US20030012152A1 - Carrier activation for data communications - Google Patents

Carrier activation for data communications Download PDF

Info

Publication number
US20030012152A1
US20030012152A1 US10/156,195 US15619502A US2003012152A1 US 20030012152 A1 US20030012152 A1 US 20030012152A1 US 15619502 A US15619502 A US 15619502A US 2003012152 A1 US2003012152 A1 US 2003012152A1
Authority
US
United States
Prior art keywords
frames
carrier
data
transmitted
blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/156,195
Inventor
Howard Feldman
Siu Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Mobile Satellite Organization
Original Assignee
International Mobile Satellite Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9804640A external-priority patent/GB2335827B/en
Priority claimed from GB9804639A external-priority patent/GB2335828B/en
Application filed by International Mobile Satellite Organization filed Critical International Mobile Satellite Organization
Priority to US10/156,195 priority Critical patent/US20030012152A1/en
Publication of US20030012152A1 publication Critical patent/US20030012152A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3461Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel
    • H04L27/3466Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel by providing an alternative to one signal point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to a data communication method and apparatus, and in particular such an apparatus for carrier activation in a satellite communication system.
  • Carrier activation in fax calls has been implemented in the Inmarsat-MTM, Inmarsat-BTM and Inmarsat-mMTM satellite services.
  • the deterministic nature of the ITU T.30 protocols, to which Group 3 fax terminals conform, is used to detect when one terminal is about to receive page data and will therefore not be transmitting; the carrier for transmission by that terminal is then switched off.
  • duplex data calls are generally not considered suitable for carrier activation, because data may be sent continuously in both directions.
  • a transmitter in a satellite communications system which receives input data in a format which may include an idle signal indicating that there is no user data present, compares the input data with a bit pattern corresponding to said idle signal in more than one relative bit alignment, and ceases transmission if a match is found.
  • An advantage of this aspect is that carrier activation may be implemented even when byte alignment is not preserved between transmitting and receiving applications.
  • a transmitter in a satellite communications system which assembles data and signalling information for transmission over the satellite, determines which of said signalling information need be transmitted in order to maintain the communications link over the satellite and ceases transmission if there is no data and only unnecessary signalling information to be transmitted.
  • a single channel per carrier satellite communications system in which signals are transmitted in a constant length frame structure and carrier activation is implemented such that frames transmitted after reactivation of the carrier are synchronised with the frame timing of frames transmitted before the deactivation of the carrier.
  • the interval between transmission of frames may be an integral number of frame periods, or an integral number of fractions of a frame period, such as quarters of a frame period.
  • An advantage of this aspect of the invention is that a receiver may receive and decode the frames transmitted after the reactivation of the carrier without having to reacquire the frame timing. Furthermore, carrier activation may be implemented in this way as an additional feature to an existing satellite SCPC system without modification of frame formatting protocols.
  • a method and apparatus of inhibiting transmission of a block of repeated data by detecting whether the last byte of a previous block is the same as each byte of the current block and inhibiting transmission of the current block if this is the case.
  • the carrier on which the blocks are transmitted is deactivated or reduced in power during the period in which the current block would otherwise be transmitted.
  • a method of transmitting a burst of information after a period of carrier deactivation, in which a constant power level preamble is transmitted before the information in which a constant power level preamble is transmitted before the information.
  • this assists in automatic level control of the transmitter.
  • FIG. 1 is a diagram of a communications link between data terminals through a PSTN and a satellite network
  • FIG. 2 is a functional block diagram of a mobile earth station and its associated interface to a data terminal
  • FIG. 3 is a functional block diagram of a fixed earth station and its associated interface to a PSTN;
  • FIG. 4 shows the channel format used over the satellite link in a first embodiment of the present invention
  • FIG. 5 is a flowchart of a carrier activation algorithm in the first embodiment
  • FIG. 6 shows the timing of SCPC frames in the first embodiment
  • FIG. 7 is a diagram of the frame format used over the satellite link in a second embodiment
  • FIG. 8 shows an HDLC transmission and reception process including zero insertion and removal
  • FIG. 9 is a flowchart of a carrier activation algorithm in the second embodiment
  • FIG. 10 shows the timing of SCPC frames in the second embodiment
  • FIGS. 11 a to 11 c shows the timing of SCPC frames and the contents of encoded blocks transmitted in those frames, in a third embodiment
  • FIG. 12 is a flowchart of an algorithm performed by the transmitting MIU on each data block in the third embodiment.
  • FIG. 13 is a flowchart of an algorithm performed by the receiving MIU in the third embodiment.
  • FIG. 1 The overall layout of a satellite communications system, when used for data communications, is shown in FIG. 1.
  • One example of such a system is the INMARSAT-BTM or INMARSAT-MTM satellite communications system, as described for example in Chapters 12 and 14 of “Satellite Communications: Principles and Applications” by Calcutt and Tetley, 1st edition, published by Edward Arnold. The following system is also described in W096/31040, the contents of which are incorporated herein by reference.
  • a mobile DTE 2 is connected via an RS232C interface to a modem interface unit (MIU) 4 .
  • the MIU 4 simulates a Hayes—compatible modem and is able to decode Hayes-type commands from the mobile DTE 2 , so that off-the-shelf communications software may be used in the mobile DTE 2 .
  • the MIU 4 does not perform modulation or demodulation in this case, since it is not connected to an analog line. Instead, the MIU 4 provides an interface to a mobile earth station (MES) 6 which allows communication via a satellite 8 to a fixed or land earth station (LES) 10 .
  • MES mobile earth station
  • LES fixed or land earth station
  • the LES 10 is connected to an LES MIU 12 which interfaces the satellite link to a network 14 , in this case a public switched telephone network (PSTN), and functions as a modem to convert analog signals on the PSTN 14 to digital signals on the satellite link, and vice versa.
  • a fixed DTE 18 is connected to the PSTN 14 through a modem 16 of standard type.
  • FIG. 2 shows the MES MIU 4 and the MES 6 in greater detail.
  • the MES MIU 4 comprises a DTE interface 20 , which provides an RS232 physical interface and emulates an AT.PCCA type modem, i.e. it complies with the minimum functional specification for data transmission systems published by the Portable Computer and Communications Association (PCCA), including the use of the AT command set and responses.
  • PCCA Portable Computer and Communications Association
  • Data received by the DTE interface 20 is sent to a buffer 22 , which is in turn connected to an MES interface 24 .
  • the MES interface 24 implements, in ARQ (automatic repeat request) mode, a variant of the HDLC (High Level Data Link Control) protocol, as defined in ISO recommendations ISO/IEC 3309, ISO/IEC 4335: 1993 and ISO/IEC 7809: 1993.
  • the particular version employed is ISO HDLC BAC 3.2, 4, 8, 10, 12 as defined in ISO 7809: 1993 (synchronous, two-way simultaneous, duplex, non-switched).
  • a controller 26 controls the operation of the interfaces 20 and 24 and the flow of data through the buffer 22 .
  • the MES includes an RF modulator/demodulator 27 , connected to an antenna 28 , for RF modulating the output of the MES interface 24 and transmitting the output through the antenna 28 to the satellite 8 , and for RF demodulating RF signals received from the satellite 8 through the antenna 28 and sending the demodulated signals to the MES interface 24 .
  • the MES 6 also includes access control and signalling equipment (ACSE) 30 , for setting up and clearing the satellite link, which exchanges data with the controller 26 of the mobile MIU 4 .
  • ACSE access control and signalling equipment
  • the MES ACSE 30 communicates with a network control station (NCS) which allocates communications channels, supervises communications traffic through the satellite 8 and communicates with further ACSE at the LES.
  • NCS network control station
  • the mobile MIU 4 , MES 6 and ACSE 30 may be integrated in a mobile unit and the antenna 28 may be integrated or connected externally with the mobile unit.
  • FIG. 3 shows the LES 10 and the LES MIU 12 in greater detail.
  • the LES MIU 12 includes a modem 31 for demodulating analog signals from the PSTN 14 and modulating digital signals for the PSTN 14 , and a modem interface 32 which supports modem protocols such as V.42 error correction, for communication with the modem 16 .
  • the modem interface 32 is connected through a buffer 34 to an LES interface 36 , which implements protocols compatible with the MES interface 24 , so that data can be exchanged between the LES MIU 12 and the MES MIU 4 .
  • a controller 38 supervises the operation of the modem interface 32 , buffer 34 and LES interface 36 .
  • the LES interface 36 is connected to an RF modulator/demodulator 40 which modulates signals for transmission to the satellite 8 through an antenna 42 , and demodulates signals received from the satellite 8 though the antenna 42 . Call set-up and clearing are controlled by an LES ACSE 44 within the LES 10 which exchanges signals with the LES MIU 12 , the MES ACSE 30 , and the network control station (NCS).
  • NCS network control station
  • the MIU connected to both the LES 10 and MES 6 detects whether there is no information or only redundant information to be transmitted, and if so, sends a signal to the LES 10 or MES 6 , which disables the transmitter thereof until the MIU indicates that information is ready for transmission.
  • the LES 10 In the case where the LES 10 is receiving the carrier which is deactivated, the LES 10 signals this to the LES MIU 12 , which maintains the connection with the PSTN modem 16 . For example, if the V.42 protocol is being used, the LES MIU 12 transmits flags.
  • the MIU formats the data to be transmitted into HDLG frames.
  • Multiple HDLC frames are formatted into one single channel per carrier (SCPC) frame, as shown in FIG. 4.
  • the transmission begins with a header portion P, followed by a sequence of fixed-length SCPC frames SM 1 , SM 2 , . . . SM n .
  • the end of the transmission is indicated by an end signal E.
  • Each SCPC frame SM is subdivided into four sections, each containing a header H 1 , H 2 , H 3 , H 4 , a data field D 1 , D 2 , D 3 , D 4 , and dummy bits (shaded).
  • the data fields D 1 and D 2 together form one or more HDLC frame, which is repeated in the data fields D 3 and D 4 , to increase the energy per bit.
  • the contents of each HDLC frame depend on whether data or control information is being sent.
  • the HDLC frame has an information (I) format formed from the concatenated data fields D 1 and D 2 .
  • the HDLC frame includes control bytes C containing acknowledgement and frame number information indicating the sequence number of the transmitted frame and the sequence number of the last frame received correctly.
  • Line control messages are sent as unnumbered information (UI) HDLC frames, more than one of which may be contained within the data fields D 1 and D 2 .
  • Flow control messages are sent in a supervisory (S) HDLC frame format.
  • the LES MIU 12 and the MES MIU 4 are programmed to generate either RR (Receive Ready) or RNR (Receive Not Ready) HDLC flow control frames when no user data is received and no other HDLC signalling is required.
  • the flow control frames indicate whether the MIU is ready to receive more data over the satellite link.
  • the MIU follows the algorithm shown in FIG. 5.
  • the algorithm is intended as a modification of an existing MIU functionality and is therefore applied after the framing of data into HDLC and SCPC frames, including the generation of RR and RNR frames.
  • the algorithm determines the carrier state which is signalled to the earth station to which the MIU is connected, in order to switch off the carrier.
  • initial values of variables are set as follows:
  • N E 3 (or another positive integer)
  • step S 10 it is detected whether a new SCPC frame has been composed.
  • step S 20 it is detected whether the SCPC frame is empty. If so, the carrier state is set as ‘OFF’ (S 30 ) and the algorithm restarts.
  • the MIU detects (S 40 ) whether the new SCPC frame is an ‘Establish LCM’ (line control message) which is transmitted during call set-up to establish the parameters of the call. If so (S 50 ), the MIU sets the carrier state as ‘OFF’ (S 55 ) if the counter N E (number of Establish LCM) is zero; if N E is not zero, it is decremented (S 60 ) and the carrier state is set ‘ON’ (S 65 ). In either case, the algorithm restarts. As a result, sufficient ‘Establish LCM’ frames are transmitted to ensure that one is received, before the carrier is deactivated.
  • N E number of Establish LCM
  • the MIU detects (S 90 ) whether the SCPC frame contains only RNR or RR HDLC frames. If not, the carrier state is set as ‘ON’ (S 95 ) and the algorithm proceeds to step S 100 .
  • the MIU detects whether the SCPC frame includes an RR frame. If so, the flow control flag FC is cleared (step S 110 ) and the algorithm restarts. If not, the MIU detects (S 120 ) whether the SCPC frame includes an RNR frame and sets the FC flag (S 130 ) if it does. In either case, the algorithm then restarts.
  • the MIU detects at step 90 that the SCPC frame does contain only RR or RNR frames, this means that no user data is present, but the MIU must still determine whether the RR or RNR frames need to be sent to ensure flow control.
  • the MIU determines whether the last frame inside the HDLC frame is an RR or an RNR frame. If the frame is RNR, the MIU detects (S 150 ) whether FC is set and if not, sets it (S 160 ) and proceeds to step 190 . If the frame is RR, the MIU detects whether FC is set, and if so, clears it (S 180 ) and proceeds to step 190 .
  • the carrier state is set as ‘ON’.
  • the variable N FC which is used as a counter of the number of redundant flow control indications remaining to be sent, is set (S 200 ) to X ⁇ 1, and the algorithm restarts.
  • the MIU then detects (S 210 ) whether N FC is zero, i.e. whether no more flow control indications need to be sent. If so, the carrier state is set to ‘OFF’ (S 220 ) and the algorithm restarts. If not, the carrier state is set to ‘ON’ (S 230 ), N FC is decremented (S 240 ) and the algorithm restarts.
  • the state of the carrier is redetermined for each SCPC frame and a decision is made as to whether to switch the carrier off for that SCPC frame.
  • the SCPC frame length is constant.
  • the next SCPC frame timing is aligned with that of the previous transmitted frame, as shown in FIG. 6.
  • the period for which the carrier is switched off is an integral number of SCPC frames.
  • the network 14 is an ISDN and the satellite 8 has a multibeam user antenna for communication with the MES 6 , in order to increase the gain of the user link and support a higher data rate.
  • the LES MIU 12 provides an ISDN interface to the network 14
  • the MES MIU 4 simulates an ISDN terminal adapter for the mobile DTE 2 . Since the MES MIU 4 does not simulate a modem in this embodiment, it does not decode the HayesTM AT command set and is preferably integrated with the MES 6 .
  • a 16 QAM modulation scheme is used for transmission, such that transmitted data has a variable power envelope. Further details of the modulation and coding schemes are described in co-pending application GB 9804639.4, the contents of which are incorporated by reference in so far as they relate to a 64 kbit/s satellite channel.
  • the format used for data transmission in this embodiment comprises SCPC frames SM 1 , SM 2 . . . SM n each having as a header a unique word UW to assist synchronisation in the receiver.
  • the end of a sequence of SCPC frames is indicated by an end of data signal E.
  • Each SCPC frame contains two subframes SF 1 and SF 2 .
  • Each subframe SF is encoded from an input frame IF 1 , IF 2 which contains a data field D of fixed length. (in this case 2560 bits) and a signalling field S.
  • Each data field D contains HDLC frames transmitted by an ISDN application on the mobile DTE 2 or the fixed DTE 18 .
  • an idle state is indicated by transmitting a continuous sequence of HDLC flags (binary 01111110 or hex 7E).
  • user data may coincidentally contain this bit sequence. Therefore, the applications follow a procedure as shown in FIG. 8.
  • the user data is assembled for transmission.
  • any sequence of 5 set bits together (11111) is detected and a zero (0) is inserted after them.
  • the following bits are all shifted one bit position to allow the zero to be inserted. This technique is known as ‘zero insertion’.
  • the user data cannot replicate the flag sequence.
  • HDLC flags are generated if there is no user data to send and the HDLC frames are transmitted.
  • the HDLC frames are received by the receiving application, flags are detected and the user data is separated from them.
  • a zero is removed after every set of 5 sequential set bits, in a reverse operation to that of P 20 , to restore the user data to its original form for input to the application at P 60 .
  • the user data is formatted 8-bit bytes and the data field D comprises an integral number of bytes (320 in this case).
  • zero insertion destroys the original byte alignment of the user data, so that HDLC flags may no longer appear as binary 01111110.
  • the HDLG flags may appear as any of the following bytes shown in Table 1: TABLE 1 HDLC Flag Representation with Bit Shift Number of Bits Shifted Binary Hex 0 01111110 7E 1 00111111 3F 2 10011111 9F 3 11001111 CF 4 11100111 E7 5 11110011 F3 6 11111001 F9 7 11111100 FC
  • the MIU performs the algorithm shown in FIG. 9 in order to detect an SCPC frame consisting entirely of flags, which therefore need not be transmitted.
  • the MIU assembles the data content of the input frames IF 1 and IF 2 of the current SCPC frame.
  • the MIU checks whether the value of the last data byte of the preceding SCPC frame had any of the hex values shown in Table 1 above. If so, the MIU then detects (T 30 ) whether all of the data bytes in the current SCPC frame are equal to the last data byte of the preceding SCPC frame. If so, this indicates that the entire current SCPC frame consists of HDLC flags and an ‘idle’ state is set (T 40 ). If either of the tests of T 30 and T 40 are not satisfied, the ‘idle’ state is not set (T 50 ).
  • the MIU controls the MES 6 or LES 10 to which it is connected to switch off the carrier for the duration of the current SCPC frame.
  • the MIU appends an end signal E to the end of the last transmitted SCPC frame, as shown in FIG. 10.
  • the new SCPC frames are transmitted with the same frame timing as the previously transmitted SCPC frames, so that the start of the new SCPC frame occurs an integral number of frame periods after the start of the previously transmitted SCPC frame.
  • the receiving MIU on detecting the end signal E without an indication from the ACSE that the call has been cleared, determines that the transmitting MIU has detected an idle state. Since ISDN is a synchronous protocol, the receiving MIU must continue to transmit signals to its associated DTE. The receiving MIU repeats the last byte of the SCPC frame received before the end signal. Since this has previously been detected by the transmitting MIU to be an HDLC flag or a bit-shifted version thereof, the repeated bytes will be detected as HDLC flags by the receiving user application.
  • the MIU continuously checks the input user data without waiting for sufficient user data to be received to form a complete SCPC frame, and an idle state is detected as soon as any 8 consecutive bits have the binary value ‘0111110’, for example by reading the input bits into an 8-bit shift register and continuously comparing the contents with hex 7E.
  • the transmission of the current SCPC frame cannot be interrupted immediately when a flag is detected without violating the frame format, so this option does not confer any advantage in implementing carrier activation and requires a greater processing overhead than the second embodiment.
  • FIG. 10 An optional feature of the frame format of FIG. 10 is shown in dotted outline. In this arrangement, a short preamble P is transmitted at the beginning of a burst of frames SM, as soon as the carrier has been reactivated.
  • the preamble P comprises a repeated sequence of the same 16 QAM symbol, having a power level equal to the average power level of the 16 QAM constellation.
  • the sequence comprises 16 symbols transmitted at a rate of 33.6 kSymbol/s, having a total duration of 476 ⁇ s.
  • the transmission of the preamble assists in automatic level control using a feedback loop in a high-power amplifier (HPA) in the MES RF modulator 27 and the LES RF modulator 40 , so that the transmit power can be ramped up to the required level in 500 ⁇ s or less.
  • HPA high-power amplifier
  • the transmission would begin with a unique word which does not have a constant power level, and would then not allow the HPA level to stabilise in the required time.
  • the next SCPC frame is transmitted as soon as sufficient data has been received for one subframe SF and that subframe has been encoded.
  • the previous frame timing is lost and the receiver must acquire the new timing by detecting the unique word UW.
  • the MIU divides the baseband data for transmission into blocks d 1 to dn each equivalent to 20 ms duration, shown in FIG. 11 a.
  • the blocks containing no user data are shaded.
  • Each frame SM is of duration 80 ms and so contains four blocks.
  • the MIU performs a carrier activation algorithm as shown in FIG. 12 on each block, prior to scrambling and encoding the data for transmission.
  • the coding is performed by a Turbo encoder including an interleaver into which one 20 ms block is loaded at a time.
  • the Turbo encoder is reset every 40 ms so that the Turbo encoding algorithm is performed on 40 ms blocks corresponding to two 20 ms blocks or one subframe SF. Because the interleaver has a constraint length of half the total interleaver size, the Turbo encoder incurs only a 20 ms delay as shown in FIG. 11 a . This technique is described in more detail in PCT/GB97/03551. Hence, the 20 ms blocks are convenient subdivisions of a whole frame on which to perform carrier activation detection.
  • the MIU starts processing the next 20 ms block d.
  • the MIU detects whether the block is the first block in a frame SM.
  • X is zero, indicating that the block, if transmitted, will be first block of a frame
  • the MIU detects at step U 50 whether the last byte of the previous block was equal to hex 7E, 3F, 9F, CF, E7, F3, F9, or FC. If not, this indicates that idle flags may not be present in the current block and the current block is output for transmission, at step U 60 .
  • X is set to 1, indicating that the next block will be the second block in the frame.
  • the MIU detects at step U 80 whether each byte of the current block is identical to the last byte of the previous block, as detected at step U 50 . If not, this indicates that the current block probably contains at least some data other than flags, so the data is output for transmission at step U 90 , and X is set to 1 at step U 100 . Otherwise, if the result of the test at step U 80 is positive, the current block is not output for transmission at step U 110 , the carrier is turned off, and X is set to zero at step U 120 . As shown in FIG.
  • the 20 ms slot d 5 which would have been output at the beginning of a new frame is not transmitted, and instead an end signal E is transmitted and the carrier is turned off for the rest of the 20 ms period.
  • the block d 6 contains user data so that the carrier is turned on and a new frame Sm n+1 is transmitted, beginning with block d 6 .
  • frame synchronisation is not maintained on carrier reactivation, synchronisation is maintained with blocks which represent a fraction of the total frame length, so that the receiver does not need to resychronise to any great extent.
  • FIG. 13 shows an algorithm used by an MIU receiving the transmissions represented by FIG. 11, every time a new frame SM is received.
  • a new frame is demodulated and decoded.
  • the MIU detects whether the frame is followed immediately by an EOD signal. If not, at step V 30 the contents of the received frame are output to the DTE 2 or 18 , but otherwise the MIU detects at step V 40 whether the last byte of the current frame is equal to hex 7E or its bit-shifted versions.
  • step V 50 this last byte is repeatedly output to the DTE 2 , 18 until the next frame is received or the call is cleared; this has the effect of transmitting a continuous series of flags to the DTE. If the result of step V 40 is negative, the MIU outputs hex 7E flags continuously to the DTE at step V 60 until the next frame is received or the call is cleared.
  • FIGS. 9, 12 and 13 are designed specifically to look for an HDLC hex 7E flag, but may be modified to look for any repeating byte entirely filling a frame or block, and to turn the carrier off if the repeating byte is also the last byte in the previous transmitted frame or block.
  • the receiving MIU would then output the repeated byte a number of times corresponding to the period for which the carrier is switched off. Thus, power can be saved by not transmitting repeated user data, as well as repeated flags.
  • the receiving MIU infers that the last byte of the previous frame should be repeated if the carrier is switched off, but must maintain timing synchronisation to calculate the correct number of repetitions. However, since the carrier is switched off for an integral number of blocks or frames, the receiving MIU need only be able to detect the carrier deactivation interval with a resolution of one block or frame, so that the local clock reference of the receiving MIU would be sufficient.
  • the idle flag is hex 7FFE, so the carrier activation algorithm would look for bit-shifted versions of that flag instead.
  • some protocols may use an all-zero or all-one byte (e.g. hex 00 or FF) as an idle flag. In that case, there would be no need to look for bit-shifted versions of the idle flag, but the carrier would be deactivated if a block or frame contained all zeros or all ones.
  • MIU uses a repeating sequence of different bytes to indicate an idle state; for example MPEG-4 uses a repeating sequence of a pseudo-random synchronisation sequence and a header. If transmitting data under those protocols, the MIU stores at least the quantity of data from a previous block or frame corresponding to one repeat period of an idle sequence and compares this to the contents of the current block or frame to see if the sequence is repeated throughout the block or frame.
  • the MIU's may be operable with more than one protocol, each having a different byte length or flag sequence, and the protocol type is then signalled from the transmitting FIU to the receiving FIU during call set-up so that the parameters of the carrier deactivation algorithms can be set appropriately at the the receiving MIU.
  • the carrier transmitted by either the LES 10 or the MES 6 can be deactivated; in the former case, satellite power efficiency is improved, while in the latter case, MES battery power is saved.
  • carrier activation may be an optional feature of the MES, so long as the LES 10 is able to perform the necessary reception protocols if carrier activation is implemented at the MES.
  • the present invention is not limited to present or proposed InmarsatTM satellite services, but may be applied to other satellite data services employing HDLC or other protocols.
  • a carrier is deactivated completely if there is only redundant data to be sent.
  • the power level of the carrier could be reduced and optionally a synchronising sequence such as a unique word transmitted at reduced power during the deactivation period; this reduces the power requirements of an MES if implemented on an MES MIU and of a satellite if implemented on an LES MIU.
  • references herein to ‘deactivating’ a carrier encompass the continued transmission on a carrier at reduced power while not transmitting any user data or level signalling information.

Abstract

In a radio frequency communications system, a data carrier activation method is implemented such that the carrier is switched off when no data is available for transmission. If repeated signalling information is required to be transmitted, only a predetermined number of repeats is transmitted before the carrier is switched off. The data input for transmission are compared with an idle sequence with different bit alignments to detect the presence of idle signalling, and the carrier is switched off if a match is found. When more user data is received, the carrier is switched on and frames (SM) are transmitted in synchronization with the timing of frames (SM) transmitted before the carrier deactivation. After carrier reactivation, a constant power preamble (P) may be transmitted to assist in level control in the transmitter (27; 40).

Description

  • This application is a divisional application of U.S. application Ser. No. 09/262,084 filed Mar. 4, 1999, which in turn claims the benefit of priority from foreign applications United Kingdom 9804640.2 filed Mar. 4, 1998 and United Kingdom 9804639.4 filed Mar. 4, 1998.[0001]
  • The present invention relates to a data communication method and apparatus, and in particular such an apparatus for carrier activation in a satellite communication system. [0002]
  • In satellite voice communication systems, it is known to switch the carrier off in one direction over the satellite link when the party transmitting in that direction is not talking. This technique is known as ‘voice activation’ or more generally ‘carrier activation’ and is described for example on page 55, section 3.2 of ‘Satellite Communications—Principles and Applications’ by Calcutt and Tetley, First Edition 1994, published by Edward Arnold. The average English speaker only talks during about 40% of the time during a telephone conversation, and therefore a satellite power saving of up to 4 dB can be achieved by this technique. [0003]
  • The document U.S. Pat. No. 5,481,561 mentions that carrier activation could be applied to voice, facsimile and data communications, but recognizes that this is difficult to realize in practice. [0004]
  • Carrier activation in fax calls has been implemented in the Inmarsat-M™, Inmarsat-B™ and Inmarsat-mM™ satellite services. The deterministic nature of the ITU T.30 protocols, to which Group 3 fax terminals conform, is used to detect when one terminal is about to receive page data and will therefore not be transmitting; the carrier for transmission by that terminal is then switched off. [0005]
  • However, duplex data calls are generally not considered suitable for carrier activation, because data may be sent continuously in both directions. [0006]
  • According to one aspect of the present invention, there is provided a transmitter in a satellite communications system, which receives input data in a format which may include an idle signal indicating that there is no user data present, compares the input data with a bit pattern corresponding to said idle signal in more than one relative bit alignment, and ceases transmission if a match is found. [0007]
  • An advantage of this aspect is that carrier activation may be implemented even when byte alignment is not preserved between transmitting and receiving applications. [0008]
  • According to another aspect of the present invention, there is provided a transmitter in a satellite communications system which assembles data and signalling information for transmission over the satellite, determines which of said signalling information need be transmitted in order to maintain the communications link over the satellite and ceases transmission if there is no data and only unnecessary signalling information to be transmitted. [0009]
  • According to another aspect of the present invention, there is provided a single channel per carrier satellite communications system in which signals are transmitted in a constant length frame structure and carrier activation is implemented such that frames transmitted after reactivation of the carrier are synchronised with the frame timing of frames transmitted before the deactivation of the carrier. The interval between transmission of frames may be an integral number of frame periods, or an integral number of fractions of a frame period, such as quarters of a frame period. [0010]
  • An advantage of this aspect of the invention is that a receiver may receive and decode the frames transmitted after the reactivation of the carrier without having to reacquire the frame timing. Furthermore, carrier activation may be implemented in this way as an additional feature to an existing satellite SCPC system without modification of frame formatting protocols. [0011]
  • According to another aspect of the present invention, there is provided a method and apparatus of inhibiting transmission of a block of repeated data by detecting whether the last byte of a previous block is the same as each byte of the current block and inhibiting transmission of the current block if this is the case. Preferably, the carrier on which the blocks are transmitted is deactivated or reduced in power during the period in which the current block would otherwise be transmitted. [0012]
  • According to another aspect of the present invention, there is provided a method of transmitting a burst of information after a period of carrier deactivation, in which a constant power level preamble is transmitted before the information. Advantageously, this assists in automatic level control of the transmitter.[0013]
  • Specific embodiments of the present invention will now be described with reference to the accompanying drawings, in which: [0014]
  • FIG. 1 is a diagram of a communications link between data terminals through a PSTN and a satellite network; [0015]
  • FIG. 2 is a functional block diagram of a mobile earth station and its associated interface to a data terminal; [0016]
  • FIG. 3 is a functional block diagram of a fixed earth station and its associated interface to a PSTN; [0017]
  • FIG. 4 shows the channel format used over the satellite link in a first embodiment of the present invention; [0018]
  • FIG. 5 is a flowchart of a carrier activation algorithm in the first embodiment; [0019]
  • FIG. 6 shows the timing of SCPC frames in the first embodiment; [0020]
  • FIG. 7 is a diagram of the frame format used over the satellite link in a second embodiment; [0021]
  • FIG. 8 shows an HDLC transmission and reception process including zero insertion and removal; [0022]
  • FIG. 9 is a flowchart of a carrier activation algorithm in the second embodiment; [0023]
  • FIG. 10 shows the timing of SCPC frames in the second embodiment; [0024]
  • FIGS. 11[0025] a to 11 c shows the timing of SCPC frames and the contents of encoded blocks transmitted in those frames, in a third embodiment;
  • FIG. 12 is a flowchart of an algorithm performed by the transmitting MIU on each data block in the third embodiment; and [0026]
  • FIG. 13 is a flowchart of an algorithm performed by the receiving MIU in the third embodiment.[0027]
  • The overall layout of a satellite communications system, when used for data communications, is shown in FIG. 1. One example of such a system is the INMARSAT-B™ or INMARSAT-M™ satellite communications system, as described for example in [0028] Chapters 12 and 14 of “Satellite Communications: Principles and Applications” by Calcutt and Tetley, 1st edition, published by Edward Arnold. The following system is also described in W096/31040, the contents of which are incorporated herein by reference.
  • A [0029] mobile DTE 2 is connected via an RS232C interface to a modem interface unit (MIU) 4. The MIU 4 simulates a Hayes—compatible modem and is able to decode Hayes-type commands from the mobile DTE 2, so that off-the-shelf communications software may be used in the mobile DTE 2. The MIU 4 does not perform modulation or demodulation in this case, since it is not connected to an analog line. Instead, the MIU 4 provides an interface to a mobile earth station (MES) 6 which allows communication via a satellite 8 to a fixed or land earth station (LES) 10. The LES 10 is connected to an LES MIU 12 which interfaces the satellite link to a network 14, in this case a public switched telephone network (PSTN), and functions as a modem to convert analog signals on the PSTN 14 to digital signals on the satellite link, and vice versa. A fixed DTE 18 is connected to the PSTN 14 through a modem 16 of standard type.
  • FIG. 2 shows the MES MIU [0030] 4 and the MES 6 in greater detail. The MES MIU 4 comprises a DTE interface 20, which provides an RS232 physical interface and emulates an AT.PCCA type modem, i.e. it complies with the minimum functional specification for data transmission systems published by the Portable Computer and Communications Association (PCCA), including the use of the AT command set and responses.
  • Data received by the [0031] DTE interface 20 is sent to a buffer 22, which is in turn connected to an MES interface 24. The MES interface 24 implements, in ARQ (automatic repeat request) mode, a variant of the HDLC (High Level Data Link Control) protocol, as defined in ISO recommendations ISO/IEC 3309, ISO/IEC 4335: 1993 and ISO/IEC 7809: 1993. The particular version employed is ISO HDLC BAC 3.2, 4, 8, 10, 12 as defined in ISO 7809: 1993 (synchronous, two-way simultaneous, duplex, non-switched). A controller 26 controls the operation of the interfaces 20 and 24 and the flow of data through the buffer 22.
  • The MES includes an RF modulator/[0032] demodulator 27, connected to an antenna 28, for RF modulating the output of the MES interface 24 and transmitting the output through the antenna 28 to the satellite 8, and for RF demodulating RF signals received from the satellite 8 through the antenna 28 and sending the demodulated signals to the MES interface 24. The MES 6 also includes access control and signalling equipment (ACSE) 30, for setting up and clearing the satellite link, which exchanges data with the controller 26 of the mobile MIU 4.
  • The MES ACSE [0033] 30 communicates with a network control station (NCS) which allocates communications channels, supervises communications traffic through the satellite 8 and communicates with further ACSE at the LES.
  • The [0034] mobile MIU 4, MES 6 and ACSE 30 may be integrated in a mobile unit and the antenna 28 may be integrated or connected externally with the mobile unit.
  • FIG. 3 shows the [0035] LES 10 and the LES MIU 12 in greater detail. The LES MIU 12 includes a modem 31 for demodulating analog signals from the PSTN 14 and modulating digital signals for the PSTN 14, and a modem interface 32 which supports modem protocols such as V.42 error correction, for communication with the modem 16.
  • The [0036] modem interface 32 is connected through a buffer 34 to an LES interface 36, which implements protocols compatible with the MES interface 24, so that data can be exchanged between the LES MIU 12 and the MES MIU 4. A controller 38 supervises the operation of the modem interface 32, buffer 34 and LES interface 36. The LES interface 36 is connected to an RF modulator/demodulator 40 which modulates signals for transmission to the satellite 8 through an antenna 42, and demodulates signals received from the satellite 8 though the antenna 42. Call set-up and clearing are controlled by an LES ACSE 44 within the LES 10 which exchanges signals with the LES MIU 12, the MES ACSE 30, and the network control station (NCS).
  • Although the system described above allows full duplex data communications, many user applications such as file transfer, database and email protocols communicate in half-duplex mode for reasons of design simplicity, even if files are to be sent in both directions. However, switching off the carrier during a call may cause the receiver to lose synchronisation with the transmitter. [0037]
  • Moreover, in existing satellite communications protocols, some redundant signalling takes place when there is no user data to be sent. The carrier could be switched off during this signalling, but it must be determined which signalling is redundant and which is necessary. [0038]
  • In the first embodiment, the MIU connected to both the [0039] LES 10 and MES 6 detects whether there is no information or only redundant information to be transmitted, and if so, sends a signal to the LES 10 or MES 6, which disables the transmitter thereof until the MIU indicates that information is ready for transmission. In the case where the LES 10 is receiving the carrier which is deactivated, the LES 10 signals this to the LES MIU 12, which maintains the connection with the PSTN modem 16. For example, if the V.42 protocol is being used, the LES MIU 12 transmits flags.
  • As described above, the MIU formats the data to be transmitted into HDLG frames. [0040]
  • Multiple HDLC frames are formatted into one single channel per carrier (SCPC) frame, as shown in FIG. 4. The transmission begins with a header portion P, followed by a sequence of fixed-length SCPC frames SM[0041] 1, SM2, . . . SMn. The end of the transmission is indicated by an end signal E.
  • Each SCPC frame SM is subdivided into four sections, each containing a header H[0042] 1, H2, H3, H4, a data field D1, D2, D3, D4, and dummy bits (shaded). The data fields D1 and D2 together form one or more HDLC frame, which is repeated in the data fields D3 and D4, to increase the energy per bit. The contents of each HDLC frame depend on whether data or control information is being sent.
  • If data is being sent, the HDLC frame has an information (I) format formed from the concatenated data fields D[0043] 1 and D2. The HDLC frame includes control bytes C containing acknowledgement and frame number information indicating the sequence number of the transmitted frame and the sequence number of the last frame received correctly.
  • Line control messages are sent as unnumbered information (UI) HDLC frames, more than one of which may be contained within the data fields D[0044] 1 and D2. Flow control messages are sent in a supervisory (S) HDLC frame format.
  • The [0045] LES MIU 12 and the MES MIU 4 are programmed to generate either RR (Receive Ready) or RNR (Receive Not Ready) HDLC flow control frames when no user data is received and no other HDLC signalling is required. The flow control frames indicate whether the MIU is ready to receive more data over the satellite link. In order to maintain this function, while implementing carrier activation, the MIU follows the algorithm shown in FIG. 5. The algorithm is intended as a modification of an existing MIU functionality and is therefore applied after the framing of data into HDLC and SCPC frames, including the generation of RR and RNR frames. The algorithm determines the carrier state which is signalled to the earth station to which the MIU is connected, in order to switch off the carrier.
  • At the first iteration of the algorithm, at the beginning of a call, initial values of variables are set as follows: [0046]
  • Flow control flag, FC=cleared [0047]
  • Number of redundant flow control frames to be sent, X=1 (or a higher integer) [0048]
  • Number of ‘Establish LCM’ to be sent, N[0049] E=3 (or another positive integer)
  • Variable for detecting change in N(R), N[0050] rp=0.
  • At step S[0051] 10, it is detected whether a new SCPC frame has been composed. At step S20, it is detected whether the SCPC frame is empty. If so, the carrier state is set as ‘OFF’ (S30) and the algorithm restarts.
  • If the SCPC frame is not empty, the MIU detects (S[0052] 40) whether the new SCPC frame is an ‘Establish LCM’ (line control message) which is transmitted during call set-up to establish the parameters of the call. If so (S50), the MIU sets the carrier state as ‘OFF’ (S55) if the counter NE (number of Establish LCM) is zero; if NE is not zero, it is decremented (S60) and the carrier state is set ‘ON’ (S65). In either case, the algorithm restarts. As a result, sufficient ‘Establish LCM’ frames are transmitted to ensure that one is received, before the carrier is deactivated.
  • If the SCPC frame is not an ‘Establish LCM’, the MIU next detects (S[0053] 70) whether Nrp=N(R), where N(R) is a variable defined in the HDLC protocol and represents the serial number of the next expected I (information) frame. If the current SCPC frames contains more than one HDLC frame each having an N(R) value, the most advanced N(R) value is taken. If Nrp#N(R), Nr, is set to N(R) (S80), the carrier state is set as ‘ON’ (S95) and the algorithm proceeds to step SI00.
  • If N[0054] rp=N(R), the MIU detects (S90) whether the SCPC frame contains only RNR or RR HDLC frames. If not, the carrier state is set as ‘ON’ (S95) and the algorithm proceeds to step S100. At step S100, the MIU detects whether the SCPC frame includes an RR frame. If so, the flow control flag FC is cleared (step S110) and the algorithm restarts. If not, the MIU detects (S120) whether the SCPC frame includes an RNR frame and sets the FC flag (S130) if it does. In either case, the algorithm then restarts.
  • If the MIU detects at [0055] step 90 that the SCPC frame does contain only RR or RNR frames, this means that no user data is present, but the MIU must still determine whether the RR or RNR frames need to be sent to ensure flow control. At step 140, the MIU determines whether the last frame inside the HDLC frame is an RR or an RNR frame. If the frame is RNR, the MIU detects (S150) whether FC is set and if not, sets it (S160) and proceeds to step 190. If the frame is RR, the MIU detects whether FC is set, and if so, clears it (S180) and proceeds to step 190.
  • At step [0056] 190, the carrier state is set as ‘ON’. The variable NFC, which is used as a counter of the number of redundant flow control indications remaining to be sent, is set (S200) to X−1, and the algorithm restarts.
  • If FC is detected as set at step S[0057] 150 or as clear at step 170, the MIU then detects (S210) whether NFC is zero, i.e. whether no more flow control indications need to be sent. If so, the carrier state is set to ‘OFF’ (S220) and the algorithm restarts. If not, the carrier state is set to ‘ON’ (S230), NFC is decremented (S240) and the algorithm restarts.
  • The state of the carrier is redetermined for each SCPC frame and a decision is made as to whether to switch the carrier off for that SCPC frame. The SCPC frame length is constant. Thus, when the carrier is switched off and then on, the next SCPC frame timing is aligned with that of the previous transmitted frame, as shown in FIG. 6. In other words, the period for which the carrier is switched off is an integral number of SCPC frames. [0058]
  • A second embodiment of the present invention will now be described, in which a [0059] 64 kbit/s channel is provided by the satellite link and is used by an ISDN application. In this embodiment, the network 14 is an ISDN and the satellite 8 has a multibeam user antenna for communication with the MES 6, in order to increase the gain of the user link and support a higher data rate. In this embodiment the LES MIU 12 provides an ISDN interface to the network 14, while the MES MIU 4 simulates an ISDN terminal adapter for the mobile DTE 2. Since the MES MIU 4 does not simulate a modem in this embodiment, it does not decode the Hayes™ AT command set and is preferably integrated with the MES 6. In the second embodiment, a 16 QAM modulation scheme is used for transmission, such that transmitted data has a variable power envelope. Further details of the modulation and coding schemes are described in co-pending application GB 9804639.4, the contents of which are incorporated by reference in so far as they relate to a 64 kbit/s satellite channel.
  • As shown in FIG. 7, the format used for data transmission in this embodiment comprises SCPC frames SM[0060] 1, SM2 . . . SMn each having as a header a unique word UW to assist synchronisation in the receiver. The end of a sequence of SCPC frames is indicated by an end of data signal E. Each SCPC frame contains two subframes SF1 and SF2. Each subframe SF is encoded from an input frame IF1, IF2 which contains a data field D of fixed length. (in this case 2560 bits) and a signalling field S. Each data field D contains HDLC frames transmitted by an ISDN application on the mobile DTE 2 or the fixed DTE 18.
  • In ISDN applications, an idle state is indicated by transmitting a continuous sequence of HDLC flags (binary 01111110 or hex 7E). However, user data may coincidentally contain this bit sequence. Therefore, the applications follow a procedure as shown in FIG. 8. At P[0061] 10, the user data is assembled for transmission. At P20, any sequence of 5 set bits together (11111) is detected and a zero (0) is inserted after them. The following bits are all shifted one bit position to allow the zero to be inserted. This technique is known as ‘zero insertion’. As a result, the user data cannot replicate the flag sequence. At P30, HDLC flags are generated if there is no user data to send and the HDLC frames are transmitted.
  • At P[0062] 40, the HDLC frames are received by the receiving application, flags are detected and the user data is separated from them. At P50, a zero is removed after every set of 5 sequential set bits, in a reverse operation to that of P20, to restore the user data to its original form for input to the application at P60.
  • The user data is formatted 8-bit bytes and the data field D comprises an integral number of bytes (320 in this case). However, zero insertion destroys the original byte alignment of the user data, so that HDLC flags may no longer appear as binary 01111110. Instead, the HDLG flags may appear as any of the following bytes shown in Table 1: [0063]
    TABLE 1
    HDLC Flag Representation with Bit Shift
    Number of
    Bits Shifted Binary Hex
    0 01111110 7E
    1 00111111 3F
    2 10011111 9F
    3 11001111 CF
    4 11100111 E7
    5 11110011 F3
    6 11111001 F9
    7 11111100 FC
  • In this embodiment, the MIU performs the algorithm shown in FIG. 9 in order to detect an SCPC frame consisting entirely of flags, which therefore need not be transmitted. At step T[0064] 10, the MIU assembles the data content of the input frames IF1 and IF2 of the current SCPC frame. At step T20, the MIU checks whether the value of the last data byte of the preceding SCPC frame had any of the hex values shown in Table 1 above. If so, the MIU then detects (T30) whether all of the data bytes in the current SCPC frame are equal to the last data byte of the preceding SCPC frame. If so, this indicates that the entire current SCPC frame consists of HDLC flags and an ‘idle’ state is set (T40). If either of the tests of T30 and T40 are not satisfied, the ‘idle’ state is not set (T50).
  • If the ‘idle’ state is set, the MIU controls the [0065] MES 6 or LES 10 to which it is connected to switch off the carrier for the duration of the current SCPC frame. When a transition occurs to the ‘idle’ state, the MIU appends an end signal E to the end of the last transmitted SCPC frame, as shown in FIG. 10. Subsequently, when a transition out of the ‘idle’ state occurs, the new SCPC frames are transmitted with the same frame timing as the previously transmitted SCPC frames, so that the start of the new SCPC frame occurs an integral number of frame periods after the start of the previously transmitted SCPC frame.
  • The receiving MIU, on detecting the end signal E without an indication from the ACSE that the call has been cleared, determines that the transmitting MIU has detected an idle state. Since ISDN is a synchronous protocol, the receiving MIU must continue to transmit signals to its associated DTE. The receiving MIU repeats the last byte of the SCPC frame received before the end signal. Since this has previously been detected by the transmitting MIU to be an HDLC flag or a bit-shifted version thereof, the repeated bytes will be detected as HDLC flags by the receiving user application. [0066]
  • In an alternative to the second embodiment, the MIU continuously checks the input user data without waiting for sufficient user data to be received to form a complete SCPC frame, and an idle state is detected as soon as any 8 consecutive bits have the binary value ‘0111110’, for example by reading the input bits into an 8-bit shift register and continuously comparing the contents with [0067] hex 7E. However, the transmission of the current SCPC frame cannot be interrupted immediately when a flag is detected without violating the frame format, so this option does not confer any advantage in implementing carrier activation and requires a greater processing overhead than the second embodiment.
  • An optional feature of the frame format of FIG. 10 is shown in dotted outline. In this arrangement, a short preamble P is transmitted at the beginning of a burst of frames SM, as soon as the carrier has been reactivated. [0068]
  • The preamble P comprises a repeated sequence of the same 16 QAM symbol, having a power level equal to the average power level of the 16 QAM constellation. The sequence comprises 16 symbols transmitted at a rate of 33.6 kSymbol/s, having a total duration of 476 μs. [0069]
  • The transmission of the preamble assists in automatic level control using a feedback loop in a high-power amplifier (HPA) in the [0070] MES RF modulator 27 and the LES RF modulator 40, so that the transmit power can be ramped up to the required level in 500 μs or less.
  • If the preamble P were not transmitted at the beginning of each burst, the transmission would begin with a unique word which does not have a constant power level, and would then not allow the HPA level to stabilise in the required time. [0071]
  • In another alternative to the second embodiment, when the carrier is switched off and new user data is input to the MIU, the next SCPC frame is transmitted as soon as sufficient data has been received for one subframe SF and that subframe has been encoded. Thus, the previous frame timing is lost and the receiver must acquire the new timing by detecting the unique word UW. [0072]
  • In a third embodiment illustrated with reference to FIGS. I[0073] 1 to 13, the MIU divides the baseband data for transmission into blocks d1 to dn each equivalent to 20 ms duration, shown in FIG. 11a. The blocks containing no user data are shaded. Each frame SM is of duration 80 ms and so contains four blocks. The MIU performs a carrier activation algorithm as shown in FIG. 12 on each block, prior to scrambling and encoding the data for transmission. As described in GB9804639.4, the coding is performed by a Turbo encoder including an interleaver into which one 20 ms block is loaded at a time. The Turbo encoder is reset every 40 ms so that the Turbo encoding algorithm is performed on 40 ms blocks corresponding to two 20 ms blocks or one subframe SF. Because the interleaver has a constraint length of half the total interleaver size, the Turbo encoder incurs only a 20 ms delay as shown in FIG. 11a. This technique is described in more detail in PCT/GB97/03551. Hence, the 20 ms blocks are convenient subdivisions of a whole frame on which to perform carrier activation detection.
  • At step U[0074] 10, the MIU starts processing the next 20 ms block d. At step U20 the MIU detects whether the block is the first block in a frame SM. A position pointer X counts the position of the current block within the frame, so that at step U20, the MIU detects whether X=0. If X is not zero, this indicates that a previous block in the current frame has already been sent for transmission. Because the MIU cannot interrupt a frame SM once transmission has begun, the current block is then output for scrambling and encoding at step U30 and the counter X is incremented modulo 4 at step U40, to indicate the frame position of the next block to be checked.
  • If X is zero, indicating that the block, if transmitted, will be first block of a frame, then the MIU detects at step U[0075] 50 whether the last byte of the previous block was equal to hex 7E, 3F, 9F, CF, E7, F3, F9, or FC. If not, this indicates that idle flags may not be present in the current block and the current block is output for transmission, at step U60. At step U70, X is set to 1, indicating that the next block will be the second block in the frame.
  • If, on the other hand, the result of the test at step U[0076] 50 is positive, the MIU detects at step U80 whether each byte of the current block is identical to the last byte of the previous block, as detected at step U50. If not, this indicates that the current block probably contains at least some data other than flags, so the data is output for transmission at step U90, and X is set to 1 at step U100. Otherwise, if the result of the test at step U80 is positive, the current block is not output for transmission at step U110, the carrier is turned off, and X is set to zero at step U120. As shown in FIG. 11b, the 20 ms slot d5 which would have been output at the beginning of a new frame is not transmitted, and instead an end signal E is transmitted and the carrier is turned off for the rest of the 20 ms period. In this case, the block d6 contains user data so that the carrier is turned on and a new frame Smn+1 is transmitted, beginning with block d6. In this way, although frame synchronisation is not maintained on carrier reactivation, synchronisation is maintained with blocks which represent a fraction of the total frame length, so that the receiver does not need to resychronise to any great extent.
  • FIG. 13 shows an algorithm used by an MIU receiving the transmissions represented by FIG. 11, every time a new frame SM is received. At step V[0077] 10, a new frame is demodulated and decoded. At step V20, the MIU detects whether the frame is followed immediately by an EOD signal. If not, at step V30 the contents of the received frame are output to the DTE 2 or 18, but otherwise the MIU detects at step V40 whether the last byte of the current frame is equal to hex 7E or its bit-shifted versions. If it is equal to one of these, at step V50 this last byte is repeatedly output to the DTE 2, 18 until the next frame is received or the call is cleared; this has the effect of transmitting a continuous series of flags to the DTE. If the result of step V40 is negative, the MIU outputs hex 7E flags continuously to the DTE at step V60 until the next frame is received or the call is cleared.
  • The algorithms of FIGS. 9, 12 and [0078] 13 are designed specifically to look for an HDLC hex 7E flag, but may be modified to look for any repeating byte entirely filling a frame or block, and to turn the carrier off if the repeating byte is also the last byte in the previous transmitted frame or block. The receiving MIU would then output the repeated byte a number of times corresponding to the period for which the carrier is switched off. Thus, power can be saved by not transmitting repeated user data, as well as repeated flags. The receiving MIU infers that the last byte of the previous frame should be repeated if the carrier is switched off, but must maintain timing synchronisation to calculate the correct number of repetitions. However, since the carrier is switched off for an integral number of blocks or frames, the receiving MIU need only be able to detect the carrier deactivation interval with a resolution of one block or frame, so that the local clock reference of the receiving MIU would be sufficient.
  • The above embodiments have been described with reference to an 8bit HDLC protocol, but are applicable to other communications protocols with different idle sequences. For example, in a 16-bit variant of HDLC, the idle flag is hex 7FFE, so the carrier activation algorithm would look for bit-shifted versions of that flag instead. Alternatively, some protocols may use an all-zero or all-one byte (e.g. hex 00 or FF) as an idle flag. In that case, there would be no need to look for bit-shifted versions of the idle flag, but the carrier would be deactivated if a block or frame contained all zeros or all ones. Other protocols use a repeating sequence of different bytes to indicate an idle state; for example MPEG-4 uses a repeating sequence of a pseudo-random synchronisation sequence and a header. If transmitting data under those protocols, the MIU stores at least the quantity of data from a previous block or frame corresponding to one repeat period of an idle sequence and compares this to the contents of the current block or frame to see if the sequence is repeated throughout the block or frame. Optionally, the MIU's may be operable with more than one protocol, each having a different byte length or flag sequence, and the protocol type is then signalled from the transmitting FIU to the receiving FIU during call set-up so that the parameters of the carrier deactivation algorithms can be set appropriately at the the receiving MIU. [0079]
  • In the embodiments described above, the carrier transmitted by either the [0080] LES 10 or the MES 6 can be deactivated; in the former case, satellite power efficiency is improved, while in the latter case, MES battery power is saved. However, it is not essential that carrier activation should be implemented in both directions. For example, carrier activation may be an optional feature of the MES, so long as the LES 10 is able to perform the necessary reception protocols if carrier activation is implemented at the MES. The present invention is not limited to present or proposed Inmarsat™ satellite services, but may be applied to other satellite data services employing HDLC or other protocols.
  • In the above embodiments, a carrier is deactivated completely if there is only redundant data to be sent. Alternatively, however, the power level of the carrier could be reduced and optionally a synchronising sequence such as a unique word transmitted at reduced power during the deactivation period; this reduces the power requirements of an MES if implemented on an MES MIU and of a satellite if implemented on an LES MIU. Hence, references herein to ‘deactivating’ a carrier encompass the continued transmission on a carrier at reduced power while not transmitting any user data or level signalling information. [0081]
  • In the specific description above, the apparatus is illustrated in terms of functional blocks, for ease of explanation. However, these blocks do not necessarily correspond to discrete physical units. [0082]

Claims (24)

1. Communications interface apparatus for connection between a source of data, including both user data and signalling information, and a transmitter, such that said user data is transmitted by said transmitter on a modulated radio frequency carrier,
the apparatus being arranged to receive said data, to detect the presence of repeated signalling information and the absence of user data in said data, and to deactivate said carrier if the number of repetitions of said signalling information is equal to or exceeds a predetermined value, such that excess repetitions are not transmitted.
2. Apparatus as claimed in claim 1, wherein said signalling information is an HDLC line control message.
3. Apparatus as claimed in claim 1, wherein said signalling information is a flow control message.
4. A method of carrier deactivation, comprising:
receiving data, including both user data and signalling information, and transmitting said user data on a modulated radio frequency carrier, the method including:
detecting the presence of repeated signalling information and the absence of user data in said data, and
deactivating said carrier if the number of repetitions of said signalling information is equal to or exceeds a predetermined value, such that said excess repetitions are not transmitted.
5. A method as claimed in claim 4, wherein said signalling information is an HDLC line control message.
6. A method as claimed in claim 4, wherein said signalling information is a flow control message.
7. Satellite communications interface apparatus for connection between a source of data and an earth station transmitter,
the apparatus being arranged to format said data as a series of constant length frames and to selectively output said frames to said transmitter such that said output frames are transmitted on a modulated radio frequency carrier in an SCPC format,
the apparatus being further arranged to detect whether at least an initial portion of each of said frames contains no information or only redundant information, to control the transmitter to deactivate the carrier in response to a positive said detection, to reactivate the carrier in response to a subsequent negative said detection, and to transmit frames subsequent to said reactivation with a timing synchronised with that of frames prior to said deactivation.
8. Apparatus as claimed in claim 7, wherein the apparatus is arranged to detect whether the whole of each of said frames contains no information or only redundant information.
9. A method of satellite carrier activation, comprising:
receiving data, formatting said data as a series of constant length frames, and selectively transmitting said frames on a modulated radio frequency carrier in an SCPC format,
the step of selective transmission comprising detecting whether at least an initial portion of each frame contains no information or only redundant information, and deactivating the carrier such that said portion of the frame is not transmitted,
wherein, after the carrier is deactivated, subsequent frames are transmitted with a timing synchronised with that of frames transmitted prior to said deactivation.
10. A method as claimed in claim 9, wherein the detecting step comprises detecting whether the whole of each of said frames contains no information or only redundant information.
11. A method of transmitting a data burst via satellite to a receiving terminal, comprising:
transmitting the data burst in a format comprising one or more frames having a variable power level modulation, preceded by a preamble having a constant power level.
12. A method as claimed in claim 11, wherein the power level of said preamble is approximately equal to the average power level of said one or more frames.
13. A data burst signal comprising a frequency carrier modulated by a preamble having a constant power level, followed by one or more data frames having a variable power level.
14. Radio frequency communications apparatus for connection between a source of data and a radio frequency transmitter, the apparatus being arranged to divide said data in sequence into blocks and to compare a series of bits of a predetermined length at the end of a first block with multiple sequential series of bits of said predetermined length comprising a second block, and, if all of said series are equal, inhibiting transmission of said second block.
15. Apparatus as claimed in claim 14, further comprising carrier control means for deactivating or reducing the power level of a carrier transmitted by the radio frequency transmitter for at least approximately a transmission time corresponding to the length of said second block.
16. Apparatus as claimed in claim 14, further arranged to format the blocks into frames for transmission, each of said blocks being of the same length and each of said frames comprising the same, integral number of said blocks.
17. Apparatus as claimed in claim 15, further arranged to format the blocks into frames for transmission, each of said blocks being of the same length and each of said frames comprising the same, integral number of said blocks.
18. A method of radio frequency communication, comprising:
dividing data for transmission into blocks in sequence;
comparing a series of bits of a predetermined length at the end of a first block with multiple sequential series of bits of said predetermined length comprising a second block, and
if all of said series are equal, inhibiting transmission of said second block.
19. A method as claimed in claim 17, further comprising deactivating or reducing the power level of a carrier transmitted by the radio frequency transmitter for at least approximately a transmission time corresponding to the length of said second block.
20. A method as claimed in claim 17, further comprising formatting the blocks into frames prior to transmission, each of the blocks being of the same length and each of said frames comprising the same, integral number of said blocks.
21. A method as claimed in claim 18, further comprising formatting the blocks into frames prior to transmission, each of the blocks being of the same length and each of said frames comprising the same, integral number of said blocks.
22. A satellite earth station including apparatus as claimed in claim 1.
23. A satellite earth station including apparatus as claimed in claim 7.
24. A satellite earth station including apparatus as claimed in claim 14.
US10/156,195 1998-03-04 2002-05-29 Carrier activation for data communications Abandoned US20030012152A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/156,195 US20030012152A1 (en) 1998-03-04 2002-05-29 Carrier activation for data communications

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB9804640A GB2335827B (en) 1998-03-04 1998-03-04 Data communication method and apparatus
GB9804639A GB2335828B (en) 1998-03-04 1998-03-04 Satellite Communications System
GB9804640.2 1998-03-04
GB9804639.4 1998-03-04
US26208499A 1999-03-04 1999-03-04
US10/156,195 US20030012152A1 (en) 1998-03-04 2002-05-29 Carrier activation for data communications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US26208499A Division 1998-03-04 1999-03-04

Publications (1)

Publication Number Publication Date
US20030012152A1 true US20030012152A1 (en) 2003-01-16

Family

ID=26313222

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/262,064 Expired - Lifetime US6665361B1 (en) 1998-03-04 1999-03-04 Communication method and apparatus
US10/156,195 Abandoned US20030012152A1 (en) 1998-03-04 2002-05-29 Carrier activation for data communications
US10/675,945 Expired - Lifetime US7266097B2 (en) 1998-03-04 2003-10-02 Communication method and apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/262,064 Expired - Lifetime US6665361B1 (en) 1998-03-04 1999-03-04 Communication method and apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/675,945 Expired - Lifetime US7266097B2 (en) 1998-03-04 2003-10-02 Communication method and apparatus

Country Status (5)

Country Link
US (3) US6665361B1 (en)
JP (2) JP3923208B2 (en)
CA (2) CA2263277A1 (en)
DE (2) DE19909576A1 (en)
FR (3) FR2775854B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030231656A1 (en) * 2002-06-13 2003-12-18 Alcatel Method, medium access controller, control module, terminating device and terminating module for allocating transmission capacity of a shared medium in a multipoint-to-point network
US20050124333A1 (en) * 2003-12-03 2005-06-09 Alcatel Carrier re-activation in case of signal to nois ratio improvement
US20070298737A1 (en) * 2006-06-23 2007-12-27 Ford Motor Company Method for providing satellite radio service in a vehicle
US7395309B1 (en) * 2000-07-25 2008-07-01 Cisco Technology, Inc. Modem activity detection
US20090104916A1 (en) * 2007-09-26 2009-04-23 Nokia Siemens Networks Oy Method, apparatus and system for signalling of buffer status information
CN101848496A (en) * 2009-03-23 2010-09-29 华硕电脑股份有限公司 Method and apparatus for carrier management
US8229705B1 (en) * 2008-08-05 2012-07-24 Marvell Israel (M.I.S.I.) Ltd. Performance monitoring in computer networks
US8600426B2 (en) 2010-09-01 2013-12-03 Qualcomm Incorporated Power control on a deactivated component carrier
US9680720B1 (en) 2010-03-23 2017-06-13 Marvell Israel (M.I.S.L.) Ltd. Operations, administration, and maintenance (OAM) engine
US11012147B1 (en) * 2020-01-16 2021-05-18 M2SL Corporation Multi-mode communication adapter system with smartphone protector mechanism and method of operation thereof

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2263277A1 (en) * 1998-03-04 1999-09-04 International Mobile Satellite Organization Carrier activation for data communications
US7463600B2 (en) * 2000-01-20 2008-12-09 Nortel Networks Limited Frame structure for variable rate wireless channels transmitting high speed data
US6992992B1 (en) * 2000-06-21 2006-01-31 Northrop Grumman Corporation Downlink beam hopping waveform
FR2817091B1 (en) * 2000-11-22 2003-03-21 St Microelectronics Sa EASY SYNCHRONIZATION TURBOCODE ENCODER
KR100525785B1 (en) * 2001-06-15 2005-11-03 엘지전자 주식회사 Filtering method for pixel of image
WO2003040749A1 (en) 2001-11-08 2003-05-15 Eads Astrium Gmbh Method for transmitting status messages to user terminals of a satellite data link system, especially in a satellite navigation system
DE10157619C2 (en) * 2001-11-08 2003-10-02 Astrium Gmbh Method for transmitting status messages to terminals of a satellite data transmission system, in particular in a satellite navigation system, and subscriber terminal, computer program and computer program product
US20040001448A1 (en) * 2002-06-28 2004-01-01 Preston Shawn E. System and method for transmitting highly correlated preambles in QAM constellations
AU2003256588A1 (en) * 2002-07-03 2004-01-23 Hughes Electronics Corporation Bit-interleaved coded modulation using low density parity check (ldpc) codes
US7577207B2 (en) * 2002-07-03 2009-08-18 Dtvg Licensing, Inc. Bit labeling for amplitude phase shift constellation used with low density parity check (LDPC) codes
US7020829B2 (en) 2002-07-03 2006-03-28 Hughes Electronics Corporation Method and system for decoding low density parity check (LDPC) codes
US6829308B2 (en) * 2002-07-03 2004-12-07 Hughes Electronics Corporation Satellite communication system utilizing low density parity check codes
US20040019845A1 (en) * 2002-07-26 2004-01-29 Hughes Electronics Method and system for generating low density parity check codes
US7864869B2 (en) * 2002-07-26 2011-01-04 Dtvg Licensing, Inc. Satellite communication system utilizing low density parity check codes
US20040120349A1 (en) * 2002-11-14 2004-06-24 Hughes Electronics Systems and methods for transmitting internet protocol data via satellite
US7369633B2 (en) 2003-06-13 2008-05-06 The Directv Group, Inc. Method and apparatus for providing carrier synchronization in digital broadcast and interactive systems
US8208499B2 (en) 2003-06-13 2012-06-26 Dtvg Licensing, Inc. Framing structure for digital broadcasting and interactive services
KR100763743B1 (en) * 2003-08-29 2007-10-04 더 디렉티브 그룹, 인크. Simplified scrambling scheme for satellite broadcasting systems
DE102005007466A1 (en) * 2005-02-18 2006-08-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Communication system, for transmitting information for forming global emergency call/warning system, has satellite link between communication device and central device
DE102005007548A1 (en) * 2005-02-18 2006-08-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Optimum reception system e.g. for satellite-based global warning system, uses coordination component for synchronization on satellites
US20090022079A1 (en) * 2005-05-04 2009-01-22 Fei Frank Zhou Method and apparatus for providing enhanced channel interleaving
US20080212512A1 (en) * 2005-05-12 2008-09-04 Ofer Harpek Method and Device for Indirect Communication Within a WiMAX Network
WO2006119583A1 (en) 2005-05-13 2006-11-16 Dspace Pty Ltd Method and system for communicating information in a digital signal
US8213489B2 (en) * 2005-06-23 2012-07-03 Agere Systems Inc. Serial protocol for agile sample rate switching
BRPI0520720A2 (en) * 2005-11-30 2009-06-13 Ericsson Telefon Ab L M method for speech transcoding from a first speech coding scheme to a second speech coding scheme, speech transcoder, and telecommunication system
US9077427B2 (en) * 2009-07-30 2015-07-07 Spatial Digital Systems, Inc. Coherent power combining via wavefront multiplexing on deep space spacecraft
US9026434B2 (en) * 2011-04-11 2015-05-05 Samsung Electronic Co., Ltd. Frame erasure concealment for a multi rate speech and audio codec
US9100085B2 (en) * 2011-09-21 2015-08-04 Spatial Digital Systems, Inc. High speed multi-mode fiber transmissions via orthogonal wavefronts
EP3143707B1 (en) 2014-05-14 2020-04-22 Satixfy Israel Ltd. A method of exchanging communications between a satellite and terminals associated therewith
US10368327B2 (en) 2014-05-14 2019-07-30 Satixfy Israel Ltd. Method and system for signal communications
EP3146639B1 (en) * 2014-05-20 2019-04-17 Satixfy Israel Ltd. A method for reducing interference in a satellite communications network
US10033509B2 (en) 2014-05-20 2018-07-24 Satixfy Israel Ltd. Method and system for satellite communication
GB2543877A (en) * 2015-10-27 2017-05-03 Cirrus Logic Int Semiconductor Ltd Transfer of data with check bits
WO2019099390A1 (en) * 2017-11-14 2019-05-23 Atc Technologies, Llc Localized content delivery platform
US11448772B2 (en) * 2018-10-09 2022-09-20 The European Union, Represented By The European Commission Transmission of satellite navigation message into multiple pages encoded for optimal retrieval at receiver in a fully interchangeable way

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309764A (en) * 1979-06-22 1982-01-05 Bell Telephone Laboratories, Incorporated Technique for increasing the rain margin of a satellite communication system
US4574376A (en) * 1982-12-30 1986-03-04 Telefonaktiebolaget L M Ericsson Activation of a transmission link by code sending
US4706243A (en) * 1984-06-01 1987-11-10 Nec Corporation Single-channel-per-carrier communication system including a voice-activated transmission power controller
US4813040A (en) * 1986-10-31 1989-03-14 Futato Steven P Method and apparatus for transmitting digital data and real-time digitalized voice information over a communications channel
US5481561A (en) * 1991-05-29 1996-01-02 Comsat Corporation Fully meshed CDMA network for personal communications terminals
US5507018A (en) * 1991-03-06 1996-04-09 Nokia Telecommunications Oy Method and a device for controlling a radio transmitter
US5519730A (en) * 1990-06-12 1996-05-21 Jasper; Steven C. Communication signal having a time domain pilot component
US5600316A (en) * 1985-01-10 1997-02-04 Moll; Edward W. Data compression by removing repetition and unnecessary information
US5682417A (en) * 1994-05-31 1997-10-28 Nec Corporation Power saving mobile data communication system using adaptors
US5742639A (en) * 1994-05-13 1998-04-21 Westinghouse Electric Corporation Mobile terminal apparatus and method for a satellite communication system

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825899A (en) * 1971-08-11 1974-07-23 Communications Satellite Corp Expansion/compression and elastic buffer combination
US4063038A (en) * 1975-11-24 1977-12-13 Digital Communications Corporation Error coding communication terminal interface
AU553961B2 (en) * 1981-11-16 1986-07-31 Nippon Electric Co. Ltd. Satellite earth station output control
HU190565B (en) * 1984-04-27 1986-09-29 Tavkoezlesi Kutato Intezet,Hu Method and arrangement for realizing channel units of satellite communication systems with individual speech channel
US4888769A (en) * 1985-12-06 1989-12-19 Tiw Systems, Inc. TDMA terminal controller
IT1191288B (en) 1986-03-17 1988-02-24 Selenia Spazio Spa TELECOMMUNICATION SYSTEM VIA SATELLITE FOR MULTI-SERVICE ONE-ROOM TERMINALS
US4901307A (en) * 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4945549A (en) * 1986-11-13 1990-07-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Trellis coded modulation for transmission over fading mobile satellite channel
EP0275118B1 (en) * 1987-01-16 1993-05-19 Nec Corporation Tdma system and method capable of individually controlling electric power of bursts
JP2595603B2 (en) * 1988-01-11 1997-04-02 日本電気株式会社 Request allocation multiple access control method
US5172375A (en) * 1989-06-22 1992-12-15 Nec Corporation Multiple access satellite communication system for mini-earth station networks
GB2238449B (en) * 1989-11-10 1993-11-24 Trade And Industry Secretary O Improvements in or relating to TDMA systems
JPH04262630A (en) * 1991-02-15 1992-09-18 Fujitsu Ltd Satellite communication system
US5258939A (en) * 1991-10-10 1993-11-02 Harris Corporation Fold and decimate filter architecture
GB9301704D0 (en) * 1993-01-28 1993-03-17 Signal Processors Ltd New digital modem design techniques
CA2161467C (en) * 1994-11-18 2001-01-30 Kumar Ramaswamy Apparatus for demodulating and decoding satellite, terrestrial and cable transmitted digital television data
US5642356A (en) 1995-02-24 1997-06-24 Hughes Electronics Optimal paging of one or two cellular mobile stations using a hard page slot
US5646947A (en) * 1995-03-27 1997-07-08 Westinghouse Electric Corporation Mobile telephone single channel per carrier superframe lock subsystem
GB2337664B (en) * 1995-03-31 2000-02-16 Inmarsat Ltd Communication method and apparatus
AU7007796A (en) * 1995-08-15 1997-03-12 Amsc Subsidiary Corporation Improved mobile earth terminal
US6272341B1 (en) * 1995-11-30 2001-08-07 Motient Services Inc. Network engineering/systems engineering system for mobile satellite communication system
JP2000501266A (en) 1995-12-07 2000-02-02 ヴィスター テレコミュニケーションズ インコーポレイテッド Method for improving wireless channel utilization efficiency in overlapping area of effective range
US5812545A (en) * 1996-01-04 1998-09-22 Orion Atlantic, L.P. Full mesh satellite-based multimedia networking system
US5901185A (en) 1996-04-15 1999-05-04 Ericsson Inc. Systems and methods for data-augmented, pilot-symbol-assisted radiotelephone communications
US7184426B2 (en) * 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US6075769A (en) * 1997-11-26 2000-06-13 Cisco Systems, Inc. Method and apparatus for network flow control
CA2263277A1 (en) * 1998-03-04 1999-09-04 International Mobile Satellite Organization Carrier activation for data communications

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309764A (en) * 1979-06-22 1982-01-05 Bell Telephone Laboratories, Incorporated Technique for increasing the rain margin of a satellite communication system
US4574376A (en) * 1982-12-30 1986-03-04 Telefonaktiebolaget L M Ericsson Activation of a transmission link by code sending
US4706243A (en) * 1984-06-01 1987-11-10 Nec Corporation Single-channel-per-carrier communication system including a voice-activated transmission power controller
US5600316A (en) * 1985-01-10 1997-02-04 Moll; Edward W. Data compression by removing repetition and unnecessary information
US4813040A (en) * 1986-10-31 1989-03-14 Futato Steven P Method and apparatus for transmitting digital data and real-time digitalized voice information over a communications channel
US5519730A (en) * 1990-06-12 1996-05-21 Jasper; Steven C. Communication signal having a time domain pilot component
US5507018A (en) * 1991-03-06 1996-04-09 Nokia Telecommunications Oy Method and a device for controlling a radio transmitter
US5481561A (en) * 1991-05-29 1996-01-02 Comsat Corporation Fully meshed CDMA network for personal communications terminals
US5742639A (en) * 1994-05-13 1998-04-21 Westinghouse Electric Corporation Mobile terminal apparatus and method for a satellite communication system
US5682417A (en) * 1994-05-31 1997-10-28 Nec Corporation Power saving mobile data communication system using adaptors

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395309B1 (en) * 2000-07-25 2008-07-01 Cisco Technology, Inc. Modem activity detection
US20030231656A1 (en) * 2002-06-13 2003-12-18 Alcatel Method, medium access controller, control module, terminating device and terminating module for allocating transmission capacity of a shared medium in a multipoint-to-point network
US20050124333A1 (en) * 2003-12-03 2005-06-09 Alcatel Carrier re-activation in case of signal to nois ratio improvement
US7933318B2 (en) * 2003-12-03 2011-04-26 Alcatel Carrier re-activation in case of signal to noise ratio improvement
US20100022182A1 (en) * 2006-06-23 2010-01-28 Ford Motor Company Sattellite radio system and method of activating same
US7613435B2 (en) * 2006-06-23 2009-11-03 Ford Motor Company Method for providing satellite radio service in a vehicle
US20070298737A1 (en) * 2006-06-23 2007-12-27 Ford Motor Company Method for providing satellite radio service in a vehicle
US8019298B2 (en) 2006-06-23 2011-09-13 Ford Motor Company Satellite radio system and method of activating same
US20090104916A1 (en) * 2007-09-26 2009-04-23 Nokia Siemens Networks Oy Method, apparatus and system for signalling of buffer status information
US8229705B1 (en) * 2008-08-05 2012-07-24 Marvell Israel (M.I.S.I.) Ltd. Performance monitoring in computer networks
CN101848496A (en) * 2009-03-23 2010-09-29 华硕电脑股份有限公司 Method and apparatus for carrier management
US9680720B1 (en) 2010-03-23 2017-06-13 Marvell Israel (M.I.S.L.) Ltd. Operations, administration, and maintenance (OAM) engine
US8600426B2 (en) 2010-09-01 2013-12-03 Qualcomm Incorporated Power control on a deactivated component carrier
US11012147B1 (en) * 2020-01-16 2021-05-18 M2SL Corporation Multi-mode communication adapter system with smartphone protector mechanism and method of operation thereof

Also Published As

Publication number Publication date
FR2775854A1 (en) 1999-09-10
JP2000036782A (en) 2000-02-02
US7266097B2 (en) 2007-09-04
FR2823924A1 (en) 2002-10-25
DE19909575A1 (en) 1999-09-09
CA2263280A1 (en) 1999-09-04
CA2263277A1 (en) 1999-09-04
CA2263280C (en) 2008-10-07
US6665361B1 (en) 2003-12-16
FR2778517B1 (en) 2004-11-19
FR2778517A1 (en) 1999-11-12
DE19909576A1 (en) 1999-09-16
JPH11355196A (en) 1999-12-24
JP3923208B2 (en) 2007-05-30
FR2775854B1 (en) 2004-10-29
US20040114547A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US20030012152A1 (en) Carrier activation for data communications
US5909434A (en) Bright and burst mode signaling data transmission in an adjustable rate wireless communication system
US5956332A (en) High-speed data transmission in mobile communication networks
EP1848229A2 (en) Reduction of power consumption in a mobile station
AU1055895A (en) Method and apparatus of providing time sensitive message over a variable delay channel
WO1994006240A1 (en) Facsimile interface unit (fiu) enhanced capabilities negotiation
EP0938797B1 (en) Method and equipment for transmitting terminal interface user data and status information
US5243438A (en) Facsimile compression for transmission
KR100246991B1 (en) Provision of proprietary and enhanced capabilities in group 3 facsimile for mobile satellite communications
CA2237626A1 (en) Asynchronous data transmission method and arrangement
EP0818100B1 (en) Data communication method and apparatus
US6456613B1 (en) Direct communication method between slave units and PHS terminal for direct communication between PHS slave units
GB2336508A (en) Data carrier deactivation in absence of user data
GB2335827A (en) Data carrier deactivation in absence of user data
EP0426336B1 (en) Compression of a PCM facsimile signal for transmission in a packet switching network
US6108348A (en) 2.4-to-3 kbps rate adaptation apparatus for use in narrowband data and facsimile communications systems
GB2335828A (en) Satellite communication
EP0478205A2 (en) Apparatus for digital transmission of facsimile calls using echo protection tone detection and regeneration

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION