US20020187084A1 - Method and apparatus for removing substances from gases - Google Patents

Method and apparatus for removing substances from gases Download PDF

Info

Publication number
US20020187084A1
US20020187084A1 US10/205,296 US20529602A US2002187084A1 US 20020187084 A1 US20020187084 A1 US 20020187084A1 US 20529602 A US20529602 A US 20529602A US 2002187084 A1 US2002187084 A1 US 2002187084A1
Authority
US
United States
Prior art keywords
reaction
sacrificial material
substrate
ald
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/205,296
Inventor
Sven Lindfors
Jaakko Hyvarinen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM International NV
Original Assignee
Sven Lindfors
Jaakko Hyvarinen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sven Lindfors, Jaakko Hyvarinen filed Critical Sven Lindfors
Priority to US10/205,296 priority Critical patent/US20020187084A1/en
Publication of US20020187084A1 publication Critical patent/US20020187084A1/en
Assigned to ASM INTERNATIONAL N.V. reassignment ASM INTERNATIONAL N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASM MICROCHEMISTRY OY
Priority to US12/138,358 priority patent/US7799300B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases

Definitions

  • the present invention relates to the removal of substances contained in gases, such as gases flowing at low pressure.
  • the present invention concerns a method and an apparatus for removing unreacted reactants and vapor phase precursors present in gases removed from vapor phase reactors.
  • the substrate is typically located in a reaction space, wherein it is subjected to alternately repeated surface reactions of at least two different reactants.
  • ASM Microchemistry Oy Espoo Finland under the trademark ALCVDTM.
  • the reactants are admitted repetitively and alternately one reactant at a time from its own source in the form of vapor-phase pulses in the reaction space.
  • the vapor-phase reactants are allowed to react with the substrate surface for the purpose of forming a solid-state thin film on the substrate, particularly for use in the semiconductor arts.
  • the method is most appropriately suited for producing so-called compound thin films, using as the reactants starting materials or precursors that contain component elements of the desired compound thin-film, it may also be applied to growing elemental thin films.
  • compound films typically used in the art reference can be made to ZnS films employed in electroluminescent displays, whereby such films are grown on a glass substrate using zinc sulfide and hydrogen sulfide as the reactants in the growth process.
  • elemental thin films reference can be made to silicon thin films.
  • An ALD apparatus comprises a reaction space into which the substrate can be placed, and at least two reactant sources from which the reactants used in the thin-film growth process can be fed in the form of vapor-phase pulses into the reaction space.
  • the sources are connected to the reaction space via reactant inflow channels.
  • Outflow channels (pumping lines) are attached to a pump and connected to the reaction space for removing the gaseous reaction products of the thin-film growth process, as well as the excess reactants in vapor phase.
  • the waste i.e., the non-reacted reactants removed and discharged from the reaction space, is a serious problem for ALD processing. When it enters the pumping line and the pump, the waste gives rise to tedious cleaning and, in the worst case, the pump will rapidly be worn out.
  • oxychlorides might form in exhaust lines as a by-product of exemplary metal oxide deposition processes using metal chlorides as one of the ALD precursors. These by-products form a high volume powder. Typically this kind of reaction happens inside the pumping line between the reaction zone and the colder parts of the pumping line. Another problem occurs when precursors with a high vapor pressure at room temperature reach the pump sequentially at temperatures suitable for film growth. This might lead to a film material build-up on the surfaces of the pump. The material build-up can be very abrasive. This is a specific problem with heated pumping lines and hot dry pumps. This will cause the filling of tight tolerances and due to that the parts will contact each other and pump will crash. A third problem is the reactions between condensed portions of the previous reaction component and the vapor of the following pulse in the pumping line. This will cause CVD-type material growth and significant powder propagation.
  • Finnish Patent No. 84980 Plant International Oy discloses a system consisting of a condensation chamber, where the gas stream is slowed down and where a big part of the waste is condensed. Before entering the filter unit, extra water is injected into the filter housing to increase the by-products' particle size in order to prevent blockage of the filter mesh before the waste is removed by a rotating peeler system. Although this apparatus represents a clear improvement of the state of the art, it is still not completely satisfactory.
  • the present invention is based on the concept of processing all of the extra precursor material of the pulse dose, to form the end product, before the precursors are discharged from the reactor or the reaction zone. Thereby, the volume of the waste can be greatly reduced.
  • the postprocessing of the precursor excess stemming from the ALD process is carried out by placing a sacrificial material with a high surface area (typically porous) in the reaction zone, which is swept by the precursors during their travel to the outlet of the reaction chamber.
  • the material with high surface area can be placed in a separate heated vessel, outside the reaction zone but upstream of the discharge pump.
  • the material with a high surface area is, however, in both embodiments kept essentially the growth conditions (for example, same pressure and temperature) as the reaction zone to ensure growth of a reaction product on the surface thereof.
  • the material with a high surface area traps the remaining end product on its surface, thereby reducing the amount of reactant reaching the pump.
  • the present apparatus includes a reaction zone arranged downstream from (i.e., after) the reaction process, comprising a material with a high surface area and maintainable at essentially the same conditions as those prevailing during the gas phase reaction process.
  • the reaction zone further includes gas flow channels for feeding gases discharged from the gas phase reaction process into the material with a high surface area and discharge gas channels for discharging gas from the material with a high surface area.
  • the material with a high surface area will trap on its surface the end product of the reaction of the excess gaseous reactants.
  • the surface area of the trap is generally large, on an average about 10 m 2 /g to 1000 m 2 /g; for example it can have the surface area on the same order as that of a soccer stadium.
  • the trap can be in use for several runs before it is cleaned or replaced with a new one.
  • the pump connected to the reaction space has only to cope with materials in gaseous form because mostly non-reactive gaseous by-products from the process reach the pump.
  • “Non-reactive,” as used herein, refers to species other than the intended ALD reactants.
  • the solid thin film product is substantially captured in the reactant trap; this will considerably reduce wear of the equipment.
  • the present invention is generally applicable to any gaseous reactants. It is particularly advantageous for reactions that form corrosive or otherwise harmful side products during the reaction of the gaseous reactants.
  • a preferred embodiment is for dealing with the waste generated in a vapor phase reaction using chloride-containing reactants such as aluminum chloride, which are reacted with water to produce a metal oxide.
  • the present invention is preferably used for ALD, but it can also be used for treating exhaust from conventional CVD processing or electron beam sputtering and any other gas phase processes in which the discharged gaseous reactants may react with each other downstream of the actual reaction zone housing the substrate. In the following description, the invention will, however, be described with particular reference to an ALD embodiment.
  • FIGS. 1 a and 1 b are schematic top plan (FIG. 1 a ) and side elevational (FIG. 1 b ) views of a reactant trap comprising porous plates inside a suction box of an ALD reactor, constructed in accordance with a first preferred embodiment.
  • FIGS. 2 a and 2 b are schematic top plan (FIG. 2 a ) and side elevational (FIG. 2 b ) views of a reactant trap, constructed in accordance with a second preferred embodiment of the present invention, having an arrangement of plates inside a separate postreactor connected to the suction box of an ALD reactor.
  • FIGS. 3 a and 3 b are views corresponding to FIGS. 2 a and 2 b , with the plates replaced by glass wool cartridges, in accordance with a third embodiment.
  • FIGS. 4 a and 4 b are schematic cross-sections of a cartridge filled with glass wool (FIG. 4 a ) and a cartridge filled with graphite foil (FIG. 4 b ).
  • the present invention is based on the idea of placing—between the substrates of an ALD reactor and the pump—a material with a high surface area, which forms a postreaction substrate for the discharged superfluous gas phase reactants leaving the actual reaction zone. It is preferred that the surface of the porous material is so large that all of the superfluous material can adsorb upon surfaces of the reactant trap and then be converted into the corresponding final compound when the next reactant pulse enters, according to the principle of ALD (Atomic Layer Deposition).
  • ALD Atomic Layer Deposition
  • the postreaction reactant trap can be placed inside the vacuum vessel, within the hot reaction zone, or it can be formed as a separate chamber between the process chamber (or primary reaction zone) and the pump; even the space of the suction box can be used as a holder for the trapping receptacles.
  • the following example relates to growing an aluminum oxide layer with the ALD technique.
  • 100 g of AlCl 3 and 100 g of H 2 O is consumed.
  • Two-thirds of the consumed reactant mass will form HCl in an amount of 140 g.
  • One-third, equaling 20 g of the precursors, is used in the thin film product grown on the substrates; the remaining two-thirds (40 g) of Al 2 O 3 is preferably captured by the trap. This means roughly 40 g of solids in the trap per run.
  • the deposited Al 2 O 3 in each run has a thickness of 150 nm, which corresponds to a film growth of 15 ⁇ m on the trap surface after 100 runs.
  • the sacrificial trapping block(s) or plates can be made of any suitable material with a high surface area, preferably porous (e.g., graphite, such as porous graphite foils, alumina (Al 2 O 3 ) or silica).
  • porous e.g., graphite, such as porous graphite foils, alumina (Al 2 O 3 ) or silica.
  • ceramic materials e.g., honeycomb ceramics, and other mineral materials such as glass wool, can also be used.
  • Reticulated Vitreous Carbon is another example of a suitable material.
  • the material should withstand the physical and chemical conditions of the reaction zone (reaction temperature and pressure; it should be chemically inert to the reactants but able to adsorb the ALD reactants).
  • the surface area of the trap material is 10 m 2 /g to 2000 m 2 /g, in particular about 100 m 2 /g to 1500 m 2 /g.
  • One alternative is to have a porous ceramic material with a roughened surface which will allow for penetration of the gaseous reactants into the material, leaving by-products such as hydrochloric acid, on the surface so that it can be more easily purged away.
  • the pores of the porous material should not be too narrow and deep so that the (non-reacted) residues of the previous pulse cannot be purged away before the next pulse is introduced. Material having an average pore size on the order of about 10 to 100 m is preferred.
  • the surface of the reactant trap is large enough that the same trap material can be used for the growth of several batches of thin-film elements.
  • the excess of reactant is generally 4 to 5 times the amount needed for covering the surface of the substrates with a thin film of desired thickness. Therefore, the surface area of the material is preferably at least 4 to 5 times larger than the total surface of the substrates. More preferably, the surface should be much larger, e.g., so as to allow for uninterrupted operation for a whole day, depending on the production capacity of the reactor.
  • the material with a high surface area is preferably provided with flow paths which allow for free flow of the gases while offering the gas phase components enough surface for surface reactions.
  • flow paths which allow for free flow of the gases while offering the gas phase components enough surface for surface reactions.
  • the reactant trap 1 (which can also be called an “afterburner”, a “downstream reaction space” or a “secondary reaction space”) is preferably placed below the actual reaction space 2 (or “primary reaction space”) of the ALD reactor.
  • the reactant trap comprises a plurality of trapping plates 3 , which are placed in parallel relationship inside the suction box 4 of the reactor. Between the trapping plates 3 there are flow channels formed to allow for the continued flow of the gases to the pump (not shown).
  • the trapping plates are made of a suitable material with a high surface area, the reactant gases will diffuse inside the plates and deposit the reactants due to surface reactions similar to those reactions taking place in the reaction space above, e.g., between glass substrates and the reactant vapors.
  • the reaction space is generally purged with an inert or inactive gas, such as nitrogen. Then a subsequent gas phase pulse is fed into the reaction space (and thence into the reactant trap).
  • an aluminum chloride pulse is usually followed by a water vapor pulse in the reaction space to convert the aluminum chloride into aluminum oxide. The same reaction takes place on the surface of the substrates placed in the ALD reactor and in the reactant trap.
  • the reactant trap By placing the reactant trap inside the same reaction space or reaction box as the substrates, the necessary temperature and pressure levels for achieving an ALD (Atomic Layer Deposition) reaction on the surface of the trapping material are automatically obtained.
  • the reactants will form the same end product, e.g., ATO or Al 2 O 3 , on the surface of the trap as on the substrates.
  • FIGS. 2 a and 2 b The embodiment of FIGS. 2 a and 2 b is similar to that of FIGS. 1 a and 1 b , with the exception that the reactant trap 11 is placed in a separate vessel 13 kept at the same reaction conditions as the reactor.
  • the trapping plates 12 are arranged in a similar fashion as the plates in FIGS. 1 a and 1 b , but the flow channel is arranged to provide a serpentine path. In this way, a sufficient contact time with the trapping plates can be provided.
  • the reactant trap vessel is attached to the suction box of an ALD reactor with a conduit.
  • FIGS. 3 a and 3 b corresponds to a combination of the embodiment of FIGS. 1 and 2, in the sense that the trapping plates 22 are placed in a separate vessel 23 , but the plates are fixed in parallel relationship with flow paths between them.
  • the plates 22 of the illustrated embodiment are made of glass wool.
  • FIGS. 4 a and 4 b show replaceable cartridges 32 made of material with a high surface area, such as glass wool (FIG. 4 a ) with flow paths 33 formed in said material. Similar flow paths 35 are arranged between adjacent layers of a graphite foil 34 wound in a spiral fashion in FIG. 4 b .
  • the layers are preferably arranged at a distance of about 0.1 mm to 10 mm, preferably about 0.5 mm to 5 mm from each other.
  • FIGS. 4 a and 4 b are preferably made of an inexpensive material, such that they can be thrown away after an effective period of use.
  • the operation of the precursor trap is quite similar to that described in connection with the embodiment of FIGS. 1 a and 1 b .
  • the material with a high surface area is maintained at a temperature similar to that of the actual reaction zone (i.e., depending on the precursors and the substrate, preferably about a 50° C. to 600° C., more preferably about 200° C. to 500° C.).
  • the pressure can be atmospheric, but it is generally preferred to work at reduced pressure of about 1 mbar to 100 mbar (i.e., “low pressure”).
  • the inactive gas used for purging preferably comprises nitrogen or a noble gas such as argon.

Abstract

The present invention concerns a method and an apparatus for removing substances from gases discharged from gas phase reactors. In particular, the invention provides a method for removing substances contained in gases discharged from an ALD reaction process, comprising contacting the gases with a “sacrificial” material having a high surface area kept at essentially the same conditions as those prevailing during the gas phase reaction process. The sacrificial material is thus subjected to surface reactions with the substances contained in the gases to form a reaction product on the surface of the sacrificial material and to remove the substances from the gases. The present invention diminishes the amount of waste produced in the gas phase process and reduces wear on the equipment.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 09/619,820, filed Jul. 20, 2000, which claims the priority benefit under 35 U.S.C. §119 of prior Finnish Application No. 991628, filed Jul. 20, 1999.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to the removal of substances contained in gases, such as gases flowing at low pressure. In particular, the present invention concerns a method and an apparatus for removing unreacted reactants and vapor phase precursors present in gases removed from vapor phase reactors. [0003]
  • 2. Description of the Related Art [0004]
  • In the atomic layer deposition method (ALD), the substrate is typically located in a reaction space, wherein it is subjected to alternately repeated surface reactions of at least two different reactants. Commercially available technology is supplied by ASM Microchemistry Oy, Espoo Finland under the trademark ALCVD™. According to the method, the reactants are admitted repetitively and alternately one reactant at a time from its own source in the form of vapor-phase pulses in the reaction space. Here, the vapor-phase reactants are allowed to react with the substrate surface for the purpose of forming a solid-state thin film on the substrate, particularly for use in the semiconductor arts. [0005]
  • While the method is most appropriately suited for producing so-called compound thin films, using as the reactants starting materials or precursors that contain component elements of the desired compound thin-film, it may also be applied to growing elemental thin films. Of compound films typically used in the art, reference can be made to ZnS films employed in electroluminescent displays, whereby such films are grown on a glass substrate using zinc sulfide and hydrogen sulfide as the reactants in the growth process. Of elemental thin films, reference can be made to silicon thin films. [0006]
  • An ALD apparatus comprises a reaction space into which the substrate can be placed, and at least two reactant sources from which the reactants used in the thin-film growth process can be fed in the form of vapor-phase pulses into the reaction space. The sources are connected to the reaction space via reactant inflow channels. Outflow channels (pumping lines) are attached to a pump and connected to the reaction space for removing the gaseous reaction products of the thin-film growth process, as well as the excess reactants in vapor phase. [0007]
  • The waste, i.e., the non-reacted reactants removed and discharged from the reaction space, is a serious problem for ALD processing. When it enters the pumping line and the pump, the waste gives rise to tedious cleaning and, in the worst case, the pump will rapidly be worn out. [0008]
  • Filtering of the gases and/or contacting of the gases with absorbents gives some help but both methods have been shown to be unsatisfactory in the long run. Building expensive heated pumping lines in order to move the waste though the pump does not help, because the problematic waste does not comprise superfluous amounts of separate precursors, such as water, titanium chloride or aluminum chloride, that can easily be pumped as separate materials. The problem arises when the materials are reacting, forming by-products having a lower vapor pressure, inside the pumping line. The problem is especially relevant when the reactants react with each other at temperatures lower than the intended process temperature, causing improper reactions. At those temperatures, oxychlorides might form in exhaust lines as a by-product of exemplary metal oxide deposition processes using metal chlorides as one of the ALD precursors. These by-products form a high volume powder. Typically this kind of reaction happens inside the pumping line between the reaction zone and the colder parts of the pumping line. Another problem occurs when precursors with a high vapor pressure at room temperature reach the pump sequentially at temperatures suitable for film growth. This might lead to a film material build-up on the surfaces of the pump. The material build-up can be very abrasive. This is a specific problem with heated pumping lines and hot dry pumps. This will cause the filling of tight tolerances and due to that the parts will contact each other and pump will crash. A third problem is the reactions between condensed portions of the previous reaction component and the vapor of the following pulse in the pumping line. This will cause CVD-type material growth and significant powder propagation. [0009]
  • As mentioned above, different solutions based on filtering and/or chemical treatment of the reaction waste have been tried for decades in process fore-lines, with more or less poor results. Formed by-products and powder tend to block the filters and due to the low process pressure the gas flow is too weak to keep the mesh of the filter open. The blocked filter will cause an additional pressure drop and therefore cause changes in the material flow from the source. Also, the process pressure and the speed of the gases will change. Attempts have been made to use cyclones and rotating peelers to remove the by-products from the mesh. By these means, some of the solid waste can be removed, but still the precursors with high vapor pressure will reach the pump and form by-products there. [0010]
  • Finnish Patent No. 84980 (Planar International Oy) discloses a system consisting of a condensation chamber, where the gas stream is slowed down and where a big part of the waste is condensed. Before entering the filter unit, extra water is injected into the filter housing to increase the by-products' particle size in order to prevent blockage of the filter mesh before the waste is removed by a rotating peeler system. Although this apparatus represents a clear improvement of the state of the art, it is still not completely satisfactory. [0011]
  • SUMMARY OF THE INVENTION
  • It is an aim of the present invention to eliminate the problem of the prior art and to provide a simple and reliable technical solution for removing waste from the reaction zone of an ALD reactor. [0012]
  • The present invention is based on the concept of processing all of the extra precursor material of the pulse dose, to form the end product, before the precursors are discharged from the reactor or the reaction zone. Thereby, the volume of the waste can be greatly reduced. The postprocessing of the precursor excess stemming from the ALD process is carried out by placing a sacrificial material with a high surface area (typically porous) in the reaction zone, which is swept by the precursors during their travel to the outlet of the reaction chamber. Alternatively, the material with high surface area can be placed in a separate heated vessel, outside the reaction zone but upstream of the discharge pump. The material with a high surface area is, however, in both embodiments kept essentially the growth conditions (for example, same pressure and temperature) as the reaction zone to ensure growth of a reaction product on the surface thereof. As a result, the material with a high surface area traps the remaining end product on its surface, thereby reducing the amount of reactant reaching the pump. [0013]
  • The present apparatus includes a reaction zone arranged downstream from (i.e., after) the reaction process, comprising a material with a high surface area and maintainable at essentially the same conditions as those prevailing during the gas phase reaction process. The reaction zone further includes gas flow channels for feeding gases discharged from the gas phase reaction process into the material with a high surface area and discharge gas channels for discharging gas from the material with a high surface area. [0014]
  • Considerable advantages are obtained with the present invention. Thus, the material with a high surface area will trap on its surface the end product of the reaction of the excess gaseous reactants. The surface area of the trap is generally large, on an average about 10 m[0015] 2/g to 1000 m2/g; for example it can have the surface area on the same order as that of a soccer stadium. The trap can be in use for several runs before it is cleaned or replaced with a new one. The pump connected to the reaction space has only to cope with materials in gaseous form because mostly non-reactive gaseous by-products from the process reach the pump. “Non-reactive,” as used herein, refers to species other than the intended ALD reactants. The solid thin film product is substantially captured in the reactant trap; this will considerably reduce wear of the equipment.
  • The present invention is generally applicable to any gaseous reactants. It is particularly advantageous for reactions that form corrosive or otherwise harmful side products during the reaction of the gaseous reactants. Thus, a preferred embodiment is for dealing with the waste generated in a vapor phase reaction using chloride-containing reactants such as aluminum chloride, which are reacted with water to produce a metal oxide. The present invention is preferably used for ALD, but it can also be used for treating exhaust from conventional CVD processing or electron beam sputtering and any other gas phase processes in which the discharged gaseous reactants may react with each other downstream of the actual reaction zone housing the substrate. In the following description, the invention will, however, be described with particular reference to an ALD embodiment.[0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Next the invention will be examined in more detail with reference to the attached drawings depicting a number of preferred embodiments. [0017]
  • FIGS. 1[0018] a and 1 b are schematic top plan (FIG. 1a) and side elevational (FIG. 1b) views of a reactant trap comprising porous plates inside a suction box of an ALD reactor, constructed in accordance with a first preferred embodiment.
  • FIGS. 2[0019] a and 2 b are schematic top plan (FIG. 2a) and side elevational (FIG. 2b) views of a reactant trap, constructed in accordance with a second preferred embodiment of the present invention, having an arrangement of plates inside a separate postreactor connected to the suction box of an ALD reactor.
  • FIGS. 3[0020] a and 3 b are views corresponding to FIGS. 2a and 2 b, with the plates replaced by glass wool cartridges, in accordance with a third embodiment.
  • FIGS. 4[0021] a and 4 b are schematic cross-sections of a cartridge filled with glass wool (FIG. 4a) and a cartridge filled with graphite foil (FIG. 4b).
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Generally, the present invention is based on the idea of placing—between the substrates of an ALD reactor and the pump—a material with a high surface area, which forms a postreaction substrate for the discharged superfluous gas phase reactants leaving the actual reaction zone. It is preferred that the surface of the porous material is so large that all of the superfluous material can adsorb upon surfaces of the reactant trap and then be converted into the corresponding final compound when the next reactant pulse enters, according to the principle of ALD (Atomic Layer Deposition). [0022]
  • The postreaction reactant trap can be placed inside the vacuum vessel, within the hot reaction zone, or it can be formed as a separate chamber between the process chamber (or primary reaction zone) and the pump; even the space of the suction box can be used as a holder for the trapping receptacles. [0023]
  • The following example relates to growing an aluminum oxide layer with the ALD technique. In a 3,000 cycle Al[0024] 2O3 process, 100 g of AlCl3 and 100 g of H2O is consumed. Roughly one-third (60 g) of the reactants ends up as Al2O3, of which aluminum represents 30 g and oxygen represents 30 g. Two-thirds of the consumed reactant mass will form HCl in an amount of 140 g. One-third, equaling 20 g of the precursors, is used in the thin film product grown on the substrates; the remaining two-thirds (40 g) of Al2O3 is preferably captured by the trap. This means roughly 40 g of solids in the trap per run. The deposited Al2O3 in each run has a thickness of 150 nm, which corresponds to a film growth of 15 μm on the trap surface after 100 runs. By selecting the pore size and path length so that there is essentially no pressure drop over the trap and that any reaction products can be purged away before the next pulse enters the trap, the thin film grown in the trap will not restrict the gas flow.
  • It is particularly desirable to avoid formation of large molecules, such as oxychlorides, that would occupy a large volume and block the flow paths of the material with a high surface area. [0025]
  • According to the preferred embodiment, the sacrificial trapping block(s) or plates can be made of any suitable material with a high surface area, preferably porous (e.g., graphite, such as porous graphite foils, alumina (Al[0026] 2O3) or silica). Various ceramic materials, e.g., honeycomb ceramics, and other mineral materials such as glass wool, can also be used. Reticulated Vitreous Carbon is another example of a suitable material. The material should withstand the physical and chemical conditions of the reaction zone (reaction temperature and pressure; it should be chemically inert to the reactants but able to adsorb the ALD reactants). Further it should have a large surface so as to allow for a reaction of the gaseous reactants on the surface thereof in order to form the reaction product (such as aluminum oxide). Generally, the surface area of the trap material is 10 m2/g to 2000 m2/g, in particular about 100 m2/g to 1500 m2/g. One alternative is to have a porous ceramic material with a roughened surface which will allow for penetration of the gaseous reactants into the material, leaving by-products such as hydrochloric acid, on the surface so that it can be more easily purged away. The pores of the porous material should not be too narrow and deep so that the (non-reacted) residues of the previous pulse cannot be purged away before the next pulse is introduced. Material having an average pore size on the order of about 10 to 100 m is preferred.
  • It is also preferred that the surface of the reactant trap is large enough that the same trap material can be used for the growth of several batches of thin-film elements. As discussed above, the excess of reactant is generally 4 to 5 times the amount needed for covering the surface of the substrates with a thin film of desired thickness. Therefore, the surface area of the material is preferably at least 4 to 5 times larger than the total surface of the substrates. More preferably, the surface should be much larger, e.g., so as to allow for uninterrupted operation for a whole day, depending on the production capacity of the reactor. [0027]
  • There should be no substantial pressure difference over the high surface area of the reactant trap. For this reason, the material with a high surface area is preferably provided with flow paths which allow for free flow of the gases while offering the gas phase components enough surface for surface reactions. Various ways of achieving free flow paths to achieve minimal pressure drops are depicted in the embodiments of the drawings. [0028]
  • Turning now to the attached drawings, it will be noted that in FIGS. 1[0029] a and 1 b, the reactant trap 1 (which can also be called an “afterburner”, a “downstream reaction space” or a “secondary reaction space”) is preferably placed below the actual reaction space 2 (or “primary reaction space”) of the ALD reactor. The reactant trap comprises a plurality of trapping plates 3, which are placed in parallel relationship inside the suction box 4 of the reactor. Between the trapping plates 3 there are flow channels formed to allow for the continued flow of the gases to the pump (not shown). When the trapping plates are made of a suitable material with a high surface area, the reactant gases will diffuse inside the plates and deposit the reactants due to surface reactions similar to those reactions taking place in the reaction space above, e.g., between glass substrates and the reactant vapors.
  • By arranging the reactant trap immediately after or under the reaction zone, a free flow path or channel for the excess reactants can easily be arranged. Likewise, it is simple to carry out the discharge of the gas from the reactant trap because it is subject to the same reduced pressure, produced by the discharge pump, as the rest of the reactor. [0030]
  • After each reactant pulse fed in to the reaction space and, consequently, into the [0031] reactant trap 1, the reaction space is generally purged with an inert or inactive gas, such as nitrogen. Then a subsequent gas phase pulse is fed into the reaction space (and thence into the reactant trap). Thus, in the example of an ALD Al2O3 process, an aluminum chloride pulse is usually followed by a water vapor pulse in the reaction space to convert the aluminum chloride into aluminum oxide. The same reaction takes place on the surface of the substrates placed in the ALD reactor and in the reactant trap. By placing the reactant trap inside the same reaction space or reaction box as the substrates, the necessary temperature and pressure levels for achieving an ALD (Atomic Layer Deposition) reaction on the surface of the trapping material are automatically obtained. The reactants will form the same end product, e.g., ATO or Al2O3, on the surface of the trap as on the substrates.
  • The embodiment of FIGS. 2[0032] a and 2 b is similar to that of FIGS. 1a and 1 b, with the exception that the reactant trap 11 is placed in a separate vessel 13 kept at the same reaction conditions as the reactor. The trapping plates 12 are arranged in a similar fashion as the plates in FIGS. 1a and 1 b, but the flow channel is arranged to provide a serpentine path. In this way, a sufficient contact time with the trapping plates can be provided. The reactant trap vessel is attached to the suction box of an ALD reactor with a conduit.
  • The embodiment of FIGS. 3[0033] a and 3 b corresponds to a combination of the embodiment of FIGS. 1 and 2, in the sense that the trapping plates 22 are placed in a separate vessel 23, but the plates are fixed in parallel relationship with flow paths between them. The plates 22 of the illustrated embodiment are made of glass wool.
  • FIGS. 4[0034] a and 4 b show replaceable cartridges 32 made of material with a high surface area, such as glass wool (FIG. 4a) with flow paths 33 formed in said material. Similar flow paths 35 are arranged between adjacent layers of a graphite foil 34 wound in a spiral fashion in FIG. 4b. The layers are preferably arranged at a distance of about 0.1 mm to 10 mm, preferably about 0.5 mm to 5 mm from each other.
  • The traps of FIGS. 4[0035] a and 4 b are preferably made of an inexpensive material, such that they can be thrown away after an effective period of use.
  • In the embodiments of all of the FIGS. [0036] 2 to 4, the operation of the precursor trap is quite similar to that described in connection with the embodiment of FIGS. 1a and 1 b. The material with a high surface area is maintained at a temperature similar to that of the actual reaction zone (i.e., depending on the precursors and the substrate, preferably about a 50° C. to 600° C., more preferably about 200° C. to 500° C.). The pressure can be atmospheric, but it is generally preferred to work at reduced pressure of about 1 mbar to 100 mbar (i.e., “low pressure”). The inactive gas used for purging preferably comprises nitrogen or a noble gas such as argon.
  • Although the above embodiments have particular utility in the preparation of thin-film structures on all kinds of surfaces for semiconductor and flat panel devices, it should be noted that it can be applied to any chemical gas vapor deposition reactor (e.g., CVD or ALD), including the preparation of catalysts using thin film coatings. [0037]

Claims (26)

What is claimed is:
1. A method for removing substances contained in exhaust gases discharged from gas phase reaction processes, comprising:
carrying excess reactant from gas phase pulses of an atomic layer deposition (ALD) process conducted upon a deposition substrate under a first set of reaction conditions; and
directing the excess reactant to contact a sacrificial material downstream of the substrate and maintained at substantially the first set of reaction conditions.
2. The method of claim 1, wherein the sacrificial material comprises a porous substrate.
3. The method of claim 2, wherein directing comprises conducting the ALD process on the sacrificial material to leave a sacrificial layer having a composition that is substantially the same as a layer formed by the ALD process upon the deposition substrate.
4. The method of claim 2, wherein the porous material comprises a material selected from the group consisting of porous graphite materials, porous ceramics, alumina, silica and glass wool.
5. The method of claim 1, wherein the excess reactant includes a halide-containing gas.
6. The method of claim 5, wherein the halide-containing gas comprises a chloride-containing gas.
7. The method of claim 1, wherein the substrate and the sacrificial material are maintained within a single reaction space.
8. The method of claim 1, wherein the sacrificial material is placed in a downstream reaction space housing that is connected to an upstream reaction space housing the substrate.
9. The method of claim 1, wherein the sacrificial material has a surface area between about 10 m2/g and 2000 m2/g.
10. The method of claim 1, wherein at the first set of conditions the deposition substrate and sacrificial material are at a temperature between about 200° C. and 500° C.
11. The method of claim 10, wherein at the first set of conditions the deposition substrate and the sacrificial material are subjected to a pressure between about 1 mbar and 100 mbar.
12. The method of claim 1, wherein the sacrificial material has a surface area sufficient to react substantially all of the excess reactant.
13. The method of claim 1, wherein the sacrificial material comprises a porous material having an average pore size of about 10 μm to 100 μm.
14. An apparatus for removing substances contained in gases discharged from a gas phase reaction process, comprising a reaction zone configured to receive exhaust flow from the reaction process, the reaction zone including a sacrificial material maintainable at a set of conditions substantially the same as those prevailing during the reaction process.
15. The apparatus of claim 14, wherein the reaction zone includes a plurality of gas flow channels for feeding the exhaust flow from the reaction process into the sacrificial material and discharge gas channels for discharging gas from the material with a high surface area.
16. The apparatus of claim 15, wherein the reaction zone further comprises baffles to define a serpentine path through the gas flow channels.
17. The apparatus of claim 14, wherein the sacrificial material is porous.
18. The apparatus of claim 17, wherein the sacrificial material has a surface area between about 10 m2/g and 2000 m2/g.
19. The apparatus of claim 18, wherein has a surface area between about 100 m2/g and 1500 m2/g.
20. The apparatus of claim 17, wherein the sacrificial material comprises a material selected from the group consisting of porous graphite materials, porous ceramics, alumina, silica and glass wool.
21. The apparatus of claim 14, wherein the reaction zone includes a heating system for maintaining the sacrificial material at a temperature between about 50° C. and 600° C.
22. The apparatus of claim 14, wherein the reaction zone includes a heating system for maintaining the sacrificial material at a temperature between about 200° C. and 500° C.
23. The apparatus of claim 14, wherein the reaction zone is arranged within a common reactor shell with an upstream process region in which the reaction process is carried out upon a substrate.
24. The apparatus of claim 14, wherein the reaction zone is arranged inside a separate reaction vessel downstream of a process chamber in which the reaction process is carried out upon a substrate.
25. The apparatus of claim 14, configured for an atomic layer deposition (ALD) reaction process.
26. The apparatus of claim 25, wherein the sacrificial material has a surface area sufficient to react by the ALD reaction process substantially all excess reactant from the ALD reaction process conducted upstream on at least one deposition substrate.
US10/205,296 1999-07-20 2002-07-24 Method and apparatus for removing substances from gases Abandoned US20020187084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/205,296 US20020187084A1 (en) 1999-07-20 2002-07-24 Method and apparatus for removing substances from gases
US12/138,358 US7799300B2 (en) 1999-07-20 2008-06-12 Method and apparatus for removing substances from gases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FI991628A FI110311B (en) 1999-07-20 1999-07-20 Method and apparatus for eliminating substances from gases
FI991628 1999-07-20
US09/619,820 US6506352B1 (en) 1999-07-20 2000-07-20 Method for removing substances from gases
US10/205,296 US20020187084A1 (en) 1999-07-20 2002-07-24 Method and apparatus for removing substances from gases

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/619,820 Continuation US6506352B1 (en) 1999-07-20 2000-07-20 Method for removing substances from gases

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/138,358 Continuation US7799300B2 (en) 1999-07-20 2008-06-12 Method and apparatus for removing substances from gases

Publications (1)

Publication Number Publication Date
US20020187084A1 true US20020187084A1 (en) 2002-12-12

Family

ID=8555096

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/619,820 Expired - Lifetime US6506352B1 (en) 1999-07-20 2000-07-20 Method for removing substances from gases
US10/205,296 Abandoned US20020187084A1 (en) 1999-07-20 2002-07-24 Method and apparatus for removing substances from gases
US12/138,358 Expired - Fee Related US7799300B2 (en) 1999-07-20 2008-06-12 Method and apparatus for removing substances from gases

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/619,820 Expired - Lifetime US6506352B1 (en) 1999-07-20 2000-07-20 Method for removing substances from gases

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/138,358 Expired - Fee Related US7799300B2 (en) 1999-07-20 2008-06-12 Method and apparatus for removing substances from gases

Country Status (4)

Country Link
US (3) US6506352B1 (en)
JP (1) JP2001062244A (en)
FI (1) FI110311B (en)
TW (1) TW555585B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030180458A1 (en) * 2002-01-17 2003-09-25 Sundew Technologies, Llc ALD apparatus and method
US20040152304A1 (en) * 2003-01-30 2004-08-05 Micron Technology, Inc. Insitu post atomic layer deposition destruction of active species
US20050100669A1 (en) * 2003-11-12 2005-05-12 Veeco Instruments, Inc. Method and apparatus for fabricating a conformal thin film on a substrate
US7037574B2 (en) 2001-05-23 2006-05-02 Veeco Instruments, Inc. Atomic layer deposition for fabricating thin films
US20060216548A1 (en) * 2005-03-22 2006-09-28 Ming Mao Nanolaminate thin films and method for forming the same using atomic layer deposition
US20060272577A1 (en) * 2005-06-03 2006-12-07 Ming Mao Method and apparatus for decreasing deposition time of a thin film
US20100212591A1 (en) * 2008-05-30 2010-08-26 Alta Devices, Inc. Reactor lid assembly for vapor deposition
US7799300B2 (en) 1999-07-20 2010-09-21 Asm International N.V. Method and apparatus for removing substances from gases

Families Citing this family (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060132B2 (en) * 2000-04-14 2006-06-13 Asm International N.V. Method and apparatus of growing a thin film
TW496907B (en) * 2000-04-14 2002-08-01 Asm Microchemistry Oy Method and apparatus of growing a thin film onto a substrate
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US6770145B2 (en) * 2000-12-11 2004-08-03 Tanaka Kikinzoku Kogyo K.K. Low-pressure CVD apparatus and method of manufacturing a thin film
US6811814B2 (en) 2001-01-16 2004-11-02 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US6951804B2 (en) 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7211144B2 (en) 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
US6916398B2 (en) 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US6998014B2 (en) 2002-01-26 2006-02-14 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US7279432B2 (en) 2002-04-16 2007-10-09 Applied Materials, Inc. System and method for forming an integrated barrier layer
US6893484B2 (en) 2003-10-06 2005-05-17 Desert Energy Ltd Low operating pressure gas scrubber
US20050148199A1 (en) * 2003-12-31 2005-07-07 Frank Jansen Apparatus for atomic layer deposition
DE602005016933D1 (en) * 2004-06-28 2009-11-12 Cambridge Nanotech Inc ATOMIC SEPARATION SYSTEM AND METHOD
US7455720B2 (en) * 2005-02-16 2008-11-25 Mks Instruments, Inc. Method and apparatus for preventing products of TiCL4 and NH3 or other feed gas reactions from damaging vacuum pumps in TiN or other deposition systems
US8679287B2 (en) * 2005-05-23 2014-03-25 Mks Instruments, Inc. Method and apparatus for preventing ALD reactants from damaging vacuum pumps
US8268078B2 (en) * 2006-03-16 2012-09-18 Tokyo Electron Limited Method and apparatus for reducing particle contamination in a deposition system
US7833358B2 (en) * 2006-04-07 2010-11-16 Applied Materials, Inc. Method of recovering valuable material from exhaust gas stream of a reaction chamber
US9175388B2 (en) * 2008-11-01 2015-11-03 Ultratech, Inc. Reaction chamber with removable liner
US9328417B2 (en) 2008-11-01 2016-05-03 Ultratech, Inc. System and method for thin film deposition
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
JP5921168B2 (en) * 2011-11-29 2016-05-24 株式会社日立国際電気 Substrate processing equipment
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
CN111316417B (en) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 Storage device for storing wafer cassettes for use with batch ovens
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
CN116732497A (en) 2018-02-14 2023-09-12 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TWI811348B (en) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TW202349473A (en) 2018-05-11 2023-12-16 荷蘭商Asm Ip私人控股有限公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
KR20210027265A (en) 2018-06-27 2021-03-10 에이에스엠 아이피 홀딩 비.브이. Periodic deposition method for forming metal-containing material and film and structure comprising metal-containing material
WO2020002995A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (en) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 Method of forming device structure, structure formed by the method and system for performing the method
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
KR102638425B1 (en) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for filling a recess formed within a substrate surface
TW202104632A (en) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200116033A (en) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TW202121506A (en) 2019-07-19 2021-06-01 荷蘭商Asm Ip私人控股有限公司 Method of forming topology-controlled amorphous carbon polymer film
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
TW202115273A (en) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
TW202125596A (en) 2019-12-17 2021-07-01 荷蘭商Asm Ip私人控股有限公司 Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210132576A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Method of forming vanadium nitride-containing layer and structure comprising the same
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
CN114639631A (en) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 Fixing device for measuring jumping and swinging
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058430A (en) * 1974-11-29 1977-11-15 Tuomo Suntola Method for producing compound thin films
US4389973A (en) * 1980-03-18 1983-06-28 Oy Lohja Ab Apparatus for performing growth of compound thin films
US4413022A (en) * 1979-02-28 1983-11-01 Canon Kabushiki Kaisha Method for performing growth of compound thin films
US4840921A (en) * 1987-07-01 1989-06-20 Nec Corporation Process for the growth of III-V group compound semiconductor crystal on a Si substrate
US4940213A (en) * 1987-08-24 1990-07-10 Kabushiki Kaisha Toshiba Exhaust processing apparatus
US5102637A (en) * 1990-10-12 1992-04-07 Westinghouse Electric Corp. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream
US5114683A (en) * 1989-02-13 1992-05-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal decomposition trap
US5300186A (en) * 1988-04-27 1994-04-05 Fujitsu Limited Hetero-epitaxially grown compound semiconductor substrate and a method of growing the same
US5316793A (en) * 1992-07-27 1994-05-31 Texas Instruments Incorporated Directed effusive beam atomic layer epitaxy system and method
US5417934A (en) * 1988-06-04 1995-05-23 Boc Limited Dry exhaust gas conditioning
US5462905A (en) * 1992-08-21 1995-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
US5569455A (en) * 1992-06-10 1996-10-29 Shimadzu Corporation Exhaust gas catalytic purifier construction
US5601651A (en) * 1992-09-17 1997-02-11 Fujitsu Limited Flow control valve for use in fabrication of semiconductor devices
US5688479A (en) * 1994-12-22 1997-11-18 Uop Process for removing HCl from hydrocarbon streams
US5819683A (en) * 1995-05-02 1998-10-13 Tokyo Electron Limited Trap apparatus
US5855680A (en) * 1994-11-28 1999-01-05 Neste Oy Apparatus for growing thin films
US5855675A (en) * 1997-03-03 1999-01-05 Genus, Inc. Multipurpose processing chamber for chemical vapor deposition processes
US5928426A (en) * 1996-08-08 1999-07-27 Novellus Systems, Inc. Method and apparatus for treating exhaust gases from CVD, PECVD or plasma etch reactors
US6015590A (en) * 1994-11-28 2000-01-18 Neste Oy Method for growing thin films
US6063197A (en) * 1997-09-29 2000-05-16 Advanced Micro Devices, Inc. Trap for capturing waste by-product generated by a chemical vapor deposition system
US6099649A (en) * 1997-12-23 2000-08-08 Applied Materials, Inc. Chemical vapor deposition hot-trap for unreacted precursor conversion and effluent removal
US6165428A (en) * 1998-07-08 2000-12-26 Shell Oil Comapny Process for the removal of metal carbonyl from a gaseous stream
US6193802B1 (en) * 1995-09-25 2001-02-27 Applied Materials, Inc. Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment
US6197119B1 (en) * 1999-02-18 2001-03-06 Mks Instruments, Inc. Method and apparatus for controlling polymerized teos build-up in vacuum pump lines
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6223684B1 (en) * 1997-07-07 2001-05-01 Canon Kabushiki Kaisha Film deposition apparatus
US20010000866A1 (en) * 1999-03-11 2001-05-10 Ofer Sneh Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6238514B1 (en) * 1999-02-18 2001-05-29 Mks Instruments, Inc. Apparatus and method for removing condensable aluminum vapor from aluminum etch effluent
US6306216B1 (en) * 1999-07-15 2001-10-23 Moohan Co., Ltd. Apparatus for deposition of thin films on wafers through atomic layer epitaxial process
US20010048902A1 (en) * 2000-05-01 2001-12-06 Christopher Hertzler Treatment system for removing hazardous substances from a semiconductor process waste gas stream
US6332925B1 (en) * 1996-05-23 2001-12-25 Ebara Corporation Evacuation system
US6334304B1 (en) * 1999-04-16 2002-01-01 Honda Giken Kogyo Kabushiki Kaisha Degradation discrimination system of internal combustion engine exhaust gas purification system
US6398837B1 (en) * 2000-06-05 2002-06-04 Siemens Westinghouse Power Corporation Metal-ceramic composite candle filters
US6506352B1 (en) * 1999-07-20 2003-01-14 Asm Microchemistry Oy Method for removing substances from gases
US6514905B1 (en) * 1999-07-09 2003-02-04 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method of producing same
US6770145B2 (en) * 2000-12-11 2004-08-03 Tanaka Kikinzoku Kogyo K.K. Low-pressure CVD apparatus and method of manufacturing a thin film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI84980C (en) 1990-08-29 1992-02-25 Planar Int Oy Method and apparatus for removing substances from gas flowing under low pressure
US5998787A (en) 1997-10-31 1999-12-07 Mds Inc. Method of operating a mass spectrometer including a low level resolving DC input to improve signal to noise ratio

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058430A (en) * 1974-11-29 1977-11-15 Tuomo Suntola Method for producing compound thin films
US4413022A (en) * 1979-02-28 1983-11-01 Canon Kabushiki Kaisha Method for performing growth of compound thin films
US4389973A (en) * 1980-03-18 1983-06-28 Oy Lohja Ab Apparatus for performing growth of compound thin films
US4840921A (en) * 1987-07-01 1989-06-20 Nec Corporation Process for the growth of III-V group compound semiconductor crystal on a Si substrate
US4940213A (en) * 1987-08-24 1990-07-10 Kabushiki Kaisha Toshiba Exhaust processing apparatus
US5300186A (en) * 1988-04-27 1994-04-05 Fujitsu Limited Hetero-epitaxially grown compound semiconductor substrate and a method of growing the same
US5417934A (en) * 1988-06-04 1995-05-23 Boc Limited Dry exhaust gas conditioning
US5114683A (en) * 1989-02-13 1992-05-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal decomposition trap
US5102637A (en) * 1990-10-12 1992-04-07 Westinghouse Electric Corp. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream
US5569455A (en) * 1992-06-10 1996-10-29 Shimadzu Corporation Exhaust gas catalytic purifier construction
US5316793A (en) * 1992-07-27 1994-05-31 Texas Instruments Incorporated Directed effusive beam atomic layer epitaxy system and method
US5462905A (en) * 1992-08-21 1995-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
US5601651A (en) * 1992-09-17 1997-02-11 Fujitsu Limited Flow control valve for use in fabrication of semiconductor devices
US6015590A (en) * 1994-11-28 2000-01-18 Neste Oy Method for growing thin films
US5855680A (en) * 1994-11-28 1999-01-05 Neste Oy Apparatus for growing thin films
US5688479A (en) * 1994-12-22 1997-11-18 Uop Process for removing HCl from hydrocarbon streams
US5819683A (en) * 1995-05-02 1998-10-13 Tokyo Electron Limited Trap apparatus
US6193802B1 (en) * 1995-09-25 2001-02-27 Applied Materials, Inc. Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment
US6332925B1 (en) * 1996-05-23 2001-12-25 Ebara Corporation Evacuation system
US5928426A (en) * 1996-08-08 1999-07-27 Novellus Systems, Inc. Method and apparatus for treating exhaust gases from CVD, PECVD or plasma etch reactors
US5855675A (en) * 1997-03-03 1999-01-05 Genus, Inc. Multipurpose processing chamber for chemical vapor deposition processes
US6223684B1 (en) * 1997-07-07 2001-05-01 Canon Kabushiki Kaisha Film deposition apparatus
US6063197A (en) * 1997-09-29 2000-05-16 Advanced Micro Devices, Inc. Trap for capturing waste by-product generated by a chemical vapor deposition system
US6099649A (en) * 1997-12-23 2000-08-08 Applied Materials, Inc. Chemical vapor deposition hot-trap for unreacted precursor conversion and effluent removal
US6165428A (en) * 1998-07-08 2000-12-26 Shell Oil Comapny Process for the removal of metal carbonyl from a gaseous stream
US6197119B1 (en) * 1999-02-18 2001-03-06 Mks Instruments, Inc. Method and apparatus for controlling polymerized teos build-up in vacuum pump lines
US6238514B1 (en) * 1999-02-18 2001-05-29 Mks Instruments, Inc. Apparatus and method for removing condensable aluminum vapor from aluminum etch effluent
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6305314B1 (en) * 1999-03-11 2001-10-23 Genvs, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US20010000866A1 (en) * 1999-03-11 2001-05-10 Ofer Sneh Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6334304B1 (en) * 1999-04-16 2002-01-01 Honda Giken Kogyo Kabushiki Kaisha Degradation discrimination system of internal combustion engine exhaust gas purification system
US6514905B1 (en) * 1999-07-09 2003-02-04 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method of producing same
US6306216B1 (en) * 1999-07-15 2001-10-23 Moohan Co., Ltd. Apparatus for deposition of thin films on wafers through atomic layer epitaxial process
US6506352B1 (en) * 1999-07-20 2003-01-14 Asm Microchemistry Oy Method for removing substances from gases
US20010048902A1 (en) * 2000-05-01 2001-12-06 Christopher Hertzler Treatment system for removing hazardous substances from a semiconductor process waste gas stream
US6398837B1 (en) * 2000-06-05 2002-06-04 Siemens Westinghouse Power Corporation Metal-ceramic composite candle filters
US6770145B2 (en) * 2000-12-11 2004-08-03 Tanaka Kikinzoku Kogyo K.K. Low-pressure CVD apparatus and method of manufacturing a thin film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799300B2 (en) 1999-07-20 2010-09-21 Asm International N.V. Method and apparatus for removing substances from gases
US7037574B2 (en) 2001-05-23 2006-05-02 Veeco Instruments, Inc. Atomic layer deposition for fabricating thin films
US6911092B2 (en) 2002-01-17 2005-06-28 Sundew Technologies, Llc ALD apparatus and method
US7635502B2 (en) 2002-01-17 2009-12-22 Sundew Technologies, Llc ALD apparatus and method
US20030180458A1 (en) * 2002-01-17 2003-09-25 Sundew Technologies, Llc ALD apparatus and method
US8012261B2 (en) 2002-01-17 2011-09-06 Sundew Technologies, Llc ALD apparatus and method
US20050160983A1 (en) * 2002-01-17 2005-07-28 Sundew Technologies, Llc ALD apparatus and method
US20100043888A1 (en) * 2002-01-17 2010-02-25 Sundew Technologies, Llc Ald apparatus and method
US6844260B2 (en) * 2003-01-30 2005-01-18 Micron Technology, Inc. Insitu post atomic layer deposition destruction of active species
US20040152304A1 (en) * 2003-01-30 2004-08-05 Micron Technology, Inc. Insitu post atomic layer deposition destruction of active species
US20050150460A1 (en) * 2003-01-30 2005-07-14 Micron Technology, Inc. Insitu post atomic layer deposition destruction of active species
US8257497B2 (en) 2003-01-30 2012-09-04 Micron Technology, Inc. Insitu post atomic layer deposition destruction of active species
US7071118B2 (en) 2003-11-12 2006-07-04 Veeco Instruments, Inc. Method and apparatus for fabricating a conformal thin film on a substrate
US20050100669A1 (en) * 2003-11-12 2005-05-12 Veeco Instruments, Inc. Method and apparatus for fabricating a conformal thin film on a substrate
US20050166843A1 (en) * 2003-11-12 2005-08-04 Veeco Instruments, Inc. Apparatus for fabricating a conformal thin film on a substrate
US20060216548A1 (en) * 2005-03-22 2006-09-28 Ming Mao Nanolaminate thin films and method for forming the same using atomic layer deposition
US20060272577A1 (en) * 2005-06-03 2006-12-07 Ming Mao Method and apparatus for decreasing deposition time of a thin film
US20100212591A1 (en) * 2008-05-30 2010-08-26 Alta Devices, Inc. Reactor lid assembly for vapor deposition

Also Published As

Publication number Publication date
FI110311B (en) 2002-12-31
FI991628A (en) 2001-01-21
JP2001062244A (en) 2001-03-13
US6506352B1 (en) 2003-01-14
TW555585B (en) 2003-10-01
US7799300B2 (en) 2010-09-21
US20090074964A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US7799300B2 (en) Method and apparatus for removing substances from gases
US5425842A (en) Method of manufacturing a semiconductor device using a chemical vapour deposition process with plasma cleaning of the reactor chamber
US7498057B2 (en) Deposition methods
US7105054B2 (en) Method and apparatus of growing a thin film onto a substrate
JP4959333B2 (en) Reactor surface passivation through chemical deactivation
US7303991B2 (en) Atomic layer deposition methods
EP1840241B1 (en) Atomic deposition layer methods
WO2006127693A2 (en) Method and apparatus for preventing ald reactants from damaging vacuum pumps
JPH0770753A (en) Apparatus for manufacturing material by vapor deposition, method of manufacturing material by vapor deposition and manufacture of silicone carbide structure by chemical vapor deposition
JP2001323374A (en) Method and device for feeding vapor phase reactant into reaction chamber
JP2002004054A (en) Method for growing thin film on substrate
KR100683441B1 (en) Atomic layer deposition apparatus and process
US7455720B2 (en) Method and apparatus for preventing products of TiCL4 and NH3 or other feed gas reactions from damaging vacuum pumps in TiN or other deposition systems
EP1889286B1 (en) High efficiency trapping method for deposition process
US7229666B2 (en) Chemical vapor deposition method
US20110247561A1 (en) Thermal Chemical Vapor Deposition Methods, and Thermal Chemical Vapor Deposition Systems
US20030215569A1 (en) Chemical vapor deposition apparatus and deposition method
JP4535620B2 (en) Method and apparatus for controlling excess CVD reactant
EP0574075B1 (en) Method of manufacturing a semiconductor device by means of a chemical vapour deposition
EP1154036A1 (en) Gas reactions to eliminate contaminates in a CVD chamber
EP2281780A1 (en) Process for production of silicon
JP2004002906A (en) Thin film-forming apparatus
JPH06295870A (en) Chemical vapor deposition system
JP3320498B2 (en) Method for manufacturing semiconductor device
JPH10237655A (en) Exhausting system for thin coating producing device and exhausting method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASM INTERNATIONAL N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASM MICROCHEMISTRY OY;REEL/FRAME:014852/0964

Effective date: 20031126

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION