US20030040238A1 - Multi-layer coating system for jacquard woven airbags - Google Patents

Multi-layer coating system for jacquard woven airbags Download PDF

Info

Publication number
US20030040238A1
US20030040238A1 US10/268,536 US26853602A US2003040238A1 US 20030040238 A1 US20030040238 A1 US 20030040238A1 US 26853602 A US26853602 A US 26853602A US 2003040238 A1 US2003040238 A1 US 2003040238A1
Authority
US
United States
Prior art keywords
airbag
layer
coating
inflation
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/268,536
Inventor
Shulong Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Milliken and Co
Original Assignee
Shulong Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/335,257 external-priority patent/US6177365B1/en
Priority claimed from US09/350,620 external-priority patent/US6177366B1/en
Application filed by Shulong Li filed Critical Shulong Li
Priority to US10/268,536 priority Critical patent/US20030040238A1/en
Publication of US20030040238A1 publication Critical patent/US20030040238A1/en
Assigned to MILLIKEN & COMPANY reassignment MILLIKEN & COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, SHULONG
Priority to US11/223,617 priority patent/US7501359B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00605Production of reflex reflectors
    • B29D11/00615Production of reflex reflectors moulded by partially embedding reflective elements, e.g. glass beads, into the surface of a support, e.g. to make prefabricated road markings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/18Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
    • D06N3/183Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials the layers are one next to the other
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/18Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
    • D06N3/186Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials one of the layers is on one surface of the fibrous web and the other layer is on the other surface of the fibrous web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0018Roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • B60R2021/23514Fabric coated fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/231Inflatable members characterised by their shape, construction or spatial configuration
    • B60R21/232Curtain-type airbags deploying mainly in a vertical direction from their top edge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2139Coating or impregnation specified as porous or permeable to a specific substance [e.g., water vapor, air, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • Y10T442/2893Coated or impregnated polyamide fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]

Definitions

  • This invention relates to novel airbag coating compositions comprising at least two separate and distinct layers.
  • the first layer (base coat), being in contact with the airbag surface, comprises a composition of at least one coating material which may comprise up to 30% by parts of the total amount of material in the first layer of a silicone resin which provides excellent adhesion, excellent tensile strength, and overall lower cost than standard silicone airbag coating materials.
  • the second layer being a coating for the first layer, provides excellent reinforcement and blocking characteristics to permit effective potential long-term storage and optimum use upon the occurrence of a collision.
  • Such a second layer is preferably a silicone material but may also be selected from the group consisting of homopolymer and coplymer resins based on ethylene, propylene, acrylates, methacrylates, vinyl esters, acrylic acid, methacrylic acid, polyurethanes, polyamides, and inorganic materials such as talc, silica, silicate, calcium carbonate, alumina, and the like.
  • This two-layer system permits excellent strength and blocking properties to prevent undesired adhesion between portions of the target airbag when stored as well as to prevent seam combing at relatively low cost due to the inexpensive basecoat materials and the relatively low amount required for the topcoat.
  • An airbag fabric coated with this inventive multi-layer system is also contemplated within this invention.
  • Airbags for motor vehicles are known and have been used for a substantial period of time. These devices are installed on the driver and passenger side of automobiles and, in the event of a collision, are rapidly inflated with gas, to act as an energy absorbing barrier between the driver or passenger and the steering wheel or dashboard of the automobile.
  • curtain-type airbags comprising a plurality of pillows formed from stitched areas of the bag article (to protect passengers during roll-over and side impact collision events), there is now a greater emphasis on providing such curtain-type airbags which will retain their inflation pressure for extended period after deployment, and will perform if and when necessary even upon storage of a long duration (years for example).
  • Such pillowed fabrics thus comprise seams which control the shape and size of the inflated cushion. Upon inflation of such specific airbag cushions, pressure may be applied in great force, particularly on the seams, during an inflation in response to a collision event.
  • the inventive two-layer coating system does provide the necessary strength, durability, permeability, and reliability to the airbag industry, particularly for large-scale production of heavily stitched/seamed curtain-type airbags.
  • silicones and chloroprene have been the predominant coatings utilized in the airbag industry traditionally, as noted above, it has been determined that these coatings exhibit certain shortcomings which actually make them undesirable as the sole coatings present on target fabrics.
  • silicones are very expensive and act as natural fiber lubricants.
  • Silicone elastomers are very flexible which permits facilitation of folding of coated airbags for long-term storage in airbag modules.
  • silicones possess poor tensile strength and poor tear resistance. As such, these compounds do not provide the best overall strength to prevent shifting of seam yarns, and certainly are not cost-effective selections for this purpose.
  • Chloroprene (Neoprene) degrades very easily and thus does not exhibit sufficient aging stability. Furthermore, thicker coatings of such rubber compounds are required to reduce the air permeability to an acceptable level which can result in higher costs, although neoprene is not as expensive as the aforementioned silicones. Also, neither of these two traditional coating materials permits a single application over the entire airbag fabric in order to provide both air permeability characteristics over the non-stitched (and thus plain fabric) portion with effective adhesion for the individual fibers within the seamed areas. Lastly, most polyurethanes, etc., which provide the desired high tensile strength characteristics in the base coat are also highly tacky at elevated temperatures and thus do not provide beneficial anti-blocking properties. Thus, it is imperative to coat such excellent base coat components with a second layer comprising compounds exhibiting excellent blocking characteristics.
  • an object of the invention has been to provide excellent strength and adhesion to the seam yarns (or yarns at cut edges of the target fabric) while simultaneously allowing for low adhesion (anti-blocking) as well as desirable low air permeability over the target airbag fabric, all at a relatively low cost.
  • Another object of the invention has been to provide a coating system or composition which is easy to apply to target airbag fabrics as well.
  • this invention provides a coating system (i.e., composition) for airbag fabrics comprising at least two layers wherein the first layer is in contact with at least a portion of the airbag fabric and is at least one coating material comprising no more than about 30% by total parts of said first layer material of a silicone resin and the second layer is a coating for at least a portion of said first layer and is at least one material providing sufficient blocking characteristics for the first layer material selected from the group consisting of at least one non-silicone compound and at least one silicone compound.
  • the first layer material must possess certain properties critical to properly seal a woven seam at high pressure.
  • this layer must be comprised of a coating material exhibiting a tensile strength of greater than 600 psi, preferably greater than 800 psi, and most preferably greater than 1,000 psi, with an elongation at break of between about 100 and 600% of its original length.
  • the first layer thus may be comprised of one or more of polyurethanes, polyacrylates, polyamides, butyl rubbers, hydrogenated nitrile rubbers, ethylene-vinyl acetate copolymers, and the like. Potentially preferred are polyamides, polyurethanes, polyacrylates, and mixtures thereof.
  • first layer materials also are generally available at lower cost than the standard silicone resins and rubbers which possess the desired tensile strength and elongation characteristics noted above.
  • the add-on weight of this first layer over the target fabric is from about 0.1 to about 2.0 ounces per square yard, preferably this add-on weight is from about 0.5 to about 1.2, more preferably from about 0.6 to about 0.9.
  • the first layer materials may be present in water dispersions/emulsions or in organic solvent solutions in order to provide better seam combing resistance to the resultant treated airbag fabric. Such emulsions and solutions are also easy to handle and apply to the target fabric surface. This first layer surprisingly works synergistically with the second layer to provide the desired properties.
  • the first layer may also comprise up to about 30% by weight of the total amount, in parts, of the first layer, of a silicone resin.
  • a silicone resin may be utilized to modify conventional rubbers to improve their weatherability (aging stability).
  • such resins are known to be added to ethylene-propylene-diene monomer (EPDM) rubber to provide such weatherability improvements.
  • EPDM ethylene-propylene-diene monomer
  • this silicone resin is utilized in the first layer, it is present in an amount of from about 5 to about 12% by total parts of the first layer material. An amount in excess of 30% by total parts deleteriously affects the ability of the first layer to perform as needed.
  • Any well known silicone resin may be utilized within the first layer, including those listed below for the second layer material.
  • One non-limiting example of a potentially preferred silicone resin for use in this first layer is a silicone resin known and marketed under the name Dow Corning® Fabric Coating 61.
  • the second layer must possess, at the very least, good blocking properties to permit full, instantaneous inflation of the airbag when necessary after long duration storage within an airbag module. Furthermore, said second layer may also preferably provide reinforcement for the first layer. Silicones (such as polydimethylsiloxane and other silicone resins which are to be avoided in large quantities within the first layer) provide particularly good performance regarding this requirement.
  • the add-on weight of the second layer necessary to effectuate proper blocking properties for the first layer is much lower than the standard add-on weight for such silicone compounds on curtain-type airbag fabrics, the costs associated with this two-layer system (when a silicone is used as the topcoat) is dramatically lower than for past coating compositions. Furthermore, the costs associated with the first layer non-silicone components are also much lower than for the silicone resins, rubbers, and the like, traditionally used in airbag coating applications. Thus, the overall costs of the inventive coating system is, again, much lower than for silicones used alone to provide any similar strength and air permeability characteristics to the plain fabric.
  • a non-silicone compound or polymer may be used as the topcoat (second layer) for this inventive coating system as long as that non-silicone provides an effective blocking characteristic benefit for the first layer.
  • any resins or compounds with melting/softening point above 100° C. can be used as the topcoat material to provide anti-blocking characteristics.
  • Polyacrylates, ethylene-vinyl acetates, ethylene-methyl acrylates, polyurethane and the like, with high melting/softening points or crosslinking structures provide such beneficial antiblocking stability, which, again, would, upon utilization, reduce the overall costs of the inventive coating system by eliminating the need for expensive silicones.
  • the non-silicone second layer would be added in an amount of from about 0.1 to about 2.5 ounces per square yard, preferably, from about 0.2 to about 1.5.
  • potentially preferred materials include a polyurethane, available from Stahl USA, Peabody Mass., under the tradename Ru 40-350 (40% solids); polyacrylates, (a) available from Rohm & Haas, under the tradename Rhoplex® E-358 (60% solids), and (b) available from Para-chem Southern, Inc., Greenville, S.C., under the tradename Pyropoly AC 2000®; a polyamide dispersion marketed under the trade designation MICROMID® 632 hpl by Union Camp Corporation which is believed to have a place of business in Wayne, N.J.; other polyurethane resins, Witcobond® 253 (35% solids), from Witco, and Sancure, from BFGoodrich, Cleveland, Ohio; hydrogenated NBR, such as Chemisat® LCD-7335X (40% solids), from Goodyear Chemical, Akron, Ohio; and butyl rubber, such as Butyl rubber latex BL-100, from Lord Corporation.
  • Ru 40-350 50% solids
  • mixtures or combinations of non-silicone materials may also be utilized such as a dispersion of polyurethane and polyacrylate, as merely an example.
  • a dispersion of polyurethane and polyacrylate as merely an example.
  • Potentially preferred compositions are noted below including dispersions comprising polyurethane and polyacrylate.
  • the ratio of polyurethane to polyacrylate should be in an amount of from about 0.1:1 to about 10:1; preferably from about 1:1 to about 8:1; more preferably from about 2:1 to about 5:1; and most preferably from about 2:1 to about 2.5:1.
  • the substrate across which the elastomeric resin coatings are applied to form the airbag base fabric in accordance with the present invention is preferably a plain woven fabric formed from yarns comprising polyamide or polyester fibers. Such yarn preferably has a linear density of about 100 denier to about 630 denier. Such yarns are preferably formed from multiple filaments wherein the filaments have linear densities of about 6 denier per filaments or less and most preferably about 4 denier per filament or less.
  • Such substrate fabrics are preferably woven using jacquard looms or possibly through the utilization of fluid jet weaving machines as disclosed in U.S. Pat. Nos. 5,503,197 and 5,421,378 to Bower et al. (incorporated herein by reference).
  • the fabric substrate with applied coating system will hereinafter be referred to as an airbag base fabric.
  • Other possible components present within either of the two layers (or both) composition are thickeners, antioxidants, flame retardants, curing agents, coalescent agents, adhesion promoters, and colorants.
  • Any well known thickener for polyurethanes and/or polyacrylates may be utilized in this invention.
  • One potentially preferred thickener is marketed under the trade designation NATROSOL® 250HHXR by the Aqualon division of Hercules Corporation which is believed to have a place of business at Wilmington, Del.
  • a flame retardant is also preferably added to the compounded mix.
  • Any well known airbag flame retardant may be used (including aluminum trihydrate, as merely one example).
  • One potentially preferred flame retardant is DE-83R marketed by Great Lakes Chemical.
  • One other potentially preferred compound to be added to the first layer material is a fluoroelastomer.
  • a fluoroelastomer is selected from the group consisting of fluoropolymers and fluoromonomer-containing copolymers. Such compounds have shown improved aging performance for the first layer materials (such as with polyurethanes).
  • fluoropolymers and/or fluoromonomer-containing copolymers include those with excellent aging stability such as, without limitation, polytetrafluoroethylene (Teflon® from DuPOnt), polyvinylidenefluoride (Kynar® from Elf Atochem, Inc.), polychloro-trifluoroethylene (Aclar® from Allied Signal), copolymer of vinylidenefluoride and hexafluoropropylene, copolymer of vinylidenefluoride and methylmethacrylate, copolymer of tetrafluoroethylene and vinylidenefluoride, and the like.
  • Such a compound may be present in the first layer material in an amount of from 0 to about 30% of the total amount of parts in the first layer; preferably from about 1 to about 20%; more preferably from about 5 to about 15%.
  • the first layer is coated across the fabric substrate and dried to form a thin coating film(at a temperature preferably at about 320° F. for about 2 minutes; lower or higher temperatures, as well as correspondingly shorter or greater times may also be used).
  • the second layer (possessing a similar viscosity to facilitate application in a large-scale procedure) is then applied in the same manner over at least a portion (preferably all) of the second layer.
  • the second layer is then dried and cured as well (at a temperature of about 380° F. for about 2 minutes for the preferred silicone materials; again, differing temperatures and times may be followed). This discrepancy in temperatures required for drying and curing is yet another improvement over the utilization of silicone materials alone since lower temperatures are required (translating into safety improvements and lower energy costs) for the first layer at least.
  • the coating applications are performed through any standard coating procedures such as, and not limited to, scrape coating, transfer roll coating, cast coating and fixed-gap coating. These terms includes, and are not limited to, knife-over-gap table, floating knife, knife-over-foam pad, knife-over-roll, slot die methods, to name a few different method types.
  • the resultant airbag base fabric is substantially impermeable to air when measured according to ASTM Test D737, “Air Permeability of Textile Fabrics,” standards.
  • Such airbag fabrics must pass certain tests in order to be utilized within restraint systems.
  • One such test is called, as alluded to above, a blocking test which indicates the force required to separate two portions of coated fabric from one another after prolonged storage in contact with each other (such as an airbag is stored).
  • Laboratory analysis for blocking entails pressing together coated sides of two 2 inch by 2 inch swatches of airbag fabric at 5 psi at 100° C. for 7 days. If the force required to pull the two swatches apart after this time is greater than 50 grams per square yard, or the time required to separate the fabrics utilizing a 50 gram weight suspended from the bottom fabric layer is greater than 10 seconds, the coating fails the blocking test.
  • the lower the required separating shear force the more favorable the coating.
  • Another test which the specific coated fabric must pass is the oven aging test.
  • Such a test also simulates the storage of an airbag fabric over a long period of time upon exposure at high temperatures and actually is used to analyze alterations of various different fabric properties after such a prolonged storage in a hot ventilated oven (>100° C.) for 2 or more weeks.
  • this test was used basically to analyze the air permeability of the coated fabric after storage under a pressure of about 125 Pascals.
  • Airbag fabrics generally should exhibit an air permeability level of less than about 0.2 cfm at 125 Pa. Again, the lower the air permeability, the better the coating.
  • the multi-layer coating system of this invention provides a coated fabric which passes both the blocking test and oven aging test with very low air permeability.
  • This unexpectedly beneficial multi-layer system thus provides an airbag fabric which will easily inflate after prolonged storage and will remain inflated for a sufficient amount of time to ensure an optimum level of safety within a restraint system.
  • the less coating composition required the less expensive the final product.
  • the less coating composition required will translate into a decrease in the packaging volume of the airbag fabric within an airbag device. This benefit thus improves the packability for the airbag fabric.
  • the substrate fabric is preferably a woven nylon material.
  • such substrate fabric will be formed from fibers of nylon 6,6 woven on a jacquard loom. It has been found that such polyamide materials exhibit particularly good adhesion and maintenance of resistance to hydrolysis when used in combination with the coating according to the present invention.
  • the first layer was applied using a floating knife with a dry coating weight of about 0.8 ounces per square yard on each side of a Jacquard woven side impact curtain-type nylon 6,6 airbag fabric (with pillows stitched within the fabric). This layer was immediately dried at 320° F. for about 2 minutes.
  • the second layer was then applied using a knife-over-gap table method with an add-on weight of about 1.0 ounces per square yard on each side of the airbag over the first layer. This coating was then cured at about 38° F. for about 2 minutes.
  • the resultant coated airbag was then rapidly inflated for testing by pressurizing the bag using a 6.7 liter 100 psi nitrogen gas tank, generating about 30 psi initial peak bag pressure.
  • the pressure drop over time was then recorded as a measure of bag leakage. In 10 seconds, the pressure dropped from 30 to 7 psi, showing excellent air permeability.

Abstract

Novel airbag coating compositions comprising at least two separate and distinct layers are provided. The first layer (base coat), being in contact with the airbag surface, comprises a composition of at least one coating material which may comprise up to 30% by parts of the total amount of material in the first layer of a silicone resin which provides excellent adhesion, excellent tensile strength, and overall lower cost than standard silicone airbag coating materials. The second layer, being a coating for the first layer, provides excellent reinforcement and blocking characteristics to permit effective potential long-term storage and optimum use upon the occurrence of a collision. Such a second layer (topcoat) is preferably a silicone material but may also be selected from the group consisting of homopolymer and coplymer resins based on ethylene, propylene, acrylates, methacrylates, vinyl esters, acrylic acid, methacrylic acid, polyurethanes, polyamides, and inorganic materials such as talc, silica, silicate, calcium carbonate, alumina, and the like. This two-layer system permits excellent strength and blocking properties to prevent undesired adhesion between portions of the target airbag when stored as well as to prevent seam combing at relatively low cost due to the materials and the relatively low amount required for the topcoat. An airbag fabric coated with this inventive two-layer system is also contemplated within this invention.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of co-pending application Ser. No. 09/501,035, which is a continuation-in-part of U.S. patent application Ser. No. 09/350,620, filed Jul. 7, 1999, now U.S. Pat. No. 6,177,366, which is a continuation-in-part of U.S. patent application Ser. No. 09/335,257, filed on Jun. 17, 1999, now U.S. Pat. No. 6,177,365, all herein incorporated by reference.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to novel airbag coating compositions comprising at least two separate and distinct layers. The first layer (base coat), being in contact with the airbag surface, comprises a composition of at least one coating material which may comprise up to 30% by parts of the total amount of material in the first layer of a silicone resin which provides excellent adhesion, excellent tensile strength, and overall lower cost than standard silicone airbag coating materials. The second layer, being a coating for the first layer, provides excellent reinforcement and blocking characteristics to permit effective potential long-term storage and optimum use upon the occurrence of a collision. Such a second layer (topcoat) is preferably a silicone material but may also be selected from the group consisting of homopolymer and coplymer resins based on ethylene, propylene, acrylates, methacrylates, vinyl esters, acrylic acid, methacrylic acid, polyurethanes, polyamides, and inorganic materials such as talc, silica, silicate, calcium carbonate, alumina, and the like. This two-layer system permits excellent strength and blocking properties to prevent undesired adhesion between portions of the target airbag when stored as well as to prevent seam combing at relatively low cost due to the inexpensive basecoat materials and the relatively low amount required for the topcoat. An airbag fabric coated with this inventive multi-layer system is also contemplated within this invention. [0002]
  • BACKGROUND OF THE INVENTION
  • Airbags for motor vehicles are known and have been used for a substantial period of time. These devices are installed on the driver and passenger side of automobiles and, in the event of a collision, are rapidly inflated with gas, to act as an energy absorbing barrier between the driver or passenger and the steering wheel or dashboard of the automobile. [0003]
  • With the advent of new curtain-type airbags comprising a plurality of pillows formed from stitched areas of the bag article (to protect passengers during roll-over and side impact collision events), there is now a greater emphasis on providing such curtain-type airbags which will retain their inflation pressure for extended period after deployment, and will perform if and when necessary even upon storage of a long duration (years for example). Such pillowed fabrics thus comprise seams which control the shape and size of the inflated cushion. Upon inflation of such specific airbag cushions, pressure may be applied in great force, particularly on the seams, during an inflation in response to a collision event. These stitched areas or seams thus must retain their strength upon inflation, thereby setting forth the requirement that the individual yarns at such seams will not slip (i.e., “comb-out”) easily (which would result in the leakage air at too great a rate to afford sufficient protection), particularly upon inflation of the airbag. With such an expansion in stitching/seam requirements as compared with traditional driver-side and passenger-side airbags, the areas for potential air leakage have also increased dramatically. [0004]
  • In the past, coatings have been applied to fabrics, intended for use in automotive airbags, to resist the unwanted permeation of air through the fabric and, to a lesser extent, to protect the fabric from detriment by the hot gases used to inflate the bags. Polychloroprene was the polymer of choice in the early development of this product, but the desire to decrease the folded size of the completed airbag, and the tendency of polychloroprene to degrade, with exposure to heat, to release the components of hydrochloric acid (thereby potentially degrading the fabric component as well as releasing hazardous chemicals), has led to the almost universal acceptance of silicone (polydimethylsiloxane or similar materials) as a more suitable coating. In the quest for the most compact folded size possible, coating levels of polymer have dropped from around 2.5 ounces per square yard of fabric, to levels approaching 0.5 ounces per square yard. [0005]
  • New developments in airbag technology, particularly newer designs being placed in the sides of the passenger compartment (as noted above), have introduced the requirement that the bags hold pressure longer under use. This, and the evolution of the lower coating levels of silicone polymer, have begun to highlight the effect that, when a sewn seam is put under stress, a naturally lubricating silicone coating may allow the yarns from which the fabric is constructed to shift. This shifting can lead to leakage of the inflating gas through the new pores formed from the shifting yarns, or, in drastic cases, cause the seam to fail. Since the airbag must retain its integrity during a collision event, in order to sufficiently protect the driver or passenger, there is a great need to provide coatings which provide both effective permeability characteristics and sufficient restriction of yarn shifting for the airbag to function properly, if and when necessary. Furthermore, such airbags must also exhibit excellent blocking characteristics, as noted above, to permit full, instantaneous inflation of the airbag itself upon the occurrence of a collision. In recent years, silicone coatings have been utilized to provide such desired permeability and strength characteristics. However, the relative cost of such coating materials (such as polydimethylsiloxane) is sufficiently high that new, more inexpensive alternatives are being sought. Thus, there exists a need for providing good adhesion and a strong bond between the individual yarns (in order to effectuate long-term rigidity of the fibers to prevent unraveling) at cut edges or at seams while simultaneously providing aging stability and excellent low air permeability characteristics. Such a necessary improvement has not been afforded the airbag industry within the prior art. However, the inventive two-layer coating system does provide the necessary strength, durability, permeability, and reliability to the airbag industry, particularly for large-scale production of heavily stitched/seamed curtain-type airbags. [0006]
  • DESCRIPTION OF THE INVENTION
  • Although silicones and chloroprene have been the predominant coatings utilized in the airbag industry traditionally, as noted above, it has been determined that these coatings exhibit certain shortcomings which actually make them undesirable as the sole coatings present on target fabrics. For example, silicones are very expensive and act as natural fiber lubricants. Silicone elastomers are very flexible which permits facilitation of folding of coated airbags for long-term storage in airbag modules. However, compared with other elastomers, silicones possess poor tensile strength and poor tear resistance. As such, these compounds do not provide the best overall strength to prevent shifting of seam yarns, and certainly are not cost-effective selections for this purpose. Chloroprene (Neoprene) degrades very easily and thus does not exhibit sufficient aging stability. Furthermore, thicker coatings of such rubber compounds are required to reduce the air permeability to an acceptable level which can result in higher costs, although neoprene is not as expensive as the aforementioned silicones. Also, neither of these two traditional coating materials permits a single application over the entire airbag fabric in order to provide both air permeability characteristics over the non-stitched (and thus plain fabric) portion with effective adhesion for the individual fibers within the seamed areas. Lastly, most polyurethanes, etc., which provide the desired high tensile strength characteristics in the base coat are also highly tacky at elevated temperatures and thus do not provide beneficial anti-blocking properties. Thus, it is imperative to coat such excellent base coat components with a second layer comprising compounds exhibiting excellent blocking characteristics. [0007]
  • Thus, an object of the invention has been to provide excellent strength and adhesion to the seam yarns (or yarns at cut edges of the target fabric) while simultaneously allowing for low adhesion (anti-blocking) as well as desirable low air permeability over the target airbag fabric, all at a relatively low cost. Another object of the invention has been to provide a coating system or composition which is easy to apply to target airbag fabrics as well. [0008]
  • Accordingly, this invention provides a coating system (i.e., composition) for airbag fabrics comprising at least two layers wherein the first layer is in contact with at least a portion of the airbag fabric and is at least one coating material comprising no more than about 30% by total parts of said first layer material of a silicone resin and the second layer is a coating for at least a portion of said first layer and is at least one material providing sufficient blocking characteristics for the first layer material selected from the group consisting of at least one non-silicone compound and at least one silicone compound. In particular, the first layer material must possess certain properties critical to properly seal a woven seam at high pressure. Thus, this layer must be comprised of a coating material exhibiting a tensile strength of greater than 600 psi, preferably greater than 800 psi, and most preferably greater than 1,000 psi, with an elongation at break of between about 100 and 600% of its original length. The first layer thus may be comprised of one or more of polyurethanes, polyacrylates, polyamides, butyl rubbers, hydrogenated nitrile rubbers, ethylene-vinyl acetate copolymers, and the like. Potentially preferred are polyamides, polyurethanes, polyacrylates, and mixtures thereof. Furthermore, these first layer materials also are generally available at lower cost than the standard silicone resins and rubbers which possess the desired tensile strength and elongation characteristics noted above. The add-on weight of this first layer over the target fabric is from about 0.1 to about 2.0 ounces per square yard, preferably this add-on weight is from about 0.5 to about 1.2, more preferably from about 0.6 to about 0.9. The first layer materials may be present in water dispersions/emulsions or in organic solvent solutions in order to provide better seam combing resistance to the resultant treated airbag fabric. Such emulsions and solutions are also easy to handle and apply to the target fabric surface. This first layer surprisingly works synergistically with the second layer to provide the desired properties. [0009]
  • As noted above, the first layer may also comprise up to about 30% by weight of the total amount, in parts, of the first layer, of a silicone resin. Such a component may be utilized to modify conventional rubbers to improve their weatherability (aging stability). For example, such resins are known to be added to ethylene-propylene-diene monomer (EPDM) rubber to provide such weatherability improvements. Preferably, if this silicone resin is utilized in the first layer, it is present in an amount of from about 5 to about 12% by total parts of the first layer material. An amount in excess of 30% by total parts deleteriously affects the ability of the first layer to perform as needed. Any well known silicone resin may be utilized within the first layer, including those listed below for the second layer material. One non-limiting example of a potentially preferred silicone resin for use in this first layer is a silicone resin known and marketed under the name Dow Corning® Fabric Coating 61. [0010]
  • The second layer must possess, at the very least, good blocking properties to permit full, instantaneous inflation of the airbag when necessary after long duration storage within an airbag module. Furthermore, said second layer may also preferably provide reinforcement for the first layer. Silicones (such as polydimethylsiloxane and other silicone resins which are to be avoided in large quantities within the first layer) provide particularly good performance regarding this requirement. Since the add-on weight of the second layer necessary to effectuate proper blocking properties for the first layer (from about 0.1 to about 2.5 ounces per square yard as well, preferably from about 0.2 to about 1.5) is much lower than the standard add-on weight for such silicone compounds on curtain-type airbag fabrics, the costs associated with this two-layer system (when a silicone is used as the topcoat) is dramatically lower than for past coating compositions. Furthermore, the costs associated with the first layer non-silicone components are also much lower than for the silicone resins, rubbers, and the like, traditionally used in airbag coating applications. Thus, the overall costs of the inventive coating system is, again, much lower than for silicones used alone to provide any similar strength and air permeability characteristics to the plain fabric. Also, a non-silicone compound or polymer may be used as the topcoat (second layer) for this inventive coating system as long as that non-silicone provides an effective blocking characteristic benefit for the first layer. Potentially, any resins or compounds with melting/softening point above 100° C. can be used as the topcoat material to provide anti-blocking characteristics. Polyacrylates, ethylene-vinyl acetates, ethylene-methyl acrylates, polyurethane and the like, with high melting/softening points or crosslinking structures, provide such beneficial antiblocking stability, which, again, would, upon utilization, reduce the overall costs of the inventive coating system by eliminating the need for expensive silicones. Other materials that may be used for the second layers, for examples, are talc, calcium stearate, silica, calcium carbonate, polypropylenes and high density polyethylene. In such an event, the non-silicone second layer would be added in an amount of from about 0.1 to about 2.5 ounces per square yard, preferably, from about 0.2 to about 1.5. [0011]
  • With regard to the first layer, potentially preferred materials include a polyurethane, available from Stahl USA, Peabody Mass., under the tradename Ru 40-350 (40% solids); polyacrylates, (a) available from Rohm & Haas, under the tradename Rhoplex® E-358 (60% solids), and (b) available from Para-chem Southern, Inc., Greenville, S.C., under the tradename Pyropoly AC 2000®; a polyamide dispersion marketed under the trade designation MICROMID® 632 hpl by Union Camp Corporation which is believed to have a place of business in Wayne, N.J.; other polyurethane resins, Witcobond® 253 (35% solids), from Witco, and Sancure, from BFGoodrich, Cleveland, Ohio; hydrogenated NBR, such as Chemisat® LCD-7335X (40% solids), from Goodyear Chemical, Akron, Ohio; and butyl rubber, such as Butyl rubber latex BL-100, from Lord Corporation. As noted above, mixtures or combinations of non-silicone materials may also be utilized such as a dispersion of polyurethane and polyacrylate, as merely an example. Potentially preferred compositions are noted below including dispersions comprising polyurethane and polyacrylate. Preferably, in such an instance, the ratio of polyurethane to polyacrylate should be in an amount of from about 0.1:1 to about 10:1; preferably from about 1:1 to about 8:1; more preferably from about 2:1 to about 5:1; and most preferably from about 2:1 to about 2.5:1. [0012]
  • The substrate across which the elastomeric resin coatings are applied to form the airbag base fabric in accordance with the present invention is preferably a plain woven fabric formed from yarns comprising polyamide or polyester fibers. Such yarn preferably has a linear density of about 100 denier to about 630 denier. Such yarns are preferably formed from multiple filaments wherein the filaments have linear densities of about 6 denier per filaments or less and most preferably about 4 denier per filament or less. Such substrate fabrics are preferably woven using jacquard looms or possibly through the utilization of fluid jet weaving machines as disclosed in U.S. Pat. Nos. 5,503,197 and 5,421,378 to Bower et al. (incorporated herein by reference). The fabric substrate with applied coating system will hereinafter be referred to as an airbag base fabric. Other possible components present within either of the two layers (or both) composition are thickeners, antioxidants, flame retardants, curing agents, coalescent agents, adhesion promoters, and colorants. Any well known thickener for polyurethanes and/or polyacrylates may be utilized in this invention. One potentially preferred thickener is marketed under the trade designation NATROSOL® 250HHXR by the Aqualon division of Hercules Corporation which is believed to have a place of business at Wilmington, Del. Also, in order to meet Federal Motor Vehicle Safety Standard 302 flame retardant requirements for the automotive industry, a flame retardant is also preferably added to the compounded mix. Any well known airbag flame retardant may be used (including aluminum trihydrate, as merely one example). One potentially preferred flame retardant is DE-83R marketed by Great Lakes Chemical. [0013]
  • One other potentially preferred compound to be added to the first layer material is a fluoroelastomer. Such a fluoroelastomer is selected from the group consisting of fluoropolymers and fluoromonomer-containing copolymers. Such compounds have shown improved aging performance for the first layer materials (such as with polyurethanes). Particularly preferred fluoropolymers and/or fluoromonomer-containing copolymers include those with excellent aging stability such as, without limitation, polytetrafluoroethylene (Teflon® from DuPOnt), polyvinylidenefluoride (Kynar® from Elf Atochem, Inc.), polychloro-trifluoroethylene (Aclar® from Allied Signal), copolymer of vinylidenefluoride and hexafluoropropylene, copolymer of vinylidenefluoride and methylmethacrylate, copolymer of tetrafluoroethylene and vinylidenefluoride, and the like. Such a compound may be present in the first layer material in an amount of from 0 to about 30% of the total amount of parts in the first layer; preferably from about 1 to about 20%; more preferably from about 5 to about 15%. [0014]
  • Once compounding is complete (and the preferably resultant dispersion possess a viscosity of about 8,000 centipoise), the first layer is coated across the fabric substrate and dried to form a thin coating film(at a temperature preferably at about 320° F. for about 2 minutes; lower or higher temperatures, as well as correspondingly shorter or greater times may also be used). The second layer (possessing a similar viscosity to facilitate application in a large-scale procedure) is then applied in the same manner over at least a portion (preferably all) of the second layer. The second layer is then dried and cured as well (at a temperature of about 380° F. for about 2 minutes for the preferred silicone materials; again, differing temperatures and times may be followed). This discrepancy in temperatures required for drying and curing is yet another improvement over the utilization of silicone materials alone since lower temperatures are required (translating into safety improvements and lower energy costs) for the first layer at least. [0015]
  • The coating applications are performed through any standard coating procedures such as, and not limited to, scrape coating, transfer roll coating, cast coating and fixed-gap coating. These terms includes, and are not limited to, knife-over-gap table, floating knife, knife-over-foam pad, knife-over-roll, slot die methods, to name a few different method types. The resultant airbag base fabric is substantially impermeable to air when measured according to ASTM Test D737, “Air Permeability of Textile Fabrics,” standards. [0016]
  • Such airbag fabrics must pass certain tests in order to be utilized within restraint systems. One such test is called, as alluded to above, a blocking test which indicates the force required to separate two portions of coated fabric from one another after prolonged storage in contact with each other (such as an airbag is stored). Laboratory analysis for blocking entails pressing together coated sides of two 2 inch by 2 inch swatches of airbag fabric at 5 psi at 100° C. for 7 days. If the force required to pull the two swatches apart after this time is greater than 50 grams per square yard, or the time required to separate the fabrics utilizing a 50 gram weight suspended from the bottom fabric layer is greater than 10 seconds, the coating fails the blocking test. Clearly, the lower the required separating shear force, the more favorable the coating. [0017]
  • Another test which the specific coated fabric must pass is the oven aging test. Such a test also simulates the storage of an airbag fabric over a long period of time upon exposure at high temperatures and actually is used to analyze alterations of various different fabric properties after such a prolonged storage in a hot ventilated oven (>100° C.) for 2 or more weeks. For the purposes of this invention, this test was used basically to analyze the air permeability of the coated fabric after storage under a pressure of about 125 Pascals. Airbag fabrics generally should exhibit an air permeability level of less than about 0.2 cfm at 125 Pa. Again, the lower the air permeability, the better the coating. [0018]
  • Surprisingly, it has been discovered that the multi-layer coating system of this invention provides a coated fabric which passes both the blocking test and oven aging test with very low air permeability. This unexpectedly beneficial multi-layer system thus provides an airbag fabric which will easily inflate after prolonged storage and will remain inflated for a sufficient amount of time to ensure an optimum level of safety within a restraint system. Furthermore, it goes without saying that the less coating composition required, the less expensive the final product. Additionally, the less coating composition required will translate into a decrease in the packaging volume of the airbag fabric within an airbag device. This benefit thus improves the packability for the airbag fabric. [0019]
  • As previously indicated, the substrate fabric is preferably a woven nylon material. In the most preferred embodiment such substrate fabric will be formed from fibers of nylon 6,6 woven on a jacquard loom. It has been found that such polyamide materials exhibit particularly good adhesion and maintenance of resistance to hydrolysis when used in combination with the coating according to the present invention. [0020]
  • DETAILED DESCRIPTION OF THE INVENTION AND THE PREFERRED EMBODIMENTS
  • In order to further describe the present invention the following nonlimiting examples are set forth. These examples are provided for the sole purpose of illustrating some preferred embodiments of the invention and are not to be construed as limiting the scope of the invention in any manner.[0021]
  • EXAMPLE 1 Silicone Topcoat System
  • [0022]
    Component Amount
    First Layer
    Ru 40-350 (40% solids) 100 parts
    Rhoplex ® E-32NP 10 parts
    Dow Corning ® fabric coating 61 10 parts
    Natrosol ® 250 HHXR 1.5 parts
    Water 15 parts
  • The first layer (base coating) was applied using a floating knife with a dry coating weight of about 0.8 ounces per square yard on each side of a Jacquard woven side impact curtain-type nylon 6,6 airbag fabric (with pillows stitched within the fabric). This layer was immediately dried at 320° F. for about 2 minutes. The second layer (topcoat) was then applied using a knife-over-gap table method with an add-on weight of about 1.0 ounces per square yard on each side of the airbag over the first layer. This coating was then cured at about 38° F. for about 2 minutes. [0023]
  • The resultant coated airbag was then rapidly inflated for testing by pressurizing the bag using a 6.7 liter 100 psi nitrogen gas tank, generating about 30 psi initial peak bag pressure. The pressure drop over time was then recorded as a measure of bag leakage. In 10 seconds, the pressure dropped from 30 to 7 psi, showing excellent air permeability. [0024]
  • Furthermore, after storage in an oven kept at about 107° C. for about 2 weeks (to simulate an accepted aging test for airbag fabrics), the coated airbag inflated properly and without obstruction and retained approximately the same leakage rate as the initial test after production. [0025]
  • EXAMPLE 2 Silicone Topcoat System
  • [0026]
    Component Amount
    First Layer
    Ru 40-350 (40% solids) 100 parts
    Rhoplex ® E-32NP 10 parts
    Kynar ® 2501-20 9 parts
    Natrosol ® 250 HHXR 1.5 parts
    Water 15 parts
  • The layers were applied and the resultant bag was tested in the same manner as described in EXAMPLE 1, above. The initial testing for leakage showed a pressure drop of from 30 psi to about 12 psi in 10 seconds. The aged bag retained approximately the same leakage rate. [0027]
  • EXAMPLE 3 Non-Silicone Topcoat System
  • [0028]
    Component Amount
    First Layer
    Ru 40-350 (40% solids) 45 parts
    Rhoplex ® E-358 (60% solids) 21 parts
    Natrosol ® 250 HHXR 1.6 parts
    Water 2 parts
    Second Layer
    Pyropoly AC 2000 30 parts
    Amsperse ® FR 51 37 parts
    Cymel M-3 3 parts
    Natrosol ® 250 HHXR 1 part
    Water 1 part
  • This system was applied and the resultant airbag was tested in the same manner as described in EXAMPLE 1, above. The second layer, however, had a dry coating weight of 0.6 ounces per square yard. The initial testing for leakage showed a pressure drop of from 30 psi to about 8 psi in 10 seconds. The aged bag showed a leakage rate of from about 30 to about 6 psi in 10 seconds. [0029]
  • EXAMPLE 4 (COMPARATIVE) Silicone Coating Alone
  • The same type of airbag was then treated solely with the second layer from EXAMPLE 1, above with an add-on weight of about 2 ounces per square yard on each side of the airbag. The bag was then tested for pressure drop in the same manner as above and was found to drop from 30 to 0 psi in 2 seconds. Clearly, the air permeability of EXAMPLEs 1-3 were dramatically greater than this comparative test even after aging. [0030]
  • There are, of course, many alternative embodiments and modifications of the present invention which are intended to be included within the spirit and scope of the following claims. [0031]

Claims (9)

What I claim is:
1. A Jacquard woven side impact curtain-type airbag to which a coating system has been applied, wherein said coating system comprises at least two layers, and wherein at least one of said layers comprises at least one polyurethane.
2. A Jacquard woven side impact curtain-type airbag which exhibits, upon inflation to a peak initial pressure of 30 psi using a 6.7 liter compressed nitrogen gas tank to 12 volumes of gas, a gas retention of at least 1 psi at a point in time at least 10 seconds subsequent to inflation at said peak initial pressure; wherein said airbag is coated with a coating present at an add-on weight of at most 3.0 ounces per square yard.
3. The airbag of claim 2 wherein said airbag retains at least 6 psi of retained inflation gas at least 10 seconds subsequent to inflation at said peak initial pressure.
4. A Jacquard woven side impact curtain-type airbag to which a coating system has been applied, wherein said coating system comprises at least two layers;
wherein at least one of said layers comprises polyurethane; and
wherein said airbag exhibits, upon inflation to a peak initial pressure of 30 psi, a gas retention of a least 1 psi at a point in time at least 10 seconds subsequent to inflation at said peak initial pressure.
5. The airbag of claim 4 wherein said airbag retains at least 6 psi of retained inflation gas at least 10 seconds subsequent to inflation at said peak initial pressure.
6. The airbag of claim 1 wherein said at least one layer of coating comprising polyurethane is applied to said airbag in an add-on weight of from about 0.3 to about 2.5 ounces/square yard.
7. The airbag of claim 1 wherein said at least one layer of coating comprising polyurethane is applied to said airbag in an add-on weight of from about 0.6 to about 1.5 ounces/square yard.
8. The airbag of claim 7 wherein the aggregate add-on weight of said coating system applied to said airbag is from about 0.6 to about 3.0 ounces/square yard.
9. The side impact curtain-type airbag of claim 8 wherein the aggregate add-on weight of said coating system applied to said airbag is from about 0.6 to about 1.8 ounces/square yard.
US10/268,536 1999-06-17 2002-10-08 Multi-layer coating system for jacquard woven airbags Abandoned US20030040238A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/268,536 US20030040238A1 (en) 1999-06-17 2002-10-08 Multi-layer coating system for jacquard woven airbags
US11/223,617 US7501359B2 (en) 1999-06-17 2005-09-09 Multi-layer coating system for jacquard woven airbags

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/335,257 US6177365B1 (en) 1999-06-17 1999-06-17 Two-layered coating system for airbag fabrics
US09/350,620 US6177366B1 (en) 1999-06-17 1999-07-09 Two-layer coating system for airbag fabrics
US50103500A 2000-02-09 2000-02-09
US10/268,536 US20030040238A1 (en) 1999-06-17 2002-10-08 Multi-layer coating system for jacquard woven airbags

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US50103500A Continuation 1999-06-17 2000-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/223,617 Continuation US7501359B2 (en) 1999-06-17 2005-09-09 Multi-layer coating system for jacquard woven airbags

Publications (1)

Publication Number Publication Date
US20030040238A1 true US20030040238A1 (en) 2003-02-27

Family

ID=27407046

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/268,536 Abandoned US20030040238A1 (en) 1999-06-17 2002-10-08 Multi-layer coating system for jacquard woven airbags
US11/223,617 Expired - Fee Related US7501359B2 (en) 1999-06-17 2005-09-09 Multi-layer coating system for jacquard woven airbags

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/223,617 Expired - Fee Related US7501359B2 (en) 1999-06-17 2005-09-09 Multi-layer coating system for jacquard woven airbags

Country Status (9)

Country Link
US (2) US20030040238A1 (en)
EP (1) EP1115811A4 (en)
JP (1) JP2003526557A (en)
CN (1) CN1323831C (en)
AU (1) AU5617300A (en)
BR (1) BR0006933A (en)
CA (1) CA2340940A1 (en)
MX (1) MXPA01001742A (en)
WO (1) WO2000078895A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267324A1 (en) * 2005-05-24 2006-11-30 Trw Automotive Safety Systems Gmbh Gas bag
US20080075903A1 (en) * 2006-09-22 2008-03-27 Ramesh Keshavaraj Multilayer film dry lamination of airbag fabrics
US20100253047A1 (en) * 2007-12-28 2010-10-07 Kolon Industries, Inc. Inflatable fabrics and an air-bag
US8088695B1 (en) * 2001-12-03 2012-01-03 Stuart Press Fabric material and process for preparing same
US20150210240A1 (en) * 2012-08-28 2015-07-30 Toray Industries, Inc. Coated fabric and method for producing same
EP3530802A4 (en) * 2016-10-21 2020-07-01 Toyobo Co., Ltd. Silicone-coated fabric
EP3530803A4 (en) * 2016-10-21 2020-07-08 Toyobo Co., Ltd. Silicon-coated fabric

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1349751A4 (en) * 2001-01-09 2007-05-02 Kolon Inc A side curtain typed airbag, and a process of preparing for the same
WO2004109008A1 (en) * 2003-06-04 2004-12-16 Dow Corning Corporation Silicone/polyurethane coated fabrics
DE10326757A1 (en) 2003-06-13 2005-01-13 Bst Berger Safety Textiles Gmbh & Co. Kg Method for producing an airbag
EP1770191B1 (en) * 2004-07-16 2013-11-27 Asahi Kasei Chemicals Corporation Base cloth for hollow-woven air bag and method for production thereof
DE102005061351A1 (en) * 2005-12-21 2007-07-05 Bst Safety Textiles Gmbh Production method for woven fabric of air bag of personnel restraint system in motor vehicles, involves preparing warp thread sheet of different yarn qualities with warp thread
DE102006021082A1 (en) * 2006-05-05 2007-11-15 Bst Safety Textiles Gmbh Suture construction for a tissue
US7543843B2 (en) * 2006-08-10 2009-06-09 Milliken & Company Airbag coatings made with hybrid resin compositions
US9079558B2 (en) * 2009-01-16 2015-07-14 Global Safety Textiles, Llc Coated airbag
AU2015204268B2 (en) * 2009-03-09 2017-03-02 Bioatla, Llc Mirac Proteins
JP5894924B2 (en) * 2009-11-12 2016-03-30 ダウ コーニング コーポレーションDow Corning Corporation Coated fabric products
CA2991834C (en) 2009-11-12 2020-01-14 Dow Corning Corporation Coated fabric products
DE102010027085A1 (en) * 2010-07-13 2012-01-19 Autoliv Development Ab air bag
KR102068260B1 (en) * 2014-12-30 2020-01-20 코오롱인더스트리 주식회사 Fabric for Airbag and Method for Manufacturing The Same
GB2549428B (en) 2015-01-06 2021-12-08 Lawter Inc Polyamide resins for coating of sand or ceramic proppants used in hydraulic fracturing
WO2016134216A1 (en) * 2015-02-20 2016-08-25 International Textile Group, Inc. Double side coated airbag
KR102576056B1 (en) 2015-11-06 2023-09-08 인비스타 텍스타일스 (유.케이.) 리미티드 Low transmittance and high strength fabric and manufacturing method thereof
WO2018180695A1 (en) * 2017-03-27 2018-10-04 東洋紡株式会社 Silicone-coated fabric
CN113235205A (en) 2017-05-02 2021-08-10 英威达纺织(英国)有限公司 Low permeability and high strength woven fabrics and methods of making same
WO2019067655A1 (en) 2017-09-29 2019-04-04 Invista Textiles (U.K.) Limited Airbags and methods for production of airbags
FR3082776B1 (en) * 2018-06-25 2020-06-12 Serge Ferrari Sas COATED TEXTILE FOR PROTECTION ELEMENT IN INDUSTRIAL MEDIA
WO2020081280A1 (en) 2018-10-17 2020-04-23 Dow Global Technologies Llc A coating composition, a coated fabric, a method of making a coated fabric, and an article made from the coated fabric
JP7152011B2 (en) * 2018-10-22 2022-10-12 中興化成工業株式会社 Composite seat and airbag
CN109972259B (en) * 2019-04-29 2021-02-23 广东溢达纺织有限公司 Yarn selecting method for woven fabric weaving and woven fabric weaving method
CN111058296A (en) * 2019-12-31 2020-04-24 成都海蓉特种纺织品有限公司 Anti-adhesion fabric for speed reducer and preparation process thereof
CN112878067B (en) * 2021-01-09 2022-07-05 深圳浩淼服装有限公司 Waterproof cotton fabric coating agent and preparation method thereof
CN114855467A (en) * 2022-05-13 2022-08-05 雁翔和泰(深圳)科技有限公司 Balloon silk cloth composite material and manufacturing method thereof, fire balloon and fire balloon

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705645A (en) * 1971-04-30 1972-12-12 Rohm & Haas Inflatable flexible container and fabric for making it
US4217256A (en) * 1978-02-10 1980-08-12 Henkel Corporation Polyamide adhesive for bonding fabrics
US4921735A (en) * 1987-11-03 1990-05-01 Klaus Bloch Air bag for motor vehicles
US4994225A (en) * 1988-06-28 1991-02-19 Uniroyal Plastics Company, Inc. Production of passive restraint device
US5110666A (en) * 1991-05-06 1992-05-05 Reeves Brothers, Inc. Coated fabric structure for air bag applications
US5208097A (en) * 1991-10-31 1993-05-04 Dow Corning Toray Silicone Co., Ltd. Base fabric for air bag
US5399402A (en) * 1992-01-23 1995-03-21 Shin-Etsu Chemical Co., Ltd. Air bag coating composition and air bag
US5421378A (en) * 1994-03-30 1995-06-06 Milliken Research Corporation Airbag weaving on a water-jet loom using yarns
US5503197A (en) * 1994-03-30 1996-04-02 Milliken Research Corporation Method for producing high weave density airbag fabric on a water-jet loom using unsized yarns
US5529837A (en) * 1994-02-28 1996-06-25 Shin-Etsu Chemical Co., Ltd. Silicone coated base material and air bag base material
US5788270A (en) * 1995-02-20 1998-08-04 Autoliv Development Ab Side impact and roll over inflatable head protector
US6177365B1 (en) * 1999-06-17 2001-01-23 Milliken & Company Two-layered coating system for airbag fabrics
US6239046B1 (en) * 1999-06-07 2001-05-29 Bradford Industries, Inc. Polysiloxane coated fabrics for use in air bags
US20010005660A1 (en) * 1999-06-17 2001-06-28 Shulong Li Low permeability side curtain airbag cushions having extremely low coating levels
US20010009829A1 (en) * 1999-06-17 2001-07-26 Sollars John A. Low permeability airbag cushionshaving film coatings of extremely low thickness
US20010042980A1 (en) * 1997-12-19 2001-11-22 Sollars John A. Inflatable airbag and method of making the same
US20020122908A1 (en) * 2000-08-30 2002-09-05 Shulong Li Abrasion and/or puncture resistant fabrics, airbag cushions, and methods
US6455449B1 (en) * 1999-09-03 2002-09-24 Bradford Industries, Inc. Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems
US6458724B1 (en) * 1999-06-07 2002-10-01 Bradford Industries, Inc. Coated multi-layered woven textile fabrics for use in air-holding vehicle restraint system
US20020140218A1 (en) * 2001-03-29 2002-10-03 Beasley Alonzo W. One-piece woven airbag
US20020145276A1 (en) * 1999-06-07 2002-10-10 Veiga Manuel J. Laminated textile fabrics for use in air holding vehicle restraint systems
US6595244B1 (en) * 1999-09-24 2003-07-22 Milliken & Company Inflatable fabrics having woven attachment points between fabric panels
US6734123B2 (en) * 1999-06-07 2004-05-11 Bradford Industries, Inc. Polyurethane coated fabrics for use in air-holding vehicle restraint systems
US6740607B2 (en) * 1999-06-07 2004-05-25 Bradford Industries, Inc. Substrate with stretch and heat sealing properties to make a multidirectional restraint module design
US6753275B2 (en) * 1999-06-07 2004-06-22 Bradford Industries, Inc. Laminated multi-layered woven textile fabrics for use in air holding vehicle restraint systems

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489127A (en) * 1983-07-13 1984-12-18 Dow Corning Corporation Flexible silicone resin coated fabric
US4632860A (en) * 1984-03-02 1986-12-30 D'antonio Waterproof breathable fabric
JPH0692218B2 (en) * 1987-12-11 1994-11-16 旭化成工業株式会社 Shock absorbing bag and manufacturing method thereof
US4876138A (en) * 1988-03-01 1989-10-24 Bailey Linda F Synthetic leather-like material
US4977016B1 (en) * 1988-10-28 1998-03-03 Stern & Stern Ind Inc Low permeability fabric and method of making same
JPH02289343A (en) * 1989-04-28 1990-11-29 Toyoda Gosei Co Ltd Preparation of rubber-fiber composite
JPH037337A (en) * 1989-06-05 1991-01-14 Tomoegawa Paper Co Ltd Base cloth for air bag and air bag
JPH0439036A (en) * 1990-06-04 1992-02-10 Ashimori Ind Co Ltd Composite and its manufacture
JP2932666B2 (en) * 1990-10-22 1999-08-09 タカタ株式会社 Airbag
EP0508372B1 (en) * 1991-04-09 1996-02-28 Shin-Etsu Chemical Co., Ltd. Siloxane coating composition for air bag
JPH0557735A (en) * 1991-09-04 1993-03-09 Nippon Plast Co Ltd Air bag cover and manufacture thereof
JP2590649B2 (en) * 1991-10-01 1997-03-12 信越化学工業株式会社 Airbag coating agent and airbag
JPH0623861A (en) * 1992-07-07 1994-02-01 Dainippon Printing Co Ltd Air bag and production thereof
JPH07291069A (en) * 1994-04-26 1995-11-07 Takata Kk Air bag
US5436079A (en) * 1994-05-06 1995-07-25 E. I. Du Pont De Nemours And Company Gasoline resistant coated multilayer plastic substrate
CA2187634A1 (en) * 1994-05-06 1995-11-16 Anit Dutta Three-dimensional seamless waterproof breathable flexible composite articles
FR2733574B1 (en) * 1995-04-27 1997-07-18 Aerazur MATERIAL FOR THE PRODUCTION OF INFLATABLE STRUCTURES OR FLEXIBLE VOLUMES INTENDED TO CONTAIN GASES, AND METHOD FOR MAKING SUCH STRUCTURES OR SUCH VOLUMES
EP0761868A3 (en) * 1995-09-06 1998-10-07 Milliken Research Corporation Coated airbag fabric
TW317544B (en) * 1995-09-18 1997-10-11 Toray Industries
DE19630854C1 (en) * 1996-07-31 1997-07-24 Daimler Benz Ag Head-protecting curtain in motor vehicle
JPH1044903A (en) * 1996-08-06 1998-02-17 Takata Kk Resin air bag
US5753751A (en) * 1996-10-24 1998-05-19 General Electric Company Process for preparing self-curable alkenyl hydride siloxane copolymers and coating composition
FR2757546B1 (en) * 1996-12-20 1999-04-09 Aerazur SILICONE-COATED FABRIC FOR THE MANUFACTURE OF INFLATABLE SAFETY BAGS, PROCESS FOR OBTAINING SAME, AND INFLATABLE SAFETY BAG THUS OBTAINED
GB9705524D0 (en) * 1997-03-18 1997-05-07 Dow Corning Coated textile fabrics
JP3704897B2 (en) * 1997-07-14 2005-10-12 タカタ株式会社 Silicone-modified thermoplastic polyurethane resin airbag
US6073961A (en) * 1998-02-20 2000-06-13 Breed Automotive Technology, Inc. Inflatable side airbag curtain module
US6037279A (en) * 1998-03-11 2000-03-14 Dow Corning Limited Coated textile fabrics
DE19824601C2 (en) 1998-06-02 2003-04-03 Breed Automotive Tech Air bag with compensation volume
ES2297926T3 (en) * 1998-06-17 2008-05-01 MILLIKEN & COMPANY FABRIC FOR AIRBAG, COATED WITH A POLYURETHANE / POLYACRYLATE DISPERSION COATING.
US6177366B1 (en) * 1999-06-17 2001-01-23 Milliken & Company Two-layer coating system for airbag fabrics

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705645A (en) * 1971-04-30 1972-12-12 Rohm & Haas Inflatable flexible container and fabric for making it
US4217256A (en) * 1978-02-10 1980-08-12 Henkel Corporation Polyamide adhesive for bonding fabrics
US4921735A (en) * 1987-11-03 1990-05-01 Klaus Bloch Air bag for motor vehicles
US4994225A (en) * 1988-06-28 1991-02-19 Uniroyal Plastics Company, Inc. Production of passive restraint device
US5110666A (en) * 1991-05-06 1992-05-05 Reeves Brothers, Inc. Coated fabric structure for air bag applications
US5208097A (en) * 1991-10-31 1993-05-04 Dow Corning Toray Silicone Co., Ltd. Base fabric for air bag
US5399402A (en) * 1992-01-23 1995-03-21 Shin-Etsu Chemical Co., Ltd. Air bag coating composition and air bag
US5529837A (en) * 1994-02-28 1996-06-25 Shin-Etsu Chemical Co., Ltd. Silicone coated base material and air bag base material
US5421378A (en) * 1994-03-30 1995-06-06 Milliken Research Corporation Airbag weaving on a water-jet loom using yarns
US5503197A (en) * 1994-03-30 1996-04-02 Milliken Research Corporation Method for producing high weave density airbag fabric on a water-jet loom using unsized yarns
US5788270A (en) * 1995-02-20 1998-08-04 Autoliv Development Ab Side impact and roll over inflatable head protector
US20010042980A1 (en) * 1997-12-19 2001-11-22 Sollars John A. Inflatable airbag and method of making the same
US6239046B1 (en) * 1999-06-07 2001-05-29 Bradford Industries, Inc. Polysiloxane coated fabrics for use in air bags
US6458724B1 (en) * 1999-06-07 2002-10-01 Bradford Industries, Inc. Coated multi-layered woven textile fabrics for use in air-holding vehicle restraint system
US20020145276A1 (en) * 1999-06-07 2002-10-10 Veiga Manuel J. Laminated textile fabrics for use in air holding vehicle restraint systems
US6734123B2 (en) * 1999-06-07 2004-05-11 Bradford Industries, Inc. Polyurethane coated fabrics for use in air-holding vehicle restraint systems
US6740607B2 (en) * 1999-06-07 2004-05-25 Bradford Industries, Inc. Substrate with stretch and heat sealing properties to make a multidirectional restraint module design
US6753275B2 (en) * 1999-06-07 2004-06-22 Bradford Industries, Inc. Laminated multi-layered woven textile fabrics for use in air holding vehicle restraint systems
US20010005660A1 (en) * 1999-06-17 2001-06-28 Shulong Li Low permeability side curtain airbag cushions having extremely low coating levels
US20010009829A1 (en) * 1999-06-17 2001-07-26 Sollars John A. Low permeability airbag cushionshaving film coatings of extremely low thickness
US6177365B1 (en) * 1999-06-17 2001-01-23 Milliken & Company Two-layered coating system for airbag fabrics
US6455449B1 (en) * 1999-09-03 2002-09-24 Bradford Industries, Inc. Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems
US6595244B1 (en) * 1999-09-24 2003-07-22 Milliken & Company Inflatable fabrics having woven attachment points between fabric panels
US20020122908A1 (en) * 2000-08-30 2002-09-05 Shulong Li Abrasion and/or puncture resistant fabrics, airbag cushions, and methods
US20020140218A1 (en) * 2001-03-29 2002-10-03 Beasley Alonzo W. One-piece woven airbag

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088695B1 (en) * 2001-12-03 2012-01-03 Stuart Press Fabric material and process for preparing same
US20060267324A1 (en) * 2005-05-24 2006-11-30 Trw Automotive Safety Systems Gmbh Gas bag
US7951437B2 (en) 2006-09-22 2011-05-31 Milliken & Company Multilayer film dry lamination of airbag fabrics
US20110203732A1 (en) * 2006-09-22 2011-08-25 Ramesh Keshavaraj Method of multilayer film dry lamination of airbag fabrics
US8007630B1 (en) 2006-09-22 2011-08-30 Milliken & Company Method of multilayer film dry lamination of airbag fabrics
US20080075903A1 (en) * 2006-09-22 2008-03-27 Ramesh Keshavaraj Multilayer film dry lamination of airbag fabrics
US20100253047A1 (en) * 2007-12-28 2010-10-07 Kolon Industries, Inc. Inflatable fabrics and an air-bag
US20150210240A1 (en) * 2012-08-28 2015-07-30 Toray Industries, Inc. Coated fabric and method for producing same
US9878684B2 (en) * 2012-08-28 2018-01-30 Toray Industries, Inc. Coated fabric and method for producing same
EP3530802A4 (en) * 2016-10-21 2020-07-01 Toyobo Co., Ltd. Silicone-coated fabric
EP3530803A4 (en) * 2016-10-21 2020-07-08 Toyobo Co., Ltd. Silicon-coated fabric
US10760210B2 (en) 2016-10-21 2020-09-01 Toyobo Co., Ltd. Silicone-coated fabric
US11376827B2 (en) 2016-10-21 2022-07-05 Toyobo Co., Ltd. Silicone-coated fabric

Also Published As

Publication number Publication date
EP1115811A4 (en) 2008-10-01
WO2000078895A1 (en) 2000-12-28
CA2340940A1 (en) 2000-12-28
US20060014456A1 (en) 2006-01-19
EP1115811A1 (en) 2001-07-18
US7501359B2 (en) 2009-03-10
BR0006933A (en) 2001-06-26
CN1323831C (en) 2007-07-04
JP2003526557A (en) 2003-09-09
CN1320149A (en) 2001-10-31
MXPA01001742A (en) 2004-12-06
AU5617300A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US7501359B2 (en) Multi-layer coating system for jacquard woven airbags
US6177366B1 (en) Two-layer coating system for airbag fabrics
US6177365B1 (en) Two-layered coating system for airbag fabrics
US6169043B1 (en) Polyurethane/polyacrylate dispersion coating for airbag fabrics
US5945186A (en) Airbag fabric coated with a porosity blocking cross-linked elastomeric resin
US6444594B1 (en) Airbag coatings providing improved thermal resistance
US6576574B2 (en) Airbag coatings comprising microspheres providing improved thermal resistance
EP1289801A1 (en) Low permeability airbag cushions having extremely low silicone-based coating levels
JP4597447B2 (en) Low permeability airbag cushion with very low coating level
US6673728B1 (en) Low permeability, high strength timing fabric for utilization within airbag inflation modules
MXPA00005201A (en) Airbag fabric coated with a porosity blocking cross-linked elastomeric resin
MXPA00001630A (en) Polyurethane/polyacrylate dispersion coating for airbag fabrics
MXPA01001745A (en) Low permeability airbag cushions having extremely low coating levels

Legal Events

Date Code Title Description
AS Assignment

Owner name: MILLIKEN & COMPANY, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, SHULONG;REEL/FRAME:015358/0105

Effective date: 20040519

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION