US20020188229A1 - Method and apparatus for cartilage growth stimulation - Google Patents

Method and apparatus for cartilage growth stimulation Download PDF

Info

Publication number
US20020188229A1
US20020188229A1 US10/096,216 US9621602A US2002188229A1 US 20020188229 A1 US20020188229 A1 US 20020188229A1 US 9621602 A US9621602 A US 9621602A US 2002188229 A1 US2002188229 A1 US 2002188229A1
Authority
US
United States
Prior art keywords
cartilage
ultrasonic transducer
ultrasonic
signal generator
placement module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/096,216
Inventor
John Ryaby
Roger Talish
Emery Rose
Alan Winder
Kenneth Urgovitch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/096,216 priority Critical patent/US20020188229A1/en
Priority to US10/131,784 priority patent/US7789841B2/en
Publication of US20020188229A1 publication Critical patent/US20020188229A1/en
Priority to US12/818,452 priority patent/US8123707B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1675Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the knee
    • A61B17/1677Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the knee for the patella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser

Definitions

  • the present invention relates to methods and apparatus for therapeutically treating injuries using ultrasound. More particularly, the present invention relates to methods and apparatus which utilize an ergonomically constructed ultrasonic transducer assembly configured to cooperate with a placement module for placement in proximity to a cartilage and/or osteochondral injury and/or defect to stimulate cartilage growth.
  • Impinging ultrasonic pulses having appropriate parameters, e.g., frequency, pulse repetition, and amplitude, for suitable periods of time and at a proper external location adjacent to a bone injury has been determined to accelerate the natural healing of, for example, bone breaks and fractures.
  • U.S. Pat. No. 4,530,360 to Duarte describes a basic non-invasive therapeutic technique and apparatus for applying ultrasonic pulses from an operative surface placed on the skin at a location adjacent a bone injury.
  • To apply the ultrasound pulses during treatment an operator must manually hold the applicator in place until the treatment is complete.
  • U.S. Pat. No. 5,003,965 to Talish et al. relates to an ultrasonic body treatment system having a body-applicator unit connected to a remote control unit by sheathed fiber optic lines.
  • the signal controlling the duration of ultrasonic pulses and the pulse repetition frequency are generated apart from the body-applicator unit.
  • Talish et al. also describes a mounting fixture for attaching the body-applicator unit to a patient so that the operative surface is adjacent the skin location.
  • a cartilage and/or osteochondral injury and/or defect typically involves damage to the cartilage which lines articulating bones (articular cartilage), such as the bones of the knee, elbow, shoulder and ankle.
  • articular cartilage such as the bones of the knee, elbow, shoulder and ankle.
  • Osteochondral injuries can be treated by chondral and/or osteochondral drilling causing blood flow at the site.
  • the aim of chondral drilling is to stimulate cartilage regeneration as part of the healing process.
  • the resulting nonhyaline or fibrocartilage produced is biomechanically inferior to articular cartilage, does not have comparable proteoglycan content, and may consist primarily of a thin unorganized layer of collagen. Further, it has been observed that degeneration of the new tissue generally occurs over time, requiring the need for additional reconstructive surgical treatment.
  • Other methods of treatment include: the transplantation of non-weight bearing cartilage to the injury and/or defect site; inducing a fracture at the injury and/or defect site; placing a carbon fiber matrix to induce cartilage formation; and autologous chondrocyte implantation (ACI).
  • ACI entails removing chondrocytes capable of regenerating hyaline-like cartilage from the body and culturin them for several weeks. During the culture process, the number of cells increases approximately 15 times that of the original tissue sample. The cultured cells are then transplanted through an arthrotomy. A small piece of periosteum, the skin covering a bone, is taken from the patient's tibia.
  • the periosteum is then sutured over the defect to provide a protective cover for the cultured cells.
  • the cultured cells are injected under the periosteum into the defect where they will continue to multiply and produce a durable repair tissue.
  • ACI increases the healing time since the chondrocytes need to be cultured before they are transplanted to the patient.
  • the ultrasonic treatment apparatus of the present invention is used for therapeutically treating cartilage and/or osteochondral injuries and/or defects using ultrasound.
  • the apparatus includes an ergonomically constructed placement module configured for mounting at least one ultrasonic transducer assembly with an integral signal generator which provides excitation signals to at least one ultrasonic transducer within the transducer assembly. Timing control circuitry as well as monitoring circuitry for the proper attachment and operation of the transducer assembly are housed within a portable main operating unit which may be fit within a pouch worn by the patient.
  • the placement module is positioned against a part of the patient's body such that at least one transducer is positioned over the cartilage and/or osteochondral injury and/or defect. At least one transducer is then excited for a predetermined period of time to impinge ultrasonic waves against the damaged cartilage area to stimulate the regeneration of new articular cartilage.
  • the main operating unit has an internal power source for powering the signal generator circuitry, a display coupled to the signal generator circuitry to display treatment sequence data, a keypad coupled to the signal generator circuitry to permit user operation and/or entry of data.
  • the signal generator circuitry includes a processor, means for generating a pulsed control signal, and a switch coupled to the processor for regulating the pulsed control signal.
  • a communication interface may be connected between a communication port and the processor to provide a communication link between the ultrasonic signal generator and an external computer or modem.
  • the communication interface is a serial communication interface, however, a parallel interface is also contemplated.
  • An alarm is provided to indicate to the user that the treatment time has expired. The alarm is coupled to the processor such that when ultrasonic treatment is completed the processor activates the alarm and terminates ultrasound generation.
  • the present invention also provides a kit for ultrasonically treating cartilage and/or osteochondral injuries and/or defects.
  • the kit includes an ultrasonic transducer assembly, a placement module configured to be worn by a patient and to receive the ultrasonic transducer assembly, an integrated ultrasonic signal generator located in the ultrasonic transducer assembly, and a main operating unit (MOU) or controller.
  • the MOU has an internal power source thereby providing patient mobility.
  • a MOU envisioned for use with the present invention is described in U.S. Pat. No. 5,556,372 to Talish et al. which is hereby incorporated by reference.
  • the MOU is electrically coupled to at least one transducer secured to the placement module.
  • the activation of the signal generator corresponding to each transducer excites at least one ultrasonic transducer for impinging ultrasonic waves to the cartilage and/or osteochondral injury and/or defect.
  • a method for ultrasonically treating cartilage and/or osteochondral injuries and/or defects is also provided. Once the location of the cartilage and/or osteochondral injury and/or defect is ascertained, the body's own natural healing processes are stimulated adjacent the injury. This can be accomplished by chondral drilling on the defect to form a series of channels to stimulate blood flow and induce the biological reconstructive healing response of the underlying area at the cartilage site. Other methods of stimulating this response includes laser drilling, induce fracture, scraping, chemical or biochemical treatments, etc.
  • a placement module containing an ultrasonic transducer assembly having at least one transducer and one signal generator is positioned adjacent to the injured part of the body such that at least one transducer is in proximity to the cartilage and/or osteochondral injury and/or defect for the treatment of the injury.
  • the signal generator is then activated to excite the at least one transducer for impinging ultrasonic waves to the cartilage and/or osteochondral injury and/or defect.
  • the ultrasonic waves impinge upon the injury site to stimulate and accelerate the biological healing properties of the body to regenerate cartilaginous material.
  • the present method can also be used in conjunction with the transplantation of autologous cultured chondrocytes to the injury site to increase the healing time.
  • a placement module for securing a plurality of transducers thereto in a plurality of configurations.
  • the placement module is then secured to a cartilage and/or osteochondral injury and/or defect site, for example, at the ankle or wrist, to stimulate cartilage regeneration.
  • the present invention also provides an embodiment having a placement module which contains a locking structure for locking the articulating bones in a particular position. This embodiment prevents the patient from moving his limbs, for example, moving the femur with respect to the tibia, during treatment.
  • FIG. 1 is a perspective view of a patient wearing a portable ultrasonic treatment apparatus of a first embodiment according to the present invention having a main operating unit or controller and a placement module;
  • FIG. 2A is an exploded view of the placement module of the portable ultrasonic treatment apparatus illustrated by FIG. 1;
  • FIG. 2B is a rear underside view of the placement module of the portable ultrasonic treatment apparatus illustrated by FIG. 1;
  • FIG. 3 is a cross-sectional view illustrating the transducer assembly impinging ultrasonic waves to articular cartilage within the knee where an ultrasonic conducting gel is positioned between the transducer assembly and the patient's knee;
  • FIG. 4 is a block diagram of one embodiment of the circuitry for the ultrasonic transducer assembly
  • FIG. 4A is a block diagram of an alternative embodiment of the circuitry for the ultrasonic transducer assembly
  • FIG. 5 is a perspective view of a second embodiment of the portable ultrasonic treatment apparatus, illustrating a main operating unit or controller and a placement module for treating osteochondral injuries within the elbow region;
  • FIG. 6 is a perspective view of a third embodiment of the portable ultrasonic treatment apparatus, illustrating a main operating unit or controller and a placement module for treating osteochondral injuries within the shoulder region;
  • FIG. 7 is a perspective view of a fourth embodiment of the portable ultrasonic treatment apparatus illustrating a main operating unit or controller and a placement module;
  • FIG. 8 is a perspective view of the portable ultrasonic treatment apparatus illustrated by FIG. 7 mounted on a patient's ankle;
  • FIG. 9 is a perspective view of a fifth embodiment of the portable ultrasonic treatment apparatus, illustrating a main operating unit or controller and a placement module for treating osteochondral injuries within the knee region;
  • FIG. 10A is an exploded view of the portable ultrasonic treatment apparatus illustrated by FIG. 9;
  • FIG. 10B is a perspective view of a support member of the portable ultrasonic treatment apparatus illustrated by FIG. 9;
  • FIG. 11 is a flow-chart depicting the steps for stimulating a healing response at the site of an osteochondral injury according to the present invention
  • FIG. 12A is a perspective view showing the drilling of channels within the joint walls of the femur and tibia;
  • FIG. 12B is a cross-sectional view showing ultrasonic waves “bouncing off” the channels within the joint walls of the femur and tibia;
  • FIGS. 13 A- 19 D are photomicrographs illustrating the postoperative appearance of cartilage and/or osteochondral defects created at the patellar groove region of rabbits according to a study conducted to demonstrate that daily ultrasound therapy accelerated cartilage and/or osteochondral defect healing as early as four weeks in both gross and histologic analysis.
  • the ultrasonic treatment apparatus of the present invention is used for the surgically non-invasive utilization of ultra high-frequency acoustic energy in the treatment of cartilage and/or osteochondral injuries and/or defects. Even though this detailed description discusses the treatment of cartilage and/or osteochondral injuries and/or defects caused by an injury, the ultrasound treatment apparatus can be used to treat osteochondral defects caused by other means, such as medication, infection or metabolic processes.
  • the apparatus includes an ergonomically constructed placement module having a strap or other fastening means for being secured adjacent an injured part of a patient's body. At least one ultrasonic transducer assembly is attached or imbedded within the placement module and properly positioned in proximity to the cartilage and/or osteochondral injury and/or defect.
  • Different types of ultrasonic transducers and signals can be provided, such as those described and schematically depicted in U.S. Pat. No. 5,520,612 to Winder et al. which is hereby incorporated by reference.
  • the transducers and arrangements schematically depicted by FIGS. 7 - 11 of the patent in which at least one transducer is used to provide acoustic energy to the site of the injury.
  • the apparatus may also utilize a portable, ergonomically constructed main operating unit (MOU) worn by the patient which provides control signals to the ultrasonic transducers.
  • MOU main operating unit
  • the MOU which is utilized is preferably the one described in U.S. Pat. No. 5,556,372 to Talish et al. which is hereby incorporated by reference.
  • the ultrasonic treatment apparatus 10 includes a MOU 12 , a placement module 14 , and ultrasonic transducer assemblies 16 .
  • the placement module 14 comprises a placement support 20 which includes at least two or three channels 22 each having an extension 24 mounted therein. Each extension has a transducer pocket 26 at one end for holding one ultrasonic transducer assembly 16 . It is contemplated for each extension 24 to have several range of movements besides longitudinal motion, such as articulating motion transverse to the longitudinal motion.
  • the placement module 14 further includes a placement band 28 cooperating with slot 30 for securing the placement support 20 to the patient.
  • the placement band 28 is configured to firmly secure the placement module 14 to the patient.
  • a sponge-like material 32 preferably lines the inner surface of the placement support 20 for providing comfort to the patient (FIGS. 2A and 2B).
  • the placement support 20 may be constructed of hard plastics which may be custom molded for a particular body part of the patient.
  • the extensions 24 are mounted to the placement support 20 via screws 33 and thumb screws 34 .
  • the screws 33 are passed through slots 35 and holes 36 on the extensions 24 and are threaded to the thumb screws 34 .
  • the extensions 24 can be moved to different positions to accommodate patients of all sizes by unthreading the thumb screws 34 and shifting the screws 33 along the slots 35 and threading the screws 33 to the thumb screws 34 at the new position.
  • the transducer assembly 16 may include circuitry, schematically illustrated by FIGS. 4 and 4A and described below, for exciting at least one transducer therein and is coupled to the MOU by cable 37 and wires 39 .
  • the wires 39 are coupled to the placement support 20 .
  • the cable 37 is preferably a multiconductor cable capable of transmitting relatively low frequency RF or optical signals, as well as digital signals.
  • the cable 37 may include coaxial cable or other types of suitable shielded cable.
  • the cable 37 may include fiber optic cable for transmitting optical signals. The signals may be transmitted continuously or as a series of pulses.
  • the placement module 14 is positioned and secured to the patient's body as shown by FIG. 3, such that each transducer assembly 16 lies over the cartilage and/or osteochondral injury and/or defect.
  • a locating ring such as the one disclosed in U.S. patent application Ser. No. 08/389,148 may be used for determining the location of injured bone, if the patient desires to have one of the transducer assemblies overlying a bone injury, before the placement module 14 is secured to the patient.
  • the transducer within the transducer assembly 16 is excited for a pre-determined amount of time.
  • An ultrasound conducting gel 38 is positioned between the transducer assembly 16 and the injured part of the patient's body to prevent attenuation of the ultrasonic waves as they travel to the articular cartilage 40 , as shown by FIG. 3.
  • one or more transducers can be converted to receive reflected diagnostic data from the treatment site. This permits real time evaluation of the injury site and healing process.
  • the transducer assembly circuitry 17 includes a receiver/RF oscillator 50 which receives the signals transferred by a signal generator within MOU 12 via cable 37 .
  • the receiver/RF oscillator 50 is connected to transducer driver 52 which excites transducer 16 .
  • the ultrasonic transducer assembly 16 includes an internal battery 60 which supplies power to the components within the transducer assembly 16 .
  • battery 60 supplies power to signal monitoring circuit 62 and signal driver 66 .
  • the signal monitoring circuit 62 provides, preferably, a digital output signal 68 which represents the waveform characteristics of the output of transducer driver 70 . These characteristics can be displayed on a digital display and may include, for example, the frequency, pulse repetition frequency, the pulse width and the average output power of the transducer 16 .
  • the output signal 68 of signal monitoring circuit 62 is transferred to the signal generator within MOU 12 via driver 66 and cable 37 .
  • the signal generator may include a processor and a switch for regulating the signal characteristics.
  • Control signals from the MOU 12 are received by receiver 72 via cable 37 .
  • Safety or fixture interlock 74 which may include switches on the outer surface of the placement module 14 or transducer assembly 16 , ensures that the placement module 14 is properly positioned before providing power to the internal components of the transducer assembly 16 .
  • FIG. 5 A second embodiment of the portable ultrasonic treatment apparatus of the present invention is illustrated by FIG. 5 and designated generally by reference numeral 200 .
  • the treatment apparatus 200 includes MOU 12 and transducer assemblies 202 affixed to a placement module 204 via extensions 206 for ultrasonically stimulating the generation of cartilage in the elbow region.
  • Each transducer assembly 202 includes a power transducer 212 connected to the MOU 12 by cable 218 .
  • An ultrasonic conducting gel 212 is positioned between the transducer assemblies 202 and the osteochondral injury to prevent attenuation of the ultrasonic waves as they travel to the articular cartilage.
  • the extensions 206 can be adjusted to several positions by unthreading thumb screws 220 .
  • the circuitry for each transducer assembly 202 may be similar to that disclosed for the first embodiment and schematically illustrated by FIGS. 4 and 4A.
  • the placement module 204 be constructed from suitable conductive plastics, such as conductive ABS plastics with either carbon, stainless steel, nickel or aluminum fibers to forego the use of wires for connecting the transducer assemblies 202 to the cable 218 .
  • the conductive placement module 204 would be used to electrically connect the transducer assemblies 202 to the MOU 12 via cable 218 .
  • the treatment apparatus 300 includes a MOU 12 , a placement module 304 , and ultrasonic transducer assemblies 306 .
  • the placement module 304 is configured for placement on the shoulder region and includes a placement band 310 and a placement support 312 .
  • Each transducer assembly 306 is connected to the MOU 12 by cable 318 to power transducer assembly circuitry within each assembly 306 .
  • the circuitry (not shown) may be similar to that disclosed for the first and second embodiments and schematically illustrated by FIGS. 4 and 4A.
  • transducers within transducer assemblies 306 are excited for a pre-determined period of time to impinge ultrasonic waves to articular cartilage within the shoulder region.
  • FIGS. 7 and 8 A fourth embodiment of the portable ultrasonic treatment apparatus of the present invention which is primarily suitable for the treatment of cartilage and/or osteochondral injuries and/or defects is illustrated by FIGS. 7 and 8.
  • the apparatus 400 includes at least one ultrasonic transducer assembly 402 positioned within pockets 404 on a strip 406 .
  • the transducer assemblies 402 may be arranged in a plurality of configurations within pockets 404 to accommodate many patients' anatomical differences.
  • the strip 406 is secured in proximity to a cartilage and/or osteochondral injury and/or defect as shown by FIG. 8 by a self-tieing material 405 .
  • the strip 406 is connected via wires 407 and cable 408 to a MOU 12 which contains circuitry for exciting the at least one ultrasonic transducer assembly 402 affixed to the strip 406 .
  • At least one transducer assembly 402 is excited to impinge ultrasonic waves to the cartilage and/or osteochondral injury and/or defect as shown by FIG. 8. It is contemplated that during treatment an ultrasonic conducting gel is positioned between the strip 406 and the patient's body to prevent attenuation of the ultrasonic waves.
  • the strip 406 from suitable conductive plastics such as conductive. ABS plastics with either carbon, stainless steel, nickel or aluminum fibers to forego the use of wires for electrically connecting the at least one ultrasonic transducer 402 to the cable 408 .
  • FIGS. 9 - 10 B A fifth embodiment of the portable ultrasonic treatment apparatus of the present invention which is primarily suitable for the treatment of cartilage and/or osteochondral injuries and/or defects is illustrated by FIGS. 9 - 10 B.
  • the apparatus 500 includes a MOU 12 and three ultrasonic transducer assemblies 502 positioned within pockets 504 on an inner surface of a concave plate 506 as shown by FIG. 10B.
  • the concave plate 506 is positioned at one end of a vertical bar 508 having a slot 509 at a lower portion.
  • the apparatus 500 further includes a locking support module 510 having a thigh support 512 and a leg support 514 .
  • the thigh support 512 includes a thigh support plate 516 , a securing band 518 , and two horizontal locking extensions 520 affixed to the thigh support plate 516 by screws 522 and thumb screws 524 .
  • the leg support 514 includes a leg support plate 526 , a securing band 528 , and two vertical locking extensions 530 affixed to the leg support plate 526 .
  • the vertical bar 508 is configured to mount within a channel 532 on the leg support 514 .
  • the vertical bar 508 is secured to the channel 532 by screw 534 and thumb screw 536 .
  • the vertical bar 508 can be moved vertically along the channel 532 by unthreading the thumb screw 536 to accommodate various patients.
  • the thigh support 512 and the leg support 514 are locked to each other by locking the horizontal locking extensions 520 and the vertical locking extensions 530 by screws 538 and thumb screws 540 to prevent the patient from moving the thigh with respect to the leg during treatment and to ensure that the transducer assemblies 502 remain fixed in their proper positions.
  • the transducer assemblies 502 are connected via a cable 542 which is plugged in to hole 544 to the MOU 12 which contains circuitry for exciting the ultrasonic transducer assemblies 502 . It is contemplated that during treatment an ultrasonic conducting gel is positioned between the transducers 502 mounted in concave plate 506 and the patient's body to prevent attenuation of the ultrasonic waves.
  • a method for treating a cartilage and/or osteochondral injury and/or defect is depicted by the flow-chart of FIG. 11.
  • the method entails stimulating blood flow to induce a biological reconstructive healing response of the underlying area at the cartilage and/or osteochondral injury site (step A), and irradiating the cartilage and/or osteochondral injury site with ultrasonic waves for a time sufficient to accelerate the healing response (step B).
  • Step A entails mechanically drilling, induced fracture, laser drilling, administering chemical or biochemical treatments, scraping the injury site to stimulate the growth of cartilaginous tissue.
  • Step B preferably entails propagating a primary directional lobe of acoustic energy in body tissue and/or fluids about a central or longitudinal axis, and this primary directional lobe is concentrically surrounded by primary shearwave lobes of acoustic energy.
  • the carrier frequency is sufficiently elevated to establish a standing-wave condition in one or more spaces between confronting surfaces adjacent or at the cartilage and/or osteochondral injury site, as long as the space is dimensionally characterized by at least a quarter-wavelength at the carrier frequency, thereby enabling demodulation of the carrier frequency.
  • healing proceeds at an accelerated pace in the environment of such demodulation, with resultant cartilage development in reduction of the space; but the pattern of carrier wave propagation in body tissue and/or fluids surrounding the central axis of acoustic propagation is rich in therapeutically beneficial shear waves of acoustic energy.
  • FIG. 12A is a perspective view showing the drilling of channels 600 within the defect using a drill 608 to stimulate blood flow and induce the biological reconstructive healing response of the underlying area at the cartilage and/or osteochondral injury site.
  • FIG. 12B is a cross-sectional view showing the ultrasonic waves “bouncing off” the channels 600 within the joint walls 602 of the femur 604 and tibia 606 for a time sufficient to accelerate the healing response.
  • FIGS. 13 A- 19 D are photomicrographs illustrating the postoperative appearance of cartilage and/or osteochondral defects created at the patellar groove region of rabbits according to studies (EXI095-01R and EXI096-01R) conducted to demonstrate that daily ultrasound therapy accelerated cartilage and/or osteochondral defect healing as early as four weeks in both gross and histologic analysis. Defects treated with ultrasound demonstrated more hyaline cartilage properties compared to nontreated sites at four, eight, and twelve weeks postoperative. In addition, greater subchondral bone restoration was also noted.
  • the second study, EXI096-01R confirmed the results of the initial study, EXI095-01R, and added longer term (12 weeks) analysis.
  • the four week postoperative ultrasound treated defects received higher gross and histologic scores compared to the nontreated defects, indicating accelerated tissue regeneration and higher levels of proteoglycan formation and cartilage like morphology and greater integration of the repair cartilage with the surrounding host cartilage.
  • the mean gross grade for the ultrasound treated defects was 6.92/8 versus 4.8318 for the nontreated defects at four weeks.
  • the mean histologic grade for the ultrasound defects was 15.11/24 versus 9.28/24 for the nontreated defects at four weeks. At eight weeks postoperative, differences were more subtle both grossly and histologically between treated and nontreated defects.
  • the mean gross grade for the ultrasound defects was 7.5018 compared to 6.33/8 for the nontreated defects at eight weeks.
  • the mean histologic grade for the ultrasound defects was 15.83/24 compared to 13.60/24 for the nontreated defects at eight weeks.
  • dramatic differences were observed grossly between the treated and nontreated defects (7.17/8 gross grade for ultrasound defects versus 5.50/8 for nontreated defects). This may represent the initial degeneration of the inferior cartilage produced in the nontreated defects.
  • the mean histologic grade for the ultrasound treated defects was 19.06/24.
  • the mean grade for the nontreated defects was 15.06/24.
  • ultrasound treated sites demonstrated earlier and greater amounts of cartilage and subchondral bone regeneration. With time ultrasound sites demonstrated more extensive subchondral bone regeneration, less degeneration of adjacent cartilage, and greater chondral layer thickness and a greater amount of integration of the repair cartilage with surrounding host cartilage. These characteristics indicate a better quality of repair cartilage, that may be better able to withstand loading and degeneration over time.
  • EXI095-01R and EXI096-01R Animal Right Knee Left Knee Number Treatment Treatment Surgery Date Duration EXI095-01R: G200 20 minute daily none May 16, 1996 4 weeks G203 20 minute daily none May 16, 1996 4 weeks G217 20 minute daily none May 16, 1996 4 weeks G198 20 minute daily none May 16, 1996 8 weeks G201 20 minute daily none May 16, 1996 8 weeks G202 20 minute daily none May 16, 1996 8 weeks EXI096-01R: H155 20 minute daily none July 26, 1996 4 weeks H156 20 minute daily none July 26, 1996 4 weeks H160 20 minute daily none July 26, 1996 4 weeks H152 20 minute daily none July 26, 1996 8 weeks H153 20 minute daily none July 26, 1996 8 weeks H162 20 minute daily none July 26, 1996 8 weeks H154 20 minute daily none July 26, 1996 12 weeks H157 20 minute daily none July 26, 1996 12 weeks H161 20 minute daily none July 26, 1996 12 weeks H163 20 minute daily none July 26, 1996 12 weeks H164 20 minute daily none July 26, 1996 12 weeks H165 20 minute daily none July 26, 1996 12 weeks
  • the right knees received 20 minute daily ultrasound therapy with the Sonic Accelerated Fracture Healing (SAFHS) device six days weekly beginning on postoperative day four.
  • the left knees received no treatment.
  • SAFHS units were randomly chosen each day for treatment. Due to the large number of animals in the study EXI096-01R, some devices were used twice each day on two different animals. Animals were sedated by intramuscular injection of Ketaset and Rompun (83 mg/ml Ketamine and 17 mg/ml xylazine) at the dosage of 0.3 mg/kg body weight in order to administer the therapy. This dosage is approximately one half the anesthetic dosage intended to provide sedation only.
  • the ultrasound transducer was placed on the distal femur at the lateral condyle with ample ultrasound coupling gel. The sites were periodically shaved to ensure contact between the transducer, coupling gel and skin.
  • the SAFHS device is a noninvasive FDA approved external device indicated for the accelerated healing of fresh fractures.
  • SAFHS delivers a low level acoustic pressure wave signal with an intensity of 30 milliwatts per square centimeter (equivalent to the intensity used for diagnostic ultrasound) to the skin at the fracture site for twenty minutes daily.
  • FIG. 13B Using a drill bit, a 3 mm diameter by 5 mm deep osteochondral defect in the patellar sulcus of the femur was created (FIG. 13B). After irrigation with saline, the joint was closed in layers (FIG. 13C). Routine anterior-posterior radiographs were taken after surgery to insure proper defect location.
  • Butorphanol tartrate (0.2 mg/kg body weight) was administered subcutaneously as required. Animals were administered intramuscular antibiotics for four days postsurgery. Animals were kept in recovery cages postoperatively until fully conscious and demonstrated weight bearing, after which they were transferred to standard cages and allowed unrestricted motion. Halo collars were utilized as needed to prevent the animal from removing sutures.
  • Each harvested defect knee was graded for gross appearance based upon the scheme of Moran et. al. ( The Journal of Bone and Joint Surgery, 74-B, 659-667, 1992) by an observer blinded to the treatment group. This analysis apportions points based upon the formation of intra-articular adhesions, restoration of articular surface, erosion and appearance of the cartilage.
  • FIGS. 2 through 4 demonstrate the typical gross appearance of the treated and nontreated sites at four, eight, and twelve weeks postoperative.
  • the ultrasound treated defects demonstrated more complete and uniform covering of the defect, although typically the new cartilage had an opaque appearance. Incompletely covered lesions were present at the center of many of the nontreated sites and the tissue regenerated was irregular in color (FIG. 14). By eight weeks both the ultrasound and nontreated defects were covered uniformly with new tissue. The ultrasound treated defects demonstrated less erosion of the new cartilage and surrounding intact cartilage (FIG. 15). At twelve weeks postoperative the defect borders in the ultrasound treated defects were difficult to appreciate and the new cartilage had the appearance of the adjacent tissue (FIG. 16) and it was well integrated with the adjacent host cartilage. New cartilage had a more transparent appearance compared to the nontreated defects and clearly demonstrated significantly less erosion of the adjacent and newly formed cartilage.
  • FIGS. 17, 18, and 19 demonstrate the typical histologic appearance of both treated and nontreated defects at four, eight, and twelve weeks postoperative.
  • Type I collagen in the regenerated bone showed very little or no localization in the regenerated cartilage layer of the ultrasound treated samples. Presence of Type I collagen in the non-bone areas would be an indication of fibrosis or formation of fibrocartilage.

Abstract

A kit of elements including an ultrasonic generator (12), transducers (402) with connecting cables (407, 408), and a means (405, 406) for locating the transducers over areas of the body containing cartilage, is provided with the surgical instruments for post-surgical application to ultrasonically stimulate the cartilage growth, thus relieving the effects of surgical intervention.

Description

  • This application claims priority to a U.S. Provisional Application No. 60/037,367 filed on Feb. 6, 1997.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to methods and apparatus for therapeutically treating injuries using ultrasound. More particularly, the present invention relates to methods and apparatus which utilize an ergonomically constructed ultrasonic transducer assembly configured to cooperate with a placement module for placement in proximity to a cartilage and/or osteochondral injury and/or defect to stimulate cartilage growth. [0003]
  • 2. Description of the Related Art [0004]
  • The use of ultrasound to therapeutically treat and evaluate bone injuries is known. Impinging ultrasonic pulses having appropriate parameters, e.g., frequency, pulse repetition, and amplitude, for suitable periods of time and at a proper external location adjacent to a bone injury has been determined to accelerate the natural healing of, for example, bone breaks and fractures. [0005]
  • U.S. Pat. No. 4,530,360 to Duarte describes a basic non-invasive therapeutic technique and apparatus for applying ultrasonic pulses from an operative surface placed on the skin at a location adjacent a bone injury. To apply the ultrasound pulses during treatment an operator must manually hold the applicator in place until the treatment is complete. [0006]
  • The Duarte patent as well as U.S. Pat. No. 5,520,612 to Winder et al. describe ranges of RF signal for creating the ultrasound, ultrasound power density levels, ranges of duration for each ultrasonic pulse, and ranges of ultrasonic pulse frequencies. [0007]
  • U.S. Pat. No. 5,003,965 to Talish et al. relates to an ultrasonic body treatment system having a body-applicator unit connected to a remote control unit by sheathed fiber optic lines. The signal controlling the duration of ultrasonic pulses and the pulse repetition frequency are generated apart from the body-applicator unit. Talish et al. also describes a mounting fixture for attaching the body-applicator unit to a patient so that the operative surface is adjacent the skin location. [0008]
  • While the systems described in these patents relate to therapeutic methods and apparatus for ultrasonic treatment of hard and soft tissue injuries and defects, there is a need for ergonomically configured signal generators and transducers for the treatment of cartilage and/or osteochondral injuries and/or defects. Further, a need exists for an apparatus which optimizes the treatment of cartilage and/or osteochondral injuries and/or defects. [0009]
  • A cartilage and/or osteochondral injury and/or defect typically involves damage to the cartilage which lines articulating bones (articular cartilage), such as the bones of the knee, elbow, shoulder and ankle. Osteochondral injuries can be treated by chondral and/or osteochondral drilling causing blood flow at the site. The aim of chondral drilling is to stimulate cartilage regeneration as part of the healing process. However, the resulting nonhyaline or fibrocartilage produced is biomechanically inferior to articular cartilage, does not have comparable proteoglycan content, and may consist primarily of a thin unorganized layer of collagen. Further, it has been observed that degeneration of the new tissue generally occurs over time, requiring the need for additional reconstructive surgical treatment. [0010]
  • Other methods of treatment include: the transplantation of non-weight bearing cartilage to the injury and/or defect site; inducing a fracture at the injury and/or defect site; placing a carbon fiber matrix to induce cartilage formation; and autologous chondrocyte implantation (ACI). ACI entails removing chondrocytes capable of regenerating hyaline-like cartilage from the body and culturin them for several weeks. During the culture process, the number of cells increases approximately 15 times that of the original tissue sample. The cultured cells are then transplanted through an arthrotomy. A small piece of periosteum, the skin covering a bone, is taken from the patient's tibia. The periosteum is then sutured over the defect to provide a protective cover for the cultured cells. The cultured cells are injected under the periosteum into the defect where they will continue to multiply and produce a durable repair tissue. However, ACI increases the healing time since the chondrocytes need to be cultured before they are transplanted to the patient. [0011]
  • Therefore, there is a further need for a method and apparatus to stimulate cartilage regeneration which produces fibrocartilage which is biomechanically equal or superior to articular cartilage, has comparable proteoglycan content, and consists of a thick organized layer of collagen. Further still, a need also exists for an apparatus which stimulates cartilage regeneration and where the regenerated cartilage does not degenerate over time requiring additional treatment or reconstructive surgery. Further, there is a need for an apparatus which stimulates cartilage regeneration and significantly reduces the healing time. [0012]
  • SUMMARY OF THE INVENTION
  • The ultrasonic treatment apparatus of the present invention is used for therapeutically treating cartilage and/or osteochondral injuries and/or defects using ultrasound. The apparatus includes an ergonomically constructed placement module configured for mounting at least one ultrasonic transducer assembly with an integral signal generator which provides excitation signals to at least one ultrasonic transducer within the transducer assembly. Timing control circuitry as well as monitoring circuitry for the proper attachment and operation of the transducer assembly are housed within a portable main operating unit which may be fit within a pouch worn by the patient. In operation, the placement module is positioned against a part of the patient's body such that at least one transducer is positioned over the cartilage and/or osteochondral injury and/or defect. At least one transducer is then excited for a predetermined period of time to impinge ultrasonic waves against the damaged cartilage area to stimulate the regeneration of new articular cartilage. [0013]
  • Preferably, the main operating unit has an internal power source for powering the signal generator circuitry, a display coupled to the signal generator circuitry to display treatment sequence data, a keypad coupled to the signal generator circuitry to permit user operation and/or entry of data. The signal generator circuitry includes a processor, means for generating a pulsed control signal, and a switch coupled to the processor for regulating the pulsed control signal. A communication interface may be connected between a communication port and the processor to provide a communication link between the ultrasonic signal generator and an external computer or modem. Preferably, the communication interface is a serial communication interface, however, a parallel interface is also contemplated. An alarm is provided to indicate to the user that the treatment time has expired. The alarm is coupled to the processor such that when ultrasonic treatment is completed the processor activates the alarm and terminates ultrasound generation. [0014]
  • The present invention also provides a kit for ultrasonically treating cartilage and/or osteochondral injuries and/or defects. The kit includes an ultrasonic transducer assembly, a placement module configured to be worn by a patient and to receive the ultrasonic transducer assembly, an integrated ultrasonic signal generator located in the ultrasonic transducer assembly, and a main operating unit (MOU) or controller. The MOU has an internal power source thereby providing patient mobility. A MOU envisioned for use with the present invention is described in U.S. Pat. No. 5,556,372 to Talish et al. which is hereby incorporated by reference. [0015]
  • The MOU is electrically coupled to at least one transducer secured to the placement module. The activation of the signal generator corresponding to each transducer excites at least one ultrasonic transducer for impinging ultrasonic waves to the cartilage and/or osteochondral injury and/or defect. [0016]
  • A method for ultrasonically treating cartilage and/or osteochondral injuries and/or defects is also provided. Once the location of the cartilage and/or osteochondral injury and/or defect is ascertained, the body's own natural healing processes are stimulated adjacent the injury. This can be accomplished by chondral drilling on the defect to form a series of channels to stimulate blood flow and induce the biological reconstructive healing response of the underlying area at the cartilage site. Other methods of stimulating this response includes laser drilling, induce fracture, scraping, chemical or biochemical treatments, etc. Once the healing response has been sufficiently facilitated, a placement module containing an ultrasonic transducer assembly having at least one transducer and one signal generator is positioned adjacent to the injured part of the body such that at least one transducer is in proximity to the cartilage and/or osteochondral injury and/or defect for the treatment of the injury. The signal generator is then activated to excite the at least one transducer for impinging ultrasonic waves to the cartilage and/or osteochondral injury and/or defect. The ultrasonic waves impinge upon the injury site to stimulate and accelerate the biological healing properties of the body to regenerate cartilaginous material. The present method can also be used in conjunction with the transplantation of autologous cultured chondrocytes to the injury site to increase the healing time. [0017]
  • In an alternative embodiment, a placement module is provided for securing a plurality of transducers thereto in a plurality of configurations. The placement module is then secured to a cartilage and/or osteochondral injury and/or defect site, for example, at the ankle or wrist, to stimulate cartilage regeneration. Further, the present invention also provides an embodiment having a placement module which contains a locking structure for locking the articulating bones in a particular position. This embodiment prevents the patient from moving his limbs, for example, moving the femur with respect to the tibia, during treatment. [0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred embodiments of the invention are described below with reference to the drawings, which are described as follows: [0019]
  • FIG. 1 is a perspective view of a patient wearing a portable ultrasonic treatment apparatus of a first embodiment according to the present invention having a main operating unit or controller and a placement module; [0020]
  • FIG. 2A is an exploded view of the placement module of the portable ultrasonic treatment apparatus illustrated by FIG. 1; [0021]
  • FIG. 2B is a rear underside view of the placement module of the portable ultrasonic treatment apparatus illustrated by FIG. 1; [0022]
  • FIG. 3 is a cross-sectional view illustrating the transducer assembly impinging ultrasonic waves to articular cartilage within the knee where an ultrasonic conducting gel is positioned between the transducer assembly and the patient's knee; [0023]
  • FIG. 4 is a block diagram of one embodiment of the circuitry for the ultrasonic transducer assembly; [0024]
  • FIG. 4A is a block diagram of an alternative embodiment of the circuitry for the ultrasonic transducer assembly; [0025]
  • FIG. 5 is a perspective view of a second embodiment of the portable ultrasonic treatment apparatus, illustrating a main operating unit or controller and a placement module for treating osteochondral injuries within the elbow region; [0026]
  • FIG. 6 is a perspective view of a third embodiment of the portable ultrasonic treatment apparatus, illustrating a main operating unit or controller and a placement module for treating osteochondral injuries within the shoulder region; [0027]
  • FIG. 7 is a perspective view of a fourth embodiment of the portable ultrasonic treatment apparatus illustrating a main operating unit or controller and a placement module; [0028]
  • FIG. 8 is a perspective view of the portable ultrasonic treatment apparatus illustrated by FIG. 7 mounted on a patient's ankle; [0029]
  • FIG. 9 is a perspective view of a fifth embodiment of the portable ultrasonic treatment apparatus, illustrating a main operating unit or controller and a placement module for treating osteochondral injuries within the knee region; [0030]
  • FIG. 10A is an exploded view of the portable ultrasonic treatment apparatus illustrated by FIG. 9; [0031]
  • FIG. 10B is a perspective view of a support member of the portable ultrasonic treatment apparatus illustrated by FIG. 9; [0032]
  • FIG. 11 is a flow-chart depicting the steps for stimulating a healing response at the site of an osteochondral injury according to the present invention; [0033]
  • FIG. 12A is a perspective view showing the drilling of channels within the joint walls of the femur and tibia; [0034]
  • FIG. 12B is a cross-sectional view showing ultrasonic waves “bouncing off” the channels within the joint walls of the femur and tibia; and [0035]
  • FIGS. [0036] 13A-19D are photomicrographs illustrating the postoperative appearance of cartilage and/or osteochondral defects created at the patellar groove region of rabbits according to a study conducted to demonstrate that daily ultrasound therapy accelerated cartilage and/or osteochondral defect healing as early as four weeks in both gross and histologic analysis.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The ultrasonic treatment apparatus of the present invention is used for the surgically non-invasive utilization of ultra high-frequency acoustic energy in the treatment of cartilage and/or osteochondral injuries and/or defects. Even though this detailed description discusses the treatment of cartilage and/or osteochondral injuries and/or defects caused by an injury, the ultrasound treatment apparatus can be used to treat osteochondral defects caused by other means, such as medication, infection or metabolic processes. [0037]
  • The apparatus includes an ergonomically constructed placement module having a strap or other fastening means for being secured adjacent an injured part of a patient's body. At least one ultrasonic transducer assembly is attached or imbedded within the placement module and properly positioned in proximity to the cartilage and/or osteochondral injury and/or defect. Different types of ultrasonic transducers and signals can be provided, such as those described and schematically depicted in U.S. Pat. No. 5,520,612 to Winder et al. which is hereby incorporated by reference. Particularly, the transducers and arrangements schematically depicted by FIGS. [0038] 7-11 of the patent in which at least one transducer is used to provide acoustic energy to the site of the injury. The apparatus may also utilize a portable, ergonomically constructed main operating unit (MOU) worn by the patient which provides control signals to the ultrasonic transducers. The MOU which is utilized is preferably the one described in U.S. Pat. No. 5,556,372 to Talish et al. which is hereby incorporated by reference.
  • Turning to the figures, in particular FIG. 1, one embodiment of the portable [0039] ultrasonic treatment apparatus 10 of the present invention is shown. The ultrasonic treatment apparatus 10 includes a MOU 12, a placement module 14, and ultrasonic transducer assemblies 16.
  • The [0040] placement module 14 comprises a placement support 20 which includes at least two or three channels 22 each having an extension 24 mounted therein. Each extension has a transducer pocket 26 at one end for holding one ultrasonic transducer assembly 16. It is contemplated for each extension 24 to have several range of movements besides longitudinal motion, such as articulating motion transverse to the longitudinal motion.
  • The [0041] placement module 14 further includes a placement band 28 cooperating with slot 30 for securing the placement support 20 to the patient. The placement band 28 is configured to firmly secure the placement module 14 to the patient. A sponge-like material 32 preferably lines the inner surface of the placement support 20 for providing comfort to the patient (FIGS. 2A and 2B). The placement support 20 may be constructed of hard plastics which may be custom molded for a particular body part of the patient.
  • With reference to FIGS. 2A and 2B, the [0042] extensions 24 are mounted to the placement support 20 via screws 33 and thumb screws 34. The screws 33 are passed through slots 35 and holes 36 on the extensions 24 and are threaded to the thumb screws 34. The extensions 24 can be moved to different positions to accommodate patients of all sizes by unthreading the thumb screws 34 and shifting the screws 33 along the slots 35 and threading the screws 33 to the thumb screws 34 at the new position.
  • The [0043] transducer assembly 16 may include circuitry, schematically illustrated by FIGS. 4 and 4A and described below, for exciting at least one transducer therein and is coupled to the MOU by cable 37 and wires 39. The wires 39 are coupled to the placement support 20. The cable 37 is preferably a multiconductor cable capable of transmitting relatively low frequency RF or optical signals, as well as digital signals. The cable 37 may include coaxial cable or other types of suitable shielded cable. Alternatively, the cable 37 may include fiber optic cable for transmitting optical signals. The signals may be transmitted continuously or as a series of pulses.
  • In operation, the [0044] placement module 14 is positioned and secured to the patient's body as shown by FIG. 3, such that each transducer assembly 16 lies over the cartilage and/or osteochondral injury and/or defect. A locating ring such as the one disclosed in U.S. patent application Ser. No. 08/389,148 may be used for determining the location of injured bone, if the patient desires to have one of the transducer assemblies overlying a bone injury, before the placement module 14 is secured to the patient. Once the placement module 14 is properly positioned, the transducer within the transducer assembly 16 is excited for a pre-determined amount of time. An ultrasound conducting gel 38 is positioned between the transducer assembly 16 and the injured part of the patient's body to prevent attenuation of the ultrasonic waves as they travel to the articular cartilage 40, as shown by FIG. 3.
  • It is also contemplated that one or more transducers can be converted to receive reflected diagnostic data from the treatment site. This permits real time evaluation of the injury site and healing process. [0045]
  • With reference to FIG. 4, a block diagram of one embodiment of the ultrasonic transducer assembly circuitry is shown. The [0046] transducer assembly circuitry 17 includes a receiver/RF oscillator 50 which receives the signals transferred by a signal generator within MOU 12 via cable 37. The receiver/RF oscillator 50 is connected to transducer driver 52 which excites transducer 16.
  • An alternative embodiment of the [0047] transducer assembly circuitry 17 is shown in FIG. 4A. In this embodiment, the ultrasonic transducer assembly 16 includes an internal battery 60 which supplies power to the components within the transducer assembly 16. For example, battery 60 supplies power to signal monitoring circuit 62 and signal driver 66. The signal monitoring circuit 62 provides, preferably, a digital output signal 68 which represents the waveform characteristics of the output of transducer driver 70. These characteristics can be displayed on a digital display and may include, for example, the frequency, pulse repetition frequency, the pulse width and the average output power of the transducer 16. The output signal 68 of signal monitoring circuit 62 is transferred to the signal generator within MOU 12 via driver 66 and cable 37. The signal generator may include a processor and a switch for regulating the signal characteristics. Control signals from the MOU 12 are received by receiver 72 via cable 37. Safety or fixture interlock 74, which may include switches on the outer surface of the placement module 14 or transducer assembly 16, ensures that the placement module 14 is properly positioned before providing power to the internal components of the transducer assembly 16.
  • A second embodiment of the portable ultrasonic treatment apparatus of the present invention is illustrated by FIG. 5 and designated generally by [0048] reference numeral 200. The treatment apparatus 200 includes MOU 12 and transducer assemblies 202 affixed to a placement module 204 via extensions 206 for ultrasonically stimulating the generation of cartilage in the elbow region. Each transducer assembly 202 includes a power transducer 212 connected to the MOU 12 by cable 218. An ultrasonic conducting gel 212 is positioned between the transducer assemblies 202 and the osteochondral injury to prevent attenuation of the ultrasonic waves as they travel to the articular cartilage. In order to accommodate various patients, the extensions 206 can be adjusted to several positions by unthreading thumb screws 220. The circuitry for each transducer assembly 202 may be similar to that disclosed for the first embodiment and schematically illustrated by FIGS. 4 and 4A.
  • It is envisioned that the [0049] placement module 204 be constructed from suitable conductive plastics, such as conductive ABS plastics with either carbon, stainless steel, nickel or aluminum fibers to forego the use of wires for connecting the transducer assemblies 202 to the cable 218. In such an embodiment, the conductive placement module 204 would be used to electrically connect the transducer assemblies 202 to the MOU 12 via cable 218.
  • With reference to FIG. 6, a third embodiment of the portable ultrasonic treatment apparatus of the present invention is illustrated. In this embodiment, the [0050] treatment apparatus 300 includes a MOU 12, a placement module 304, and ultrasonic transducer assemblies 306. The placement module 304 is configured for placement on the shoulder region and includes a placement band 310 and a placement support 312. Each transducer assembly 306 is connected to the MOU 12 by cable 318 to power transducer assembly circuitry within each assembly 306. The circuitry (not shown) may be similar to that disclosed for the first and second embodiments and schematically illustrated by FIGS. 4 and 4A.
  • In operation, transducers within [0051] transducer assemblies 306 are excited for a pre-determined period of time to impinge ultrasonic waves to articular cartilage within the shoulder region.
  • A fourth embodiment of the portable ultrasonic treatment apparatus of the present invention which is primarily suitable for the treatment of cartilage and/or osteochondral injuries and/or defects is illustrated by FIGS. 7 and 8. In this embodiment, the [0052] apparatus 400 includes at least one ultrasonic transducer assembly 402 positioned within pockets 404 on a strip 406. The transducer assemblies 402 may be arranged in a plurality of configurations within pockets 404 to accommodate many patients' anatomical differences. The strip 406 is secured in proximity to a cartilage and/or osteochondral injury and/or defect as shown by FIG. 8 by a self-tieing material 405. The strip 406 is connected via wires 407 and cable 408 to a MOU 12 which contains circuitry for exciting the at least one ultrasonic transducer assembly 402 affixed to the strip 406.
  • In operation, at least one [0053] transducer assembly 402 is excited to impinge ultrasonic waves to the cartilage and/or osteochondral injury and/or defect as shown by FIG. 8. It is contemplated that during treatment an ultrasonic conducting gel is positioned between the strip 406 and the patient's body to prevent attenuation of the ultrasonic waves.
  • It is also contemplated to manufacture the [0054] strip 406 from suitable conductive plastics such as conductive. ABS plastics with either carbon, stainless steel, nickel or aluminum fibers to forego the use of wires for electrically connecting the at least one ultrasonic transducer 402 to the cable 408.
  • A fifth embodiment of the portable ultrasonic treatment apparatus of the present invention which is primarily suitable for the treatment of cartilage and/or osteochondral injuries and/or defects is illustrated by FIGS. [0055] 9-10B. In this embodiment, the apparatus 500 includes a MOU 12 and three ultrasonic transducer assemblies 502 positioned within pockets 504 on an inner surface of a concave plate 506 as shown by FIG. 10B. The concave plate 506 is positioned at one end of a vertical bar 508 having a slot 509 at a lower portion. The apparatus 500 further includes a locking support module 510 having a thigh support 512 and a leg support 514.
  • As shown by the exploded view of FIG. 10A, the [0056] thigh support 512 includes a thigh support plate 516, a securing band 518, and two horizontal locking extensions 520 affixed to the thigh support plate 516 by screws 522 and thumb screws 524. The leg support 514 includes a leg support plate 526, a securing band 528, and two vertical locking extensions 530 affixed to the leg support plate 526. The vertical bar 508 is configured to mount within a channel 532 on the leg support 514. The vertical bar 508 is secured to the channel 532 by screw 534 and thumb screw 536. The vertical bar 508 can be moved vertically along the channel 532 by unthreading the thumb screw 536 to accommodate various patients.
  • The [0057] thigh support 512 and the leg support 514 are locked to each other by locking the horizontal locking extensions 520 and the vertical locking extensions 530 by screws 538 and thumb screws 540 to prevent the patient from moving the thigh with respect to the leg during treatment and to ensure that the transducer assemblies 502 remain fixed in their proper positions. The transducer assemblies 502 are connected via a cable 542 which is plugged in to hole 544 to the MOU 12 which contains circuitry for exciting the ultrasonic transducer assemblies 502. It is contemplated that during treatment an ultrasonic conducting gel is positioned between the transducers 502 mounted in concave plate 506 and the patient's body to prevent attenuation of the ultrasonic waves.
  • A method for treating a cartilage and/or osteochondral injury and/or defect is depicted by the flow-chart of FIG. 11. The method entails stimulating blood flow to induce a biological reconstructive healing response of the underlying area at the cartilage and/or osteochondral injury site (step A), and irradiating the cartilage and/or osteochondral injury site with ultrasonic waves for a time sufficient to accelerate the healing response (step B). Step A entails mechanically drilling, induced fracture, laser drilling, administering chemical or biochemical treatments, scraping the injury site to stimulate the growth of cartilaginous tissue. Step B preferably entails propagating a primary directional lobe of acoustic energy in body tissue and/or fluids about a central or longitudinal axis, and this primary directional lobe is concentrically surrounded by primary shearwave lobes of acoustic energy. The carrier frequency is sufficiently elevated to establish a standing-wave condition in one or more spaces between confronting surfaces adjacent or at the cartilage and/or osteochondral injury site, as long as the space is dimensionally characterized by at least a quarter-wavelength at the carrier frequency, thereby enabling demodulation of the carrier frequency. Within a matter of days, healing proceeds at an accelerated pace in the environment of such demodulation, with resultant cartilage development in reduction of the space; but the pattern of carrier wave propagation in body tissue and/or fluids surrounding the central axis of acoustic propagation is rich in therapeutically beneficial shear waves of acoustic energy. [0058]
  • It is also contemplated to use the present method in conjunction with the transplantation of autologous cultured chondrocytes to the injury site to increase the healing time. [0059]
  • With reference to FIGS. 12A and 12B, there are illustrated steps A and B, respectively. FIG. 12A is a perspective view showing the drilling of [0060] channels 600 within the defect using a drill 608 to stimulate blood flow and induce the biological reconstructive healing response of the underlying area at the cartilage and/or osteochondral injury site. FIG. 12B is a cross-sectional view showing the ultrasonic waves “bouncing off” the channels 600 within the joint walls 602 of the femur 604 and tibia 606 for a time sufficient to accelerate the healing response.
  • FIGS. [0061] 13A-19D are photomicrographs illustrating the postoperative appearance of cartilage and/or osteochondral defects created at the patellar groove region of rabbits according to studies (EXI095-01R and EXI096-01R) conducted to demonstrate that daily ultrasound therapy accelerated cartilage and/or osteochondral defect healing as early as four weeks in both gross and histologic analysis. Defects treated with ultrasound demonstrated more hyaline cartilage properties compared to nontreated sites at four, eight, and twelve weeks postoperative. In addition, greater subchondral bone restoration was also noted.
  • The second study, EXI096-01R, confirmed the results of the initial study, EXI095-01R, and added longer term (12 weeks) analysis. The four week postoperative ultrasound treated defects received higher gross and histologic scores compared to the nontreated defects, indicating accelerated tissue regeneration and higher levels of proteoglycan formation and cartilage like morphology and greater integration of the repair cartilage with the surrounding host cartilage. The mean gross grade for the ultrasound treated defects was 6.92/8 versus 4.8318 for the nontreated defects at four weeks. The mean histologic grade for the ultrasound defects was 15.11/24 versus 9.28/24 for the nontreated defects at four weeks. At eight weeks postoperative, differences were more subtle both grossly and histologically between treated and nontreated defects. The mean gross grade for the ultrasound defects was 7.5018 compared to 6.33/8 for the nontreated defects at eight weeks. The mean histologic grade for the ultrasound defects was 15.83/24 compared to 13.60/24 for the nontreated defects at eight weeks. However, at twelve weeks postoperative, dramatic differences were observed grossly between the treated and nontreated defects (7.17/8 gross grade for ultrasound defects versus 5.50/8 for nontreated defects). This may represent the initial degeneration of the inferior cartilage produced in the nontreated defects. The mean histologic grade for the ultrasound treated defects was 19.06/24. The mean grade for the nontreated defects was 15.06/24. [0062]
  • Overall, ultrasound treated sites demonstrated earlier and greater amounts of cartilage and subchondral bone regeneration. With time ultrasound sites demonstrated more extensive subchondral bone regeneration, less degeneration of adjacent cartilage, and greater chondral layer thickness and a greater amount of integration of the repair cartilage with surrounding host cartilage. These characteristics indicate a better quality of repair cartilage, that may be better able to withstand loading and degeneration over time. [0063]
  • A total of 18 male New Zealand White rabbits weighing five to nine pounds at acquisition were utilized. Specific attention was paid in selecting animals of uniform size to limit variability in loading the osteochondral defects. Bilateral 3 mm diameter by 5 mm deep osteochondral defects were created surgically in the patellar groove of each femur. Daily 20 minute ultrasound therapy was applied to the right knee defects only until sacrifice. The left defects were not treated. In an initial pilot study of six animals (EXI095-01R) three were sacrificed at four weeks postoperative and three were sacrificed at eight weeks postoperative. Each defect was evaluated grossly and histologically for the quality and extent of cartilage regeneration. Based on the four and eight week gross and four week histologic results, a second similar study was undertaken (EXI096-01R) consisting of 12 rabbits. A gross pathologic examination was made of all vital organs and systems. A summary of the surgery and treatment schedule for both studies appears in Table 1. [0064]
    TABLE 1
    Treatment Schedule (EXI095-01R and EXI096-01R)
    Animal Right Knee Left Knee
    Number Treatment Treatment Surgery Date Duration
    EXI095-01R:
    G200 20 minute daily none May 16, 1996  4 weeks
    G203
    20 minute daily none May 16, 1996  4 weeks
    G217
    20 minute daily none May 16, 1996  4 weeks
    G198
    20 minute daily none May 16, 1996  8 weeks
    G201
    20 minute daily none May 16, 1996  8 weeks
    G202
    20 minute daily none May 16, 1996  8 weeks
    EXI096-01R:
    H155 20 minute daily none July 26, 1996  4 weeks
    H156
    20 minute daily none July 26, 1996  4 weeks
    H160
    20 minute daily none July 26, 1996  4 weeks
    H152
    20 minute daily none July 26, 1996  8 weeks
    H153
    20 minute daily none July 26, 1996  8 weeks
    H162
    20 minute daily none July 26, 1996  8 weeks
    H154
    20 minute daily none July 26, 1996 12 weeks
    H157 20 minute daily none July 26, 1996 12 weeks
    H161 20 minute daily none July 26, 1996 12 weeks
    H163 20 minute daily none July 26, 1996 12 weeks
    H164 20 minute daily none July 26, 1996 12 weeks
    H165 20 minute daily none July 26, 1996 12 weeks
  • The right knees received 20 minute daily ultrasound therapy with the Sonic Accelerated Fracture Healing (SAFHS) device six days weekly beginning on postoperative day four. The left knees received no treatment. SAFHS units were randomly chosen each day for treatment. Due to the large number of animals in the study EXI096-01R, some devices were used twice each day on two different animals. Animals were sedated by intramuscular injection of Ketaset and Rompun (83 mg/ml Ketamine and 17 mg/ml xylazine) at the dosage of 0.3 mg/kg body weight in order to administer the therapy. This dosage is approximately one half the anesthetic dosage intended to provide sedation only. The ultrasound transducer was placed on the distal femur at the lateral condyle with ample ultrasound coupling gel. The sites were periodically shaved to ensure contact between the transducer, coupling gel and skin. [0065]
  • The SAFHS device is a noninvasive FDA approved external device indicated for the accelerated healing of fresh fractures. SAFHS delivers a low level acoustic pressure wave signal with an intensity of 30 milliwatts per square centimeter (equivalent to the intensity used for diagnostic ultrasound) to the skin at the fracture site for twenty minutes daily. [0066]
  • Using standard aseptic techniques, surgery was performed under halothane gas anesthesia and was monitored by electrocardiogram and heart rate monitors. Anesthesia was administered by intramuscular injection of Ketaset and Rompun (83 mg/ml Ketamine and 17 mg/ml xylazine) at the dosage of 0.6 mg/kg body weight. Both hind limbs were prepped and draped in sterile fashion. The defect in the knee joint was made though a median parapatellar incision. The connective tissue securing the patella was partially released to dislocate the patella and expose the media] femoral condyle and patellar groove (FIG. 13A). Using a drill bit, a 3 mm diameter by 5 mm deep osteochondral defect in the patellar sulcus of the femur was created (FIG. 13B). After irrigation with saline, the joint was closed in layers (FIG. 13C). Routine anterior-posterior radiographs were taken after surgery to insure proper defect location. [0067]
  • Butorphanol tartrate (0.2 mg/kg body weight) was administered subcutaneously as required. Animals were administered intramuscular antibiotics for four days postsurgery. Animals were kept in recovery cages postoperatively until fully conscious and demonstrated weight bearing, after which they were transferred to standard cages and allowed unrestricted motion. Halo collars were utilized as needed to prevent the animal from removing sutures. [0068]
  • Osteochondral healing was evaluated grossly and histologically. Radiographs were utilized as necessary to evaluate healing. Animals were observed daily by qualified personnel for any signs of ill health or adverse reaction to the experimental procedures. [0069]
  • Both right and left distal femurs were harvested en bloc, carefully labeled, and kept in cool saline until gross grading and microphotography was completed. The specimens were then placed in formalin based fixative and labeled with all necessary identifications. A gross pathological exam of vital organs was conducted by the in-house veterinarian. Microscopic pathologic examination was performed on any tissues determined to be grossly abnormal. [0070]
  • Each harvested defect knee was graded for gross appearance based upon the scheme of Moran et. al. ([0071] The Journal of Bone and Joint Surgery, 74-B, 659-667, 1992) by an observer blinded to the treatment group. This analysis apportions points based upon the formation of intra-articular adhesions, restoration of articular surface, erosion and appearance of the cartilage. A total of eight points is the best possible grade (Table 2.)
    TABLE 2
    Gross Grading Scale
    Grades
    Intra-articular adhesions
    None = 2
    Minimal/fine loose fibrous tissue = 1
    Major/dense fibrous tissue = 0
    Restoration of articular surface
    Complete = 2
    Partial = 1
    None = 0
    Erosion of cartilage
    None = 2
    Defect site/site border = 1
    Defect site and adjacent normal cartilage = 0
    Appearance of cartilage
    Translucent = 2
    Opaque = 1
    Discolored or irregular = 0
    TOTAL SCORE 8 possible points
  • All specimens were prepared for histologic evaluation. The individual specimens were fixed by immersion in either 10% formalin solution or 4% paraformaldehyde solution. Following fixation, the specimens were slowly decalcified in EDTA. The defect area was bisected across the diameter of the defect. The resulting halves and surrounding tissue were embedded in paraffin and sectioned across the defect site. Three sections, 5-7 um thick, from three levels were cut from each block. [0072] Level 1 was closest to the defect center. Level 3 was closest to the defect perimeter and level 2 was centered between levels 1 and 3. Three sections from each level were stained with hematoxylin and eosin, Goldner's trichrome, and safranin-O and Fast Green stains (to indicate glycosaminoglycan content in the matrix).
  • Decalcified histologic sections were evaluated by an observer blinded to treatment group. Sections were graded base upon the scheme of Moran et. al. which apportion points based upon the nature of the repair cartilage, structural characteristics, and cellular changes (Table 3.) [0073]
    TABLE 3
    Histology Grading Scale
    NATURE OF THE PREDOMINANT TISSUE:
    Cellular morphology
    Hyaline articular cartilage = 4
    Incompletely differentiated = 2
    Fibrous tissue or bone = 0
    Safranin-O staining of the matrix
    Normal/near normal = 3
    Moderate = 2
    Slight = 1
    None = 0
    STRUCTURAL CHARACTERISTICS:
    Surface regularity
    Smooth/intact = 3
    Superficial horizontal lamination = 2
    Fissures, 25-100% of thickness = 1
    Severe disruption, fibrillation = 0
    Structural integrity
    Normal = 2
    Slight disruption, including cysts = 1
    Severe disintegration = 0
    Thickness
    100% of normal cartilage thickness = 2
    50-100% = 1
    0-50% = 0
    Bonding to the adjacent cartilage
    Bonded at both ends of the defect = 2
    Bonded at one end or partially bonded at both ends = 1
    Not bonded = 0
    FREEDOM FROM CELLULAR CHANGES OF DEGENERATION:
    Hypocellularity
    None = 3
    Slight = 2
    Moderate = 1
    Severe = 0
    Chondrocyte clustering
    None = 2
    <25% of cells = 1
    >25% of cells = 0
    Freedom from degenerative changes in adjacent cartilage
    Normal cellularity, no clusters, normal staining = 3
    Normal cellularity, mild clusters, moderate staining = 2
    Mild or moderate hypocellularity, slight staining = 1
    Severe hypocellularity, poor or no staining = 0
  • Immunohistochemical staining of cartilage sections from twelve week ultrasound treated and nontreated defects was performed to identify Type I and Type II collagen. Goat antihuman polyclonals obtained from Southern Biotechnology, Inc. were used. Immunohistochemical staining identifies the critical components of articular cartilage necessary for correct regeneration and maintenance of the tissue phenotype. In addition, the presence of other tissues reflective of inappropriate tissue formation is identified. In hyaline articular cartilage Type II collagen should be localized only in the cartilage layer above the subchondral bone. Staining for Type I collagen should be restricted to the subchondral bone region. [0074]
  • All surgeries were uneventful with no postoperative complications. Pathologic examination of internal organs demonstrated no adverse response to the daily ultrasound treatment or experimental procedures. [0075]
  • A summary of the gross evaluation grades from studies EXI095-01R and EXI096-01R appears in Table 4. FIGS. 2 through 4 demonstrate the typical gross appearance of the treated and nontreated sites at four, eight, and twelve weeks postoperative. [0076]
    TABLE 4
    Mean Gross Evaluation Grade ± standard deviation (n = 6)
    NONTREATED ULTRASOUND
     4 WEEKS 4.83 ± 1.72 6.92 ± 1.02
     8 WEEKS 6.33 ± 0.82 7.50 ± 0.45
    12 WEEKS 5.50 ± 1.22 7.17 ± 0.98
  • At four weeks postoperative the ultrasound treated defects demonstrated more complete and uniform covering of the defect, although typically the new cartilage had an opaque appearance. Incompletely covered lesions were present at the center of many of the nontreated sites and the tissue regenerated was irregular in color (FIG. 14). By eight weeks both the ultrasound and nontreated defects were covered uniformly with new tissue. The ultrasound treated defects demonstrated less erosion of the new cartilage and surrounding intact cartilage (FIG. 15). At twelve weeks postoperative the defect borders in the ultrasound treated defects were difficult to appreciate and the new cartilage had the appearance of the adjacent tissue (FIG. 16) and it was well integrated with the adjacent host cartilage. New cartilage had a more transparent appearance compared to the nontreated defects and clearly demonstrated significantly less erosion of the adjacent and newly formed cartilage. [0077]
  • A summary of the mean histologic grades from studies EXI095-01R and EXI096-01R appears in Table 5. One half of each twelve week specimen has been submitted for tissue typing analysis aimed at identifying the collagen type and percent tissue composition. [0078]
    TABLE 5
    Mean Histologic Grades for the four, eight, and twelve weeks
    postoperative sites ± standard deviation (sample size) for
    both EXI09S-01R and EXI096-01R.
    4 Weeks Postoperative 8 Weeks Postoperative 12 Weeks Postoperative
    Nontreated Ultrasound Nontreated Ultrasound Nontreated Ultrasound
    Nature of the 1.11 ± 1.02 4.06 ± 2.44 3.87 ± 1.77 3.72 ± 1.81 3.50 ± 2.09 5.61 ± 1.20
    Predominant (18) (18) (15) (18) (18) (18)
    Tissue
    Structural 5.78 ± 1.86 6.78 ± 1.29 6.27 ± 1.49 7.28 ± 1.07 6.22 ± 1.99 7.17 ± 1.65
    Characteristics (18) (18) (15) (18) (18) (18)
    Freedom From 2.39 ± 1.72 4.28 ± 1.67 3.47 ± 1.73 4.83 ± 1.79 5.33 ± 2.52 6.28 ± 1.02
    Cellular (18) (18) (15) (18) (18) (18)
    Changes of
    Degeneration
    TOTAL 9.28 ± 3.61 15.11 ± 4.80  13.60 ± 3.68  15.83 ± 2.81  15.06 ± 6.30  19.06 ± 2.73 
    (out of 24 (18) (18) (15) (18) (18) (18)
    possible points)
  • FIGS. 17, 18, and [0079] 19 demonstrate the typical histologic appearance of both treated and nontreated defects at four, eight, and twelve weeks postoperative.
  • At four weeks postoperative differences between the ultrasound treated and nontreated defects were substantial. Intense safranin-O staining of the matrix, extensive chondroblast activity, and earlier subchondral bone formation in the ultrasound treated defects was in sharp contrast with the lack of activity and chondroblast phenotype present in the nontreated defects. Early degenerative changes of the nontreated defects was also evident. [0080]
  • At eight weeks the histologic results were similar to the gross results. Generally, safranin-O staining was not as intense at eight weeks postoperative in both the ultrasound treated and nontreated defects. However, subchondral bone regeneration was complete in the ultrasound treated sites and the repair cartilage showed less signs of degenerative changes. The nontreated sites showed less subchondral bone regeneration and organization of the repair tissue. [0081]
  • Again at twelve weeks the ultrasound treated site had greater mean histologic scores than the nontreated defects. In most cases, subchondral bone regeneration was complete. However, the chondral layer repair tissue in ultrasound treated sites demonstrated more articular cartilage characteristics than the nontreated sites. The majority of the nontreated sites were covered with superficial layer of maturing fibrous tissue. The intensity of safranin-O stain was slight or not present in the surface repair layer of nontreated defects. Adjacent intact cartilage was hypocellular and in several cases large clusters of greater than 20 chondrocytes were present at the junction between the repair tissue and the host cartilage. Safranin-O staining was more intense in the ultrasound treated sites, however, variations within the repair cartilage of individual defects were observed. Regions of columnar arrangement of chondrocytes, near normal chondral layer thickness and safranin-O staining intensity were present in ultrasound treated defects. [0082]
  • Strong Type II collagen staining of the newly regenerated cartilage layer was found in ultrasound treated defects that showed good repair, whereas nontreated defects sections with poor repair showed less intensive staining or staining of cartilage deep within the defect reflective of inappropriate tissue formation. [0083]
  • Positive staining for Type I collagen in the regenerated bone showed very little or no localization in the regenerated cartilage layer of the ultrasound treated samples. Presence of Type I collagen in the non-bone areas would be an indication of fibrosis or formation of fibrocartilage. [0084]
  • An additional study, EXI097-01R, was conducted on 66 rabbits which received bilateral osteochondral defects in the femurs according to the study design described above. A summary of the gross grading results from this study pooled with those from studies EXI095-01R and EXI096-01R are presented in “Gross Grading Results” in Table 6. [0085]
    TABLE 6
    Gross Grading Results
    Treatment Group Evaluation Period TOTAL
    Abrasion Defects  4 weeks Mean 5.7
    20 mins. ultrasound Std. Dev. 1.0
    Sample Size 6
    Control Mean 4.8
    Std. Dev. 0.8
    Sample Size 6
    Medial Condyle  4 weeks Mean 4.9
    Defects Std. Dev. 1.4
    20 mins. ultrasound Sample Size 6
    Control Mean 4.8
    Std. Dev. 0.6
    Sample Size 6
    Patellar Groove  4 weeks Mean 5.5
    Defects Std. Dev. 1.0
    20 mins. ultrasound Sample Size 6
    Control Mean 5.8
    (paired) Std. Dev. 0.3
    Sample Size 6
    Patellar Groove  4 weeks Mean 6.7
    Defects Std. Dev. 1.0
    20 mins. ultrasound Sample Size 6
    5 mins. ultrasound Mean 5.8
    Std. Dev. 1.0
    Sample Size 6
    Patellar Groove  4 weeks
    Defects ONGOING
    20 mins. ultrasound
    5 mins. ultrasound
    Patellar Groove  4 weeks
    Defects ONGOING
    20 mins. ultrasound
    10 mins. ultrasound
    Patellar Groove  4 weeks
    Defects ONGOING
    20 mins. ultrasound
    40 mins. ultrasound
    Patellar Groove  4 weeks Mean 6.6
    Defects Std. Dev. 1.0
    20 mins. ultrasound (pooled) Sample Size 18
    Control Mean 5.3
    (pooled) Std. Dev. 1.3
    Sample Size 18
    Patellar Groove  4 weeks Mean 6.6
    Defects Std. Dev. 1.0
    20 mins. ultrasound Sample Size 12
    Control Mean 5.0
    (paired) Std. Dev. 1.5
    Sample Size 12
    Patellar Groove  8 weeks Mean 7.0
    Defects Std. Dev. 1.2
    20 mins. ultrasound (paired) Sample Size 11
    Control Mean 5.8
    (paired) Std. Dev. 1.4
    Sample Size 11
    Patellar Groove 12 weeks Mean 6.5
    Defects Std. Dev. 1.1
    20 mins. ultrasound (paired) Sample Size 11
    Control Mean 5.6
    (paired) Std. Dev. 1.1
    Sample Size 11
    Patellar Groove 24 weeks
    Defects ONGOING
    20 mins. ultrasound for
    first 12 weeks
    postoperative
    Control
    (paired)
    Patellar Groove 24 weeks
    Defects ONGOING
    20 mins. ultrasound for
    first 18 weeks
    postoperative
    Control
    (paired)
  • It will be understood that various modifications can be made to the various embodiments of the present invention herein disclosed without departing from its spirit and scope. For example, various modifications may be made in the structural configuration of the placement modules and the configuration of the components used to excite the ultrasonic transducer. Therefore, the above description should not be construed as limiting the invention but merely as presenting preferred embodiments of the invention. Those skilled in the art will envision other modifications within the scope and spirit of the present invention as defined by the claims presented below. [0086]

Claims (21)

What is claimed is:
1. A kit for ultrasonically stimulating cartilage growth, which comprises:
means for initiating a biological healing response at or adjacent a cartilaginous site;
an ultrasonic transducer assembly having at least one ultrasonic transducer;
a placement module configured to be worn by a patient, said placement module being configured to receive said transducer assembly such that when said placement module is worn said at least one ultrasonic transducer is positioned in proximity to the channels;
an ultrasonic signal generator positioned in said ultrasonic transducer assembly; and
a main operating unit.
2. The kit according to claim 1, wherein the means for initiating the biological healing response includes a drill assembly.
3. The kit according to claim 1, wherein the means for initiating the biological healing response includes a laser drill assembly.
4. The kit according to claim 1, wherein the means for initiating the biological healing response includes a scraping assembly.
5. The kit according to claim 1, wherein the means for initiating the biological healing response includes a chemical substance for irradiating the cartilaginous site.
6. The kit according to claim 1, wherein said ultrasonic signal generator includes signal generator circuitry and an internal power source connected to said signal generator circuitry, a display coupled to said signal generator circuitry to display treatment sequence data, and said signal generator circuitry including a processor and means for generating a pulsed RF signal.
7. The kit according to claim 1, further comprising safety interlock means to prevent inadvertent excitation of said at least one ultrasonic transducer.
8. The kit according to claim 1, wherein said placement module includes a locking mechanism which when worn by the patient prevents the patient from bending or extending the limbs.
9. The kit according to claim 1, wherein the placement module is constructed from a conductive material and said at least one ultrasonic transducer is provided on said placement module is electrically coupled to said main operation unit via said conductive material.
10. The kit according to claim 1, wherein the placement module is custom molded for a particular joint of the patient.
11. The kit according to claim 1, wherein at least one ultrasonic transducer includes means for receiving reflected diagnostic data.
12. A method for ultrasonically stimulating a healing response for the regeneration of cartilage comprising the following steps:
initiating a biological healing response at or adjacent a cartilaginous site;
providing a main operating unit having an internal power source coupled to an ultrasonic transducer assembly, said ultrasonic transducer assembly includes at least one ultrasonic transducer, an ultrasonic signal generator and signal generator circuitry therein;
providing a placement module configured to receive said transducer assembly such that when said placement module is secured to a patient's body said at least one ultrasonic transducer is positioned in proximity to the channels; and
exciting said at least one ultrasonic transducer to impinge ultrasonic waves towards the cartilaginous site.
13. The method according to claim 12, wherein the step of initiating the biological healing response includes drilling at least one channel within the bone joint walls at the cartilaginous site.
14. The method according to claim 12, wherein the step of initiating the biological healing response is selected from the group consisting of scraping the cartilaginous site, applying a chemical substance to the cartilaginous site, and inducing a fracture at the cartilaginous site.
15. The method according to claim 12, further comprising the step of transplanting non-weight bearing cartilage to the cartilaginous site prior to treatment.
16. The method according to claim 12, further comprising the step of transplanting autologous cultured chondrocytes to the cartilaginous site prior to treatment.
17. The method according to claim 12, further including the step of receiving reflected diagnostic data by said at least one ultrasonic transducer.
18. The method according to claim 12, wherein the step of exciting said at least one ultrasonic transducer to impinge ultrasonic waves towards the cartilaginous site causes the regenerated cartilage to integrate with the non-regenerated cartilage present at the cartilaginous site.
19. A method for ultrasonically stimulating a healing response for the regeneration of cartilage comprising the following steps:
initiating a biological healing response at or adjacent a cartilaginous site;
releasably securing at least one ultrasonic transducer coupled to a signal generator to a band;
affixing the band on a patient such that said at least one transducer is in proximity to an area where the regeneration of cartilage is desired; and
exciting said at least one ultrasonic transducer by actuating said signal generator to impinge ultrasonic waves towards the cartilaginous site.
20. The method according to claim 19, further including the step of:
connecting said at least one ultrasonic transducer to an operating unit, said operating unit having an internal power source.
21. The method according to claim 19, further including the step of receiving reflected diagnostic data by said at least one ultrasonic transducer.
US10/096,216 1997-02-06 2002-03-11 Method and apparatus for cartilage growth stimulation Abandoned US20020188229A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/096,216 US20020188229A1 (en) 1997-02-06 2002-03-11 Method and apparatus for cartilage growth stimulation
US10/131,784 US7789841B2 (en) 1997-02-06 2002-04-24 Method and apparatus for connective tissue treatment
US12/818,452 US8123707B2 (en) 1997-02-06 2010-06-18 Method and apparatus for connective tissue treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3736797P 1997-02-06 1997-02-06
US09/436,999 US6355006B1 (en) 1997-02-06 1999-11-09 Method and apparatus for cartilage growth stimulation
US10/096,216 US20020188229A1 (en) 1997-02-06 2002-03-11 Method and apparatus for cartilage growth stimulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/436,999 Continuation US6355006B1 (en) 1997-02-06 1999-11-09 Method and apparatus for cartilage growth stimulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/131,784 Continuation-In-Part US7789841B2 (en) 1997-02-06 2002-04-24 Method and apparatus for connective tissue treatment

Publications (1)

Publication Number Publication Date
US20020188229A1 true US20020188229A1 (en) 2002-12-12

Family

ID=21893969

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/436,999 Expired - Fee Related US6355006B1 (en) 1997-02-06 1999-11-09 Method and apparatus for cartilage growth stimulation
US10/096,216 Abandoned US20020188229A1 (en) 1997-02-06 2002-03-11 Method and apparatus for cartilage growth stimulation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/436,999 Expired - Fee Related US6355006B1 (en) 1997-02-06 1999-11-09 Method and apparatus for cartilage growth stimulation

Country Status (7)

Country Link
US (2) US6355006B1 (en)
EP (1) EP0977534B1 (en)
AT (1) ATE552030T1 (en)
AU (1) AU726127B2 (en)
CA (1) CA2289191C (en)
ES (1) ES2385305T3 (en)
WO (1) WO1998034578A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091181A1 (en) * 2008-01-15 2009-07-23 Industry Foundation Of Chonnam National University Portable physis-stimulating device for promoting growth with two-phase ultrasonic vibration generators and led elements
US20090287126A1 (en) * 2004-03-10 2009-11-19 Michael Skahan Electrically stimulating orthotic device and segmented liner
US20090306552A1 (en) * 2008-06-04 2009-12-10 Japan Health Sciences Foundation Ultrasonic medical apparatus
US20100082079A1 (en) * 2004-03-10 2010-04-01 Michael Skahan Electrodes for orthotic device
US20100262052A1 (en) * 2004-03-10 2010-10-14 Vision Quest Industries Incorporated Dba Vq Orthocare Bracing and electrostimulation for arthritis
US20110166484A1 (en) * 2008-09-18 2011-07-07 Koninklijke Philips Electronics N.V. Ultrasonic treatment apparatus with a protective cover
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
USRE43901E1 (en) 2000-11-28 2013-01-01 Insightec Ltd. Apparatus for controlling thermal dosing in a thermal treatment system
US8409099B2 (en) * 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
US8425424B2 (en) 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
US8608672B2 (en) 2005-11-23 2013-12-17 Insightec Ltd. Hierarchical switching in ultra-high density ultrasound array
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
US8661873B2 (en) 2009-10-14 2014-03-04 Insightec Ltd. Mapping ultrasound transducers
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
US9177543B2 (en) 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
US9327119B2 (en) 2011-07-27 2016-05-03 Vision Quest Industries Incorporated Electrostimulation system
WO2016073517A3 (en) * 2014-11-03 2016-08-18 Pham Martin H Systems and methods for mechanical bone growth stimulation
US9623266B2 (en) 2009-08-04 2017-04-18 Insightec Ltd. Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
US9981148B2 (en) 2010-10-22 2018-05-29 Insightec, Ltd. Adaptive active cooling during focused ultrasound treatment
US10743838B2 (en) * 2015-02-25 2020-08-18 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US10993699B2 (en) 2011-10-28 2021-05-04 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US11096661B2 (en) 2013-09-13 2021-08-24 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
US11520043B2 (en) 2020-11-13 2022-12-06 Decision Sciences Medical Company, LLC Systems and methods for synthetic aperture ultrasound imaging of an object
US11737726B2 (en) 2015-10-08 2023-08-29 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
US11957516B2 (en) 2023-02-27 2024-04-16 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159194A (en) * 1992-01-07 2000-12-12 Arthrocare Corporation System and method for electrosurgical tissue contraction
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US7108663B2 (en) * 1997-02-06 2006-09-19 Exogen, Inc. Method and apparatus for cartilage growth stimulation
US7789841B2 (en) 1997-02-06 2010-09-07 Exogen, Inc. Method and apparatus for connective tissue treatment
CA2289191C (en) * 1997-02-06 2004-10-05 Exogen, Inc. Method and apparatus for cartilage growth stimulation
US5904659A (en) * 1997-02-14 1999-05-18 Exogen, Inc. Ultrasonic treatment for wounds
ATE342102T1 (en) * 1998-05-06 2006-11-15 Exogen Inc ULTRASONIC BANDAGES
US6763836B2 (en) * 1998-06-02 2004-07-20 Arthrocare Corporation Methods for electrosurgical tendon vascularization
US7276063B2 (en) * 1998-08-11 2007-10-02 Arthrocare Corporation Instrument for electrosurgical tissue treatment
EP1128787B1 (en) * 1998-11-13 2006-01-11 Exogen, Inc. Prosthesis for inducing bony ingrowth using ultrasound therapy
EP1200155A1 (en) * 1999-06-14 2002-05-02 Exogen, Inc. Self-contained ultrasound applicator
JP4126228B2 (en) * 2000-10-25 2008-07-30 エクソジェン インコーポレイテッド Transmitter mounting assembly
JP4660024B2 (en) * 2001-06-26 2011-03-30 帝人株式会社 MMP activity lowering apparatus and method
WO2004037346A1 (en) * 2002-10-28 2004-05-06 John Perrier Ultrasonic medical device
US7909782B2 (en) * 2002-10-28 2011-03-22 John Perrier Ultrasonic medical device
US8012153B2 (en) 2003-07-16 2011-09-06 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
US8491456B2 (en) * 2004-08-26 2013-07-23 Song Park Method and apparatus providing a symbol sequence to a user, and wearable infrastructure providing the symbol sequence to the body
AU2005205820B2 (en) * 2004-09-04 2011-04-14 Smith & Nephew Plc Ultrasound device and method of use
US20070249938A1 (en) * 2006-04-20 2007-10-25 Donald J. Shields Systems, devices, and methods employing therapeutic ultrasound of living tissues
US8088084B2 (en) * 2007-03-06 2012-01-03 The Cleveland Clinic Foundation Method and apparatus for repair of intervertebral discs
US8747400B2 (en) 2008-08-13 2014-06-10 Arthrocare Corporation Systems and methods for screen electrode securement
US8355799B2 (en) 2008-12-12 2013-01-15 Arthrocare Corporation Systems and methods for limiting joint temperature
US8317786B2 (en) 2009-09-25 2012-11-27 AthroCare Corporation System, method and apparatus for electrosurgical instrument with movable suction sheath
US8323279B2 (en) 2009-09-25 2012-12-04 Arthocare Corporation System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath
US8696659B2 (en) 2010-04-30 2014-04-15 Arthrocare Corporation Electrosurgical system and method having enhanced temperature measurement
US9504471B2 (en) 2013-09-25 2016-11-29 Cybersonics, Inc. Ultrasonic generator systems and methods
US9526556B2 (en) 2014-02-28 2016-12-27 Arthrocare Corporation Systems and methods systems related to electrosurgical wands with screen electrodes
US9597142B2 (en) 2014-07-24 2017-03-21 Arthrocare Corporation Method and system related to electrosurgical procedures
US9649148B2 (en) 2014-07-24 2017-05-16 Arthrocare Corporation Electrosurgical system and method having enhanced arc prevention
KR20210018211A (en) 2018-04-03 2021-02-17 컨버전트 덴탈 인크 Laser system for surgical applications
CN116439231B (en) * 2023-06-09 2023-09-19 山东第一医科大学(山东省医学科学院) Ultrasonic stimulation method for improving preservation effect of in-vitro bone cartilage tissue

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355006B1 (en) * 1997-02-06 2002-03-12 Exogen, Inc. Method and apparatus for cartilage growth stimulation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809977A (en) * 1971-02-26 1974-05-07 Ultrasonic Systems Ultrasonic kits and motor systems
SU925322A1 (en) * 1980-01-04 1982-05-07 Омский Государственный Ордена Трудового Красного Знамени Медицинский Институт Им.М.И.Калинина Bone fracture treatment method
BR8107560A (en) 1981-11-19 1983-07-05 Luiz Romariz Duarte ULTRASONIC STIMULATION OF BONE FRACTURE CONSOLIDATION
US5003965A (en) * 1988-09-14 1991-04-02 Meditron Corporation Medical device for ultrasonic treatment of living tissue and/or cells
US5309898A (en) * 1992-07-30 1994-05-10 Kaufman Jonathan J Ultrasonic bone-therapy and assessment apparatus and method
US5524624A (en) * 1994-05-05 1996-06-11 Amei Technologies Inc. Apparatus and method for stimulating tissue growth with ultrasound
US5496256A (en) * 1994-06-09 1996-03-05 Sonex International Corporation Ultrasonic bone healing device for dental application
US5520612A (en) 1994-12-30 1996-05-28 Exogen, Inc. Acoustic system for bone-fracture therapy
US5556372A (en) * 1995-02-15 1996-09-17 Exogen, Inc. Apparatus for ultrasonic bone treatment
DE29517650U1 (en) * 1995-11-08 1996-01-18 Dornier Medizintechnik Foot and leg holder
US6074352A (en) * 1998-03-26 2000-06-13 Brigham And Women's Hospital Method for the treatment of joint diseases characterized by unwanted pannus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355006B1 (en) * 1997-02-06 2002-03-12 Exogen, Inc. Method and apparatus for cartilage growth stimulation

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43901E1 (en) 2000-11-28 2013-01-01 Insightec Ltd. Apparatus for controlling thermal dosing in a thermal treatment system
US9198792B2 (en) 2004-03-10 2015-12-01 Vision Quest Industries Incorporated Electrodes for orthotic device
US20100082079A1 (en) * 2004-03-10 2010-04-01 Michael Skahan Electrodes for orthotic device
US20090287126A1 (en) * 2004-03-10 2009-11-19 Michael Skahan Electrically stimulating orthotic device and segmented liner
US8454543B2 (en) 2004-03-10 2013-06-04 Vision Quest Industries Incorporated Electrodes for orthotic device
US20100262052A1 (en) * 2004-03-10 2010-10-14 Vision Quest Industries Incorporated Dba Vq Orthocare Bracing and electrostimulation for arthritis
US8070703B2 (en) 2004-03-10 2011-12-06 Vision Quest Industries Incorporated Electrically stimulating orthotic device and segmented liner
US8936560B2 (en) 2004-03-10 2015-01-20 Vision Quest Industries Incorporated Bracing and electrostimulation for arthritis
US8409099B2 (en) * 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
US8608672B2 (en) 2005-11-23 2013-12-17 Insightec Ltd. Hierarchical switching in ultra-high density ultrasound array
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
US8548561B2 (en) 2007-10-01 2013-10-01 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
WO2009091181A1 (en) * 2008-01-15 2009-07-23 Industry Foundation Of Chonnam National University Portable physis-stimulating device for promoting growth with two-phase ultrasonic vibration generators and led elements
US20110060254A1 (en) * 2008-01-15 2011-03-10 Taek Rim Yoon Portable physis-stimulating device for promoting growth with two-phase ultrasonic vibration generators and led elements
US8382690B2 (en) 2008-01-15 2013-02-26 Industry Foundation Of Chonnam National University Portable physis-stimulating device for promoting growth with two-phase ultrasonic vibration generators and led elements
US20090306552A1 (en) * 2008-06-04 2009-12-10 Japan Health Sciences Foundation Ultrasonic medical apparatus
US8515524B2 (en) 2008-06-04 2013-08-20 National Cerebral And Cardiovascular Center Extracorperal ultrasonic irradition of titanium oxide (TiO2) coated implant for angiogenesis stimulation
US20110166484A1 (en) * 2008-09-18 2011-07-07 Koninklijke Philips Electronics N.V. Ultrasonic treatment apparatus with a protective cover
US8500642B2 (en) * 2008-09-18 2013-08-06 Koninklijke Philips N.V. Ultrasonic treatment apparatus with a protective cover
US8425424B2 (en) 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
US9623266B2 (en) 2009-08-04 2017-04-18 Insightec Ltd. Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
US9177543B2 (en) 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
US8661873B2 (en) 2009-10-14 2014-03-04 Insightec Ltd. Mapping ultrasound transducers
US9412357B2 (en) 2009-10-14 2016-08-09 Insightec Ltd. Mapping ultrasound transducers
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
US9981148B2 (en) 2010-10-22 2018-05-29 Insightec, Ltd. Adaptive active cooling during focused ultrasound treatment
US9327119B2 (en) 2011-07-27 2016-05-03 Vision Quest Industries Incorporated Electrostimulation system
US10993699B2 (en) 2011-10-28 2021-05-04 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US11596388B2 (en) 2011-10-28 2023-03-07 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US11096661B2 (en) 2013-09-13 2021-08-24 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US11607192B2 (en) 2013-09-13 2023-03-21 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
WO2016073517A3 (en) * 2014-11-03 2016-08-18 Pham Martin H Systems and methods for mechanical bone growth stimulation
US11191521B2 (en) 2015-02-25 2021-12-07 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US10743838B2 (en) * 2015-02-25 2020-08-18 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US11839512B2 (en) 2015-02-25 2023-12-12 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US11737726B2 (en) 2015-10-08 2023-08-29 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
US11520043B2 (en) 2020-11-13 2022-12-06 Decision Sciences Medical Company, LLC Systems and methods for synthetic aperture ultrasound imaging of an object
US11957516B2 (en) 2023-02-27 2024-04-16 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics

Also Published As

Publication number Publication date
CA2289191A1 (en) 1998-08-13
AU6434698A (en) 1998-08-26
EP0977534B1 (en) 2012-04-04
EP0977534A4 (en) 2008-11-26
EP0977534A1 (en) 2000-02-09
US6355006B1 (en) 2002-03-12
WO1998034578A1 (en) 1998-08-13
CA2289191C (en) 2004-10-05
ATE552030T1 (en) 2012-04-15
ES2385305T3 (en) 2012-07-20
AU726127B2 (en) 2000-11-02

Similar Documents

Publication Publication Date Title
US6355006B1 (en) Method and apparatus for cartilage growth stimulation
US7108663B2 (en) Method and apparatus for cartilage growth stimulation
US8123707B2 (en) Method and apparatus for connective tissue treatment
US4905671A (en) Inducement of bone growth by acoustic shock waves
US20070065420A1 (en) Ultrasound Therapy Resulting in Bone Marrow Rejuvenation
BRIGHTON et al. Treatment of nonunion of the tibia with a capacitively coupled electrical field
Wilson Experience with the use of refrigerated homogenous bone
Tsuge et al. Arthroplasty of the elbow. Twenty years' experience of a new approach
Iro et al. Extracorporeal piezoelectric shock‐wave lithotripsy of salivary gland stones
Yang et al. Stimulation of fracture healing in a canine ulna full-defect model by low-intensity pulsed ultrasound
US20040243002A1 (en) Method of treating osteochondritis and apparatus for treating osteochondritis
Zharov et al. Design and application of low-frequency ultrasound and its combination with laser radiation in surgery and therapy
RU2422114C2 (en) Method and system for creation of controlled heterogeneities of structure and mechanical stresses in cartilage tissues (versions), and method of introduction of medicinal and other useful substances for controlled activation of regenerative processes (versions)
Onishi et al. Use of endoscopic surgery for forehead recontouring
Peterson et al. The “BioHumi” humeral head Elliptical osteochondral allograft transplantation
RU2207167C2 (en) Method for administering laser therapy
TREAT WHICH LESIONS SHOULD WE TREAT?
Stauffer Orthopedic surgery
SU1438725A1 (en) Method of treatment of false joints
JP2003501225A (en) Self-contained ultrasonic applicator
Açikgöz et al. The use of bone-chip grafts fixed with absorbable bone sealant (Absele)
Lombard et al. Advanced technologies for the treatment of cranio-orbital and orbital tumoral pathology
GUILLOT et al. STERILIZATION AND CLOSURE OF SUPPURATING FRACTURES.
Johnson Bone Transplantation
Stone et al. Use of the Holmium: YAG Laser in Ankle Arthroscopy

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION