US20020179563A1 - Application of a strain-compensated heavily doped etch stop for silicon structure formation - Google Patents

Application of a strain-compensated heavily doped etch stop for silicon structure formation Download PDF

Info

Publication number
US20020179563A1
US20020179563A1 US09/873,931 US87393101A US2002179563A1 US 20020179563 A1 US20020179563 A1 US 20020179563A1 US 87393101 A US87393101 A US 87393101A US 2002179563 A1 US2002179563 A1 US 2002179563A1
Authority
US
United States
Prior art keywords
layer
wafer
etching
micromechanical structure
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/873,931
Inventor
Robert Horning
David Burns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to US09/873,931 priority Critical patent/US20020179563A1/en
Assigned to HONEYWELL INTERNATIONAL INC. reassignment HONEYWELL INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORNING, ROBERT D., BURNS, DAVID W.
Priority to PCT/US2002/017216 priority patent/WO2002098788A2/en
Publication of US20020179563A1 publication Critical patent/US20020179563A1/en
Assigned to NAVY, U.S. NAVY AS REPRESENTED BY THE SECRETARY OF THE reassignment NAVY, U.S. NAVY AS REPRESENTED BY THE SECRETARY OF THE CONFIRMATORY LICENSE Assignors: HONEYWELL INTERNATIONAL INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00595Control etch selectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0161Controlling physical properties of the material
    • B81C2201/0163Controlling internal stress of deposited layers
    • B81C2201/0164Controlling internal stress of deposited layers by doping the layer

Definitions

  • the present invention relates to the formation of a diaphragm in silicon fabrication by etching. More particularly the invention relates to an improved etch stop suitable for use in fabricating a variety of silicon based products such as pressure sensors, accelerometers and other devices using etched diaphragms without adversely affecting the mechanical integrity of the resulting silicon product.
  • the formation of the diaphragm is one of the key steps in silicon pressure sensor fabrication. Likewise, formation of the proof mass and suspension flexures is a key step in the fabrication of a silicon accelerometer. At the present time there are two kinds of electrochemical etches in use for diaphragm etching.
  • anisotropic etchants such as potassium hydroxide or ethylenediamine/pyrocatechol mixtures are used to form diaphragms or flexures
  • an etch stop is required to prevent the etchant from etching all the way through the silicon wafer.
  • the diaphragm or flexure thickness is determined by this etch step.
  • etch stop the electrochemical etch stop
  • a p-n junction prevents current from flowing into p-type portions of the wafer, allowing them to etch.
  • n-type portions of the wafer are passivated against etching by the applied current. This approach has been used to make pressure sensor diaphragms, and requires electrical contact to the wafer during etching, uniform distribution of current, great care to prevent or minimize leakage current across the p-n junctions, and electrochemical control equipment.
  • etch stop effect can be used to form the diaphragm of a pressure sensor, by applying a p+ layer (greater than 7 ⁇ 10 19 cm ⁇ 3 ) on a lightly doped substrate (less than about 5 ⁇ 10 19 cm ⁇ 3 ) on which electronic components are fabricated on the surface.
  • These components can be dielectrically isolated piezoresistors or resonant microbeams, as well as temperature compensation and signal conditioning electronics if desired.
  • the silicon is then etched by immersion in the etchant, until etching stops at the p+ layer and the wafer is removed from the etchant.
  • the p+ etch stop can be used in the formation of a dual-web biplane design. This approach imposes additional requirements in that there must be an etch stop on both sides of the wafer, and etching proceeds from both sides of the wafer at once, not just from one side. Electrochemical etching becomes very difficult, and it has been found that undesirable “cusps” are formed on the back side of flexures when using this approach.
  • the p+ etch stop is usable here, with the requirement that there must be a p+ layer on both sides of the wafer.
  • the p+ etch stop is preferable to an electrochemical etch stop because of its simplicity, high throughput, higher yield and lower cost. No electrical connections to the wafer are required and no in situ monitoring is needed. Preparation of the p-n junction for electrochemical etching requires great care to prevent or minimize leakage, whereas preparation of the p+ material is as simple as a deposition, diffusion or implant step.
  • the heavily doped layer is formed by a diffusion process, such as, for example, using a heavy boron diffusion to form the etch stop.
  • a diffusion process such as, for example, using a heavy boron diffusion to form the etch stop.
  • Two diffusion steps are done which create the diaphragm surrounded by a thicker p+ region.
  • the thick p+ region is anodically bonded to a glass wafer. Then everything but the p+ material is dissolved away in an etchant.
  • the p+ etch stop has the distinct advantage of ease and simplicity, when compared to the electrochemical etch stop, it also has two distinct disadvantages.
  • the p+ etch stop layer is formed, for example, by diffusion or epitaxial growth, followed by a layer of lightly doped material of either n-type or p-type.
  • Electronics such as piezoresistors, transistors and circuits for compensation, signal processing and communication, can be formed in the lightly doped, low defect density top layer.
  • etching stops on the buried layer which is then removed by another etchant, such as those known to selectively etch p+ silicon and stops on lightly doped silicon. While this solves the problem of the electronics, the lightly doped layer is still filled with dislocations that propagate from the p+ layer.
  • Another advantage would be if appropriately strain compensated layers as thin as a thousand ⁇ ngstroms or as thick as several tens of microns could be achieved.
  • the present invention comprises the use of a strain compensated material that can be used to form pressure sensor diaphragm, cantilevered accelerometers, dual-web biplane accelerometer structures and resonant microbeam formation.
  • the present invention comprises a method of making a silicon micromechanical structure.
  • the method, and the devices produced thereby include the use of a large atom, germanium, which is codoped with the boron, giving the silicon substrate a balance of small boron atoms and larger geranium atoms, forming a strain relieved etch stop layer.
  • Germanium is isoelectronic with silicon. Strain compensated layers as thin as one thousand ⁇ ngstroms and as thick as several tens of microns are contemplated.
  • Lightly doped silicon which is used as the substrate in this invention, is defined as silicon wafers having includes less than 5 ⁇ 10 19 cm ⁇ 3 boron therein.
  • a p+ or highly doped layer is put on one side of a lightly doped silicon substrate.
  • Highly doped silicon, or a p+ layer is defined as having a boron content of greater than 7 ⁇ 10 19 cm ⁇ 3 and also a germanium content of about 1 ⁇ 10 21 cm ⁇ 3 .
  • the method of this invention, and the devices formed thereby includes the use of a lightly doped layer on top of the p+ layer, burying the p+ layer and used in the same manner. In this embodiment, it is optionally possible to etch the buried p+ layer as part of the formation of the devices of the present invention.
  • a mask is formed on the back or bottom side of the wafer for etching a predetermined pattern.
  • the back side is then etched in a conventional manner to the p+ layer.
  • An insulator is deposited on the p+ layer, after which an electronic component on said insulator is fabricated, again using conventional semiconductor techniques, to form a micromechanical structure.
  • Preferred micromechanical structures are pressure sensors, cantilevered accelerometers, and dual web biplane accelerometer.
  • Preferred electronic component are dielectrically isolated piezoresistors and resonant microbeams.
  • the micromechanical structure includes a dielectrically isolated piezoresistor formed on a top surface of a first wafer, a second wafer is bonded to said first wafer, and said second wafer forms a single crystal piezoresistor.
  • FIGS. 1 a, 1 b, 1 c, and 1 d are schematic views in section of a wafer employing a first embodiment of the present invention, used to form a pressure sensor;
  • FIGS. 2 a, 2 b, 2 c, and 2 d are schematic views in section of a wafer employing this first embodiment of the present invention, used to form a cantilevered accelerometer;
  • FIGS. 3 a, 3 b, 3 c, 3 d, 3 e, 3 f, and 3 g are schematic views of in section of a wafer employing this first embodiment of the present invention used, to form a dual web biplane accelerometer;
  • FIGS. 4 a, 4 b, 4 c, 4 d and 4 e are schematic views in section of a wafer employing the second embodiment of the present invention, used to form a pressure sensor;
  • FIGS. 5 a, 5 b, 5 c, 5 d and 5 e are schematic views in section of a wafer employing the second embodiment of the present invention, used to form a cantilevered accelerometer;
  • FIGS. 6 a, 6 b, 6 c, 6 d, 6 e, 6 f , 6 g and 6 h are schematic views in section of a wafer employing this second embodiment of the present invention, used to form a dual web biplane accelerometer;
  • the present invention has been used to form a number of microstructures on silicon wafers, shown in all the figures as wafer 11 having a first side 13 and a second side 15 .
  • FIGS. 1 a - 1 d Shown in FIGS. 1 a - 1 d is the formation of a pressure sensor.
  • a lightly doped wafer 11 has p+ layer 17 formed on side 13 , wherein layer 17 is with boron and germanium to form highly doped silicon.
  • Lightly doped silicon is defined as silicon wafers having includes less than 5 ⁇ 10 19 cm ⁇ 3 boron therein.
  • Highly doped silicon, or a p+ layer is defined as having a boron content of greater than 7 ⁇ 10 19 cm ⁇ 3 and also a germanium content of about 1 ⁇ 10 21 cm ⁇ 3 .
  • Electronics 19 are fabricated on the p+ layer 17 in a conventional manner, and can be dielectrically isolated piezoresistors or resonant microbeams.
  • a mask 21 for diaphragm masking is formed on second side 15 , normally aligned with the electronics 19 on first side 13 . Etching takes place, as seen in FIG. 1 d, until it reaches the p+ layer 17 . Because of the presence of germanium in the boron doped p+ layer 17 , strain in the silicon has been compensated and the device operates in an improved, longer lasting manner.
  • FIGS. 2 a - 2 d illustrate the formation of a cantilevered accelerometer in accordance with one preferred embodiment of the present invention.
  • a p+ layer 17 is formed on side 13 of lightly doped wafer 11 .
  • Electronics 19 are again fabricated on the p+ layer 17 in a conventional manner, an can be dielectrically isolated piezoresistors or resonant microbeams.
  • a mask 21 for proof mass and flexure etching is formed on second side 15 , normally aligned with the electronics 19 on first side 13 . Etching takes place, as seen in FIG. 2 d, until it reaches the p+ layer 17 . Again, because of the presence of germanium in the boron doped p+ layer 17 , strain in the silicon has been compensated and the devices operate in an improved, longer lasting manner.
  • FIGS. 3 a - 3 g illustrate the formation of a dual web biplane accelerometer using the p+ etch stop concept as described herein.
  • a first p+ layer 17 is epitaxially grown on side 13 of lightly doped wafer 11 and a second p+ layer 18 is epitaxially grown on the other side 15 of wafer 11 .
  • Electronics 19 are once again fabricated on the p+ layer 17 in a conventional manner, and additional electronics 20 are fabricated on p+ layer 18 . It is intended that a wide variety of electronics may be used.
  • a piezoelectric resistor may be formed in the lightly doped layer 11 , or dielectrically isolated piezoresistors or resonant microbeams.
  • Mask 21 and 22 for proof mass and flexure etching are formed on both sides 13 and 15 respectively, with the masks 21 and 22 aligned with the electronics 19 and 20 .
  • Etching into the silicon wafer 11 takes place, as seen in FIGS. 3 c through 3 g, until it reaches the p+ layer 17 , producing an improved dual web biplane accelerometer because of the boron and germanium doping to produce an etch stop with the p+ layer.
  • FIGS. 4 a - 4 e another pressure sensor is formed, using a second embodiment of the present invention where p+ layer 17 is covered by an epitaxially grown lightly doped layer 23 , formed on side 13 , wherein layer 17 is with boron and germanium to form highly doped silicon.
  • electronics 19 are fabricated on the p+ layer 17
  • a mask 21 for diaphragm masking is formed on second side 15 , normally aligned with the electronics 19 on first side 13 .
  • Etching takes place, as seen in FIG. 1 d, until it reaches the p+ layer 17 .
  • FIGS. 4 e an optional step is shown where p+ layer is also removed by etching, using a commercially available p+ selective etchant.
  • FIGS. 5 a - 5 e The cantilevered accelerometer shown in FIGS. 5 a - 5 e is similar to that shown if FIGS. 2 a - 2 d , again using a lightly doped, epitaxially grown cover layer 23 for the p+ layer 17 . Etching of the silicon is stopped at p+ layer, as before, and again optional removal of the p+ layer is shown in FIG. 5 e.
  • the dual web biplane accelerometer shown in FIGS. 6 a - 6 h is similar to that shown in FIGS. 3 a - 3 g, again using a lightly doped, epitaxially grown cover layer 23 for both the p+ layer 17 and a second p+ layer 18 .
  • Electronics 19 and 20 are fabricated on the lightly doped layers 23 p+ layers 17 and 18 respectively.
  • Mask 21 and 22 for proof mass and flexure etching are formed on both sides 13 and 15 respectively, with the masks 21 and 22 aligned with the electronics 19 and 20 . Etching into the silicon wafer 11 takes place, as seen in FIGS.

Abstract

A method of making a silicon micromechanical structure, from a lightly doped silicon substrate having less than <5×1019 cm−3 boron therein. A p+ layer having a boron content of greater than 7×1019 cm−3 and a germanium content of about 1×1021 cm−3 is placed on the substrate. A mask is formed on the second side, followed by etching to the p+ layer. An insulator is put on the p+ layer and an electronic component is fabricated thereon. Preferred micromechanical structures are pressure sensors, cantilevered accelerometers, and dual web biplane accelerometers. Preferred electronic components are dielectrically isolated piezoresistors and resonant microbeams. The method may include the step of forming a lightly doped layer on the p+ layer to form a buried p+ layer prior to etching.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the formation of a diaphragm in silicon fabrication by etching. More particularly the invention relates to an improved etch stop suitable for use in fabricating a variety of silicon based products such as pressure sensors, accelerometers and other devices using etched diaphragms without adversely affecting the mechanical integrity of the resulting silicon product. [0001]
  • BACKGROUND OF THE INVENTION
  • The formation of the diaphragm is one of the key steps in silicon pressure sensor fabrication. Likewise, formation of the proof mass and suspension flexures is a key step in the fabrication of a silicon accelerometer. At the present time there are two kinds of electrochemical etches in use for diaphragm etching. [0002]
  • When anisotropic etchants, such as potassium hydroxide or ethylenediamine/pyrocatechol mixtures are used to form diaphragms or flexures, an etch stop is required to prevent the etchant from etching all the way through the silicon wafer. The diaphragm or flexure thickness is determined by this etch step. [0003]
  • One form of etch stop, the electrochemical etch stop, is obtained by applying a positive voltage to n-type portions of the wafer during etching. A p-n junction prevents current from flowing into p-type portions of the wafer, allowing them to etch. However, n-type portions of the wafer are passivated against etching by the applied current. This approach has been used to make pressure sensor diaphragms, and requires electrical contact to the wafer during etching, uniform distribution of current, great care to prevent or minimize leakage current across the p-n junctions, and electrochemical control equipment. [0004]
  • An alternative that is also well known is doping silicon very heavily with boron, greater than 7×10[0005] 19 cm−3 causes a significant decrease n the etch rate, this being the so-called p+ etch stop. This etch stop effect can be used to form the diaphragm of a pressure sensor, by applying a p+ layer (greater than 7×1019 cm−3) on a lightly doped substrate (less than about 5×1019 cm−3) on which electronic components are fabricated on the surface. These components can be dielectrically isolated piezoresistors or resonant microbeams, as well as temperature compensation and signal conditioning electronics if desired. A mask, using a passivating material such as SiO2 or SiNx, is then formed on the back side of the waver, and aligned with the features on the front side. The silicon is then etched by immersion in the etchant, until etching stops at the p+ layer and the wafer is removed from the etchant.
  • The p+ etch stop can be used in the formation of a dual-web biplane design. This approach imposes additional requirements in that there must be an etch stop on both sides of the wafer, and etching proceeds from both sides of the wafer at once, not just from one side. Electrochemical etching becomes very difficult, and it has been found that undesirable “cusps” are formed on the back side of flexures when using this approach. The p+ etch stop is usable here, with the requirement that there must be a p+ layer on both sides of the wafer. [0006]
  • The p+ etch stop is preferable to an electrochemical etch stop because of its simplicity, high throughput, higher yield and lower cost. No electrical connections to the wafer are required and no in situ monitoring is needed. Preparation of the p-n junction for electrochemical etching requires great care to prevent or minimize leakage, whereas preparation of the p+ material is as simple as a deposition, diffusion or implant step. [0007]
  • In conventional processes, the heavily doped layer is formed by a diffusion process, such as, for example, using a heavy boron diffusion to form the etch stop. Two diffusion steps are done which create the diaphragm surrounded by a thicker p+ region. The thick p+ region is anodically bonded to a glass wafer. Then everything but the p+ material is dissolved away in an etchant. [0008]
  • While the p+ etch stop has the distinct advantage of ease and simplicity, when compared to the electrochemical etch stop, it also has two distinct disadvantages. First, because the material is heavily doped, a piezoresistor or other electronic device cannot be formed in it. Second, because the boron atom is smaller than the silicon atom, the heavy concentration of boron causes a contraction of the silicon lattice. This strain generates large numbers of dislocations in the material, making it mechanically poor. [0009]
  • One prior art solution to the electrical problem is to use a p+ “buried layer.” In this approach, the p+ etch stop layer is formed, for example, by diffusion or epitaxial growth, followed by a layer of lightly doped material of either n-type or p-type. Electronics, such as piezoresistors, transistors and circuits for compensation, signal processing and communication, can be formed in the lightly doped, low defect density top layer. During diaphragm formation, etching stops on the buried layer, which is then removed by another etchant, such as those known to selectively etch p+ silicon and stops on lightly doped silicon. While this solves the problem of the electronics, the lightly doped layer is still filled with dislocations that propagate from the p+ layer. [0010]
  • It would be of great advantage in the art if a method could be provided for application of strain relieved material to pressure sensors and accelerometers in designs that use the p+ etch stop with highly strained material. [0011]
  • It would be another great advance in the art if difficulties in forming electronics in conjunction with heavily doped material could be provided. [0012]
  • Another advantage would be if appropriately strain compensated layers as thin as a thousand Ångstroms or as thick as several tens of microns could be achieved. [0013]
  • Other advantages will appear hereinafter. [0014]
  • SUMMARY OF THE INVENTION
  • It has now been discovered that the above and other objects of the present invention may be accomplished in the following manner. Specifically, the present invention comprises the use of a strain compensated material that can be used to form pressure sensor diaphragm, cantilevered accelerometers, dual-web biplane accelerometer structures and resonant microbeam formation. [0015]
  • The present invention comprises a method of making a silicon micromechanical structure. The method, and the devices produced thereby, include the use of a large atom, germanium, which is codoped with the boron, giving the silicon substrate a balance of small boron atoms and larger geranium atoms, forming a strain relieved etch stop layer. Germanium is isoelectronic with silicon. Strain compensated layers as thin as one thousand Ångstroms and as thick as several tens of microns are contemplated. [0016]
  • Lightly doped silicon, which is used as the substrate in this invention, is defined as silicon wafers having includes less than 5×10[0017] 19 cm−3 boron therein. A p+ or highly doped layer is put on one side of a lightly doped silicon substrate. Highly doped silicon, or a p+ layer, is defined as having a boron content of greater than 7×1019 cm−3 and also a germanium content of about 1×1021 cm−3. Preferred are p+ layers where the boron content is greater than 1×1020 cm−3 and the germanium content is from about 0.5×1021 cm−3 to about 2.0×1021cm−3.
  • In another embodiment, the method of this invention, and the devices formed thereby, includes the use of a lightly doped layer on top of the p+ layer, burying the p+ layer and used in the same manner. In this embodiment, it is optionally possible to etch the buried p+ layer as part of the formation of the devices of the present invention. [0018]
  • Once the p+ layer has been applied, a mask is formed on the back or bottom side of the wafer for etching a predetermined pattern. The back side is then etched in a conventional manner to the p+ layer. An insulator is deposited on the p+ layer, after which an electronic component on said insulator is fabricated, again using conventional semiconductor techniques, to form a micromechanical structure. Preferred micromechanical structures are pressure sensors, cantilevered accelerometers, and dual web biplane accelerometer. Preferred electronic component are dielectrically isolated piezoresistors and resonant microbeams. [0019]
  • In another embodiment, the micromechanical structure includes a dielectrically isolated piezoresistor formed on a top surface of a first wafer, a second wafer is bonded to said first wafer, and said second wafer forms a single crystal piezoresistor. [0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the invention, reference is hereby made to the drawings, in which: [0021]
  • FIGS. 1[0022] a, 1 b, 1 c, and 1 d are schematic views in section of a wafer employing a first embodiment of the present invention, used to form a pressure sensor;
  • FIGS. 2[0023] a, 2 b, 2 c, and 2 d are schematic views in section of a wafer employing this first embodiment of the present invention, used to form a cantilevered accelerometer;
  • FIGS. 3[0024] a, 3 b, 3 c, 3 d, 3 e, 3 f, and 3 g are schematic views of in section of a wafer employing this first embodiment of the present invention used, to form a dual web biplane accelerometer;
  • FIGS. 4[0025] a, 4 b, 4 c, 4 d and 4 e are schematic views in section of a wafer employing the second embodiment of the present invention, used to form a pressure sensor;
  • FIGS. 5[0026] a, 5 b, 5 c, 5 d and 5 e are schematic views in section of a wafer employing the second embodiment of the present invention, used to form a cantilevered accelerometer; and
  • FIGS. 6[0027] a, 6 b, 6 c, 6 d, 6 e, 6 f, 6 g and 6 h are schematic views in section of a wafer employing this second embodiment of the present invention, used to form a dual web biplane accelerometer;
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention has been used to form a number of microstructures on silicon wafers, shown in all the figures as wafer [0028] 11 having a first side 13 and a second side 15.
  • Shown in FIGS. 1[0029] a-1 d is the formation of a pressure sensor. In FIG. 1a, a lightly doped wafer 11 has p+ layer 17 formed on side 13, wherein layer 17 is with boron and germanium to form highly doped silicon. Lightly doped silicon is defined as silicon wafers having includes less than 5×1019cm−3 boron therein. Highly doped silicon, or a p+ layer, is defined as having a boron content of greater than 7×1019 cm−3 and also a germanium content of about 1×1021 cm−3. Preferred are p+ layers where the boron content is greater than 1×1020 cm−3 and the germanium ranges from about 0.5×1021 cm−3 to about 2.0×1021 cm−3.
  • Electronics [0030] 19 are fabricated on the p+ layer 17 in a conventional manner, and can be dielectrically isolated piezoresistors or resonant microbeams. A mask 21 for diaphragm masking is formed on second side 15, normally aligned with the electronics 19 on first side 13. Etching takes place, as seen in FIG. 1d, until it reaches the p+ layer 17. Because of the presence of germanium in the boron doped p+ layer 17, strain in the silicon has been compensated and the device operates in an improved, longer lasting manner.
  • FIGS. 2[0031] a-2 d illustrate the formation of a cantilevered accelerometer in accordance with one preferred embodiment of the present invention. A p+ layer 17 is formed on side 13 of lightly doped wafer 11. Electronics 19 are again fabricated on the p+ layer 17 in a conventional manner, an can be dielectrically isolated piezoresistors or resonant microbeams. A mask 21 for proof mass and flexure etching is formed on second side 15, normally aligned with the electronics 19 on first side 13. Etching takes place, as seen in FIG. 2d, until it reaches the p+ layer 17. Again, because of the presence of germanium in the boron doped p+ layer 17, strain in the silicon has been compensated and the devices operate in an improved, longer lasting manner.
  • FIGS. 3[0032] a-3 g illustrate the formation of a dual web biplane accelerometer using the p+ etch stop concept as described herein. In this embodiment, a first p+ layer 17 is epitaxially grown on side 13 of lightly doped wafer 11 and a second p+ layer 18 is epitaxially grown on the other side 15 of wafer 11. Electronics 19 are once again fabricated on the p+ layer 17 in a conventional manner, and additional electronics 20 are fabricated on p+ layer 18. It is intended that a wide variety of electronics may be used. Here, a piezoelectric resistor may be formed in the lightly doped layer 11, or dielectrically isolated piezoresistors or resonant microbeams. Mask 21 and 22 for proof mass and flexure etching are formed on both sides 13 and 15 respectively, with the masks 21 and 22 aligned with the electronics 19 and 20. Etching into the silicon wafer 11 takes place, as seen in FIGS. 3c through 3 g, until it reaches the p+ layer 17, producing an improved dual web biplane accelerometer because of the boron and germanium doping to produce an etch stop with the p+ layer.
  • In FIGS. 4[0033] a-4 e, another pressure sensor is formed, using a second embodiment of the present invention where p+ layer 17 is covered by an epitaxially grown lightly doped layer 23, formed on side 13, wherein layer 17 is with boron and germanium to form highly doped silicon. As in FIGS. 1a-1 d, electronics 19 are fabricated on the p+ layer 17, a mask 21 for diaphragm masking is formed on second side 15, normally aligned with the electronics 19 on first side 13. Etching takes place, as seen in FIG. 1d, until it reaches the p+ layer 17. In FIGS. 4e, an optional step is shown where p+ layer is also removed by etching, using a commercially available p+ selective etchant.
  • The cantilevered accelerometer shown in FIGS. 5[0034] a-5 e is similar to that shown if FIGS. 2a-2 d, again using a lightly doped, epitaxially grown cover layer 23 for the p+ layer 17. Etching of the silicon is stopped at p+ layer, as before, and again optional removal of the p+ layer is shown in FIG. 5e.
  • The dual web biplane accelerometer shown in FIGS. 6[0035] a-6 h is similar to that shown in FIGS. 3a-3 g, again using a lightly doped, epitaxially grown cover layer 23 for both the p+ layer 17 and a second p+ layer 18. Electronics 19 and 20 are fabricated on the lightly doped layers 23 p+ layers 17 and 18 respectively. Mask 21 and 22 for proof mass and flexure etching are formed on both sides 13 and 15 respectively, with the masks 21 and 22 aligned with the electronics 19 and 20. Etching into the silicon wafer 11 takes place, as seen in FIGS. 6c through 6 g, until it reaches the p+ layer 17, producing an improved dual web biplane accelerometer because of the boron and germanium doping to produce an etch stop with the p+ layer. Optional removal of the p+ layer is shown in FIG. 6h.
  • While particular embodiments of the present invention have been illustrated and described, it is not intended to limit the invention, except as defined by the following claims. [0036]

Claims (36)

1. A method of making a silicon micromechanical structure, comprising the steps of:
forming a lightly doped silicon substrate having a first and second side and having less than 5×1019 cm−3 boron therein;
placing a p+ layer on the first side of said substrate, said p+ having a boron content of greater than 7×1019 cm−3 and a germanium content of about 1×1021 cm−3;
forming a mask on the second side for etching a predetermined pattern;
etching said second side to said p+ layer; and
depositing an insulator on said p+ layer and fabricating an electronic component on said insulator.
2. The method of claim 1, wherein said boron content is greater than 1×1020 cm−3 and the germanium content is from about 0.5×1021 cm−3 to about 2.0×1021 cm−3.
3. The method of claim 1, wherein said micromechanical structure is a pressure sensor.
4. The method of claim 3, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
5. The method of claim 1, wherein said micromechanical structure is a cantilevered accelerometer.
6. The method of claim 5, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
7. The method of claim 1, wherein said micromechanical structure is a dual web biplane accelerometer formed by forming a said p+ layer on both sides of said substrate, forming a proof mask and flexure etching on both sides of said layer until said etching reaches said p+ layers.
8. The method of claim 7, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
9. The method of claim 1, wherein said micromechanical structure includes a dielectrically isolated piezoresistor formed on a top surface of a first wafer, a second wafer is bonded to said first wafer, and said second wafer forms a single crystal piezoresistor.
10. A method of making a silicon micromechanical structure, comprising the steps of:
forming a lightly doped silicon substrate having a first and second side and having less than 5×1019 cm−3 boron therein;
placing a p+ layer on the first side of said substrate, said p+ having a boron content of greater than 7×1019 cm −3 and a germanium content of about 1×1021 cm−3;
forming a lightly doped layer on said p+ layer to form a buried p+ layer;
forming a mask on the second side for etching a predetermined pattern;
etching said second side to said buried p+ layer; and
depositing an insulator on said lightly doped layer and fabricating an electronic component on said insulator.
11. The method of claim 10, wherein said boron content is greater than 1×1020 cm−3 and the germanium content is from about 0.5×1021 cm−3 to about 2.0×1021 cm−3.
12. The method of claim 10, wherein said micromechanical structure is a pressure sensor.
13. The method of claim 12, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
14. The method of claim 10, wherein said micromechanical structure is a cantilevered accelerometer.
15. The method of claim 14, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
16. The method of claim 10, wherein said micromechanical structure is a dual web biplane accelerometer formed by forming a said p+ layer on both sides of said substrate, forming a proof mask and flexure etching on both sides of said layer until said etching reaches said p+ layers.
17. The method of claim 16, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
18. The method of claim 10, wherein said micromechanical structure includes a dielectrically isolated piezoresistor formed on a top surface of a first wafer, a second wafer is bonded to said first wafer, and said second wafer forms a single crystal piezoresistor.
19. A device produced according to the method of claim 1.
20. The device of claim 19, wherein said boron content is greater than 1×1020 cm−3 and the germanium content is from about 0.5×1021 cm−3 to about 2.0×1021 cm−3.
21. The device of claim 19, wherein said micromechanical structure is a pressure sensor.
22. The device of claim 21, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
23. The device of claim 19, wherein said micromechanical structure is a cantilevered accelerometer.
24. The device of claim 23, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
25. The device of claim 19, wherein said micromechanical structure is a dual web biplane accelerometer formed by forming a said p+ layer on both sides of said substrate, forming a proof mask and flexure etching on both sides of said layer until said etching reaches said p+ layers.
26. The device of claim 25, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
27. The device of claim 19, wherein said micromechanical structure includes a dielectrically isolated piezoresistor formed on a top surface of a first wafer, a second wafer is bonded to said first wafer, and said second wafer forms a single crystal piezoresistor.
28. A device produced according to the method of claim 10.
29. The device of claim 28, wherein said boron content is greater than 1×1020 cm −3 and the germanium content is from about 0.5×1021 cm−3 to about 2.0×1021 cm−3.
30. The device of claim 28, wherein said micromechanical structure is a pressure sensor.
31. The device of claim 30, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
32. The device of claim 23, wherein said micromechanical structure is a cantilevered accelerometer.
33. The device of claim 32, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
34. The device of claim 28, wherein said micromechanical structure is a dual web biplane accelerometer formed by forming a said p+ layer or both sides of said substrate, forming a proof mask and flexure etching on both sides of said layer until said etching reaches said p+ layers.
35. The device of claim 34, wherein said electronic component is selected from the group consisting of dielectrically isolated piezoresistors and resonant microbeams.
36. The device of claim 28, wherein said micromechanical structure includes a dielectrically isolated piezoresistor formed on a top surface of a first wafer, a second wafer is bonded to said first wafer, and said second wafer forms a single crystal piezoresistor.
US09/873,931 2001-06-04 2001-06-04 Application of a strain-compensated heavily doped etch stop for silicon structure formation Abandoned US20020179563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/873,931 US20020179563A1 (en) 2001-06-04 2001-06-04 Application of a strain-compensated heavily doped etch stop for silicon structure formation
PCT/US2002/017216 WO2002098788A2 (en) 2001-06-04 2002-06-04 Applications of a strain-compensated heavily doped etch stop for silicon structure formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/873,931 US20020179563A1 (en) 2001-06-04 2001-06-04 Application of a strain-compensated heavily doped etch stop for silicon structure formation

Publications (1)

Publication Number Publication Date
US20020179563A1 true US20020179563A1 (en) 2002-12-05

Family

ID=25362628

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/873,931 Abandoned US20020179563A1 (en) 2001-06-04 2001-06-04 Application of a strain-compensated heavily doped etch stop for silicon structure formation

Country Status (2)

Country Link
US (1) US20020179563A1 (en)
WO (1) WO2002098788A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040217845A1 (en) * 1998-07-15 2004-11-04 Silver Eric H Method for making an epitaxial germanium temperature sensor
US20060231521A1 (en) * 2005-04-15 2006-10-19 Chilcott Dan W Technique for manufacturing micro-electro mechanical structures
US20060240583A1 (en) * 2005-04-25 2006-10-26 Baney William J Technique for manufacturing silicon structures
CN102815661A (en) * 2011-06-07 2012-12-12 无锡华润华晶微电子有限公司 Preparation method of silicon film
CN102817082A (en) * 2011-06-08 2012-12-12 无锡华润华晶微电子有限公司 Preparation method for silicon films
US20130152696A1 (en) * 2011-12-19 2013-06-20 Infineon Technologies Ag Micromechanical semiconductor sensing device
CN104900714A (en) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 Pressure sensor manufacturing method and pressure sensor
CN105444926A (en) * 2014-07-08 2016-03-30 中航(重庆)微电子有限公司 MEMS resonant-type pressure sensor and manufacturing process thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2490546A (en) * 2011-05-06 2012-11-07 Univ Warwick Semiconductor structure
CN102616732A (en) * 2012-04-09 2012-08-01 上海先进半导体制造股份有限公司 Method for manufacturing impending semiconductor film structures and sensor units

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357899A (en) * 1991-10-08 1994-10-25 International Business Machines Corporation Epitaxial silicon membranes
US5817942A (en) * 1996-02-28 1998-10-06 The Charles Stark Draper Laboratory, Inc. Capacitive in-plane accelerometer
US5906708A (en) * 1994-11-10 1999-05-25 Lawrence Semiconductor Research Laboratory, Inc. Silicon-germanium-carbon compositions in selective etch processes
US20040000268A1 (en) * 1998-04-10 2004-01-01 Massachusetts Institute Of Technology Etch stop layer system
US6689211B1 (en) * 1999-04-09 2004-02-10 Massachusetts Institute Of Technology Etch stop layer system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29621439U1 (en) * 1996-12-10 1997-03-20 Elsdale Ltd Data acquisition and card processing system
US6159385A (en) * 1998-05-08 2000-12-12 Rockwell Technologies, Llc Process for manufacture of micro electromechanical devices having high electrical isolation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357899A (en) * 1991-10-08 1994-10-25 International Business Machines Corporation Epitaxial silicon membranes
US5906708A (en) * 1994-11-10 1999-05-25 Lawrence Semiconductor Research Laboratory, Inc. Silicon-germanium-carbon compositions in selective etch processes
US5817942A (en) * 1996-02-28 1998-10-06 The Charles Stark Draper Laboratory, Inc. Capacitive in-plane accelerometer
US20040000268A1 (en) * 1998-04-10 2004-01-01 Massachusetts Institute Of Technology Etch stop layer system
US6689211B1 (en) * 1999-04-09 2004-02-10 Massachusetts Institute Of Technology Etch stop layer system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232487B2 (en) * 1998-07-15 2007-06-19 Smithsonian Astrophysical Observatory Method for making an epitaxial germanium temperature sensor
US20040217845A1 (en) * 1998-07-15 2004-11-04 Silver Eric H Method for making an epitaxial germanium temperature sensor
US7214324B2 (en) * 2005-04-15 2007-05-08 Delphi Technologies, Inc. Technique for manufacturing micro-electro mechanical structures
US20060231521A1 (en) * 2005-04-15 2006-10-19 Chilcott Dan W Technique for manufacturing micro-electro mechanical structures
EP1717196A1 (en) * 2005-04-25 2006-11-02 Delphi Technologies, Inc. Technique for manufacturing silicon structures
US7179668B2 (en) 2005-04-25 2007-02-20 Delphi Technologies, Inc. Technique for manufacturing silicon structures
US20060240583A1 (en) * 2005-04-25 2006-10-26 Baney William J Technique for manufacturing silicon structures
CN102815661A (en) * 2011-06-07 2012-12-12 无锡华润华晶微电子有限公司 Preparation method of silicon film
CN102817082A (en) * 2011-06-08 2012-12-12 无锡华润华晶微电子有限公司 Preparation method for silicon films
US20130152696A1 (en) * 2011-12-19 2013-06-20 Infineon Technologies Ag Micromechanical semiconductor sensing device
US9021887B2 (en) * 2011-12-19 2015-05-05 Infineon Technologies Ag Micromechanical semiconductor sensing device
US9567211B2 (en) 2011-12-19 2017-02-14 Infineon Technologies Ag Micromechanical semiconductor sensing device
US9790086B2 (en) 2011-12-19 2017-10-17 Infineon Technologies Ag Micromechanical semiconductor sensing device
CN105444926A (en) * 2014-07-08 2016-03-30 中航(重庆)微电子有限公司 MEMS resonant-type pressure sensor and manufacturing process thereof
CN104900714A (en) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 Pressure sensor manufacturing method and pressure sensor

Also Published As

Publication number Publication date
WO2002098788A3 (en) 2003-10-09
WO2002098788A2 (en) 2002-12-12

Similar Documents

Publication Publication Date Title
US4783237A (en) Solid state transducer and method of making same
US4966663A (en) Method for forming a silicon membrane with controlled stress
EP0629286B1 (en) Soi actuators and microsensors
JP2582229B2 (en) Method of manufacturing silicon diagram and silicon pressure sensor
JP3493068B2 (en) Acceleration sensor made of crystalline material and method for manufacturing this acceleration sensor
US5110373A (en) Silicon membrane with controlled stress
CA2319570C (en) Semiconductor pressure sensor and method of manufacturing the same
US5672551A (en) Method for manufacturing a semiconductor pressure sensor with single-crystal silicon diaphragm and single-crystal gage elements
CA2340059C (en) Micromechanical sensor and method for producing same
US20020179563A1 (en) Application of a strain-compensated heavily doped etch stop for silicon structure formation
JP3451105B2 (en) Method of manufacturing boss diaphragm structure embedded in silicon and micromechanical device
JP2002103299A (en) Micro-machine manufacturing method
EP1482069A1 (en) Method for producing polycrystalline silicon germanium suitable for micromachining
US7919345B1 (en) Method of fabricating micromechanical components with free-standing microstructures or membranes
Pak et al. A bridge-type piezoresistive accelerometer using merged epitaxial lateral overgrowth for thin silicon beam formation
JPH1131825A (en) Method for manufacturing semiconductor dynamic quantity sensor
EP1846321B1 (en) Method of fabricating a silicon-on-insulator structure
EP0689719A1 (en) Semiconductor structure, and method of manufacturing same
JPH06302834A (en) Manufacture of thin-film structure
WO1991019177A1 (en) Micro-mechanical component and process for manufacturing it
JP2006003102A (en) Semiconductor pressure sensor and its manufacturing method
JPS59172778A (en) Manufacture of pressure sensor
JPH04329676A (en) Manufacture of semiconductor acceleration sensor
JPS6370529A (en) Manufacture of acceleration measuring device
WO2003090281A2 (en) Single crystal silicon membranes for microelectromechanical applications

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONEYWELL INTERNATIONAL INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORNING, ROBERT D.;BURNS, DAVID W.;REEL/FRAME:012213/0488;SIGNING DATES FROM 20010827 TO 20010914

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NAVY, U.S. NAVY AS REPRESENTED BY THE SECRETARY OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:HONEYWELL INTERNATIONAL INC.;REEL/FRAME:028932/0190

Effective date: 20010822