US20030063160A1 - Variable size inlets in inkjet printhead - Google Patents

Variable size inlets in inkjet printhead Download PDF

Info

Publication number
US20030063160A1
US20030063160A1 US10/309,097 US30909702A US2003063160A1 US 20030063160 A1 US20030063160 A1 US 20030063160A1 US 30909702 A US30909702 A US 30909702A US 2003063160 A1 US2003063160 A1 US 2003063160A1
Authority
US
United States
Prior art keywords
actuator
ejection
ink
nozzle
nozzle chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/309,097
Inventor
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silverbrook Research Pty Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPO8057A external-priority patent/AUPO805797A0/en
Priority claimed from AUPO7991A external-priority patent/AUPO799197A0/en
Priority claimed from US09/112,778 external-priority patent/US6416168B1/en
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Priority to US10/309,097 priority Critical patent/US20030063160A1/en
Assigned to SILVERBROOK RESEARCH PTY. LTD. reassignment SILVERBROOK RESEARCH PTY. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK, KIA
Publication of US20030063160A1 publication Critical patent/US20030063160A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/44Typewriters or selective printing mechanisms having dual functions or combined with, or coupled to, apparatus performing other functions
    • B41J3/445Printers integrated in other types of apparatus, e.g. printers integrated in cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14427Structure of ink jet print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1635Manufacturing processes dividing the wafer into individual chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1637Manufacturing processes molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1637Manufacturing processes molding
    • B41J2/1639Manufacturing processes molding sacrificial molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1642Manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1643Manufacturing processes thin film formation thin film formation by plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1645Manufacturing processes thin film formation thin film formation by spincoating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1646Manufacturing processes thin film formation thin film formation by sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1648Production of print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/78Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
    • G06F21/79Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data in semiconductor storage media, e.g. directly-addressable memories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/86Secure or tamper-resistant housings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • G06K1/121Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching by printing code marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • H04N1/2154Intermediate information storage for one or a few pictures using still video cameras the still video camera incorporating a hardcopy reproducing device, e.g. a printer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16585Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2002/041Electromagnetic transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/21Line printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2129Authenticate client device independently of the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • This invention relates to ink jet printheads. More particularly, this invention relates to a nozzle arrangement for an ink jet printhead which includes a refill actuator.
  • the Applicant has invented an ink jet printhead that is capable of generating text and images at a resolution of up to 1600 dpi.
  • the printheads developed by the Applicant can include up to 84000 nozzle arrangements.
  • Each nozzle arrangement has at least one moving component which serves to eject ink from a nozzle chamber.
  • These components usually either act directly on the ink or act on a closure which serves to permit or inhibit the ejection of ink from the nozzle chamber.
  • the printheads are manufactured in accordance with an integrated circuit fabrication technique. It follows that the moving components are microscopically dimensioned. This is necessary, given the large number of nozzle arrangements per printhead. In order for printheads incorporating such nozzle arrangements to operate efficiently, not only must the moving components be capable of operating at a relatively high speed, it is also necessary that the nozzle chamber be refilled at a speed which is complementary to that of the components.
  • the present invention has been conceived by the Applicant in order to address the problem of achieving a high refilling rate of the nozzle chamber.
  • a nozzle arrangement for an ink jet printhead comprising
  • nozzle chamber walls arranged on the substrate to define a nozzle chamber
  • At least one ejection actuator that is operatively positioned with respect to the nozzle chamber, the, or each, ejection actuator being displaceable between an inoperative condition and an operative condition to eject ink from the nozzle chamber and including an actuating mechanism to facilitate such displacement;
  • At least one refilling actuator that is operatively positioned with respect to the nozzle chamber, the, or each, refilling actuator being displaceable between an inoperative condition and an operative condition to direct ink into a zone in which the ink can be acted on by the ejection actuator, subsequent to the ejection of ink from the nozzle chamber, and also including an actuating mechanism to facilitate such displacement.
  • an ink jet printhead which comprises
  • each nozzle arrangement comprising
  • nozzle chamber walls arranged on the substrate to define a nozzle chamber
  • At least one ejection actuator that is operatively positioned with respect to the nozzle chamber, the, or each, ejection actuator being displaceable between an inoperative condition and an operative condition to eject ink from the nozzle chamber and including an actuating mechanism to facilitate such displacement;
  • At least one refilling actuator that is operatively positioned with respect to the nozzle chamber, the, or each, refilling actuator being displaceable between an inoperative condition and an operative condition to direct ink into a zone in which the ink can be acted on by the ejection actuator, subsequent to the ejection of ink from the nozzle chamber, and also including an actuating mechanism to facilitate such displacement.
  • a method of ejecting ink from a nozzle arrangement of an ink jet printhead including a substrate, nozzle chamber walls arranged on the substrate to define a nozzle chamber, at least one ejection actuator that is displaceable between an inoperative and an operative condition to facilitate the ejection of ink from the nozzle chamber and at least one refill actuator that is displaceable between an operative condition and an inoperative condition to direct ink into a zone in which the ink can be acted upon by the ejection actuator, the method including the steps of:
  • FIG. 1 shows a sectioned three dimensional view of a nozzle arrangement, in accordance with the invention, for an ink jet printhead
  • FIG. 2 shows a schematic view of the nozzle arrangement in a quiescent condition
  • FIG. 3 shows a schematic view of the nozzle arrangement with an ejection actuator in an operative condition
  • FIG. 4 shows a schematic view of the nozzle arrangement with the ejection actuator in a post-operative condition.
  • FIG. 5 shows a schematic view of the nozzle arrangement with a refill actuator in an operative condition
  • FIG. 6 shows a schematic view of the nozzle arrangement with the refill actuator in a quiescent condition
  • FIG. 7 shows a schematic view of the nozzle arrangement again with the actuator in an operative condition.
  • reference numeral 10 generally indicates a nozzle arrangement, in accordance with the invention, for an ink jet printhead, a part of which is indicated at 12 .
  • the ink jet printhead 12 is manufactured in accordance with an integrated circuit fabrication technique. Such techniques involve what is generally a highly controlled and accurate deposition and subsequent etching process.
  • the printhead 12 includes an etch stop layer 14 , a wafer substrate 16 deposited on the etch stop layer 14 and a drive circuitry layer 18 deposited on the wafer substrate 16 .
  • the wafer substrate 16 is etched to define a nozzle chamber 20 so that the etch stop layer 14 defines a roof wall 22 of the nozzle chamber 20 . It will thus be appreciated that the wafer substrate 16 defines side walls 24 of the nozzle chamber 20 .
  • An ink ejection port 26 is defined by the etch stop layer 14 as-a result of an etching process carried out on the etch stop layer 14 .
  • An ink passivation layer 30 is positioned on the drive circuitry layer 18 .
  • a layer 28 of expansion material is positioned on the ink passivation layer 30 to span an ink inlet 32 of the nozzle chamber 20 .
  • the ink inlet 32 and the nozzle chamber 20 both have a rectangular cross section in a plane parallel to the etch stop layer 14 .
  • the passivation layer 30 defines a pair of opposed major sides 34 and a pair of opposed minor sides 36 , 38 of the inlet 32 .
  • the nozzle arrangement 10 includes an ejection actuator 40 and a refill actuator 42 .
  • the ejection actuator 40 and the refill actuator 42 are defined by the layer 28 of expansion material as a result of an etching process carried out on the expansion material.
  • the ejection actuator 40 is rectangular with a pair of opposed major sides 44 displaceable with respect to the major sides 34 of the inlet, a free end 46 and an opposed end 48 anchored at the minor side 40 of the inlet 32 . Further, the ejection actuator 40 has an outer face 50 and an opposed inner face 52 . The ejection actuator 40 is dimensioned to extend approximately two thirds of a length of the inlet 32 to span approximately two thirds of a length of the ink inlet 32 .
  • the refill actuator 42 has a pair of major sides 54 , which are displaceable with respect to the major sides 34 of the inlet 32 , a free end 56 which is positioned adjacent the free end 46 of the ejection actuator 40 , and an opposed end 58 which is anchored at the minor side 38 of the inlet 32 . Further, the refill actuator 42 has an outer face 60 and an inner face 62 .
  • the expansion material of the layer 28 has a coefficient of thermal expansion which is such that, when heated, the resultant expansion of the material is sufficient to perform work.
  • the ejection actuator 40 includes an actuating mechanism in the form of a heater element 64 positioned in the ejection actuator 40 .
  • the heater element 64 is connected to drive circuitry within the drive circuitry layer 18 with suitable vias 66 .
  • the heater element 64 is positioned proximate the outer face 50 of the ejection actuator 40 . It follows that a region of the actuator 40 proximate the outer face 50 heats to a greater extent than the remainder of the ejection actuator 40 . This results in the actuator 40 bending into the nozzle chamber 20 as shown in FIG. 3.
  • the heater element 64 extends from the anchored end 48 of the ejection actuator 40 so that an end portion 65 of the ejection actuator 40 does not incorporate the heater element 64 . This serves to enhance ink ejection when the actuator 40 is activated, since the end portion 65 remains planar and thus acts as a paddle.
  • the refill actuator 42 includes an actuating mechanism in the form of a heater element 68 which is electrically connected to the drive circuitry in the drive circuitry layer 18 with suitable vias 70 .
  • the heater element 68 is positioned proximate the outer face 60 of the refill actuator 42 .
  • a region of the actuator 42 proximate the outer face 60 is heated to a greater extent than the remainder of the actuator 42 . This results in that region expanding to a greater extent than the remainder of the actuator 42 resulting in the actuator 42 bending into the nozzle chamber 20 as shown in FIG. 5.
  • the ink ejection port 26 is positioned in a region which is generally aligned with the ejection actuator 40 . Thus, when the ejection actuator 40 is activated, the actuator 40 bends towards the ink ejection port 26 to eject ink from the ink ejection port 26 .
  • the nozzle arrangement 10 is shown in a quiescent condition.
  • the nozzle chamber 20 is filled with ink 72 that is in fluid communication with ink in an ink reservoir indicated at 74 .
  • the ejection actuator 40 is actuated in the manner described above. This results in the actuator bending in the direction of an arrow 76 . This causes the ejection of ink 72 in the direction of an arrow 78 . At the same time, ink is drawn into the nozzle chamber 23 in the direction of an arrow 80 .
  • the ejection actuator 40 Upon deactivation of the heater element 64 , the ejection actuator 40 returns to its inoperative condition as shown in FIG. 4.
  • the expansion material may have a Young's modulus which is suitably high so that the ejection actuator 40 can return under tension built up in the material when the actuator 40 is displaced into the condition shown in FIG. 3.
  • the refill actuator 42 is returned to its inoperative condition also under tension built up in the refill actuator 42 as a result of the expansion material selected. This creates a drop of pressure within the nozzle chamber 20 resulting in a concave meniscus 86 formed in the ink ejection port 26 . This pressure is gradually equalized as the nozzle chamber refills fully to the condition shown in FIG. 2.
  • the refill actuator 42 can be configured to return gradually to its inoperative condition to inhibit the nozzle chamber 20 from emptying again. This could also be achieved via the drive circuitry in the drive circuitry layer 18 being suitably controlled via a control system connected to the drive circuitry.
  • FIG. 7 shows the ejection actuator 40 again in an operative condition.

Abstract

A nozzle arrangement for an ink jet printhead includes a substrate. Nozzle chamber walls are arranged on the substrate to define a nozzle chamber. An ejection actuator is operatively positioned with respect to the nozzle chamber and is displaceable between an inoperative condition and an operative condition to eject ink from the nozzle chamber. The ejection actuator includes an actuating mechanism to facilitate such displacement. A refilling actuator is operatively positioned with respect to the nozzle chamber and is displaceable between an inoperative condition and an operative condition to direct ink into a zone in which the ink can be acted on by the ejection actuator, subsequent to the ejection of ink from the nozzle chamber. The refill actuator includes an actuating mechanism to facilitate such displacement.

Description

    RELATED US APPLICATIONS
  • This application is a continuation-in-part application of U.S. application Ser. No. 09/112,778. U.S. application Ser. No. 09/112,778 is hereby incorporated by reference.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to ink jet printheads. More particularly, this invention relates to a nozzle arrangement for an ink jet printhead which includes a refill actuator. [0002]
  • BACKGROUND OF THE INVENTION
  • The Applicant has invented an ink jet printhead that is capable of generating text and images at a resolution of up to 1600 dpi. [0003]
  • In order to achieve this, the Applicant has made extensive use of micro electromechanical systems technology. In particular, the Applicant has developed integrated circuit fabrication techniques suitable for the manufacture of such printheads. [0004]
  • The printheads developed by the Applicant can include up to 84000 nozzle arrangements. Each nozzle arrangement has at least one moving component which serves to eject ink from a nozzle chamber. These components usually either act directly on the ink or act on a closure which serves to permit or inhibit the ejection of ink from the nozzle chamber. [0005]
  • The printheads are manufactured in accordance with an integrated circuit fabrication technique. It follows that the moving components are microscopically dimensioned. This is necessary, given the large number of nozzle arrangements per printhead. In order for printheads incorporating such nozzle arrangements to operate efficiently, not only must the moving components be capable of operating at a relatively high speed, it is also necessary that the nozzle chamber be refilled at a speed which is complementary to that of the components. [0006]
  • In use, once a moving component has been displaced within a nozzle chamber to eject ink from the nozzle chamber, that moving component usually returns to an original condition to be ready for again ejecting ink from the nozzle chamber. It is important that, when the moving components return to their original condition, the nozzle chamber is again rapidly filled with ink. This will ensure that, after it has returned to its original condition, the nozzle chamber is filled with ink so that the nozzle arrangement can operate accurately and correctly if activated immediately after it has returned to its original condition. [0007]
  • The present invention has been conceived by the Applicant in order to address the problem of achieving a high refilling rate of the nozzle chamber. [0008]
  • SUMMARY OF THE INVENTION
  • According to a first aspect of the invention, there is provided a nozzle arrangement for an ink jet printhead, the nozzle arrangement comprising [0009]
  • a substrate; [0010]
  • nozzle chamber walls arranged on the substrate to define a nozzle chamber; [0011]
  • at least one ejection actuator that is operatively positioned with respect to the nozzle chamber, the, or each, ejection actuator being displaceable between an inoperative condition and an operative condition to eject ink from the nozzle chamber and including an actuating mechanism to facilitate such displacement; and [0012]
  • at least one refilling actuator that is operatively positioned with respect to the nozzle chamber, the, or each, refilling actuator being displaceable between an inoperative condition and an operative condition to direct ink into a zone in which the ink can be acted on by the ejection actuator, subsequent to the ejection of ink from the nozzle chamber, and also including an actuating mechanism to facilitate such displacement. [0013]
  • According to a second aspect of the invention, there is provided an ink jet printhead which comprises [0014]
  • a substrate; and [0015]
  • a plurality of nozzle arrangements positioned on the substrate, each nozzle arrangement comprising [0016]
  • nozzle chamber walls arranged on the substrate to define a nozzle chamber; [0017]
  • at least one ejection actuator that is operatively positioned with respect to the nozzle chamber, the, or each, ejection actuator being displaceable between an inoperative condition and an operative condition to eject ink from the nozzle chamber and including an actuating mechanism to facilitate such displacement; and [0018]
  • at least one refilling actuator that is operatively positioned with respect to the nozzle chamber, the, or each, refilling actuator being displaceable between an inoperative condition and an operative condition to direct ink into a zone in which the ink can be acted on by the ejection actuator, subsequent to the ejection of ink from the nozzle chamber, and also including an actuating mechanism to facilitate such displacement. [0019]
  • According to a third aspect of the invention, there is provided a method of ejecting ink from a nozzle arrangement of an ink jet printhead, the nozzle arrangement including a substrate, nozzle chamber walls arranged on the substrate to define a nozzle chamber, at least one ejection actuator that is displaceable between an inoperative and an operative condition to facilitate the ejection of ink from the nozzle chamber and at least one refill actuator that is displaceable between an operative condition and an inoperative condition to direct ink into a zone in which the ink can be acted upon by the ejection actuator, the method including the steps of: [0020]
  • supplying the nozzle chamber with ink; [0021]
  • activating the, or each, ejection actuator so that ink is ejected from the nozzle chamber; and [0022]
  • activating the, or each, refill actuator at a predetermined time after activation of the, or each, ejection actuator so that ink is directed into said zone to be acted upon again by the, or each, ejection actuator, if required. [0023]
  • The invention is now described, by way of example, with reference to the accompanying drawings. The specific nature of the following description should not be construed as limiting in any way the scope of this summary.[0024]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, [0025]
  • FIG. 1 shows a sectioned three dimensional view of a nozzle arrangement, in accordance with the invention, for an ink jet printhead; [0026]
  • FIG. 2 shows a schematic view of the nozzle arrangement in a quiescent condition; [0027]
  • FIG. 3 shows a schematic view of the nozzle arrangement with an ejection actuator in an operative condition; [0028]
  • FIG. 4 shows a schematic view of the nozzle arrangement with the ejection actuator in a post-operative condition. [0029]
  • FIG. 5 shows a schematic view of the nozzle arrangement with a refill actuator in an operative condition; [0030]
  • FIG. 6 shows a schematic view of the nozzle arrangement with the refill actuator in a quiescent condition; and [0031]
  • FIG. 7 shows a schematic view of the nozzle arrangement again with the actuator in an operative condition.[0032]
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • In the drawings, [0033] reference numeral 10 generally indicates a nozzle arrangement, in accordance with the invention, for an ink jet printhead, a part of which is indicated at 12.
  • The [0034] ink jet printhead 12 is manufactured in accordance with an integrated circuit fabrication technique. Such techniques involve what is generally a highly controlled and accurate deposition and subsequent etching process. Thus, the printhead 12 includes an etch stop layer 14, a wafer substrate 16 deposited on the etch stop layer 14 and a drive circuitry layer 18 deposited on the wafer substrate 16. The wafer substrate 16 is etched to define a nozzle chamber 20 so that the etch stop layer 14 defines a roof wall 22 of the nozzle chamber 20. It will thus be appreciated that the wafer substrate 16 defines side walls 24 of the nozzle chamber 20.
  • An [0035] ink ejection port 26 is defined by the etch stop layer 14 as-a result of an etching process carried out on the etch stop layer 14.
  • An [0036] ink passivation layer 30 is positioned on the drive circuitry layer 18.
  • A [0037] layer 28 of expansion material is positioned on the ink passivation layer 30 to span an ink inlet 32 of the nozzle chamber 20.
  • The [0038] ink inlet 32 and the nozzle chamber 20 both have a rectangular cross section in a plane parallel to the etch stop layer 14. Thus, the passivation layer 30 defines a pair of opposed major sides 34 and a pair of opposed minor sides 36, 38 of the inlet 32.
  • The [0039] nozzle arrangement 10 includes an ejection actuator 40 and a refill actuator 42. The ejection actuator 40 and the refill actuator 42 are defined by the layer 28 of expansion material as a result of an etching process carried out on the expansion material.
  • The [0040] ejection actuator 40 is rectangular with a pair of opposed major sides 44 displaceable with respect to the major sides 34 of the inlet, a free end 46 and an opposed end 48 anchored at the minor side 40 of the inlet 32. Further, the ejection actuator 40 has an outer face 50 and an opposed inner face 52. The ejection actuator 40 is dimensioned to extend approximately two thirds of a length of the inlet 32 to span approximately two thirds of a length of the ink inlet 32.
  • The [0041] refill actuator 42 has a pair of major sides 54, which are displaceable with respect to the major sides 34 of the inlet 32, a free end 56 which is positioned adjacent the free end 46 of the ejection actuator 40, and an opposed end 58 which is anchored at the minor side 38 of the inlet 32. Further, the refill actuator 42 has an outer face 60 and an inner face 62.
  • The expansion material of the [0042] layer 28 has a coefficient of thermal expansion which is such that, when heated, the resultant expansion of the material is sufficient to perform work.
  • The [0043] ejection actuator 40 includes an actuating mechanism in the form of a heater element 64 positioned in the ejection actuator 40. The heater element 64 is connected to drive circuitry within the drive circuitry layer 18 with suitable vias 66.
  • The heater element [0044] 64 is positioned proximate the outer face 50 of the ejection actuator 40. It follows that a region of the actuator 40 proximate the outer face 50 heats to a greater extent than the remainder of the ejection actuator 40. This results in the actuator 40 bending into the nozzle chamber 20 as shown in FIG. 3.
  • It should be noted that the heater element [0045] 64 extends from the anchored end 48 of the ejection actuator 40 so that an end portion 65 of the ejection actuator 40 does not incorporate the heater element 64. This serves to enhance ink ejection when the actuator 40 is activated, since the end portion 65 remains planar and thus acts as a paddle.
  • The [0046] refill actuator 42 includes an actuating mechanism in the form of a heater element 68 which is electrically connected to the drive circuitry in the drive circuitry layer 18 with suitable vias 70.
  • The heater element [0047] 68 is positioned proximate the outer face 60 of the refill actuator 42. Thus, when the heater element 68 is activated, a region of the actuator 42 proximate the outer face 60 is heated to a greater extent than the remainder of the actuator 42. This results in that region expanding to a greater extent than the remainder of the actuator 42 resulting in the actuator 42 bending into the nozzle chamber 20 as shown in FIG. 5.
  • The [0048] ink ejection port 26 is positioned in a region which is generally aligned with the ejection actuator 40. Thus, when the ejection actuator 40 is activated, the actuator 40 bends towards the ink ejection port 26 to eject ink from the ink ejection port 26.
  • Operation of the [0049] nozzle arrangement 10 is indicated in FIGS. 2 to 7.
  • In FIG. 2, the [0050] nozzle arrangement 10 is shown in a quiescent condition. In this condition, the nozzle chamber 20 is filled with ink 72 that is in fluid communication with ink in an ink reservoir indicated at 74.
  • In FIG. 3, the [0051] ejection actuator 40 is actuated in the manner described above. This results in the actuator bending in the direction of an arrow 76. This causes the ejection of ink 72 in the direction of an arrow 78. At the same time, ink is drawn into the nozzle chamber 23 in the direction of an arrow 80.
  • Upon deactivation of the heater element [0052] 64, the ejection actuator 40 returns to its inoperative condition as shown in FIG. 4. In order to facilitate this, the expansion material may have a Young's modulus which is suitably high so that the ejection actuator 40 can return under tension built up in the material when the actuator 40 is displaced into the condition shown in FIG. 3.
  • As a result of the return of the [0053] actuator 40 into its inoperative condition, the ink 72 is sucked back from the ink ejection port 26 resulting in separation of the ink 72 and the formation of a drop 82 which is shown finally separated in FIG. 5.
  • As can be seen in FIG. 5, once the actuator [0054] 40 has returned to its inoperative condition, the heater element 68 is activated, resulting in the refill actuator 42 bending into the nozzle chamber 20, as described previously. This results in ink 72 being drawn in the direction of an arrow 84 into the nozzle chamber 20. Further, this also results in ink 72 being squeezed from one side of the nozzle chamber 20 towards the ink ejection port 26. As a result, by controlling operation of the refill actuator 42, the nozzle chamber 20 can be rapidly refilled once the drop 82 has been ejected.
  • In FIG. 6, the [0055] refill actuator 42 is returned to its inoperative condition also under tension built up in the refill actuator 42 as a result of the expansion material selected. This creates a drop of pressure within the nozzle chamber 20 resulting in a concave meniscus 86 formed in the ink ejection port 26. This pressure is gradually equalized as the nozzle chamber refills fully to the condition shown in FIG. 2.
  • The [0056] refill actuator 42 can be configured to return gradually to its inoperative condition to inhibit the nozzle chamber 20 from emptying again. This could also be achieved via the drive circuitry in the drive circuitry layer 18 being suitably controlled via a control system connected to the drive circuitry.
  • FIG. 7 shows the [0057] ejection actuator 40 again in an operative condition.
  • Applicant believes that this invention provides a means whereby a nozzle arrangement can be quickly and efficiently refilled once a drop has been ejected. As set out in the preamble, this is an important objective to be achieved in the design and manufacture of such nozzle arrangements. [0058]

Claims (16)

We claim
1. An inkjet nozzle arrangement including:
at least one first actuator;
at least one second actuator;
said at least one first actuator and said at least one second actuator defining at least part of at least one inlet to a nozzle chamber;
said at least one first actuator being displaceable from a respective rest position to a respective displaced position;
said at least one second actuator being displaceable from a respective rest position to a respective displaced position;
the first and second actuators being configured to increase the effective area of the at least one inlet when at least one of said actuator is in a displaced position compared to when in the respective rest position.
2. The arrangement of claim 1 wherein the at least one first actuator is at least one ejection actuator and the at least one ejection actuator is configured to eject ink from the nozzle chamber on movement from the rest position to the displaced position.
3. The arrangement of claim 2 wherein the at least one ejection actuator is configured to also draw ink into the nozzle chamber on movement from the rest position to the displaced position.
4. The arrangement of claim 1 wherein the at least second actuator is a refilling actuator and wherein the at least one refilling actuator is configured to direct or draw ink into the nozzle chamber on movement from the rest position to the displaced position.
5. A nozzle arrangement as claimed in claim 1, which is the product of an integrated circuit fabrication technique.
6. A nozzle arrangement as claimed in claim 5, in which the substrate includes a wafer substrate and a drive circuitry layer positioned on the wafer substrate, the drive circuitry layer being connected to both the at least one first actuator and the at least one second actuator.
7. A nozzle arrangement as claimed in claim 6, in which the wafer substrate is etched to define the nozzle chamber walls.
8. A nozzle arrangement as claimed in claim 7, in which an etch stop layer is positioned on the wafer substrate, in opposition to the drive circuitry layer, the etch stop layer defining a roof wall of the nozzle chamber and an ink ejection port in fluid communication with the nozzle chamber.
9. A nozzle arrangement as claimed in claim 8, wherein the at least one first actuator is an ejection actuator and the at least one second actuator is a refill actuator, both actuators being defined by a layer of expansion material that is positioned on the drive circuitry layer to span an inlet of the nozzle chamber so that the actuators are substantially co-planar, the expansion material having a coefficient of thermal expansion which is such that heating and subsequent expansion of the material is sufficient to perform work.
10. A nozzle arrangement as claimed in claim 9, in which the inlet has a substantially rectangular cross section in a plane parallel to the etch stop layer with the ejection actuator anchored at one side of the inlet and the refill actuator anchored at an opposed side of the inlet, the actuators both being substantially rectangular and dimensioned to be partly received in the nozzle chamber with free ends of the actuators positioned adjacent each other.
11. A nozzle arrangement as claimed in claim 9, in which the etch stop layer defines the ink ejection port in a position generally aligned with the ejection actuator so that movement of the ejection actuator towards the etch stop layer into an ejection zone results in the ejection of ink from the ink ejection port.
12. A nozzle arrangement as claimed in claim 9, in which the refill actuator is positioned so that displacement of the refill actuator into the nozzle chamber serves to drive ink from a remaining zone of the nozzle chamber into the ejection zone and to permit the ingress of ink from the ink supply into the nozzle chamber subsequent to the ejection actuator being displaced from its operative condition into its inoperative condition.
13. A nozzle arrangement as claimed in claim 9, in which the actuating mechanism of both the ejection actuator and the refill actuator is in the form of a heating element positioned in each actuator proximate an outer surface of each actuator so that activation of the heating elements results in a heating and subsequent expansion of a portion of each actuator proximate the outer surface so that the actuators are bent into the nozzle chamber.
14. An ink jet printhead which comprises
a substrate; and
a plurality of nozzle arrangements positioned on the substrate, each nozzle arrangement comprising:
at least one first actuator;
at least one second actuator;
said at least one first actuator and said at least one second actuator defining at least part of at least one inlet to a nozzle chamber;
said at least one first actuator being displaceable from a rest position to a displaced position;
said at least one second actuator being displaceable from a rest position to a displaced position;
the first and second actuators being configured to increase the effective area of the at least one inlet when at least one actuator is in the displaced position compared to when in the respective rest position.
15. A method of ejecting ink from a nozzle arrangement of an ink jet printhead, the nozzle arrangement including a substrate, nozzle chamber walls arranged on the substrate to define a nozzle chamber, at least one micro-electromechanical ejection actuator that is displaceable between an inoperative and an operative condition to facilitate the ejection of ink from the nozzle chamber and at least one micro-electromechanical refill actuator that is displaceable between an operative condition and an inoperative condition to direct ink into a zone in which the ink can be acted upon by the ejection actuator, the method including the steps of:
supplying the nozzle chamber with ink;
activating the, or each, ejection actuator so that ink is ejected from the nozzle chamber; and
activating the, or each, refill actuator at a predetermined time after activation of the, or each, ejection actuator so that ink is directed into said zone to be acted upon again by the, or each, ejection actuator, if required.
16. A method as claimed in claim 15, which includes the steps of:
activating the, or each, ejection actuator so that the, or each, ejection actuator is displaced from its inoperative condition to its operative condition;
de-activating the, or each, ejection actuator so that the, or each, ejection actuator returns to its inoperative condition; and
activating the, or each, refill actuator subsequent to the, or each, ejection actuator returning to its inoperative condition. 17. A method of operating an ink ejection nozzle having at least one first micro-electro mechanical actuator that is displaceable upon receipt of an electrical signal and at least one second micro-electro mechanical actuator that is displaceable upon receipt of an electrical signal, the method including, sequentially:
providing a first signal to the at least one first actuator, to cause ejection of ink from the nozzle;
removing the first signal;
providing a second signal to the at least one second actuator, to encourage ingress of ink into the nozzle.
US10/309,097 1997-07-15 2002-12-04 Variable size inlets in inkjet printhead Abandoned US20030063160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/309,097 US20030063160A1 (en) 1997-07-15 2002-12-04 Variable size inlets in inkjet printhead

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
AUPO8057A AUPO805797A0 (en) 1997-07-15 1997-07-15 Image creation method and apparatus (IJ09)
AUPO7991A AUPO799197A0 (en) 1997-07-15 1997-07-15 Image processing method and apparatus (ART01)
AUPO7991 1997-07-15
AUPO8057 1997-07-15
US09/112,778 US6416168B1 (en) 1997-07-15 1998-07-10 Pump action refill ink jet printing mechanism
US09/900,159 US6488359B2 (en) 1997-07-15 2001-07-09 Ink jet printhead that incorporates through-chip ink ejection nozzle arrangements
US10/309,097 US20030063160A1 (en) 1997-07-15 2002-12-04 Variable size inlets in inkjet printhead

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/900,159 Continuation US6488359B2 (en) 1997-07-15 2001-07-09 Ink jet printhead that incorporates through-chip ink ejection nozzle arrangements

Publications (1)

Publication Number Publication Date
US20030063160A1 true US20030063160A1 (en) 2003-04-03

Family

ID=27158012

Family Applications (11)

Application Number Title Priority Date Filing Date
US09/900,159 Expired - Fee Related US6488359B2 (en) 1997-07-15 2001-07-09 Ink jet printhead that incorporates through-chip ink ejection nozzle arrangements
US10/291,707 Expired - Fee Related US6641255B2 (en) 1997-07-15 2002-11-12 Ink jet printhead that incorporates through-chip ink flow control
US10/307,336 Expired - Fee Related US6945630B2 (en) 1997-07-15 2002-12-02 Ink jet printhead with moveable shutters
US10/309,097 Abandoned US20030063160A1 (en) 1997-07-15 2002-12-04 Variable size inlets in inkjet printhead
US10/882,775 Expired - Fee Related US7284834B2 (en) 1997-07-15 2004-07-02 Closure member for an ink passage in an ink jet printhead
US10/882,767 Expired - Fee Related US6932459B2 (en) 1997-07-15 2004-07-02 Ink jet printhead
US11/001,348 Expired - Fee Related US7032998B2 (en) 1997-07-15 2004-12-02 Ink jet printhead chip that incorporates through-wafer ink ejection mechanisms
US11/026,128 Expired - Fee Related US7097285B2 (en) 1997-07-15 2005-01-03 Printhead chip incorporating electro-magnetically operable ink ejection mechanisms
US11/026,126 Expired - Fee Related US7182435B2 (en) 1997-07-15 2005-01-03 Printhead chip incorporating laterally displaceable ink flow control mechanisms
US11/185,720 Expired - Fee Related US7207657B2 (en) 1997-07-15 2005-07-21 Ink jet printhead nozzle arrangement with actuated nozzle chamber closure
US11/503,084 Expired - Fee Related US7549728B2 (en) 1997-07-15 2006-08-14 Micro-electromechanical ink ejection mechanism utilizing through-wafer ink ejection

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/900,159 Expired - Fee Related US6488359B2 (en) 1997-07-15 2001-07-09 Ink jet printhead that incorporates through-chip ink ejection nozzle arrangements
US10/291,707 Expired - Fee Related US6641255B2 (en) 1997-07-15 2002-11-12 Ink jet printhead that incorporates through-chip ink flow control
US10/307,336 Expired - Fee Related US6945630B2 (en) 1997-07-15 2002-12-02 Ink jet printhead with moveable shutters

Family Applications After (7)

Application Number Title Priority Date Filing Date
US10/882,775 Expired - Fee Related US7284834B2 (en) 1997-07-15 2004-07-02 Closure member for an ink passage in an ink jet printhead
US10/882,767 Expired - Fee Related US6932459B2 (en) 1997-07-15 2004-07-02 Ink jet printhead
US11/001,348 Expired - Fee Related US7032998B2 (en) 1997-07-15 2004-12-02 Ink jet printhead chip that incorporates through-wafer ink ejection mechanisms
US11/026,128 Expired - Fee Related US7097285B2 (en) 1997-07-15 2005-01-03 Printhead chip incorporating electro-magnetically operable ink ejection mechanisms
US11/026,126 Expired - Fee Related US7182435B2 (en) 1997-07-15 2005-01-03 Printhead chip incorporating laterally displaceable ink flow control mechanisms
US11/185,720 Expired - Fee Related US7207657B2 (en) 1997-07-15 2005-07-21 Ink jet printhead nozzle arrangement with actuated nozzle chamber closure
US11/503,084 Expired - Fee Related US7549728B2 (en) 1997-07-15 2006-08-14 Micro-electromechanical ink ejection mechanism utilizing through-wafer ink ejection

Country Status (1)

Country Link
US (11) US6488359B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195339B2 (en) 1997-07-15 2007-03-27 Silverbrook Research Pty Ltd Ink jet nozzle assembly with a thermal bend actuator
AUPP398798A0 (en) * 1998-06-09 1998-07-02 Silverbrook Research Pty Ltd Image creation method and apparatus (ij43)
US7556356B1 (en) 1997-07-15 2009-07-07 Silverbrook Research Pty Ltd Inkjet printhead integrated circuit with ink spread prevention
US7468139B2 (en) 1997-07-15 2008-12-23 Silverbrook Research Pty Ltd Method of depositing heater material over a photoresist scaffold
US7465030B2 (en) 1997-07-15 2008-12-16 Silverbrook Research Pty Ltd Nozzle arrangement with a magnetic field generator
US6935724B2 (en) 1997-07-15 2005-08-30 Silverbrook Research Pty Ltd Ink jet nozzle having actuator with anchor positioned between nozzle chamber and actuator connection point
US6648453B2 (en) 1997-07-15 2003-11-18 Silverbrook Research Pty Ltd Ink jet printhead chip with predetermined micro-electromechanical systems height
US6712453B2 (en) 1997-07-15 2004-03-30 Silverbrook Research Pty Ltd. Ink jet nozzle rim
US7337532B2 (en) 1997-07-15 2008-03-04 Silverbrook Research Pty Ltd Method of manufacturing micro-electromechanical device having motion-transmitting structure
US6488359B2 (en) * 1997-07-15 2002-12-03 Silverbrook Research Pty Ltd Ink jet printhead that incorporates through-chip ink ejection nozzle arrangements
US6188415B1 (en) 1997-07-15 2001-02-13 Silverbrook Research Pty Ltd Ink jet printer having a thermal actuator comprising an external coil spring
US6682174B2 (en) 1998-03-25 2004-01-27 Silverbrook Research Pty Ltd Ink jet nozzle arrangement configuration
US7441865B2 (en) * 2004-01-21 2008-10-28 Silverbrook Research Pty Ltd Printhead chip having longitudinal ink supply channels
US7524016B2 (en) * 2004-01-21 2009-04-28 Silverbrook Research Pty Ltd Cartridge unit having negatively pressurized ink storage
US7469989B2 (en) * 2004-01-21 2008-12-30 Silverbrook Research Pty Ltd Printhead chip having longitudinal ink supply channels interrupted by transverse bridges
US7367650B2 (en) * 2004-01-21 2008-05-06 Silverbrook Research Pty Ltd Printhead chip having low aspect ratio ink supply channels
JP2014531350A (en) * 2011-10-03 2014-11-27 オセ−テクノロジーズ ビーブイ Droplet discharge device
US10363731B2 (en) 2014-12-18 2019-07-30 Palo Alto Research Center Incorporated Ejector device
US9996857B2 (en) 2015-03-17 2018-06-12 Dow Jones & Company, Inc. Systems and methods for variable data publication
CN113022137B (en) * 2017-03-15 2022-08-23 惠普发展公司,有限责任合伙企业 Fluid ejection die

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB792145A (en) 1953-05-20 1958-03-19 Technograph Printed Circuits L Improvements in and relating to devices for obtaining a mechanical movement from theaction of an electric current
DE1648322A1 (en) 1967-07-20 1971-03-25 Vdo Schindling Measuring or switching element made of bimetal
FR2188389B1 (en) 1972-06-08 1975-06-13 Cibie Projecteurs
FR2231076A2 (en) 1973-05-24 1974-12-20 Electricite De France Driving organ operated by thermal means - esp. for use in corrosive or dangerous environments formed by two metal strips
DE2905063A1 (en) 1979-02-10 1980-08-14 Olympia Werke Ag Ink nozzle air intake avoidance system - has vibratory pressure generator shutting bore in membrane in rest position
JPS58112747A (en) 1981-12-26 1983-07-05 Fujitsu Ltd Ink jet recording device
JPS58116165A (en) 1981-12-29 1983-07-11 Canon Inc Ink injection head
DE3214791A1 (en) 1982-04-21 1983-10-27 Siemens AG, 1000 Berlin und 8000 München WRITING DEVICE WORKING WITH LIQUID DROPS
US4423401A (en) * 1982-07-21 1983-12-27 Tektronix, Inc. Thin-film electrothermal device
DE3245283A1 (en) 1982-12-07 1984-06-07 Siemens AG, 1000 Berlin und 8000 München Arrangement for expelling liquid droplets
US4553393A (en) * 1983-08-26 1985-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Memory metal actuator
JPS6125849A (en) 1984-07-17 1986-02-04 Canon Inc Ink jet recording device
DE3430155A1 (en) 1984-08-16 1986-02-27 Siemens AG, 1000 Berlin und 8000 München Indirectly heated bimetal
JPS61106259A (en) * 1984-10-31 1986-05-24 Hitachi Ltd Ink droplet jet discharging device
SE447222B (en) * 1984-12-21 1986-11-03 Swedot System Ab ELECTROMAGNETIC MANOVERABLE VALVE DEVICE, SPECIFICALLY FOR GENERATING DROPS IN A HYDRAULIC PRINTER
JPS61268453A (en) 1985-05-23 1986-11-27 Olympus Optical Co Ltd Ink jet printer head
US5258774A (en) * 1985-11-26 1993-11-02 Dataproducts Corporation Compensation for aerodynamic influences in ink jet apparatuses having ink jet chambers utilizing a plurality of orifices
US4664824A (en) * 1986-01-14 1987-05-12 Amoco Corporation Phenate product and process
DE3716996A1 (en) 1987-05-21 1988-12-08 Vdo Schindling Deformation element
JPH01105746A (en) 1987-10-19 1989-04-24 Ricoh Co Ltd Ink jet head
JPH01115639A (en) 1987-10-30 1989-05-08 Ricoh Co Ltd Ink jet recording head
JPH01128839A (en) 1987-11-13 1989-05-22 Ricoh Co Ltd Inkjet recording head
JPH01257058A (en) 1988-04-07 1989-10-13 Seiko Epson Corp Ink jet head
DE3814150A1 (en) * 1988-04-27 1989-11-09 Draegerwerk Ag VALVE ARRANGEMENT MADE FROM MICROSTRUCTURED COMPONENTS
JPH01306254A (en) 1988-06-03 1989-12-11 Seiko Epson Corp Ink jet head
JPH0230543A (en) 1988-07-21 1990-01-31 Seiko Epson Corp Ink jet head
JPH0250841A (en) 1988-08-12 1990-02-20 Seiko Epson Corp Ink jet head
JPH0292643A (en) 1988-09-30 1990-04-03 Seiko Epson Corp Ink jet head
IT1229927B (en) 1988-10-14 1991-09-16 Cipelletti Alberto Cae VANE PUMP.
JPH02108544A (en) 1988-10-19 1990-04-20 Seiko Epson Corp Inkjet printing head
US4864824A (en) * 1988-10-31 1989-09-12 American Telephone And Telegraph Company, At&T Bell Laboratories Thin film shape memory alloy and method for producing
JP2697041B2 (en) 1988-12-10 1998-01-14 ミノルタ株式会社 Inkjet printer
JPH02162049A (en) 1988-12-16 1990-06-21 Seiko Epson Corp Printer head
JPH02265752A (en) 1989-04-05 1990-10-30 Matsushita Electric Ind Co Ltd Ink-jet recording head
EP0398031A1 (en) 1989-04-19 1990-11-22 Seiko Epson Corporation Ink jet head
JPH0365348A (en) 1989-08-04 1991-03-20 Matsushita Electric Ind Co Ltd Ink jet head
US5255016A (en) * 1989-09-05 1993-10-19 Seiko Epson Corporation Ink jet printer recording head
JP2746703B2 (en) 1989-11-09 1998-05-06 松下電器産業株式会社 Ink jet head device and method of manufacturing the same
JP2839345B2 (en) * 1989-09-11 1998-12-16 松下電器産業株式会社 Ink recording device
JPH03112662A (en) 1989-09-27 1991-05-14 Seiko Epson Corp Ink jet printer
JP2964618B2 (en) 1989-11-10 1999-10-18 セイコーエプソン株式会社 Head for inkjet printer
JPH03180350A (en) 1989-12-08 1991-08-06 Seiko Epson Corp Ink jet head
JPH04118241A (en) 1990-09-10 1992-04-20 Seiko Epson Corp Amplitude conversion actuator for ink jet printer head
JPH04126255A (en) 1990-09-18 1992-04-27 Seiko Epson Corp Ink jet head
JPH04141429A (en) 1990-10-03 1992-05-14 Seiko Epson Corp Ink jet head
DE4031248A1 (en) 1990-10-04 1992-04-09 Kernforschungsz Karlsruhe MICROMECHANICAL ELEMENT
US5126755A (en) 1991-03-26 1992-06-30 Videojet Systems International, Inc. Print head assembly for ink jet printer
US5164740A (en) 1991-04-24 1992-11-17 Yehuda Ivri High frequency printing mechanism
JPH04353458A (en) 1991-05-31 1992-12-08 Brother Ind Ltd Ink jet head
JPH04368851A (en) 1991-06-17 1992-12-21 Seiko Epson Corp Magnetic field generating substrate and ink jet head equipped therewith
JPH0528765A (en) 1991-07-18 1993-02-05 Nec Home Electron Ltd Memory control circuit
EP0528765B1 (en) 1991-08-19 1997-07-02 Novartis AG Benzothiazolon herbicide
GB9121851D0 (en) 1991-10-15 1991-11-27 Willett Int Ltd Device
JP3450349B2 (en) 1992-03-31 2003-09-22 キヤノン株式会社 Cantilever probe
JPH05318724A (en) 1992-05-19 1993-12-03 Seikosha Co Ltd Ink jet recorder
JP2615319B2 (en) 1992-09-17 1997-05-28 セイコープレシジョン株式会社 Inkjet head
JPH0691865A (en) 1992-09-17 1994-04-05 Seikosha Co Ltd Ink jet head
GB9302170D0 (en) 1993-02-04 1993-03-24 Domino Printing Sciences Plc Ink jet printer
IT1270861B (en) 1993-05-31 1997-05-13 Olivetti Canon Ind Spa IMPROVED INK JET HEAD FOR A POINT PRINTER
US5666141A (en) * 1993-07-13 1997-09-09 Sharp Kabushiki Kaisha Ink jet head and a method of manufacturing thereof
DE4328433A1 (en) 1993-08-24 1995-03-02 Heidelberger Druckmasch Ag Ink jet spray method, and ink jet spray device
DE19516997C2 (en) 1994-05-10 1998-02-26 Sharp Kk Ink jet head and method of manufacturing the same
JPH07314665A (en) 1994-05-27 1995-12-05 Canon Inc Ink jet recording head, recorder using the same and recording method therefor
JPH07314673A (en) 1994-05-27 1995-12-05 Sharp Corp Ink-jet head
JPH0890769A (en) * 1994-09-27 1996-04-09 Sharp Corp Gusseted diaphragm type ink-jet head
JPH08142323A (en) 1994-11-24 1996-06-04 Sharp Corp Ink jet head and manufacture thereof
TW365578B (en) 1995-04-14 1999-08-01 Canon Kk Liquid ejecting head, liquid ejecting device and liquid ejecting method
DE69626879T2 (en) * 1995-04-26 2004-02-05 Canon K.K. Liquid ejection head, liquid ejection device and liquid ejection method
JPH08336965A (en) 1995-06-14 1996-12-24 Sharp Corp Ink-jet head
US5815181A (en) 1995-06-28 1998-09-29 Canon Kabushiki Kaisha Micromachine, liquid jet recording head using such micromachine, and liquid jet recording apparatus having such liquid jet recording headmounted thereon
US5828394A (en) * 1995-09-20 1998-10-27 The Board Of Trustees Of The Leland Stanford Junior University Fluid drop ejector and method
JPH09104109A (en) 1995-10-12 1997-04-22 Sharp Corp Ink jet head and production thereof
US5838351A (en) 1995-10-26 1998-11-17 Hewlett-Packard Company Valve assembly for controlling fluid flow within an ink-jet pen
US5812159A (en) * 1996-07-22 1998-09-22 Eastman Kodak Company Ink printing apparatus with improved heater
JP3653348B2 (en) 1996-08-23 2005-05-25 三洋電機株式会社 Air conditioner
JPH10143434A (en) 1996-11-11 1998-05-29 Toshiba Corp Semiconductor integrated circuit
US5877580A (en) * 1996-12-23 1999-03-02 Regents Of The University Of California Micromachined chemical jet dispenser
US6234608B1 (en) * 1997-06-05 2001-05-22 Xerox Corporation Magnetically actuated ink jet printing device
TW429218B (en) 1997-06-06 2001-04-11 Canon Kk A liquid discharging method, a liquid discharge head, and a liquid discharge apparatus
US6488359B2 (en) * 1997-07-15 2002-12-03 Silverbrook Research Pty Ltd Ink jet printhead that incorporates through-chip ink ejection nozzle arrangements
AUPO801097A0 (en) 1997-07-15 1997-08-07 Silverbrook Research Pty Ltd A device (MEMS05)
JP3825917B2 (en) 1998-05-29 2006-09-27 東京エレクトロンデバイス株式会社 Access control device
JP2000163547A (en) 1998-11-30 2000-06-16 Matsushita Electric Ind Co Ltd Memory ic card and secret key storage method
US6984023B2 (en) * 1999-02-15 2006-01-10 Silverbrook Research Pty Ltd Micro-electromechanical displacement device

Also Published As

Publication number Publication date
US7284834B2 (en) 2007-10-23
US20030095164A1 (en) 2003-05-22
US20050264611A1 (en) 2005-12-01
US7182435B2 (en) 2007-02-27
US20030071875A1 (en) 2003-04-17
US7097285B2 (en) 2006-08-29
US6945630B2 (en) 2005-09-20
US6932459B2 (en) 2005-08-23
US20050110847A1 (en) 2005-05-26
US7549728B2 (en) 2009-06-23
US20040233253A1 (en) 2004-11-25
US20010040604A1 (en) 2001-11-15
US6641255B2 (en) 2003-11-04
US20050087512A1 (en) 2005-04-28
US20050110839A1 (en) 2005-05-26
US7032998B2 (en) 2006-04-25
US7207657B2 (en) 2007-04-24
US20040233252A1 (en) 2004-11-25
US20060273691A1 (en) 2006-12-07
US6488359B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US20030063160A1 (en) Variable size inlets in inkjet printhead
US7364271B2 (en) Nozzle arrangement with inlet covering cantilevered actuator
KR100643657B1 (en) Symmetrically Actuated Ink Ejection Components for an Ink Jet Printhead Chip
KR100563360B1 (en) Apparatus and method for using bubble as virtual valve in microinjector to eject fluid
US7922293B2 (en) Printhead having nozzle arrangements with magnetic paddle actuators
JPH09131891A (en) Valve assembly for controlling flow of liquid in ink jet pen
EP1185482A1 (en) Thermal actuator shaped for more uniform temperature profile
US6435667B1 (en) Opposed ejection ports and ink inlets in an ink jet printhead chip
US6488360B2 (en) Nozzle arrangement for an ink jet printhead that includes a coiled actuator
US6439695B2 (en) Nozzle arrangement for an ink jet printhead including volume-reducing actuators
US6447100B2 (en) Nozzle arrangement for an ink jet printhead which includes a refill actuator
US6488361B2 (en) Inkjet printhead that incorporates closure mechanisms
US7850281B2 (en) Efficient inkjet nozzle assembly
US6412914B1 (en) Nozzle arrangement for an ink jet printhead that includes a hinged actuator
US6443559B1 (en) Ink jet printhead which incorporates mass actuated ink ejection mechanisms
US6464325B2 (en) Ink jet printhead incorporating laterally displaceable actuator mechanisms
US7854496B2 (en) Inkjet printer with small drop size
JP5362832B2 (en) High efficiency inkjet nozzle assembly
US6644787B2 (en) Ink jet printhead that includes coiled actuators
US7997690B2 (en) Inkjet printer

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILVERBROOK RESEARCH PTY. LTD., AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK, KIA;REEL/FRAME:013560/0894

Effective date: 20021129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION