve a Hayes value, another dispersing process was studied using powder glass with a smaller particle size. [0083]
  • By using a mixer powder glass was mixed with solvent, in which resin had been melted in advance. A material composition of powder glass, resin, and a material composition of solvent were the same as those of Comparative Example 1, and a particle size distribution was the same as that of [0084] Experiment 3.
  • A composition ratio of powder glass, resin, and solvent was 60%, 5%, and 35%. The mixed powder and solvent were put in a sand mill of FIG. 3 to perform dispersion. [0085]
  • The sand mill was composed of a rotor (sand mill) [0086] 13, a vessel (sand mill storage section) 14, beads 14, and paste 16. The beads 15 were moved by rotating the rotor 13 at high speed, and impact was applied to the paste 16 to perform dispersion.
  • A treating amount was set at 200 ml per batch. Table 3 shows the relationship between a peripheral speed of the [0087] rotor 13 and treating time, a dispersed particle size, and a Hayes value.
    Peripheral Peripheral Peripheral
    speed: 5 m/s speed: 10 m/s speed: 15 m/s
    Powder glass particle D10:0.5 D10:0.5 D10:0.5
    size (μm) D50:1.0 D50:1.0 D50:1.0
    D90:1.5 D90:1.5 D90:1.5
    After one-minute D10:0.7 D10:0.7 D10:0.4
    treatment D50:1.7 D50:1.3 D50:1.0
    D90:3.0 D90:2.5 D90:2.0
    After three-minute D10:0.5 D10:0.5 D10:0.2
    treatment D50:1.0 D50:1.0 D50:0.7
    D90:1.5 D90:1.5 D90:1.7
    After five-minute D10:0.5 D10:0.5 D10:0.2
    treatment D50:1.0 D50:1.0 D50:0.7
    D90:1.5 D90:1.5 D90:1.3
    Hayes value (%) 14 15 33
  • According to Table 3, when dispersion was carried out at a peripheral speed of 10 m/s or less, paste was obtained with extremely good dispersion. A Hayes value measured after the paste was applied, dried, and fired was 14 to 15, achieving a remarkably good result. Further, dielectric withstand voltage also reached a passing level. [0088]
  • Meanwhile, it was found that impact to the paste was too strong at a peripheral speed of 15 m/s or more, particles of the powder glass were crushed, and Hayes was deteriorated. [0089]
  • Also, it was found that when powder glass had a particle size of D10: 0.3 to 0.5 μm, D50: 0.8 to 1.2 μm, and D90: 1.4 to 1.8 μm, the same results were obtained as the present embodiment. [0090]
  • Besides, when the solvent contained at least one of diethyl Carbitol, Carbitol acetate, α-terpineol, and diethyl oxalate, the same results were obtained. Moreover, when the resin contained at least one of ethyl cellulose, nitrocellulose, and polyvinyl butyral, the same results were obtained. [0091]
  • As described above, according to the present embodiment, it was possible to obtain the superior paste, the transparent insulating film having excellent balance of dielectric withstand voltage and a Hayes value, and the plasma display panel having the transparent insulating film. [0092]
  • (Embodiment 3) [0093]
  • Powder glass was pre-mixed with solvent, in which resin had been melted in advance, by a mixer to manufacture paste. As a material of powder glass, resin, and a material of solvent, powder glass having at least bismuth oxide, boron oxide, and silicon oxide as main components, ethyl cellulose, and Carbitol acetate were used respectively. Further, the powder glass had particle size distribution such that D10 was 0.4 μm, D50 was 1.5 μm, and D90 was 3.0 μm. A composition ratio of the powder glass, resin, and solvent was 60%, 5%, and 35%. Or, the paste may contain powder glass having at least lead oxide, boron oxide, and silicon oxide as main components. [0094]
  • Next, [0095] paste 112 after mixing was put in a vessel (storage section) 111 of a manufacturing device of paste in FIG. 5, and dispersion was carried out. The manufacturing device of paste was composed of a disc-shaped stirring blade (plate) 110, and a vessel 111. The stirring blade 110 was disposed in the vessel 111 substantially in parallel with the bottom of the vessel 111, and the stirring blade 110 was rotated on the surface where the it was disposed.
  • And then, shearing force was applied to the [0096] paste 112 by rotating the stirring blade 110 at high speed to carry out dispersion. A treating amount was set at, for example, 200 ml per batch. The vessel had the following dimensions: the stirring blade 110 was, for example, 75 mmφ in diameter and the vessel 111 was, for example, 80 mmφ in internal diameter.
  • Table 4 shows the relationship between a peripheral speed of the [0097] stirring blade 110 and treating time, a dispersed particle size, and a Hayes value.
    Peripheral Peripheral Peripheral
    speed: 30 m/s speed: 40 m/s speed: 50 m/s
    Powder glass particle D10:0.4 D10:0.4 D10:0.4
    size (μm) D50:1.5 D50:1.5 D50:1.5
    D90:3.0 D90:3.0 D90:3.0
    After one-minute D10:0.7 D10:0.4 D10:0.4
    treatment D50:1.7 D50:1.5 D50:1.5
    D90:3.9 D90:3.0 D90:3.0
    After three-minute D10:0.7 D10:0.4 D10:0.4
    treatment D50:1.7 D50:1.5 D50:1.5
    D90:3.9 D90:3.0 D90:3.0
    After five-minute D10:0.7 D10:0.4 D10:0.4
    treatment D50:1.7 D50:1.5 D50:1.5
    D90:3.9 D90:3.0 D90:3.0
    Hayes value 31 15 15
  • And then, the stirred paste was applied by screen printing and was fired at 600° C. at maximum after being dried. Thus, a transparent insulating film was formed. [0098]
  • When dielectric withstand voltage of the transparent insulating film, which was obtained with a thickness of 40 μm by the above method, was evaluated, dielectric withstand voltage was AC600V or more, which reached a passing standard. Namely, sufficient dielectric withstand voltage was provided for driving a PDP panel in practical use. Hayes (clouding degree) of optical characteristics was measured by a method according to JIS K 7361. The definition equation was Hayes value (%)=diffuse transmittance/total light transmittance×100. The passing level of Hayes was 30% or less and was satisfied. [0099]
  • According to Table 4, when dispersion was performed at a peripheral speed of 40 m/s or more, paste was obtained with extremely good dispersion. After the paste was applied, dried, and fired, a measured Hayes value was 15, which was an extremely good result. It was found that sufficient dispersion was not obtained at a peripheral speed of 30 m/s. [0100]
  • Additionally, it was found that when powder glass had a particle size of D10: 0.2 to 0.8 μm, D50: 1.0 to 2.0 μm, and D90: 2.5 to 4.0 μm, the same results as the above embodiment were obtained. Besides, although an upper limit of a peripheral speed was determined by a mechanical accuracy limit of a disperser, an actual limit of a peripheral speed was about 70 m/s. [0101]
  • Moreover, when the solvent contained at least one of diethyl Carbitol, Carbitol acetate, α-terpineol, and diethyl oxalate, the same results were obtained. Moreover, when the resin contained at least one of ethyl cellulose, nitro cellulose, and polyvinyl butyral, the same results were obtained. [0102]
  • (Embodiment 4) [0103]
  • Powder glass was pre-mixed with solvent, in which resin had been melted in advance, by a mixer to manufacture paste. As a material of powder glass, resin, and a material of solvent, powder glass having at least bismuth oxide, boron oxide, and siliconoxide as main components, ethyl cellulose, and Carbitol acetate were used respectively. Further, the powder glass had a particle size distribution such that D10 was 0.4 μm, D50 was 1.5 μm, and D90 was 3.0 μm. A composition ratio of the powder glass, resin, and solvent was 60%, 5%, and 35%. Or, the paste may contain powder glass having at least lead oxide, boron oxide, and silicon oxide as main components. [0104]
  • And then, [0105] paste 116 after mixing was put in a vessel (storage section) 115 of a manufacturing device of paste in FIG. 6, and dispersion was carried out. The manufacturing device of paste has a double cylinder configuration, which was composed of an outer cylinder with slits (cylinder) 113, an internal cylinder 114, and a vessel 115. The slits on the outer cylinder 113 were disposed on the side of the cylindrical outer cylinder with slits 113 substantially in parallel with an axis of the outer cylinder with slits 113. The bottom of the outer cylinder with slits 113 was disposed in the internal cylinder 114 substantially in parallel with the bottom of the internal cylinder 114. The outer cylinder with slits 113 was rotated at a disposed position while its axis substantially serves as a rotating axis.
  • And then, shearing force was applied to the [0106] paste 116 by rotating the outer cylinder with slits 113 at high speed to perform dispersion. A treating amount was set at, for example, 400 ml per batch. The dimensions of the vessel were as follows: the internal cylinder 114 was, for example, 30 mmφ in diameter and the vessel 115 was, for example, 50 mmφ in internal diameter.
  • Table 5 shows the relationship between a peripheral speed of the outer cylinder with slits and treating time, a dispersed particle size, and a Hayes value. [0107]
    Peripheral Peripheral Peripheral
    speed: 15 m/s speed: 20 m/s speed: 30 m/s
    Powder glass particle D10:0.4 D10:0.4 D10:0.4
    size (μm) D50:1.5 D50:1.5 D50:1.5
    D90:3.0 D90:3.0 D90:3.0
    After one-minute D10:0.8 D10:0.4 D10:0.4
    treatment D50:1.8 D50:1.5 D50:1.5
    D90:4.3 D90:3.0 D90:3.0
    After three-minute D10:0.8 D10:0.4 D10:0.4
    treatment D50:1.8 D50:1.5 D50:1.5
    D90:4.3 D90:3.0 D90:3.0
    After five-minute D10:0.7 D10:0.4 D10:0.4
    treatment D50:1.7 D50:1.5 D50:1.5
    D90:4.3 D90:3.0 D90:3.0
    Hayes value 31 15 15
  • And then, stirred paste was applied by screen printing and was fired at 600° C. at maximum after being dried. Thus, a transparent insulating film was formed. [0108]
  • When dielectric withstand voltage was evaluated regarding the transparent insulating film, which was obtained with a thickness of 40 μm by the above method, the dielectric withstand voltage was AC600V or more, which reached a passing standard. Further, Hayes (clouding degree) of optical characteristics as measured by the method according to JIS K 7361. [0109]
  • According to Table 5, when dispersion was carried out at a peripheral speed of 20 m/s or more, paste was obtained with extremely good dispersion. After the paste was applied, dried, and fired, a measured Hayes value was 15, which was an extremely good result. It was found that sufficient dispersion was not obtained at a peripheral speed of 15 m/s. It was found that when powder glass had a particle size of D10: 0.2 to 0.8 μm, D50: 1.0 to 2.0 μm, and D90: 2.5 to 4.0 μm, the same results were obtained as the present embodiment. [0110]
  • Moreover, when the solvent contained at least one of diethyl Carbitol, Carbitol acetate, α-terpineol, and diethyl oxalate, the same results were obtained. Moreover, when the resin contained at least one of ethyl cellulose, nitro cellulose, and polyvinyl butyral, the same results were obtained. [0111]
  • Additionally, regarding a scanning electrode formed by the paste according to the above-embodiments containing powder glass, solvent, and resin, the powder glass having at least bismuth oxide, boron oxide, and silicon oxide as main components, b value indicative of chromaticity of yellow was 5 or less. A plasma display panel having such scanning electrodes could advantageously provide a less yellowish image as compared with a plasma display panel having scanning electrodes, which were formed by paste containing powder glass having the conventional bismuth oxide and the like as main components. Additionally, regarding the scanning electrode formed by paste containing powder glass having the conventional bismuth oxide and the like as main components, b value was 10 or more. Further, such coloring of yellow was relatively disadvantageous when a scanning electrode was an Ag electrode but was hardly advantageous when a scanning electrode was a Cu—Cr electrode. [0112]
  • (Embodiment 5) [0113]
  • In the present embodiment, lead oxide powder glass (glass frit) , which contains lead oxide, silicon oxide, boron oxide, barium oxide, and aluminum oxide, solvent (butyl Carbitol acetate solvent) , and resin (ethyl cellulose) were used to prepare paste for a transparent insulating film. Table 6 shows a specific glass composition, a method of manufacturing paste, and film characteristics. [0114]
    Invented Invented
    composition 1 composition 1
    Glass composition
    Lead oxide 62 wt % 62 wt %
    Silicon oxide in total in total
    Zinc oxide
    Boron oxide 20 wt % 20 wt %
    Barium oxide
    15 wt % 15 wt %
    Aluminum oxide
    3 wt % 3 wt %
    Calcium oxide
    Magnesium oxide
    Conventional Invented
    Method of manufacturing paste method method
    Film
    characteristics
    Film thickness 30 μm 30 μm
    Determination of total light 92% 92%
    transmittance
    Determination of Hayes 13% 13%
    Determination of dielectric AC 600 V AC 600 V
    withstand voltage
    Determination of coloring 7 3
  • Since the invented [0115] composition 1 is used as a glass composition, good film characteristics were obtained when the conventional method was used as a method of manufacturing paste as well as when the invented method (method of manufacturing paste in the above Embodiment 4) was used. For comparison, Table 7 shows that conventional compositions 1 and 2 are used as a glass composition and the conventional method was used as a method of manufacturing paste.
  • Besides, such a transparent insulating film requires the following practical characteristics: a film thickness of 30 to 40 μm, total light transmittance of 85% or more, Hayes of 15% or less, dielectric withstand voltage of AV500V, b value of coloring, that is, chromaticity of about 8 or less (preferable at 5 or less) on a surface of an Ag electrode. [0116]
    Conventional Conventional
    composition
    1 composition 2
    Glass composition
    Lead oxide 65 wt % 70 wt %
    Silicon oxide 25 wt % 28 wt %
    Zinc oxide
    Boron oxide 5 wt %
    Barium oxide
    Aluminum oxide
    Calcium oxide 5 wt %
    Magnesium oxide 2 wt %
    Conventional Conventional
    Method of manufacturing paste method method
    Film
    characteristics
    Film thickness 30 μm 30 μm
    Determination of total light 80% 83%
    transmittance X X
    Determination of Hayes 30% 20%
    X X
    Determination of dielectric AC 400 V AC 360 V
    withstand voltage X X
    Determination of coloring 6 7
  • (Embodiment 6) [0117]
  • In the present embodiment as well, like the above-mentioned [0118] Embodiment 5, lead oxide powder glass containing lead oxide, silicon oxide, boron oxide, barium oxide, and aluminum oxide, solvent, and resin were used to prepare paste for a transparent insulating film. However, in the present embodiment, compositions of lead oxide, silicon oxide, boron oxide, barium oxide, and aluminum oxide were changed in various ways, and an invented method (method of manufacturing paste of the above-mentioned Embodiment 4) was used as a method of manufacturing paste. Table 8 specifically shows a glass composition, a method of manufacturing paste, and film characteristics.
    TABLE 8
    Invented Invented Invented Invented
    composition 2 composition 3 composition 4 composition 5
    Glass Lead oxide 62 wt % 53 wt % 46 wt % 46 wt %
    Composition Silicon oxide in total in total in total in total
    Zinc oxide
    Boron oxide 17 wt % 25 wt % 30 wt % 32 wt %
    Barium oxide
    13 wt % 18 wt % 20 wt % 22 wt %
    Aluminum oxide
     2 wt %  4 wt %  6 wt %  8 wt %
    Calcium oxide
    Magnesium oxide
    Method of manufacturing paste Invented Invented Invented Invented
    method method method method
    Film Film thickness 30 μm 30 μm 30 μm 30 μm
    character- Determination of total light 84% 92% 90% 83%
    istics transmittance × ×
    Determination of Hayes 17% 13% 14% 18%
    × ×
    Determination of dielectric AC 500 V AC 600 V AC 550 V AC 500 V
    withstand voltage
    Determination of coloring 2 3 3 3
  • Since the invented [0119] compositions 2 to 5 are used as a glass composition, considerably good results were obtained regarding dielectric withstand voltage and coloring. Additionally, as for the invented compositions 2 and 5, a total light transmittance and Hayes remained at the same level as the conventional composition (see Table 7).
  • According to the above description, it was understood that when a powder glass composition has boron oxide of 20 to 30 wt %, barium oxide of 15 to 20 wt %, and aluminum oxide of 3 to 6 wt %, particularly excellent film characteristics are obtained. [0120]
  • (Embodiment 7) [0121]
  • In the present embodiment, non-lead oxide powder glass (glass frit) containing bismuth oxide, silicon oxide, zinc oxide, boron oxide, barium oxide, and aluminum oxide, solvent (butyl Carbitol acetate solvent), and resin (ethyl cellulose) were used to prepare paste for a transparent insulating film. The present embodiment is characterized in that bismuth oxide was used instead of lead oxide of the above-mentioned [0122] Embodiments 5 and 6 in view of environmental cohabitation. Additionally, although zinc oxide is not absolutely necessary, the inventor confirmed by experiments that more desirable results were obtained by using zinc oxide. Table 9 specifically shows a glass composition, a method of manufacturing paste, and film characteristics.
    Invented Invented
    composition 6 composition 6
    Glass composition
    Bismuth oxide 62 wt % 62 wt %
    Silicon oxide in total in total
    Zinc oxide
    Boron oxide 20 wt % 20 wt %
    Barium oxide
    15 wt % 15 wt %
    Aluminum oxide
    3 wt % 3 wt %
    Calcium oxide
    Magnesium oxide
    Conventional Invented
    Method of manufacturing paste method method
    Film
    characteristics
    Film thickness 30 μm 30 μm
    Determination of total light 92% 92%
    transmittance
    Determination of Hayes 13% 13%
    Determination of dielectric AC 600 V AC 600 V
    withstand voltage
    Determination of coloring 8 4
  • Since the invented [0123] composition 6 was used as a glass composition, good film characteristics were obtained when the comventional method used as a method of manufacturing paste as well as when the invented method (method of manufacturing paste in the above-mentioned Embodiment 4) was used. For comparison, Table 10 shows that conventional compositions 3 and 4 were used as a glass composition and the conventional method was used as a method of manufacturing paste.
    Conventional Conventional
    composition
    3 composition 4
    Glass composition
    Bismuth oxide 65 wt % 70 wt %
    Silicon oxide 20 wt % 27 wt %
    Zinc oxide
    Boron oxide 10 wt %
    Barium oxide
    Aluminum oxide
    Calcium oxide 5 wt %
    Magnesium oxide 3 wt %
    Conventional Conventional
    Method of manufacturing paste method method
    Film
    charactareistics
    Film thickness 30 μm 30 μm
    Determination of total light 80% 83%
    transmittance X X
    Determination of Hayes 30% 20%
    X X
    Determination of dielectric AC 400 V AC 360 V
    withstand voltage X X
    Determination of coloring 6 7
  • (Embodiment 8) [0124]
  • In the present embodiment as well, like the above-mentioned [0125] Embodiment 7, non-lead oxide powder glass containing bismuth oxide, silicon oxide, zinc oxide, boron oxide, barium oxide, and aluminum oxide, solvent, and resin were used to prepare paste for a transparent insulating film. However, in the present embodiment, compositions of bismuth oxide, silicon oxide, zinc oxide, boron oxide, barium oxide, and aluminum oxide are changed in various ways, and the invented method (method of manufacturing paste in the above-mentioned Embodiment 4) was used as a method of manufacturing paste. Table 11 specifically shows a glass composition, a method of manufacturing paste, and film characteristics.
    TABLE 11
    Invented Invented Invented Invented
    composition 7 composition 8 composition 9 composition 10
    Glass Bismuth oxide 62 wt % 53 wt % 46 wt % 46 wt %
    Composition Silicon oxide in total in total in total in total
    Zinc oxide
    Boron oxide 17 wt % 25 wt % 28 wt % 32 wt %
    Barium oxide
    13 wt % 18 wt % 20 wt % 22 wt %
    Aluminum oxide
     2 wt %  4 wt %  6 wt %  8 wt %
    Calcium oxide
    Magnesium oxide
    Method of manufacturing paste Invented Invented Invented Invented
    method method method method
    Film Film thickness 30 μm 30 μm 30 μm 30 μm
    character- Determination of total light 84% 92% 91% 83%
    istics transmittance × ×
    Determination of Hayes 17% 13% 14% 18%
    × ×
    Determination of dielectric AC 500 V AC 600 V AC 550 V AC 500 V
    withstand voltage
    Determination of coloring 2 4 4 4
  • Since the invented [0126] compositions 7 to 10 were used as a glass composition, considerably good results were obtained regarding dielectric withstand voltage and coloring. As for the invented compositions 7 and 10, total light transmittance and Hayes remained at the same level as the conventional composition (see Table 10).
  • According to the above description, like the above-mentioned [0127] Embodiment 6, it was understood that when boron oxide was 20 to 30 wt %, barium oxide was 15 to 20 wt %, and aluminum oxide was 3 to 6 wt % in the composition of powder glass, particularly good film characteristics were obtained.
  • Besides, in the above-mentioned [0128] embodiments 5 to 8, the method of manufacturing paste of the above-mentioned Embodiment 4 was used as a method of manufacturing paste. An applicable method is not limited to the above. It is surely possible to obtain desirable film characteristics even when the methods of manufacturing paste of Embodiments 1 to 3 are used.
  • Further, the powder glass of the present invention may contain copper oxide. It is possible to suppress the above coloring of yellow and so on by applying copper oxide of about 0.1 to 1 wt % to powder glass. [0129]
  • As described above, according to the embodiments of the present invention, it is possible to achieve a transparent insulating film having excellent balance of dielectric withstand voltage and optical characteristics and a plasma display having the transparent insulating film. [0130]
  • As described above, the present invention offers an advantage in that paste for a transparent insulating film can be provided while achieving better characteristics regarding transmittance of light, hayes, and dielectric withstand voltage. [0131]
  • DESCRIPTION OF SYMBOLS
  • [0132] 1. Scanning electrode
  • [0133] 2. Maintaining electrode
  • [0134] 3. Black stripe
  • [0135] 4. Transparent insulating film
  • [0136] 5. Mgo film
  • [0137] 6. Phosphor film
  • [0138] 7. Rib
  • [0139] 8. Ground surface dielectric film
  • [0140] 9. Data electrode
  • [0141] 10. Stirring blade
  • [0142] 11. Vessel
  • [0143] 12. Paste
  • [0144] 13. Rotor
  • [0145] 14. Vessel
  • [0146] 15. Beads
  • [0147] 16. Paste

Claims (19)

What is claimed is:
1. Paste for a transparent insulating film of a plasma display panel, said paste including powder glass, which contains lead oxide, silicon oxide, boron oxide, bariumoxide, and aluminum oxide, solvent, and resin.
2. The paste for a transparent insulating film according to claim 1, wherein said powder glass has a composition of boron oxide in 20 to 30 wt %, barium oxide in 15 to 20 wt %, and aluminum oxide in 3 to 6 wt %.
3. The paste for a transparent insulating film according to claim 1, wherein said powder glass contains copper oxide.
4. Paste for a transparent insulating film of a plasma display panel, said paste including powder glass, which contains bismuth oxide, silicon oxide, boron oxide, barium oxide, and aluminum oxide, solvent, and resin.
5. The paste for a transparent insulating film according to claim 4, wherein said powder glass contains zinc oxide.
6. The paste for a transparent insulating film according to claim 4 or 5, wherein said powder glass has a composition of boron oxide in 20 to 30 wt %, barium oxide in 15 to 20 wt %, and aluminum oxide in 3 to 6 wt %.
7. The paste for a transparent insulating film according to claim 4, wherein said powder glass contains copper oxide.
8. A plasma display panel, comprising:
a glass substrate;
an electrode pattern formed on said glass substrate; and
a transparent insulating film applied on said electrode pattern,
wherein said transparent insulating film is formed using the paste for a transparent insulating film according to claim 1.
9. A plasma display panel, comprising:
a glass substrate;
an electrode pattern formed on said glass substrate; and
a transparent insulating film applied on said electrode pattern,
wherein said transparent insulating film is formed using the paste for a transparent insulating film according to claim 4.
10. A method of manufacturing paste, comprising the steps of: storing powder glass, solvent, and resin in a storage section; and
rotating a plate at a peripheral speed of 40 m/s or more, said plate being disposed in said storage section so as to be substantially in parallel with or inclined to a bottom of said storage section.
11. The method of manufacturing paste according to claim 10, wherein said powder glass has a dispersed particle size such that D10 is 0.4 to 0.6 μm, D50 is 0.8 to 1.2 μm, and D90 is 1.4 to 1.8 μm.
12. The method of manufacturing paste according to claim 20, wherein said powder glass has a dispersed particle size such that D10 is 0.2 to 0.8 μm, D50 is 1.0 to 2.0 μm, and D90 is 2.5 to 4.0 μm.
13. A method of manufacturing paste, comprising the steps of:
storing powder glass, solvent, and resin in a sand mill storage section; and
operating a sand mill disposed in said sand mill storage section at a peripheral speed of 10 m/s or less.
14. The method of manufacturing paste according to claim 13, wherein said powder glass has a dispersed particle size such that D10 is 0.4 to 0.6 μm, D50 is 0.8 to 1.2 μm, and D90 is 1.4 to 1.8 μm.
15. A method of manufacturing paste, comprising the steps of:
storing powder glass, solvent, and resin in a storage section; and
rotating a cylinder at a peripheral speed of 20 m/s or more, said cylinder having a hole or a slit on a side and having a bottom disposed in said storage section so as to be substantially in parallel with or inclined to a bottom of said storage section.
16. The method of manufacturing paste according to claim 15, wherein said powder glass has a dispersed particle size such that D10 is 0.2 to 0.8 μm, D50 is 1.0 to 2.0 μm, and D90 is 2.5 to 4.0 μm.
17. A method of manufacturing a transparent insulating film, comprising the steps of:
manufacturing paste by using any one of the methods of manufacturing paste according to claims 10 to 16; and
applying said manufactured paste on a glass substrate having an electrode pattern formed in advance, and drying and firing said paste.
18. A method of manufacturing a plasma display panel, comprising the steps of:
forming an electrode pattern on a glass substrate; and
manufacturing a transparent insulating film on said glass substrate having said electrode pattern formed thereon by using the method of manufacturing a transparent insulating film according to claim 17.
19. The method of manufacturing a plasma display panel according to claim 18, wherein a scanning electrode formed by using said electrode pattern has b value of 5 or less.
US10/011,352 2000-12-05 2001-12-05 Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel Abandoned US20020176933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/422,109 US6875463B2 (en) 2000-12-05 2003-04-24 Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000370542 2000-12-05
JP2000-370,542 2000-12-05
JP2001-258,561 2001-08-28
JP2001258561 2001-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/422,109 Division US6875463B2 (en) 2000-12-05 2003-04-24 Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel

Publications (1)

Publication Number Publication Date
US20020176933A1 true US20020176933A1 (en) 2002-11-28

Family

ID=26605290

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/011,352 Abandoned US20020176933A1 (en) 2000-12-05 2001-12-05 Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel
US10/422,109 Expired - Fee Related US6875463B2 (en) 2000-12-05 2003-04-24 Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/422,109 Expired - Fee Related US6875463B2 (en) 2000-12-05 2003-04-24 Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel

Country Status (2)

Country Link
US (2) US20020176933A1 (en)
CN (1) CN1287408C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090045377A1 (en) * 2003-11-13 2009-02-19 Yong Cho Thick film getter paste compositions for use in moisture control
US20090263587A1 (en) * 2005-07-18 2009-10-22 E. I. Du Pont De Nemours And Company Thick film getter paste compositions with pre-hydrated desiccant for use in atmosphere control

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2007000734A1 (en) * 2006-03-22 2008-05-02 Grace W R & Co TRANSPARENT INORGANIC OXIDE COATING PRODUCED WHEN PREPARING COMPOSITION OF COATING, INCLUDING INORGANIC AND POLYMER OXIDE PARTICLES, APPLY SUBSTRATE COMPOSITION, FORM COATING AND HEATING COATING FOR ELIMI
KR100858660B1 (en) * 2007-04-03 2008-09-16 엘지전자 주식회사 Plasma display panel dielectric substance composition and plasma display panel comprising the same
JP6873393B2 (en) * 2016-12-01 2021-05-19 日本電気硝子株式会社 Sealing material paste

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119665A (en) 1994-10-19 1996-05-14 Asahi Glass Co Ltd Glass composition and plasma display panel using the same
JPH08162027A (en) 1994-12-06 1996-06-21 Noritake Co Ltd Dielectric composition and plasma display panel
US5714840A (en) * 1995-03-07 1998-02-03 Asahi Glass Company Ltd. Plasma display panel
US6197480B1 (en) * 1995-06-12 2001-03-06 Toray Industries, Inc. Photosensitive paste, a plasma display, and a method for the production thereof
JPH10156283A (en) 1996-11-29 1998-06-16 Asahi Chem Ind Co Ltd Film forming method
JP3845949B2 (en) 1997-05-09 2006-11-15 Jsr株式会社 Glass paste composition, transfer film, and method for producing plasma display panel
JP4078686B2 (en) 1997-05-09 2008-04-23 Jsr株式会社 Transfer film for plasma display panel dielectric layer formation
JPH11144623A (en) * 1997-11-05 1999-05-28 Toray Ind Inc Plasma display substrate and its manufacture
JP3159250B2 (en) * 1997-11-27 2001-04-23 日本電気株式会社 Plasma display panel
JP3373416B2 (en) * 1997-12-04 2003-02-04 富士通株式会社 Method for forming dielectric layer of plasma display panel
JP3120839B2 (en) * 1998-04-22 2000-12-25 日本電気株式会社 Plasma display, driving method thereof and manufacturing method thereof
JP4129824B2 (en) * 1998-06-25 2008-08-06 株式会社日立プラズマパテントライセンシング Plasma display panel and manufacturing method thereof
KR100747207B1 (en) * 1999-05-18 2007-08-07 엘지전자 주식회사 Composition of Dielectric for Plasma Display Panel
US6497962B1 (en) * 1999-11-19 2002-12-24 Asahi Glass Company, Limited Low melting point glass for covering electrodes, and plasma display device
TW470996B (en) * 2000-01-07 2002-01-01 Dar Chyi Ind Co Ltd Front panel structure and manufacturing method of plasma display
JP2003104756A (en) * 2001-09-28 2003-04-09 Nippon Electric Glass Co Ltd Glass past for plasma display panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090045377A1 (en) * 2003-11-13 2009-02-19 Yong Cho Thick film getter paste compositions for use in moisture control
US7699999B2 (en) * 2003-11-13 2010-04-20 E.I. Du Pont De Nemours And Company Thick film getter paste compositions for use in moisture control
US20100102269A1 (en) * 2003-11-13 2010-04-29 E. I. Du Pont De Nemours And Company Thick Film Getter Paste Compositions for Use in Moisture Control
US7943059B2 (en) 2003-11-13 2011-05-17 E. I. Du Pont De Nemours And Company Thick film getter paste compositions for use in moisture control
US20090263587A1 (en) * 2005-07-18 2009-10-22 E. I. Du Pont De Nemours And Company Thick film getter paste compositions with pre-hydrated desiccant for use in atmosphere control
US7691288B2 (en) * 2005-07-18 2010-04-06 E.I. Du Pont De Nemours And Company Thick film getter paste compositions with pre-hydrated desiccant for use in atmosphere control

Also Published As

Publication number Publication date
CN1287408C (en) 2006-11-29
CN1366322A (en) 2002-08-28
US20030207024A1 (en) 2003-11-06
US6875463B2 (en) 2005-04-05

Similar Documents

Publication Publication Date Title
EP2214193B1 (en) Plasma display panel
US20070298956A1 (en) Composition of glass for plasma display panel and fabrication method thereof
KR19990081588A (en) Dielectric Composition for Plasma Display
EP2099052B1 (en) Plasma display panel
KR100326558B1 (en) Composition of Barrier Rib for Plasma Display Panel
WO2007040120A1 (en) Plasma display panel
US6875463B2 (en) Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel
EP1564778A1 (en) Plasma display panel
EP2101342A1 (en) Plasma display panel
US6758062B2 (en) Plasma display panel production method
JP4163409B2 (en) Method for manufacturing plasma display panel
US20120326596A1 (en) Plasma display panel
EP2120251A1 (en) Plasma display panel
EP2120253A1 (en) Plasma display panel
US7994718B2 (en) Plasma display panel
KR101024480B1 (en) Plasma display panel, method for manufacturing the plasma display panel, and paste for display electrode for the plasma display panel
EP2124241A1 (en) Plasma display panel
US8164262B2 (en) Plasma display panel
EP2136386B1 (en) Method for manufacturing plasma display panel
KR20060076253A (en) Rear plate for plasma display panel
JP2002015664A (en) Manufacturing method of plasma display panel
EP2144267A1 (en) Plasma display panel
US8405296B2 (en) Plasma display panel
US8513888B2 (en) Plasma display panel
JP2003146698A5 (en) Method of manufacturing plasma display panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIFUNE, TASTUO;HAYASHI, TOMOHIRO;REEL/FRAME:012685/0910

Effective date: 20011206

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION