Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20020193725 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 10/171,354
Fecha de publicación19 Dic 2002
Fecha de presentación13 Jun 2002
Fecha de prioridad24 Feb 2000
También publicado comoUS6471666
Número de publicación10171354, 171354, US 2002/0193725 A1, US 2002/193725 A1, US 20020193725 A1, US 20020193725A1, US 2002193725 A1, US 2002193725A1, US-A1-20020193725, US-A1-2002193725, US2002/0193725A1, US2002/193725A1, US20020193725 A1, US20020193725A1, US2002193725 A1, US2002193725A1
InventoresSteven Odrich
Cesionario originalOdrich Steven A.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Injectable glaucoma device
US 20020193725 A1
Resumen
A glaucoma device includes an aqueous tube shunt implant with a foldable reservoir plate for injecting below the conjunctiva of a patient's eye via a hollow cannula. The device has an internal ostium with a flared lip at one end of a shaft having a flattened wing extending to the sides. A foldable plate and reservoir are provided at the at the other end of the shaft and connected to an external ostium of the shaft. The flattened wing presents a flat surface to the overlying conjunctiva and helps position the device when used. The device is preferably made of silicone or acrylic so that the entire implant is foldable and may be rolled up for insertion via the cannula. Other improvements and a method for implanting the device are disclosed as well.
Imágenes(3)
Previous page
Next page
Reclamaciones(21)
What is claimed is:
1. A glaucoma device for implanting in the eye of a patient to relieve intraocular pressure, the device comprising:
a drainage shaft;
an internal ostium at one end of the drainage shaft, the internal ostium having a flared lip;
an external ostium adjacent the second end of the drainage shaft on an upper side of the shaft;
a foldable plate connected to the second end of the drainage shaft; and
a pair of foldable wings extending from each of the left and right sides of the drainage shaft.
2. A glaucoma device according to claim 1, wherein the foldable wings and foldable reservoir plate are made of a biocompatible material.
3. A glaucoma device according to claim 2, wherein the biocompatible material is one of PMMA, a silicone and an acrylic.
4. A glaucoma device according to claim 1, wherein the drainage shaft has a diameter of about 350 microns and the internal ostium has a diameter of about 500 microns.
5. A glaucoma device according to claim 1, further comprising a longitudinal pigmented stripe on the drainage shaft.
6. A glaucoma device according to claim 5, wherein the pigmented stripe is colored differently from tissues found in a human eye.
7. A glaucoma device according to claim 5, wherein the drainage shaft wall has a reduced thickness where the pigmented stripe is located relative to the remainder of the drainage shaft wall.
8. A glaucoma device according to claim 1, further comprising a ligature suture constrictably tied around the end of the drainage shaft adjacent the external ostium.
9. A glaucoma device according to claim 2, wherein the plate and wings are rolled to have a diameter which is about the same as a shaft diameter of the drainage shaft.
10. A glaucoma shunt implantation kit comprising:
a glaucoma shunt having a drainage shaft, an internal ostium at one end of the drainage shaft, the internal ostium having a flared lip, an external ostium adjacent the second end of the drainage shaft on an upper side of the shaft, a foldable plate connected to the second end of the drainage shaft, a pair of foldable wings extending from each of the left and right sides of the drainage shaft; and
a hollow cannula injector having means for pushing the glaucoma shunt through the injector after the glaucoma shunt has been inserted within the injector with the plate and wings folded to a diameter less than an inner diameter of the injector.
11. A kit according to claim 10, wherein the cannula injector can flex perpendicular to its longitudinal axis to facilitate implantation of the glaucoma shunt.
12. A kit according to claim 10, wherein the glaucoma shunt is made of a biocompatible material.
13. A kit according to claim 12, wherein the biocompantible material is selected from the group consisting of PMMA, acrylic and silicone.
14. A kit according to claim 10, wherein the inner diameter of the injector is between 500 and 700 microns.
15. A method of implanting a glaucoma shunt in a patient's eye, comprising:
providing a glaucoma shunt having a drainage shaft, an internal ostium at one end of the drainage shaft, the internal ostium having a flared lip, an external ostium adjacent the second end of the drainage shaft on an upper side of the shaft, a foldable plate connected to the second end of the drainage shaft, a pair of foldable wings extending from each of the left and right sides of the drainage shaft;
folding the glaucoma shunt to fit within a hollow cannula injector;
providing an implant opening in the patient's eye;
inserting the cannula injector with the glaucoma shunt through the implant opening;
injecting the glaucoma shunt below a conjunctiva of the patient's eye;
positioning the glaucoma shunt with the internal ostium inside the patient's eye and the wings and plate unfolded;
removing the cannula injector; and
closing the implant opening.
16. A method according to claim 15, wherein providing the implant opening comprises performing a laser sclerostomy on a patient's eye to create the implant opening.
17. A method according to claim 16, wherein the glaucoma shunt further comprises a longitudinal pigmented stripe on the drainage shaft, the method further comprising using a laser, after injecting and positioning the glaucoma shunt, to make fenestrations in the drainage shaft where the pigmented stripe is located.
18. A method according to claim 16, further comprising tightening a ligature suture around the drainage shaft to to constrict the initial flow of aqueous through the glaucoma shunt.
19. A method according to claim 15, wherein providing the implant opening comprises using the site of a previous trabeculectomy as the implant opening.
20. A method according to claim 19, wherein the glaucoma shunt further comprises a longitudinal pigmented stripe on the drainage shaft, the method further comprising using a laser, after injecting and positioning the glaucoma shunt, to make fenestrations in the drainage shaft where the pigmented stripe is located.
21. A method according to claim 16, further comprising tightening a ligature suture around the drainage shaft to to constrict the initial flow of aqueous through the glaucoma shunt.
Descripción
    FIELD AND BACKGROUND OF THE INVENTION
  • [0001]
    The present invention relates generally to the field of glaucoma treatment devices and in particular to a new and useful implantable glaucoma shunt for relieving internal pressure in a patient's eye. The new glaucoma shunt has a foldable plate and reservoir which permit the shunt to be injected into a patient's eye using a cannula.
  • [0002]
    Implantable glaucoma shunts are known which require more extensive surgery or require the shunt to be sutured into place on the patient's eye. Other shunts are simply cylinders which are injected nearly perpendicularly into the patient's eye and held by frictional fit by eye tissue.
  • [0003]
    U.S. Pat. No. 5,127,901 teaches an ophthalmic implant for draining aqueous humor from the anterior chamber of the eye having a transcleral conduit having an inlet opening at one end thereof for communicating with the anterior chamber of an eye, and an outlet opening at an opposite end of the conduit for draining fluid from the anterior chamber. An elongated arch shaped subconjunctival channel is connected to the conduit and has an inlet opening into the channel for communicating with the outlet opening of the conduit, the channel having an outlet openings for discharging fluid from the conduit, subconjunctivally over the sclera of the eye. A one-way flow resisting valve is provided in the conduit for allowing a flow of fluid to pass under resistance and in only one direction from the inlet to the outlet of the conduit, whereby pressure in the anterior chamber is relieved while avoiding excessive outflow of fluid from the anterior chamber.
  • [0004]
    The shunt of U.S. Pat. No. 5,127,901 is not foldable, however and must still be implanted into a patient's eye using surgical cutting techniques.
  • [0005]
    Other glaucoma shunts include U.S. Pat. No. 5,743,868, for example, which discloses a cylindrical drainage tube which can be injected through the surface of a patient's cornea. The tube is formed from a hollow rigid cylinder surrounding a porous core layer. The device is simply pushed into place using a plunger implant mechanism and positioned so that the exterior end is substantially flush with the surface of the cornea. The device lacks any wings or means for securing the device underneath the conjunctiva or sclera.
  • [0006]
    A plunger device for implanting cylindrical glaucoma drains is taught by U.S. Pat. No. 5,893,837. The device is placed at the end of the plunger for insertion through eye tissue. The glaucoma devices inserted using the plunger do not have wings or reservoir flaps.
  • [0007]
    U.S. Pat. No. 5,752,928 teaches a glaucoma device having a reservoir plate made of a flexible material, such as silicone rubber. The device is implanted through an incision in the eye followed by suturing the incision.
  • [0008]
    U.S. Pat. No. 5,178,604 is for a glaucoma implant having a flexible elastomeric plate. The plate is curved to conform to the curvature of a person's eye. The plate is inserted through an incision into a position beneath the portion of the eye known as Tenon's capsule and over the sclera. The plate is sutured to the sclera. The plate can be folded to permit a smaller incision in the eye. A preferred material for the plate is silicone elastomer. The Baerveldt '604 patent does not teach injecting the device into place and no provision is made for securing the device without sutures until after tissue has grown around the device.
  • [0009]
    A continuation-in-part patent, U.S. Pat. No. 5,397,300, discloses a similar device. The glaucoma device in U.S. Pat. No. 5,397,300 also has a flexible plate. The plate has at least one through hole to permit the growth of scar tissue to assist holding the plate in position following suturing during the implant procedure.
  • [0010]
    A laser is taught for use in making the incision for implanting a glaucoma device in U.S. Pat. No. 5,626,558. The device has a plate connected to the exterior end of a tube forming the body of the device. The plate may be sutured to the sclera to hold the device in place after insertion.
  • [0011]
    U.S. Pat. No. 5,370,607 teaches an implant device having a pair of wings extending from a reservoir around the body of a person's eye. The device is inserted through an incision and sutured into place. A tab positioned between the reservoir and the drainage tube in the center of the reservoir between the wings is used to suture the device in place. The wings are used to stabilize the placement of the device underneath the ocular muscles.
  • [0012]
    U.S. Pat. No. 4,554,918 shows a glaucoma device having a reservoir with a flat attachment plate having holes therethrough for receiving sutures or permitting tissue ingrowth. The plate is preferably made of silicone rubber, polymethyl methacrylate polymer or other similar polymers, among other compositions. A pair of flat rectangular fins extending from the sides of the tube are used to secure the device to the sclera beneath a small flap.
  • [0013]
    The prior glaucoma shunt devices are either simple tubes or ports injected directly through the eye, rather than implanted below the conjunctiva, or require tissue cutting, extensive tissue manipulation and suturing to successfully implant the device below the conjunctiva.
  • SUMMARY OF THE INVENTION
  • [0014]
    It is an object of the present invention to provide a glaucoma shunt which can be implanted in a patient's eye using minimally invasive surgery techniques.
  • [0015]
    It is a further object of the invention to provide an implantable glaucoma device which does not require sutures to hold the device in position once the device has been implanted in a patient's eye.
  • [0016]
    Accordingly, a new glaucoma device is provided comprising a foldable aqueous tube shunt implant for injecting below the conjunctiva of a patient's eye via a hollow cannula. The device is used to drain aqueous humor from the anterior chamber of a person's eye to help control glaucoma and intraocular pressure.
  • [0017]
    The device has an internal ostium with a flared lip at one end of a shaft having a flattened wing extending to the sides. A foldable plate and reservoir are provided at the other end of the shaft and connected to an external ostium of the shaft. The flattened wing presents a flat surface to the overlying conjunctiva and helps position the device when used.
  • [0018]
    The device is preferably made of silicone or acrylic so that the entire implant is foldable and may be rolled up for insertion via the cannula.
  • [0019]
    Since the entire implant device may be folded and injected into place within a person's eye, the implant can be implanted using a cannula following laser sclerostomy in a minimally invasive procedure and without incisional surgery. Sutures are not needed to hold the implant in place once it has been injected into position. The lip on the inner ostium holds the device in place.
  • [0020]
    The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0021]
    In the drawings:
  • [0022]
    [0022]FIG. 1 is a top plan view of the glaucoma device of the invention;
  • [0023]
    [0023]FIG. 2 is a partial sectional side elevational view of the glaucoma device implanted into a patient's eye;
  • [0024]
    [0024]FIG. 3 is a sectional side elevational view of the glaucoma device inside an implantation cannula; and
  • [0025]
    [0025]FIG. 4 is a top plan view of a further embodiment of the glaucoma device of the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0026]
    Referring now to the drawings, in which like reference numerals are used to refer to the same or similar elements, FIG. 1 shows the glaucoma device 10 of the invention having internal ostium 20 with a flared lip 25 at the end of a drainage shaft 30. The flared lip 25 tapers from the internal ostium 20 to the shaft 30, so that the diameter of the internal ostium 20 is greater than that of the shaft 30.
  • [0027]
    Foldable wings 40 are formed on the sides of the drainage shaft 30. An external ostium 50 is provided at the other end of the shaft 30 on the upper side of the shaft. A foldable plate 60 is attached to the end of shaft 30 opposite the internal ostium 20. The plate 60 has openings 70 in the top surface.
  • [0028]
    [0028]FIG. 2 shows the glaucoma device 10 implanted in a patient's eye 100. The device 10 is positioned underneath the conjunctiva 120 and rests on the patient's sclera 130. The internal ostium 20 is inserted through the inner edge of the cornea 110 adjacent the pupil 150 and sclera 130. The lens 140 of the patient's eye 100 is shown for reference.
  • [0029]
    As seen in the drawing, the glaucoma device 10 is positioned with the internal ostium 20 extending inside the eyeball, while the external ostium 50 and plate 60 are outside the eyeball. Higher pressure liquid inside the patient's eye 100 can naturally drain through the glaucoma shunt device 10 via the ostiums 20, 50 and shaft 30 to outside the eye. Thus, internal eye, or intraocular, pressure is relieved by the presence of the glaucoma shunt device 10 of the invention.
  • [0030]
    The foldable wings 40 help to position the device 10 by providing a flat surface for the overlying conjunctiva 120 to rest upon. The wings 40 should be oriented facing toward the conjunctiva 120 to maximize their benefit. The plate 60 acts as a foreign object inside the patient's eye which causes tissue to grow around the plate 60 over a period of time. The tissue growth assists in holding the device 10 in place over an extended period of time.
  • [0031]
    The entire glaucoma device 10 is made of a foldable biocompatible material. Suitable biocompatible materials include poly methylmethacrylate (PMMA), silicone or acrylic. The materials used to make the plate 60 may be rolled up to a cylinder roughly having the same size diameter as the drainage shaft 30. Similarly, the wings 40 may be folded up around the sides of the drainage shaft 30.
  • [0032]
    Preferably, the diameter of the drainage shaft 30 is about 350 microns and the device 10 is about 12 mm long. The diameter of the internal ostium 20 is preferably about 500 microns. The wings 40 are between 1 and 2 mm across when unfolded.
  • [0033]
    [0033]FIG. 3 displays the glaucoma device 10 rolled up inside a cannula injector 200 having a plunger 210 and insertion opening 220. The reservoir plate 60 is rolled up to fit within the cannula shaft 205. The plunger 210 can be activated using any known method for pushing objects with plungers, such as by a simple mechanical handle of a type commonly found on syringes. In a preferred embodiment of the cannula injector 200, the cannula shaft 205 can flex perpendicularly to the longitudinal axis, as shown by arrows F, but does not compress along the longitudinal axis. The flexion assists the implantation of the glaucoma device 10 in a patient's eye.
  • [0034]
    The cannula injector 200 can be used to implant the glaucoma device 10 after a laser has been used to make an opening in the patient's eye, such as by laser sclerostomy (ab externo or ab interno). Alternatively, the device 10 can be inserted through an opening in the eye created by a prior trabeculectomy.
  • [0035]
    A much smaller opening can be used to implant the glaucoma device 10 of the invention, compared to a non-folding implant, since the device 10 is inserted using cannula injector 200. The opening has only to be sufficiently large to permit the cannula opening 220 to pass through. The cannula injector 200 preferably has a diameter of between 500-700 microns and is made to permit flexibility perpendicular to the longitudinal axis, but not compression of the longitudinal axis. The device 10 is inserted and unfolded beneath the conjunctiva 120 of the patient's eye. The internal ostium 20 and flared lip 25 are positioned through the side of the eyeball. The flared lip 25 and plate 60 hold the device in place in conjunction with the wings 40, so that no suturing is needed.
  • [0036]
    Since the laser sclerostomy and implant injection can both be done in a doctor's office, the device 10 provides a new level of convenience and simplicity heretofore unknown in glaucoma treatment. When a prior trabeculectomy opening is used, the procedure is further simplified by the elimination of the need for laser. A patient no longer has to visit the hospital or endure a lengthy procedure to have a glaucoma shunt implanted. The recovery time is much shorter, since even when a laser is used, the laser creates a much smaller opening through the eye of the patient, and no suturing is needed to secure the device 10 in place in the patient's eye 100.
  • [0037]
    The device 10 permits the in-office conversion of previous failed non-implant filtration surgery to successful tube shunt mediated filtration. The glaucoma device 10 allows patients whose trabeculectomies have failed to undergo an in-office implantation using the old, failed trabeculectomy site to re-establish the flow of aqueous out of the eye. Thus, additional incisional surgery in a hospital operating room is not required when the device 10 of the invention is used.
  • [0038]
    In a further embodiment of the glaucoma device 10 shown in FIG. 4, a pigmented stripe 90 is provided longitudinally down one side of the drainage shaft 30. The stripe 90 is colored to be distinguishable from the tissue in which the device 10 is going to be implanted as described above. Preferably, the stripe 90 is colored differently from the eye tissues surrounding where the device 10 will be implanted.
  • [0039]
    Once the device 10 has been implanted, a laser having an appropriately tuned frequency is used to make one or more fenestrations or holes through the wall of drainage shaft 30 where the stripe 90 is located. The pigment of the stripe 90 and the frequency of the laser should be selected so that the laser will pass through the tissues surrounding the implant device 10 and cause the least amount of damage possible. The number of holes created in the striped portion 90 of the drainage shaft 30 wall will affect the flow rate of aqueous through the device 10 from the patient's eye.
  • [0040]
    In a preferred version of the device 10 having the pigmented stripe 90, the drainage shaft 30 wall thickness in the area of the stripe 90 is reduced from that of the remainder of the drainage shaft 30. The laser can more easily be used to perforate the wall of the drainage shaft 30 where the stripe 90 is provided.
  • [0041]
    In yet another embodiment of the device 10, a ligature suture 95 is provided around an end of the tube adjacent the external ostium 50. The ligature suture 95 is tied around the end in a manner which permits the ligature suture 95 to be tightened once the device 10 has been implanted. The ligature suture 95 is used to constrict the flow of aqueous through the device 10 when it is initially placed in the patient's eye. It is well known that the initial depressurization of the eye during this type of glaucoma treatment procedure results in much increased liquid flow than after a period of time has passed. By initially constricting the flow of aqueous through the device 10 using the ligature suture 95, the patient's eye is prevented from being excessively depressurized. A ligature suture 95 is used since it will dissolve after a short period of time, such as 10-20 days, and once the suture 95 is dissolved, normal fluid flow through the device 10 is allowed.
  • [0042]
    While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US729112514 Nov 20036 Nov 2007Transcend Medical, Inc.Ocular pressure regulation
US781559222 Abr 200819 Oct 2010Transcend Medical, Inc.Ocular pressure regulation
US785063822 Dic 200614 Dic 2010Transcend Medical, Inc.Ocular pressure regulation
US812858822 Dic 20066 Mar 2012Transcend Medical, Inc.Ocular pressure regulation
US816793926 Sep 20111 May 2012Transcend Medical, Inc.Ocular implant with stiffness qualities, methods of implantation and system
US817289926 Sep 20118 May 2012Transcend Medical, Inc.Ocular implant with stiffness qualities, methods of implantation and system
US82627265 Oct 201011 Sep 2012Transcend Medical, Inc.Ocular implant with stiffness qualities, methods of implantation and system
US837712227 Ene 201019 Feb 2013Transcend Medical, Inc.Ocular implant with stiffness qualities, methods of implantation and system
US844458823 Feb 201021 May 2013Transcend Medical, Inc.Internal shunt and method for treating glaucoma
US848600012 Nov 200416 Jul 2013Transcend Medical, Inc.Ocular pressure regulation
US852949220 Dic 201010 Sep 2013Trascend Medical, Inc.Drug delivery devices and methods
US857429416 Dic 20105 Nov 2013Transcend Medical, Inc.Ocular implant with stiffness qualities, methods of implantation and system
US861713925 Jun 200931 Dic 2013Transcend Medical, Inc.Ocular implant with shape change capabilities
US867287017 Jul 200818 Mar 2014Transcend Medical, Inc.Ocular implant with hydrogel expansion capabilities
US872165622 Dic 200613 May 2014Transcend Medical, Inc.Glaucoma treatment device
US872802117 Dic 201020 May 2014Transcend Medical, Inc.Ocular pressure regulation
US873437817 Sep 200927 May 2014Transcend Medical, Inc.Glaucoma treatment device
US875828917 Dic 201024 Jun 2014Transcend Medical, Inc.Ocular pressure regulation
US875829023 Dic 201124 Jun 2014Aquesys, Inc.Devices and methods for implanting a shunt in the suprachoroidal space
US877121817 Dic 20108 Jul 2014Transcend Medical, Inc.Ocular pressure regulation
US88016495 Oct 201012 Ago 2014Transcend Medical, Inc.Glaucoma treatment device
US880822014 Oct 201019 Ago 2014Transcend Medical, Inc.Ocular pressure regulation
US881481916 Dic 201026 Ago 2014Transcend Medical, Inc.Glaucoma treatment device
US885213723 Dic 20117 Oct 2014Aquesys, Inc.Methods for implanting a soft gel shunt in the suprachoroidal space
US894503817 May 20133 Feb 2015Transcend Medical, Inc.Internal shunt and method for treating glaucoma
US908466217 Ene 200721 Jul 2015Transcend Medical, Inc.Drug delivery treatment device
US908939223 Ago 201328 Jul 2015Transcend Medical, Inc.Drug delivery devices and methods
US915565610 Feb 201413 Oct 2015Transcend Medical, Inc.Delivery system for ocular implant
US924183218 Abr 201326 Ene 2016Transcend Medical, Inc.Delivery system for ocular implant
US93518736 Mar 201431 May 2016Transcend Medical, Inc.Ocular pressure regulation
US939897722 Ago 201426 Jul 2016Transcend Medical, Inc.Glaucoma treatment device
US941496222 Abr 201316 Ago 2016Das Agarwal GhanshamDevice for treatment of glaucoma and prevention of sub-scleral fibrosis and blockage
US94211304 Ago 201523 Ago 2016Novartis Ag.Glaucoma treatment device
US948059817 Sep 20131 Nov 2016Novartis AgExpanding ocular implant devices and methods
US949232026 Jun 201415 Nov 2016Glaukos CorporationShunt device and method for treating ocular disorders
US954984627 Jul 201524 Ene 2017Novartis AgDrug delivery devices and methods
US95729635 Mar 201321 Feb 2017Glaukos CorporationOcular disorder treatment methods and systems
US95857892 Feb 20127 Mar 2017Novartis AgOcular implant with hydrogel expansion capabilities
US966891720 Jul 20156 Jun 2017Novartis AgDrug delivery treatment device
US97638284 Nov 201319 Sep 2017Novartis AgOcular implant with stiffness qualities, methods of implantation and system
US976382912 Nov 201319 Sep 2017Novartis AgFlow promoting ocular implant
US97890007 May 201517 Oct 2017Novartis AgGlaucoma treatment device
US20050267398 *25 May 20051 Dic 2005Dimitri ProtopsaltisGlaucoma shunt
US20090043321 *29 Abr 200512 Feb 2009Iscience Interventional CorporationApparatus And Method For Surgical Enhancement Of Aqueous Humor Drainage
US20090177138 *7 Nov 20089 Jul 2009Brown Reay HShunt Device for Glaucoma Treatment
US20120281208 *24 Jun 20108 Nov 2012National University Corp. Okayama UniversityChamber for optical observation, method for optically observing sample, and method for manufacturing lower transparent plate
US20130317411 *23 May 201228 Nov 2013Ghansham Das AGARWALDevice for Treatment of Glaucoma
EP2526910A122 Dic 200628 Nov 2012Transcend Medical, Inc.Glaucoma treatment device
EP3005996A122 Dic 200613 Abr 2016Transcend Medical, Inc.Glaucoma treatment device
WO2007084582A217 Ene 200726 Jul 2007Forsight Labs, LlcDrug delivery treatment device
WO2013155252A1 *11 Abr 201317 Oct 2013Baylor College Of MedicineOphthalmic implant
Clasificaciones
Clasificación de EE.UU.604/8
Clasificación internacionalA61F9/007
Clasificación cooperativaA61F9/00781
Clasificación europeaA61F9/007V