US20030077629A1 - Genotyping human UDP-Glucuronsyltransferase 2B15 (UGT2B15) genes - Google Patents

Genotyping human UDP-Glucuronsyltransferase 2B15 (UGT2B15) genes Download PDF

Info

Publication number
US20030077629A1
US20030077629A1 US10/205,522 US20552202A US2003077629A1 US 20030077629 A1 US20030077629 A1 US 20030077629A1 US 20552202 A US20552202 A US 20552202A US 2003077629 A1 US2003077629 A1 US 2003077629A1
Authority
US
United States
Prior art keywords
leu
lys
val
ser
phe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/205,522
Inventor
Margaret Galvin
Andrew Miller
Laura Penny
Michael Riedy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DNA Sciences Inc
Original Assignee
DNA Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DNA Sciences Inc filed Critical DNA Sciences Inc
Priority to US10/205,522 priority Critical patent/US20030077629A1/en
Publication of US20030077629A1 publication Critical patent/US20030077629A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Genetic polymorphisms are identified in the human UGT2B4, UGT2B7 and UGT2B15 genes that alter UGT2B activity. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered metabolism for UGT2B substrates, potential drug-drug interactions, and adverse/side effects, as well as diseases that result from environmental or occupational exposure to toxins. The nucleic acids are used to establish animal, cell and in vitro models for drug metabolism.

Description

    INTRODUCTION
  • The metabolic processes commonly involved in the biotransformation of xenobiotics have been classified into functionalization reactions (phase I reactions), in which lipophilic compounds are modified via monooxygenation, dealkylation, reduction, aromatization, or hydrolysis. These modified molecules can then be substrates for the phase II reactions, often called conjugation reactions, as they conjugate a functional group with a polar, endogenous compound. Drug glucuronidation, a major phase II conjugation reaction in the mammalian detoxification system, is catalyzed by the UDP-glucuronosyltransferases (UGTs) (Batt A M, et al. (1994) [0001] Clin Chim Acta 226:171-190; Burchell et al. (1995) Life Sci. 57:1819-31).
  • The UGTs are a family of enzymes that catalyze the glucuronic acid conjugation of a wide range of endogenous and exogenous substrates including phenols, alcohols, amines and fatty acids. The reactions catalyzed by UGTs permit the conversion of a large range of toxic endogenous/xenobiotic compounds to more water-soluble forms for subsequent excretion (Parkinson A (1996) [0002] Toxicol Pathol 24:48-57).
  • The UGT isoenzymes are located primarily in hepatic endoplasmic reticulum and nuclear envelope (Parkinson A (1996) [0003] Toxicol Pathol 24:48-57), though they are also expressed in other tissues such as kidney and skin. UGTs are encoded by a large multigene superfamily that has evolved to produce catalysts with differing but overlapping substrate specificities. Three families, UGT1, UGT2, and UGT8, have been identified within the superfamily. UGTs are assigned to one the subfamilies based on amino acid sequence identity, e.g., UGT1 family members have greater than 45% amino acid sequence identity (Mackenzie et al. (1997) Pharmacogenetics 7:255-69).
  • A single gene encodes several human UGT1 isoforms, the substrate specificity of each of which is thought to arise from differential splicing of a number of substrate-specific 5-prime regions of a single mRNA transcript to a shared 3-prime portion. On the other hand, members of the mammalian UGT2 gene subfamily, which encode the odorant and steroid-metabolizing isoforms, show nucleotide differences in sequence throughout the length of the cDNAs. This suggested that the UGT2 isoenzymes are encoded by several independent genes. The UGT2 genes have been further divided on the basis of their tissue-specific expression patterns into the UGT2A gene subfamily, which encodes olfactory-specific isoforms, and the UGT2B gene subfamily, which encodes steroid-metabolizing isoforms in the liver. Monaghan et al. (1994) [0004] Genomics 23:496499 mapped the UGT2B9 and the UGT2B15 genes to chromosome 4q13, giving a provisional ordering of the genes as UGT2B9-UGT2B4-UGT2B15. The UGT2B subfamily contains phenobarbital-inducible genes, as well as numerous genes that are constitutively expressed and are involved in the glucuronidation of endogenous steroids and biogenic amines (Mackenzie, et al. supra.) Evidence suggests that UGT2B4 is exclusively expressed in human liver, and not in human kidney. Levesque et al. (1997) Pharmacogenetics 7:317; and Coffman et al. (1997) Drug Metabol. and Dispos. 25:1-4, describe UGT2B gene polymorphisms.
  • Alteration of the expression or function of UGTs may affect drug metabolism. For example, there may be common polymorphisms in the human UGT2B gene that alter expression or function of the protein product and cause drug exposure-related phenotypes. Thus, there is a need in the field to identify UGT2B polymorphisms in order to provide a better understanding of drug metabolism and the diagnosis of drug exposure-related phenotypes. [0005]
  • SUMMARY OF THE INVENTION
  • Genetic sequence polymorphisms are identified in the UGT2B4, UGT2B7 and UGT2B15 genes, herein generically referred to as “UGT2B genes”. Nucleic acids comprising the polymorphic sequences are used in screening assays, and for genotyping individuals. The genotyping information is used to predict an individuals' rate of metabolism for UGT2B substrates, potential drug-drug interactions, and adverse/side effects. Specific polynucleotides include the polymorphic UGT2B4 sequences set forth in SEQ ID NOs:25-38; the polymorphic UGT2B7 sequences set forth in SEQ ID NOs:84-111; and the polymorphic UGT2B15 sequences set forth in SEQ ID NOs:147-164. [0006]
  • The nucleic acid sequences of the invention may be provided as probes for detection of UGT2B locus polymorphisms, where the probe comprises a polymorphic sequence of SEQ ID NOs:25-38; 84-111 and 147-164. The sequences may further be utilized as an array of oligonucleotides comprising two or more probes for detection of UGT2B locus polymorphisms. [0007]
  • Another aspect of the invention provides a method for detecting in an individual a polymorphism in UGT2B metabolism of a substrate, where the method comprises analyzing the genome of the individual for the presence of at least one UGT2B polymorphism; wherein the presence of the predisposing polymorphism is indicative of an alteration in UGT2B expression or activity. The analyzing step of the method may be accomplished by detection of specific binding between the individual's genomic DNA with an array of oligonucleotides comprising UGT2B locus polymorphic sequences. In other embodiments, the alteration in UGT2B expression or activity is tissue specific, or is in response to a UGT2B modifier that induces or inhibits UGT2B expression. [0008]
  • BRIEF DESCRIPTION OF THE SEQUENCE LISTING
  • UGT2B Reference Sequences. SEQ ID NOs: 1-6 list the sequence of the reference UGT2B4 exons, where exon 1 is SEQ ID NO:1, exon 2 is SEQ ID NO:2 and so forth. Partial sequence of the flanking introns is included; the boundaries are annotated in the SEQLIST. The cDNA sequence is set forth in SEQ ID NO:7, and the encoded amino acid sequence in SEQ ID NO:8. [0009]
  • SEQ ID NO:39 lists the sequence of the UGT2B7 cDNA sequence, the encoded polypeptide is provided in SEQ ID NO:40. SEQ ID NOs:41-45 list the sequence of the reference UGT2B7 exons, where exon 1 is SEQ ID NO:41, exon 2 is SEQ ID NO:42 and so forth. Partial sequence of the flanking introns is included; the boundaries are annotated in the SEQLIST. [0010]
  • SEQ ID NO:112 lists the sequence of the UGT2B15 cDNA sequence, the encoded polypeptide is provided in SEQ ID NO:113. SEQ ID NOs:114-118 list the sequence of the reference UGT2B15 exons, where exon 1 is SEQ ID NO:114, exon 2 is SEQ ID NO:115 and so forth. Partial sequence of the flanking introns is included; the boundaries are annotated in the SEQLIST. [0011]
  • Primers. The PCR primers for amplification of polymorphic sequences are set forth as SEQ ID NOs:9-14; 46-66; and 135-146. The primers used in sequencing isolated polymorphic sequences are presented as SEQ ID NOs:15-24; 67-83; and 119-134. [0012]
  • Polymorphisms. Polymorphic sequences of UGT2B4 are presented as SEQ ID NOs:25-38. Polymorphic sequences of UGT2B7 are presented as SEQ ID NOs:84-111. Polymorphic sequences of UGT2B15 are presented as SEQ ID NO:147-164. [0013]
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • Pharmacogenetics is the association between an individual's genotype and that individual's ability to metabolize or react to a therapeutic agent. Differences in metabolism or target sensitivity can lead to severe toxicity or therapeutic failure by altering the relation between bioactive dose and blood concentration of the drug. Relationships between polymorphisms in metabolic enzymes or drug targets and both response and toxicity can be used to optimize therapeutic dose administration. [0014]
  • Genetic polymorphisrns are identified in the UGT2B4, UGT2B7 and UGT2B15 genes. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered metabolism for UGT2B substrates, potential drug-drug interactions, and adverse/side effects, as well as diseases that result from environmental or occupational exposure to toxins. The nucleic acids are used to establish animal, cell culture and in vitro cell-free models for drug metabolism. [0015]
  • Definitions [0016]
  • It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, animal species or genera, constructs, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. [0017]
  • As used herein the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a construct” includes a plurality of such constructs and reference to “the UGT2B nucleic acid” includes reference to one or more nucleic acids and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise. [0018]
  • UGT2B4 reference sequence. The sequence of human UGT2B4 cDNA may be accessed through Genbank, accession number Y00317, and is provided in SEQ ID NOs:1-7. The amino acid sequence of UGT2B4 is listed as SEQ ID NO:8. The sequence of human UGT2B7 may be accessed through Genbank, accession number 600068, and in the SEQLIST as described above. The sequence of human UGT2B15 may be accessed through Genbak, accession number 600069, and in the SEQLIST as described above. The nucleotide sequences provided herein differ from the published sequence at certain positions throughout the sequence. Where there is a discrepancy the provided sequence is used as a reference. [0019]
  • The term “wild-type” may be used to refer to the reference coding sequences of UGT2B4, UGT2B7 and UGT2B15, and the term “variant”, or “UGT2B” to refer to the provided variations in the UGT2B sequences. The UGT2B4, UGT2B7 and UGT2B15 sequences are generically referred to as “UGT2B”, and may be further distinguished by the species, e.g. human, mouse, etc., or by the specific gene number, e.g. UGT2B4, UGT2B7, etc. Where there is no published form, such as in the intron sequences, the term wild-type may be used to refer to the most commonly found allele. It will be understood by one of skill in the art that the designation as “wild-type” is merely a convenient label for a common allele, and should not be construed as conferring any particular property on that form of the sequence. [0020]
  • UGT2B polymorphic sequences. It has been found that specific sites in the UGT2B4, UGT2B7 and UGT2B15 genes sequence are polymorphic, i.e. within a population, more than one nucleotide (G, A, T, C) is found at a specific position. Polymorphisms may provide functional differences in the genetic sequence, through changes in the encoded polypeptide, changes in mRNA stability, binding of transcriptional and translation factors to the DNA or RNA, and the like. The polymorphisms are also used as single nucleotide polymorphisms (SNPs) to detect genetic linkage to phenotypic variation in activity and expression of the particular UGT2B protein. [0021]
  • SNPs are generally biallelic systems, that is, there are two alleles that an individual may have for any particular marker. SNPs, found approximately every kilobase, offer the potential for generating very high density genetic maps, which will be extremely useful for developing haplotyping systems for genes or regions of interest, and because of the nature of SNPs, they may in fact be the polymorphisms associated with the disease phenotypes under study. The low mutation rate of SNPs also makes them excellent markers for studying complex genetic traits. [0022]
  • SNPs are provided in the UGT2B4, UGT2B7 and UGT2B15 intron and exon sequences. Tables 4, 7 and 10, and the corresponding sequence listing, provide both forms of each polymorphic sequence. For example, SEQ ID NO:37 and 38 are the alternative forms of a single polymorphic site. The provided sequences also encompass the complementary sequence corresponding to any of the provided polymorphisms. [0023]
  • In order to provide an unambiguous identification of the specific site of a polymorphism, sequences flanking the polymorphic site are shown in the tables, where the 5′ and 3′ flanking sequence is non-polymorphic, and the central position, shown in bold, is variable. It will be understood that there is no special significance to the length of non-polymorphic flanking sequence that is included, except to aid in positioning the polymorphism in the genomic sequence. The UGT2B exon sequences have been published, and therefore one of each pair of the sequences from exons in Tables 4, 7 and 10 are publically known sequence. The intron sequence has not been published, and hence both forms of this polymorphic sequence is novel. [0024]
  • As used herein, the term “UGT2B4, UGT2B7 and UGT2B15 genes” is intended to generically refer to both the wild-type and variant forms of the sequence, unless specifically denoted otherwise. As it is commonly used in the art, the term “gene” is intended to refer to the genomic region encompassing the 5′ UTR, exons, introns, and the 3′ UTR. Individual segments may be specifically referred to, e.g. exon 2, intron 5, etc. Combinations of such segments that provide for a complete UGT2B protein may be referred to generically as a protein coding sequence. [0025]
  • Nucleic acids of interest comprise the provided UGT2B[0026] V nucleic acid sequence(s), as set forth in Tables 4, 7 and 10. Such nucleic acids include short hybridization probes, protein coding sequences, variant forms of UGT2B cDNA, segments, e.g. exons, introns, etc., and the like. Methods of producing nucleic acids are well-known in the art, including chemical synthesis, cDNA or genomic cloning, PCR amplification, etc.
  • For the most part, DNA fragments will be of at least 15 nt, usually at least 20 nt, often at least 50 nt. Such small DNA fragments are useful as primers for PCR, hybridization screening, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide, promoter motifs, etc. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art. [0027]
  • The UGT2B nucleic acid sequences are isolated and obtained in substantial purity, generally as other than an intact or naturally occurring mammalian chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a UGT2B sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically “recombinant”, i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome. [0028]
  • For screening purposes, hybridization probes of the polymorphic sequences may be used where both forms are present, either in separate reactions, spatially separated on a solid phase matrix, or labeled such that they can be distinguished from each other. Assays may utilize nucleic acids that hybridize to one or more of the described polymorphisms. [0029]
  • An array may include all or a subset of the polymorphisms listed in Tables 4, 7 and 10. One or both polymorphic forms may be present in the array, for example the polymorphism of SEQ ID NO:37 and 38 may be represented by either, or both, of the listed sequences. Usually such an array will include at least 2 different polymorphic sequences, i.e. polymorphisms located at unique positions within the locus, and may include all of the provided polymorphisms. Arrays of interest may further comprise sequences, including polymorphisms, of other genetic sequences, particularly other sequences of interest for pharmacogenetic screening, e.g. UGT1, other UGT2 sequences, cytochrome oxidase polymorphisms, etc. The oligonucleotide sequence on the array will usually be at least about 12 nt in length, may be the length of the provided polymorphic sequences, or may extend into the flanking regions to generate fragments of 100 to 200 nt in length. For examples of arrays, see Ramsay (1998) [0030] Nat. Biotech. 16:4044; Hacia et al. (1996) Nature Genetics 14:441-447; Lockhart et al. (1996) Nature Biotechnol. 14:1675-1680; and De Risi et al. (1996) Nature Genetics 14:457-460.
  • Nucleic acids may be naturally occurring, e.g. DNA or RNA, or may be synthetic analogs, as known in the art. Such analogs may be preferred for use as probes because of superior stability under assay conditions. Modifications in the native structure, including alterations in the backbone, sugars or heterocyclic bases, have been shown to increase intracellular stability and binding affinity. Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3′—O′—5′[0031] 13 S-phosphorothioate, 3′—S—5′—O-phosphorothioate, 3′—CH2-5′—O-phosphonate and 3′—NH—5′—O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage.
  • Sugar modifications are also used to enhance stability and affinity. The a-anomer of deoxyribose may be used, where the base is inverted with respect to the natural b-anomer. The 2′—OH of the ribose sugar may be altered to form 2′—O—-methyl or 2′—O-allyl sugars, which provides resistance to degradation without compromising affinity. [0032]
  • Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine. 5-propynyl-2′-deoxyuridine and 5-propynyl-2′-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively. [0033]
  • UGT2B polypeptides. A subset of the provided nucleic acid polymorphisms in UGT2B exons confer a change in the corresponding amino acid sequence. Using the amino acid sequence provided in SEQ ID NO:8 as a reference for UGT2B4, the amino acid polymorphisms of the invention include lys→asn, pos. 40; and glu→asp, pos. 454. Using the amino acid sequence provided in SEQ ID NO:40 as a reference for UGT2B7, the amino acid polymorphisms of the invention include leu→phe, pos. 107; thr→ile, pos. 179; and lys→gln, pos. 430. Using the amino acid sequence provided in SEQ ID NO:125 as a reference for UGT2B15, the amino acid polymorphisms of the invention include ser→gly, pos. 15; asp→tyr, pos. 85; leu→pro, pos. 170; his→gln, pos. 282; ala→val, pos. 398; val→ile, pos. 443; and thr→lys, pos. 523. [0034]
  • Polypeptides comprising at least one of the provided polymorphisms (UGT2B[0035] V polypeptides) are of interest. The term “UGT2BV polypeptides” as used herein includes complete UGT2B protein forms, e.g. such splicing variants as known in the art, and fragments thereof, which fragments may comprise short polypeptides, epitopes, functional domains; binding sites; etc.; and including fusions of the subject polypeptides to other proteins or parts thereof. Polypeptides will usually be at least about 8 amino acids in length, more usually at least about 12 amino acids in length, and may be 20 amino acids or longer, up to substantially the complete protein.
  • The UGT2B4, UGT2B7 and UGT2B15 genetic sequences, including polymorphisms, may be employed for polypeptide synthesis. For expression, an expression cassette may be employed, providing for a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. Various transcriptional initiation regions may be employed that are functional in the expression host. The polypeptides may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. Small peptides can also prepared by chemical synthesis. [0036]
  • Substrate. A substrate is a chemical entity that is modified by UGT2B4, UGT2B7 or UGT2B15, usually under normal physiological conditions. Although the duration of drug action tends to be shortened by metabolic transformation, drug metabolism is not “detoxification”. Frequently the metabolic product has greater biologic activity than the drug itself. In some cases the desirable pharmacologic actions are entirely attributable to metabolites, the administered drugs themselves being inert. Likewise, the toxic side effects of some drugs may be due in whole or in part to metabolic products. [0037]
  • Substrates can be either endogenous substrates, i.e., substrates normally found within the natural environment of UGT2B, such as estriol, or exogenous, i.e. substrates that are not normally found within the natural environment of UGT2B. UGT2B catalyzes glucuronidation of its substrates. The enzymes are specific for UDP-glucuronic acid, and not other UDP sugars. [0038]
  • Exemplary UGT2B4 substrates (i.e., substrates of wild-type UGT2B4 and/or UGT2B4[0039] V polypeptides) include, but are not necessarily limited to estriol and the catechol estrogens 4-hydroxyestrone, and 2-hydroxyestriol, 2-aminophenol, 4-methylumbellifereone, 1-naphthol, 4-hydroxybiphenyl and 4-nitrophenol, 2-aminophenol, 4-hydroxybiphenyl, menthol, etc., among other substrates (Burchell et al. (1991) DNA Cell Biol 10:487494,Jin C J, et al. (1993) Biochem Biophys Res Commun 194:496-503).
  • Exemplary UGT2B7 substrates (i.e., substrates of wild-type UGT2B7 and/or UGT2B7[0040] V polypeptides) include, but are not necessarily limited to oxazepam, hyodeoxycholic acid, estriol, S-naproxen, ketoprofen, ibuprofen, fenoprofen, clofibric acid (Patel et al (1995) Pharmacogenetics 5(1):43-49), morphine (Coffman et al (1997) Drug Metabolism and DisDosition 25:1-4), DMXAA (5,6-dimethylxantheonone-4-acetic acid) (Miners et al (1997) Cancer Res 57:284), 2-Hydroxy MF, 4 methylumbelliferone, carboxylic acid drugs (BP-7,8-trans diol) (Burchell et al., supra.)
  • Exemplary UGT2B15 substrates (i.e., substrates of wild-type UGT2B15 and/or UGT2B15[0041] V polypeptides) include, but are not necessarily limited to 4-hydroxybiphenyl, 1-naphthol, 4 methylumbelliferone, naringenin, eugenol (Burchell et al., supra.), simple phenolic compounds, 7-hydroxylated coumarins, flavonoids, anthraquinones; endogenous estrogens and androgens (Green et al. (1994) Drug Metabolism and Disposition 22:799.
  • Modifier. A modifier is a chemical agent that modulates the action of a UGT2B molecule, either through altering its enzymatic activity (enzymatic modifier) or through modulation of expression (expression modifier, e.g., by affecting transcription or translation). In some cases the modifier may also be a substrate. [0042]
  • Pharmacokinetic parameters. Pharmacokinetic parameters provide fundamental data for designing safe and effective dosage regimens. A drug's volume of distribution, clearance, and the derived parameter, half-life, are particularly important, as they determine the degree of fluctuation between a maximum and minimum plasma concentration during a dosage interval, the magnitude of steady state concentration and the time to reach steady state plasma concentration upon chronic dosing. Parameters derived from in vivo drug administration are useful in determining the clinical effect of a particular UGT2B genotype. [0043]
  • Expression assay. An assay to determine the effect of a sequence. polymorphism on UGT2B expression. Expression assays may be performed in cell-free extracts, or by transforming cells with a suitable vector. Alterations in expression may occur in the basal level that is expressed in one or more cell types, or in the effect that an expression modifier has on the ability of the gene to be inhibited or induced. Expression levels of a variant alleles are compared by various methods known in the art. Methods for determining promoter or enhancer strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a reporter gene such as β-galactosidase, luciferase, chloramphenicol acetyltransferase, etc. that provides for convenient quantitation; and the like. [0044]
  • Gel shift or electrophoretic mobility shift assay provides a simple and rapid method for detecting DNA-binding proteins (Ausubel, F. M. et al. (1989) In: Current Protocols in Molecular Biology, Vol. 2, John Wiley and Sons, New York). This method has been used widely in the study of sequence-specific DNA-binding proteins, such as transcription factors. The assay is based on the observation that complexes of protein and DNA migrate through a nondenaturing polyacrylamide gel more slowly than free DNA fragments or double-stranded oligonucleotides. The gel shift assay is performed by incubating a purified protein, or a complex mixture of proteins (such as nuclear or cell extract preparations), with an end-labeled DNA fragment containing the putative protein binding site. The reaction products are then analyzed on a nondenaturing polyacrylamide gel. The specificity of the DNA-binding protein for the putative binding site is established by competition experiments using DNA fragments or oligonucleotides containing a binding site for the protein of interest, or other unrelated DNA sequences. [0045]
  • Expression assays can be used to detect differences in expression of polymorphisms with respect to tissue specificity, expression level, or expression in response to exposure to various substrates, and/or timing of expression during development. For example, since UGT2B4 is expressed in liver, polymorphisms could be evaluated for expression in tissues other than liver, or expression in liver tissue relative to a reference UGT2B4 polypeptide. [0046]
  • Substrate screening assay. Substrate screening assays are used to determine the metabolic activity of a UGT2B protein or peptide fragment on a substrate. Many suitable assays are known in the art, including the use of primary or cultured cells, genetically modified cells (e.g., where DNA encoding the UGT2B polymorphism to be studied is introduced into the cell within an artificial construct), cell-free systems, e.g. microsomal preparations or recombinantly produced enzymes in a suitable buffer, or in animals, including human clinical trials (see, e.g., Burchell et al. (1995) [0047] Life Sci. 57:1819-1831, specifically incorporated herein by reference. Where genetically modified cells are used, since most cell lines do not express UGT2B activity (liver cells lines being the exception), introduction of artificial construct for expression of the UGT2B polymorphism into many human and non-human cell lines does not require additional modification of the host to inactivate endogenous UGT2B expression/activity. Clinical trials may monitor serum, urine, etc. levels of the substrate or its metabolite(s).
  • Typically a candidate substrate is input into the assay system, and the conversion to a metabolite is measured over time. The choice of detection system is determined by the substrate and the specific assay parameters. Assays are conventionally run, and will include negative and positive controls, varying concentrations of substrate and enzyme, etc. [0048]
  • Genotyping: UGT2B genotyping is performed by DNA or RNA sequence and/or hybridization analysis of any convenient sample from a patient, e.g. biopsy material, blood sample (serum, plasma, etc.), buccal cell sample, etc. A nucleic acid sample from an individual is analyzed for the presence of polymorphisms in UGT2B, particularly those that affect the activity or expression of UGT2B. Specific sequences of interest include any polymorphism that leads to changes in basal expression in one or more tissues, to changes in the modulation of UGT2B expression by modifiers, or alterations in UGT2B substrate specificity and/or activity. [0049]
  • Linkage Analysis: Diagnostic screening may be performed for polymorphisms that are genetically linked to a phenotypic variant in UGT2B activity or expression, particularly through the use of microsatellite markers or SNPs. The microsatellite marker or SNP itself may not phenotypically expressed, but is linked to sequences that result in altered activity or expression. Two polymorphic variants may be in linkage disequilibrium, i.e. where alleles show non-random associations between genes even though individual loci are in Hardy-Weinberg equilibrium. [0050]
  • Linkage analysis may be performed alone, or in combination with direct detection of phenotypically evident polymorphisms. The use of microsatellite markers for genotyping is well documented. For examples, see Mansfield et al. (1994) [0051] Genomics 24:225-233; and Ziegle et al. (1992) Genomics 14:1026-1031. The use of SNPs for genotyping is illustrated in Underhill et al. (1996) Proc Natl Acad Sci USA 93:196-200.
  • Transgenic animals. The subject nucleic acids can be used to generate genetically modified non-human animals or site specific gene modifications in cell lines. The term “transgenic” is intended to encompass genetically modified animals having a deletion or other knock-out of UGT2B4, UGT2B7 or UGT2B15 activity, having an exogenous UGT2B4, UGT2B7 or UGT2B15 gene that is stably transmitted in the host cells, or having an exogenous UGT2B promoter operably linked to a reporter gene. Transgenic animals may be made through homologous recombination, where the UGT2B locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like. Of interest are transgenic mammals, e.g. cows, pigs, goats, horses, etc., and particularly rodents, e.g. rats, mice, etc. [0052]
  • Genetically Modified Cells. Primary or cloned cells and cell lines are modified by the introduction of vectors comprising UGT2B4, UGT2B7 and UGT2B15 genetic polymorphisms. The gene may comprise one or more variant sequences, preferably a haplotype of commonly occurring combinations. In one embodiment of the invention, a panel of two or more genetically modified cell lines, each cell line comprising a UGT2B polymorphism, are provided for substrate and/or expression assays. The panel may further comprise cells genetically modified with other genetic sequences, including polymorphisms, particularly other sequences of interest for pharmacogenetic screening, e.g. UGT1, other UGT2 sequences, cytochrome oxidase polymorphisms, etc. [0053]
  • Vectors useful for introduction of the gene include plasmids and viral vectors, e.g. retroviral-based vectors, adenovirus vectors, etc. that are maintained transiently or stably in mammalian cells. A wide variety of vectors can be employed for transfection and/or integration of the gene into the genome of the cells. Alternatively, micro-injection may be employed, fusion, or the like for introduction of genes into a suitable host cell. [0054]
  • Genotyping Methods [0055]
  • The effect of a polymorphism in the UGT2B4, UGT2B7 or UGT2B15 gene sequence on the response to a particular substrate or modifier is determined by in vitro or in vivo assays. Such assays may include monitoring the metabolism of a substrate during clinical trials to determine the UGT2B enzymatic activity, specificity or expression level. Generally, in vitro assays are useful in determining the direct effect of a particular polymorphism, while clinical studies will also detect an enzyme phenotype that is genetically linked to a polymorphism. [0056]
  • The response of an individual to the substrate or modifier can then be predicted by determining the UGT2B genotype, with respect to the polymorphism. Where there is a differential distribution of a polymorphism by racial background, guidelines for drug administration can be generally tailored to a particular ethnic group. [0057]
  • The basal expression level in different tissue may be determined by analysis of tissue samples from individuals typed for the presence or absence of a specific polymorphism. Any convenient method may be used, e.g. ELISA, RIA, etc. for protein quantitation, northern blot or other hybridization analysis, quantitative RT-PCR, etc. for mRNA quantitation. The tissue specific expression is correlated with the genotype. [0058]
  • The alteration of UGT2B expression in response to a modifier is determined by administering or combining the candidate modifier with an expression system, e.g. animal, cell, in vitro transcription assay, etc. The effect of the modifier on UGT2B transcription and/or steady state mRNA levels is determined. As with the basal expression levels, tissue specific interactions are of interest. Correlations are made between the ability of an expression modifier to affect UGT2B activity, and the presence of the provided polymorphisms. A panel of different modifiers, cell types, etc. may be screened in order to determine the effect under a number of different conditions. [0059]
  • A UGT2B polymorphism that results in altered enzyme activity or specificity is determined by a variety of assays known in the art. The enzyme may be tested for metabolism of a substrate in vitro, for example in defined buffer, or in cell or subcellular lysates, where the ability of a substrate to be metabolized by UGT2B4, UGT2B7 or UGT2B15 under physiologic conditions is determined. Where there are not significant issues of toxicity from the substrate or metabolite(s), in vivo human trials may be utilized, as previously described. [0060]
  • The genotype of an individual is determined with respect to the provided UGT2B4, UGT2B7 and UGT2B15 polymorphisms. The genotype is useful for determining the presence of a phenotypically evident polymorphism, and for determining the linkage of a polymorphism to phenotypic change. [0061]
  • A number of methods are available for analyzing nucleic acids for the presence of a specific sequence. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki et al. (1985) [0062] Science 230:1350-1354, and a review of current techniques may be found in Sambrook et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2-14.33. Amplification may be used to determine whether a polymorphism is present, by using a primer that is specific for the polymorphism. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al. (1990) Nucleic Acids Res 18:2887-2890; and Delahunty et al. (1996) Am J Hum Genet 58:1239-1246.
  • A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2′,4′,7′,4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N′,N′-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. [0063] 32p, 35S, 3H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.
  • The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in U.S. Pat. No. 5,445,934, or in WO95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), mismatch cleavage detection, and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease (restriction fragment length polymorphism, RFLP), the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels. [0064]
  • In one embodiment of the invention, an array of oligonucleotides are provided, where discrete positions on the array are complementary to one or more of the provided polymorphic sequences, e.g. oligonucleotides of at least 12 nt, frequently 20 nt, or larger, and including the sequence flanking the polymorphic position. Such an array may comprise a series of oligonucleotides, each of which can specifically hybridize to a different polymorphism. For examples of arrays, see Hacia et al. (1996) [0065] Nat Genet 14:441-447 and DeRisi et a. (1996) Nat Genet 14:457-460.
  • The genotype information is used to predict the response of the individual to a particular UGT2B substrate or modifier. Where an expression modifier inhibits UGT2B expression, then drugs that are a UGT2B substrate will be metabolized more slowly if the modifier is co-administered. Where an expression modifier induces UGT2B expression, a co-administered substrate will typically be metabolized more rapidly. Similarly, changes in UGT2B activity will affect the metabolism of an administered drug. The pharmacokinetic effect of the interaction will depend on the metabolite that is produced, e.g. a prodrug is metabolized to an active form, a drug is metabolized to an inactive form, an environmental compound is metabolized to a toxin, etc. Consideration is given to the route of administration, drug-drug interactions, drug dosage, etc. [0066]
  • EXAMPLES
  • The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g., amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric. [0067]
  • EXAMPLE 1 Genotyping UGT2B4
  • Materials and Methods [0068]
  • DNA Samples. Blood specimens from approximately 48 individuals were collected after obtaining informed consent. All samples were stripped of personal identifiers to maintain confidentiality. The only data associated with a given blood samples was gender and self-reported major racial group designations in the United States (Caucasian, Hispanic, African American). Genomic DNA was isolated from these samples using standard techniques. DNA was stored either as a concentrated solution, or in a dried form in microtiter plates. [0069]
  • PCR amplifications. The primers used to amplify exons in which polymorphisms were found are shown in Table 1, and were designed with NBI's Oligo version 5.1 program. Sequences for exons in which no polymorphisms were found are not shown. [0070]
    TABLE 1
    UGT2B4 PCR Primers.
    Primary PCR Amplification
    Forward/ SEQ
    Region Reverse ID NO Sequence
    UGT2B4 F 9. taccttttagttgtctctttgtca
    Exon 1 R 10. ttcctggagtcttctgtatga
    UGT2B4 F 11. catcccttgttcttctcatt
    Exon 4 R 12. cgggactggaaaataaatat
    UGT2B4 F 13. ggggtttcaccgtgtta
    Exon 6 R 14. aaagccaagcagcactaa
  • Twenty-five nanograms of gDNA were amplified in the primary amplifications using the Perkin Elmer GeneAmp PCR kit according to the manufacturer's instructions in 25 μl reactions with AmpliTaq Gold DNA polymerase. Reactions contained 25 mM MgCl[0071] 2 and 0.2 μM of each primer. Thermal cycling was performed using a GeneAmp PCR System 9600 PCR machine (Perkin Elmer), utilizing a touch-down PCR protocol. The protocol, unless indicated otherwise in Table 2, consisted of an initial incubation of 95° C. for 10 min, followed by ten cycles of 95° C. for 20 sec, 64° C. (minus 1° C. per cycle) for 20 sec, 72° C. for 2 min, six cycles of 95° C. for 20 sec, 54° C. for 20 sec, 72° C. for 2 min, and nineteen cycles of 95° C. for 20 sec, 54° C. for 20 sec, 72° C. for 2 min (plus 15 sec per cycle), and one final extension step of 72° C. for 10 min.
  • For the secondary PCR reactions, one microliter of each primary PCR reaction was re-amplified using the primary PCR primers. The thermal cycling profile that was used for the primary PCR for an exon was also used for the secondary PCR. [0072]
    TABLE 2
    Cycling Profile Modifications
    Exon Primary PCR Secondary PCR
    1 Touch-Down POR step: 8 cycles same as Primary POR
    64° C. (minus 1° C. per cycle), for 15 sec
    Total Number of cycles: 35
    4 Touch-Down PCR step: 10 cycles same as Primary POR
    64° C. (minus 1° C. per cycle), for 15 sec
    Total Number of cycles: 35
    6 Touch-Down PCR step: 7 cycles same as Primary POR
    64° C. (minus 1° C. per cycle), for 15 sec
    Total Number of cycles: 35
  • DNA sequencing. PCR products from 48 individuals (approximately ⅓ African American, ⅓ Caucasian, ⅓ Hispanic) were prepared for sequencing by treating 8 μl of each PCR product with 0.15 μl of exonuclease 1 (1.5 U/reaction), 0.3 μl of Shrimp Alkaline Phosphatase (0.3U/reaction), q.s. to 10 μl with MilliQ water, and incubated at 37° C. for 30 min, followed by 72° C. for 15 min. Cycle sequencing was performed on the GeneAmp PCR System 9600 PCR machine (Perkin Elmer) using the ABI Prism dRhodamine Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's directions, with the following changes: (1) 2 μl of dRhodamine terminator premix, instead of 8 μl, (2) 10% (v/v) Dimethylsulfoxide was added to each individual nucleotide. The oligonucleotide primers (unlabelled), at 3 picomoles per reaction, used for the sequencing reactions are listed in Table 3. Sequencing reactions, with a final volume of 5 μl, were subjected to 25 cycles at 96° C. for 10 sec, 50° C. for 5 sec, and 60° C. for 4 min, followed by ethanol precipitation. After decanting the ethanol, samples were evaporated to dryness using a SpeedVac for roughly 15 min and were resuspended in 2 μl of loading buffer (5:1 deionized formamide:50 mM EDTA pH 8.0), heated to 94° C. for 2 min, and were electrophoresed through 5.25% polyacrylamide/6M urea gels in an ABI Prism 377 DNA Sequencer, according to the manufacturer's instructions for sequence determination. All sequences were determined from both the 5′ and 3′ (sense and antisense) direction. [0073]
    TABLE 3
    Sequencing Primers
    P. No. F/R SEQ ID NO Forward Primer
    1 F 15. ccacatgctcagactgttaa
    R 16. caaaaataccccactaccc
    2 F 17. cccttgttcttctcattgtta
    R 18. ttcagtaagcttgtttcatgat
    3,4 F 19. cctggccaaattgactt
    R 20. caggaacccagtcacatc
    5 F 21. ggggaaaagagattaattacg
    R 22. agccaagcagcactaatc
    6,7 F 23. tccaattcacaggttacatg
    R 24. agccaagcagcactaatc
  • [0074]
    TABLE 4
    Summary of UGT2B4 polymorphisms.
    Nt SEQ
    Exon change AA change ID Sequence
    1 G 157 C Lys 40 Asn 25. tggatgaatataaagacaatc
    ctggat
    26. tggatgaatataaacacaatc
    ctggat
    Int.4 T 61 C 27. aagtgttaatagttatcatga
    aacaag
    28. aagtgttaatagctatcatga
    aacaag
    6 T 1411 A Glu 454 Asp 29. tgaagccccttgatcgagcag
    tcttct
    30. tgaagccccttgaacgagcag
    tcttct
    6 C 1412 A 31. tgaagccccttgatcgagcag
    tcttct
    32. tgaagccccttgatagagcag
    tcttct
    6 T 1849 C 33. gatataaagccatacgaggtt
    atattg
    34. gatataaagccatatgaggtt
    atattg
    6 A 1919 C 35. caggttacatgaaaaaaaatt
    tacta
    36. caggttacatgaaaaacaatt
    tacta
    6 A 2072 G 37. ttgttgaggaagctaataaat
    aattaa
    38. ttgttgaggaaactaataaat
    aattaa
  • EXAMPLE 2 UGT2B7 Genotyping
  • Twenty-five nanograms of gDNA were amplified in the primary amplifications using the Perkin Elmer GeneAmp PCR kit according to the manufacturer's instructions in 25 μl reactions with AmpliTaq Gold DNA polymerase. Reactions contained 25 mM MgCl[0075] 2 and 0.2 μM of each primer. Thermal cycling was performed using a GeneAmp PCR System 9600 PCR machine (Perkin Elmer), utilizing a touch-down PCR protocol.
  • The exons for UGT2B7 were amplified using the following cycling conditions: An initial incubation at 96° C. for 10 min., followed by 16 cycles of 95° C. for 20 sec., 52° C. for 20 sec., 72° C. for 2 min., and nineteen cycles of 95° C. for 20 sec, 52° C. for 20 sec, 72° C. for 2 min (plus 15 sec per cycle), and one final extension step of 72° C. for 10 min. [0076]
  • For the secondary PCR reactions, one microliter of each primary PCR reaction was re-amplified using the primary PCR primers. The thermal cycling profile that was used for the primary PCR for an exon was also used for the secondary PCR. [0077]
  • The amplification primers are provided in Table 5, the sequencing primers in Table 6, and the polymorphisms in Table 7. [0078]
    TABLE 5
    PCR Primers for UGT2B7 Amplification
    SEQ
    Region ID NO Primer Sequence
    UGT2B7 Primary F 46. cttggctaatttatctttgg
    Exon 1 Primary R 47. cccactaccctgactttat
    Secondary F 48. ggacataaccatgagaaatg
    Secondary R 49. agctctgcttcaaagacac
    UGT2B7 Primary F 50. tgtccgtatgctactattgaa
    Exon 2 Primary R 51. tgtgctaatccctttgtaaat
    Secondary F 52. tttttttttctattcctgtcag
    Secondary R 53. ctttaccccacccattt
    UGT2B7 Primary F 54. cccttgatctcattcctact
    Exon 4 Primary R 55. aactggctattctttagatgtatg
    Secondary F 56. cattcctactctttatacagttctc
    Secondary R 57. cccccgattcagactat
    UGT2B7 Primary F 58. cccttgatctcattcctact
    Exon 5 Primary R 59. aactggctattctttagatgtatg
    Secondary F 60. tcctccgaagtctgaaac
    Secondary R 61. tataaaaaggatgaaactcacac
    UGT2B7 Primary F 62. caagcccccaagttatgt
    Exon 6 Primary R 63. cagtaggatccgcgatataa
    Secondary F 64. tctgaggggttttgtctgta
    Secondary R 65. ccgcgatataagttcaacaa
  • DNA sequencing. PCR products from 48 individuals were prepared for sequencing by treating 8 μL of each PCR product with 0.15 μL of exonuclease I (1.5U/reaction), 0.3 μL of Shrimp Alkaline Phosphatase (0.3U/reaction), q.s. to 10 μL with MilliQ water, and incubated at 37° C. for 30 min, followed by 72° C. for 15 min. Cycle sequencing was performed on the GeneAmp PCR System 9600 PCR machine (Perkin Elmer) using the ABI Prism dRhodamine Terminator Cycle Sequencing Ready Reaction Kit or the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's directions, with the following changes: For the ABI Prism dRhodamine Terminator kit, (1) 2 μL of dRhodamine terminator premix, instead of 8 μL, (2) 10% (v/v) Dimethylsulfoxide was added to each individual nucleotide, (3) 5 μL total volume instead of 20 μL. For the ABI Prism Big Dye Terminator kit (1) 0.8 μL of Big Dye terminator premix, instead of 8 μL, and (2) 15 μL total volume instead of 20 μL. The oligonucleotide primers (unlabeled), at 3 picomoles per reaction, used for the sequencing reactions are listed in Table 6. Sequencing reactions, with a final volume of 5 μL, were subjected to 25 cycles at 96° C. for 10 sec, 50° C. for 5 sec, and 60° C. for 4 min, followed by ethanol precipitation. After decanting the ethanol, samples were evaporated to dryness using a SpeedVac for roughly 15 min and were resuspended in 2 μl of loading buffer (5:1 deionized formamide:50 mM EDTA pH 8.0), heated to 94° C. for 2 min, and were electrophoresed through 5.25% polyacrylamide/6M urea gels in an ABI Prism 377 DNA Sequencer, according to the manufacturer's instructions for sequence determination. All sequences were determined from both the 5′ and 3′ (sense and antisense) direction. [0079]
    TABLE 6
    Sequencing Primers UGT2B7
    P. No. F/R SEQ ID NO Primer Sequence
     1,2 F 66. ggacataaccatgagaaatg
    R 67. ttaagagcggatgagttgt
     3,4 F 68. tcatcatgcaacagattaag
    R 69. cactacagggaaaaatagca
     5 F 70. accctttgtgtacagtctca
    R 71. agctctgcttcaaagacac
     6,7 F 72. ttgcctacattattctaaccc
    R 73. ctttaccccacccattt
     8,9 F 74. cattcctactctttatacagttctc
    R 75. cccccgattcagactat
    10 F 76. cattcctactctttatacagttctc
    R 77. cccccgattcagactat
    11,12 F 78. tcctccgaagtctgaaac
    R 79. tataaaaaggatgaaactcacac
    13 F 80. tctgaggggttttgtctgta
    R 81. ttttttgtctcaggaagaaaga
    14 F 82. aaaaaaagaaaaaaaaatcttttc
    R 83. ccgcgatataagttcaacaa
  • [0080]
    TABLE 7
    SEQ
    Nt ID
    N Exon Change AA change NO. Sequence
    1 1 G 13 A 84. tgcattgcaccaggatgt
    ctgt
    85. tgcattgcaccaagatgt
    ctgt
    2 1 T 151 C Leu 107 Phe 86. tcctggatgagcttattc
    agaga
    87. tcctggatgagcctattc
    agaga
    3 1 A 236 T 88. cattttggttatattttt
    cac
    89. cattttggttttattttt
    cac
    4 1 A 286 G 90. cataactagaaagttctg
    taa
    91. cataactaggaagttctg
    taa
    5 1 C 450 T Thr 179 Ile 92. cctggctacactttttga
    aaa
    93. cctggctacatttttgaa
    aa
    6 2 A 14 G 94. gaagacccactacattat
    ctg
    95. gaagacccactacgttat
    ctg
    7 2 AT 80-81 96. aattttcagtttccatat
    TC ccactctt
    97. aattttcagtttcctcat
    ccactctt
    8 4 C 57 G 98. aggtctcaatactcggc
    tcta
    99. taggtctcaatactcggc
    tgta
    9 4 C 60 T 100. tacaagtggataccccag
    a
    101. tataagtggataccccag
    a
    10 In.4 A 154 102. gggagaaagaatacatta
    del taattttt
    103. gggagaaagaatacttat
    aattttt
    11 5 C 101 T 104. ttccattgtttgccgatc
    aac
    105. ttccattgtttgctgatc
    aac
    12 5 A 198 C Lys 430 Gln 106. gaatgcattgaagagagt
    aat
    107. gaatgcattgcagagagt
    aat
    13 6 A 197 G 108. ctggtctgtgtggcaact
    gtga
    109. ctggtctgtgtggcgact
    gtga
    14 6 C 528 A 110. taagataaagccttatga
    g
    111. taagataaagacttatga
    g
  • EXAMPLE 3 Genotyping UGT2B15
  • Sequencing and analysis were performed as described in Example 2. The amplification primers are provided in Table 9, the sequencing primers in Table 8, and the polymorphisms in Table 10. [0081]
    TABLE 8
    Sequencing Primers UGT2B15
    SEQ
    ID
    Region NO Primer Sequence
    UGT2B15 Primary F 119. catgcacctattcagactgt
    Exon 1 Primary R 120. tgggtgtcctgtagtagtga
    Secondary F 121. attgatttttcctcagatataagta
    Secondary R 122. tcataatttcccttaaaaacac
    UGT2B15 Primary F 123. atatgtttgggtatgttattcc
    Exon 2 Primary R 124. ccatattcccctcactct
    Secondary F 125. atacctgcatattcaaataacaa
    Secondary R 126. tatccagccattccttct
    UGT2B15 Primary F 127. agttttgtgggtataatgttac
    Exon 5 Primary R 128. aaacgggttaaaattcata
    Secondary F 129. tcataccttgtaattaataattttg
    Secondary R 130. cgggttaaaattcatattca
    UGT2B15 Primary F 131. tcatgccaattcagtgac
    Exon 6 Primary R 132. accctccatgctgaaat
    Secondary F 133. tcaaagaccatccatagactt
    Secondary R 134. ggagtcccatctttcagtc
  • [0082]
    TABLE 9
    PCR Primers UGT2B15
    P. No. F/R SEQ ID NO Primer Sequence
    1,2 F 135. attgatttttcctcagatataagta
    R 136. atttactggcattgacaag
    3 F 137. attgatttttcctcagatataagta
    R 138. tgtacagaaagggtatgttaaa
    F 139. aaaaat g/t atttggaagattc
    R 140. tcataatttcccttaaaaacac
    5 F 141. atacctgcatattcaaataacaa
    R 142. tatccagccattccttct
    6,7 F 143. tcataccttgtaattaataattttg
    R 144. cgggttaaaattcatattca
    8,9 F 145. tcaaagaccatccatagactt
    R 146. ggagtcccatctttcagtc
  • [0083]
    TABLE 10
    Summary of Sequence Polymorphisms UGT2B15
    SEQ
    Ntd ID
    N Exon change AA change NO. Sequence
    1 1 A 53 G Ser 15 Gly 147. tgatacagctcagttgtta
    c
    148. tgatacagctcggttgtta
    c
    2 1 T 184 G 149. tgttgacatcttcggcttc
    t
    150. tgttgacatcgtcggcttc
    t
    3 1 G 263 T Asp 85 Tyr 151. ctttaactaaaaatgattt
    ggaa
    152. ctttaactaaaaattattt
    ggaa
    4 1 T 519 C Leu 170 Pro 153. tttaacataccctttctgt
    aca
    154. tttaacataccctttccgt
    aca
    5 2 C 122 G His 282 Gln 155. ttggaggacttcactgtaa
    acc
    156. ttggaggacttcagtgtaa
    acc
    6 5 G 59 A 157. tatgaggcgatctaccatg
    ggat
    158. tatgaggcaatctaccatg
    ggat
    7 5 C 100 T Ala 398 Val 159. cccttgtttgcggatcaac
    atgat
    160. cccttgtttgtggatcaac
    atgat
    8 6 G 14 A Val 443 Ile 161. aaagagaatgtcatgaaat
    tat
    162. aaagagaatatcatgaaat
    tat
    9 6 C 523 A Thr 523 Lys 163. gcttgccaaaacaggaaag
    aa
    164. gcttgccaaaaaaggaaag
    aa
  • All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. [0084]
  • Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims. [0085]
  • 1 164 1 1323 DNA H. sapiens Other (140)...(897) 1 tcatctacct tttagttgtc tctttgtcat ccacatgctc agactgttaa tataatgtat 60 ttactttgaa gtgtaaaagt tacattttaa cttcttgact gatttatact ggatgtcacc 120 atgagaaatg acagaaagga gcagcaactg gaaaacaagc attgcattgc atcaggatgt 180 ctatgaaatg gacttcagct cttctgctga tacagctgag ctgttacttt agctctggga 240 gttgtggaaa ggtgctggtg tggcccacag aattcagcca ctggatgaat ataaagacaa 300 tcctggatga acttgtccag agaggtcatg aggtgactgt attggcatct tcagcttcca 360 tttctttcga tcccaacagc ccatctactc ttaaatttga agtttatcct gtatctttaa 420 ctaaaactga gtttgaggat attatcaagc agctggttaa gagatgggca gaacttccaa 480 aagacacatt ttggtcatat ttttcacaag tacaagaaat catgtggaca tttaatgaca 540 tacttagaaa gttctgtaag gatatagttt caaataagaa acttatgaag aaactacagg 600 agtcaagatt tgatgttgtt cttgcagatg ctgttttccc ctttggtgag ctgctggccg 660 agttacttaa aatacccttt gtctacagcc tccgcttctc tcctggctac gcaattgaaa 720 agcatagtgg aggacttctg ttccctcctt cctatgtgcc tgttgttatg tcagaactaa 780 gtgaccaaat gactttcata gagagggtaa aaaatatgat ctatgtgctt tattttgaat 840 tttggttcca aatatttgac atgaagaagt gggatcagtt ctacagtgaa gttctaggta 900 agtaactttt ttgattggta acatgaagat ctaactttct tgtacctttg aagctgagtt 960 tgtataaagc cataaagtca gggtagtggg gtatttttgt aatgaattta tcaaatgaaa 1020 ttgtaagatg atctaccaaa ctcacaagca ctatagaaaa tgtaaattat aggatcagtt 1080 aaaactctgt ggccatcact catacagaag actccaggaa gtcataagcc tgtatattag 1140 tgcacctaag atttctttaa gcaatcacat atctgtttta ttatacattt tttcatctta 1200 aaaaaaagtc agacttattc agaaacatct tgctgaatgc atactggtag attgagtagt 1260 tacacatttt ttagaactat ctatataaca ttgcagaaat tgttttttct tgtatatttg 1320 cag 1323 2 746 DNA H. sapiens Other (195)...(344) 2 ttcttgtaaa tacacatggg taaaatatat aatacataaa aattaaatta tgcctatata 60 cgaatatatg tatttttttt caaggcacaa acactttgcc tacatttttg cccacattat 120 tctaacttct ttcagaaaat tacctagttt aattatcttg tgtcatctat cttttctttt 180 tttttccccc atcaggaaga cccactacgt tatctgagac aatggcaaaa gctgacatat 240 ggcttattcg aaactactgg gattttcaat ttcctcaccc actcttacca aatgttgagt 300 tcgttggagg actccactgc aaacctgcca aacccctacc gaaggtaaac tattactgtt 360 tgttttgtct gctttgaagt ttcagtacga atggttctat attcattcaa agtgtttgac 420 ttacactgga agaaaggtgg aagtgggaag agtaaagcag ataccaatta gaaactgacg 480 tacatgttga tactatcaca agtttatgaa tttcatcatt attaccaata aagagggata 540 ctaaagagac tttgaaaata gggttggtaa attaaagctt tgattatgca acatataaga 600 aggtactggc cattcattca aagaatattt ataaagagat tagcacacac cacaggtacg 660 tgtatgggac acagtttcta tcccaacaca ccttacattc tattttgaaa gatagaatat 720 atgcaagtaa taaaaactgt gtaaaa 746 3 785 DNA H. sapiens Other (238)...(369) 3 ttcacaaacg cacacacata cacacacaca tatttacaca aagaccctta acagaggcaa 60 cctatctcat attatacata ttgcaaaaaa aactgagtaa ttgagtcagt taaaaaacat 120 cctttactcc aataattcct gataaaactt gattttctct ctttttataa caattctttc 180 acagtgcttg ctgtgctgat aatctattat gatagaacaa attctttttt ttcacaggaa 240 atggaagagt ttgtccagag ctctggagaa aatggtgttg tggtgttttc tctggggtcg 300 atggtcagta acacgtcaga agaaagggcc aatgtaattg catcagccct tgccaagatc 360 ccacaaaagg taagataaaa tgttttaatg gtgtaaaaaa ctactgaaag aggctgttaa 420 agtttgtaaa gaacccaatt gtagaaactt cctgcctata tattcagctg ttgggaaagc 480 actaattatc tcagatatta attcaaaatc aaaaatatgt atggaagatg ataaactcat 540 acagaaggtg tttttcattg gtaattaatt tggcattaat attgtgatca ggaataaata 600 caattaagag ttgcaggtaa agttttggta ttatcatgat actggggtca ggtaagagct 660 atcaccaaat tctgcccctg tgatttgatc cttttgttta agaactcctg agggcgatgt 720 acatcctaca ggtgttagaa aacgttacat tttaatgagt aacttcacta gcacaataac 780 aatag 785 4 1138 DNA H. sapiens Other (395)...(482) 4 catctgttat tttttgagtt tttaataatg gccattctga ctggtgtgag atggtatctc 60 tttgtggatt taaccagtga tgtaaacctt tttttcatat agtggtttgc cacatatagt 120 tttcttttga aaagtgtaac aactttttaa atacttgaac ttttcattga ttatcttatt 180 tgtctaagct actattttga aaaatcatga tttccttata tacctaatta tgaaattaag 240 gaaatgaaat atgagtattc tatttacatc agtctgagta gttcttgtta cttaacatcc 300 cttgttcttc tcattgttaa tctctttaga tttctaacat tctatgactt ttgagttcca 360 ctcatggaat aagatatttt cttcactgta acaggttctg tggagatttg atgggaataa 420 accagatact ttaggactca atactcggct gtacaagtgg ataccccaga atgatcttct 480 tggtaagtct ctgaagaaca aatactgaat atattagtaa cagattatta aagtgttaat 540 agctatcatg aaacaagctt actgaacatt tgttatggaa aaacttaaaa ataaaatgaa 600 acttctttat atttattttc cagtcccggg ggaaaagaat aaattgttgg cattttatga 660 tatgcaccca cattctttac aatcagagtc agagtatctt tatttcaggt gttattacct 720 cccacagaat ttttctggca cttcctgggt tgtcttcctt tctcatattt ctacaacttt 780 acacctgttc tttcctcctc tgtagggtta tttcaaatgt cactaaaagt aacagctctt 840 ctgctatcac cagggatgct gcattttctg taggattaaa tccctaatct taatcaaaaa 900 gtgatgacac atttcataat gaaatgtgac ctgtctttcc tcaattctag caccaccacc 960 acctcactgc ctgctgcctt gcacacccta catatccaac tccgtgactg tacttaagag 1020 aacacattct ggctgggcac ggtgctcacg cctgcaatcc tagcactttg ggaggctgat 1080 ggcaggtgga ttgactgagc tcaggagttc aagaccatcc tgggcaacat ggtgaaac 1138 5 689 DNA H. sapiens Other (123)...(342) 5 aaaaacaatt ttaattcagt tcagtgtgtt atctaggaaa caccgtcaca ttcagattct 60 tccattgtgc atttctcatt ttattcctat gaataatttt gctaaaattc atccaatcct 120 aggtcaccca aaaaccagag cttttataac tcatggtgga gccaatggca tctatgaggc 180 aatctaccat ggaatcccta tggtgggcgt tccattgttt gcagatcaac ctgataacat 240 tgcacacatg aaggccaagg gagcagctgt tagtttggac ttccacacaa tgtcgagtac 300 agacttactc aatgcactga agacagtaat taatgatcct ttgtgagtat aacttttttt 360 ttactcggtg gtctttatag ataggttccc ttgtgaatag tgagtatgac ttttatcctt 420 tttataagcg actgatttcg aaagaattta agtgatttaa acaatctgaa atctgctttt 480 atttttgagt ggttatttaa aaattttatt tgaaccacat acatttaatg aataatcaat 540 tattgaaata attttctaca caaaaataat tttaaagtga tatagataag aagacatttt 600 aaaataaatt tgacgtaatc aatccacagt agaaaggaaa gataaacttg acgtaatata 660 ataaaatatt ttaattcaat atctaaaat 689 6 1589 DNA H. sapiens Other (731)...(1475) 6 atgcttaagc aatgggtagc ctttcttcat gatgtgatta tttcacactg cagcctgtat 60 caaaacatct catgcacctc atagaaaaat acccctacta tgtaaccaca aaaactaaaa 120 attaaaagaa aataaaattg ctcatatgtt ctctgcctca aataattaac tttctcacct 180 gaccctccat ttttacttta aaaatatttg tcaattatga aattccaatt taaaagccaa 240 actttctatg atgactcaaa ttaaaataca cacattctat gtcaattcta tgacatttac 300 tttgaatgat ctggcacttt aaaaaccttt cgtggacttg atgtgctcag gcaaattaac 360 ttaccttctc tttttttgag agggaagtct cactctgtca ccaggctgga gtgcagtggt 420 gtgattgtgg ctcactgcaa cttccgcctc ttgggttcaa gcgattctcc tgcctcagcc 480 tctcaagtag ctgggactac aggcacatgc caccacgcct gggtaatctt tttttttttt 540 ttttttttca tatttttact ggagacgggg tgaacggggt ttcaccgtgt tagccaggat 600 ggtcttgatc tcctgacctc gtgatccgcc cgcctcgacc tcggaaagtg ctgggattgc 660 aggtgtgagc ctccgtgcct ggccaaattg acttactttc aatgttgata cttttctgct 720 tatcgtttag atataaagag aatgctatga aattatcaag aattcatcat gatcaaccag 780 tgaagcccct tgatcgagca gtcttctgga ttgaatttgt catgcgccat aaaggagcca 840 agcaccttcg ggttgcagcc cacgacctca cctggttcca gtaccactct ttggatgtga 900 ctgggttcct gctggcctgt gtggcaactg tgatattcat catcacaaaa tgtctgtttt 960 gtgtctggaa gtttgttaga acaggaaaga aggggaaaag agattaatta cgtctgaggc 1020 tggaagctgg gaaacccaat aaatgaactc ctttagttta ttacaacaag aagacgttgt 1080 gatacaagag attcctttct tcttgtgaca aaacatcttt caaaacttac cttgtcaagt 1140 caaaatttgt tttagtacct gtttaaccat tagaaatatt tcatgtcaag gaggaaaaca 1200 ttagggaaaa caaaaatgat ataaagccat acgaggttat attgaaatgt attgagctta 1260 tattgaaatt tattgttcca attcacaggt tacatgaaaa aaaatttact aagcttaact 1320 acatgtcaca cattgtacat ggaaacaaga acattaagaa gtccactgac agtatcagta 1380 ctgttttgca aatactcagc atactttgga tccatttcat gcaggattgt gttgttttaa 1440 ctgttgttga ggaaactaat aaataattaa attgtataga aagtctcttc ctcttgatat 1500 tttgagatga ttagtgctgc ttggctttta ttgtgcatcg tgcttcaacg tcattttttt 1560 tcctaaaagg tatgataaaa aatgcttac 1589 7 2092 DNA H. sapiens CDS (38)...(1621) 7 agcagcaact ggaaaacaag cattgcattg catcagg atg tct atg aaa tgg act 55 Met Ser Met Lys Trp Thr 1 5 tca gct ctt ctg ctg ata cag ctg agc tgt tac ttt agc tct ggg agt 103 Ser Ala Leu Leu Leu Ile Gln Leu Ser Cys Tyr Phe Ser Ser Gly Ser 10 15 20 tgt gga aag gtg ctg gtg tgg ccc aca gaa ttc agc cac tgg atg aat 151 Cys Gly Lys Val Leu Val Trp Pro Thr Glu Phe Ser His Trp Met Asn 25 30 35 ata aag aca atc ctg gat gaa ctt gtc cag aga ggt cat gag gtg act 199 Ile Lys Thr Ile Leu Asp Glu Leu Val Gln Arg Gly His Glu Val Thr 40 45 50 gta ttg gca tct tca gct tcc att tct ttc gat ccc aac agc cca tct 247 Val Leu Ala Ser Ser Ala Ser Ile Ser Phe Asp Pro Asn Ser Pro Ser 55 60 65 70 act ctt aaa ttt gaa gtt tat cct gta tct tta act aaa act gag ttt 295 Thr Leu Lys Phe Glu Val Tyr Pro Val Ser Leu Thr Lys Thr Glu Phe 75 80 85 gag gat att atc aag cag ctg gtt aag aga tgg gca gaa ctt cca aaa 343 Glu Asp Ile Ile Lys Gln Leu Val Lys Arg Trp Ala Glu Leu Pro Lys 90 95 100 gac aca ttt tgg tca tat ttt tca caa gta caa gaa atc atg tgg aca 391 Asp Thr Phe Trp Ser Tyr Phe Ser Gln Val Gln Glu Ile Met Trp Thr 105 110 115 ttt aat gac ata ctt aga aag ttc tgt aag gat ata gtt tca aat aag 439 Phe Asn Asp Ile Leu Arg Lys Phe Cys Lys Asp Ile Val Ser Asn Lys 120 125 130 aaa ctt atg aag aaa cta cag gag tca aga ttt gat gtt gtt ctt gca 487 Lys Leu Met Lys Lys Leu Gln Glu Ser Arg Phe Asp Val Val Leu Ala 135 140 145 150 gat gct gtt ttc ccc ttt ggt gag ctg ctg gcc gag tta ctt aaa ata 535 Asp Ala Val Phe Pro Phe Gly Glu Leu Leu Ala Glu Leu Leu Lys Ile 155 160 165 ccc ttt gtc tac agc ctc cgc ttc tct cct ggc tac gca att gaa aag 583 Pro Phe Val Tyr Ser Leu Arg Phe Ser Pro Gly Tyr Ala Ile Glu Lys 170 175 180 cat agt gga gga ctt ctg ttc cct cct tcc tat gtg cct gtt gtt atg 631 His Ser Gly Gly Leu Leu Phe Pro Pro Ser Tyr Val Pro Val Val Met 185 190 195 tca gaa cta agt gac caa atg act ttc ata gag agg gta aaa aat atg 679 Ser Glu Leu Ser Asp Gln Met Thr Phe Ile Glu Arg Val Lys Asn Met 200 205 210 atc tat gtg ctt tat ttt gaa ttt tgg ttc caa ata ttt gac atg aag 727 Ile Tyr Val Leu Tyr Phe Glu Phe Trp Phe Gln Ile Phe Asp Met Lys 215 220 225 230 aag tgg gat cag ttc tac agt gaa gtt cta gga aga ccc act acg tta 775 Lys Trp Asp Gln Phe Tyr Ser Glu Val Leu Gly Arg Pro Thr Thr Leu 235 240 245 tct gag aca atg gca aaa gct gac ata tgg ctt att cga aac tac tgg 823 Ser Glu Thr Met Ala Lys Ala Asp Ile Trp Leu Ile Arg Asn Tyr Trp 250 255 260 gat ttt caa ttt cct cac cca ctc tta cca aat gtt gag ttc gtt gga 871 Asp Phe Gln Phe Pro His Pro Leu Leu Pro Asn Val Glu Phe Val Gly 265 270 275 gga ctc cac tgc aaa cct gcc aaa ccc cta ccg aag gaa atg gaa gag 919 Gly Leu His Cys Lys Pro Ala Lys Pro Leu Pro Lys Glu Met Glu Glu 280 285 290 ttt gtc cag agc tct gga gaa aat ggt gtt gtg gtg ttt tct ctg ggg 967 Phe Val Gln Ser Ser Gly Glu Asn Gly Val Val Val Phe Ser Leu Gly 295 300 305 310 tcg atg gtc agt aac acg tca gaa gaa agg gcc aat gta att gca tca 1015 Ser Met Val Ser Asn Thr Ser Glu Glu Arg Ala Asn Val Ile Ala Ser 315 320 325 gcc ctt gcc aag atc cca caa aag gtt ctg tgg aga ttt gat ggg aat 1063 Ala Leu Ala Lys Ile Pro Gln Lys Val Leu Trp Arg Phe Asp Gly Asn 330 335 340 aaa cca gat act tta gga ctc aat act cgg ctg tac aag tgg ata ccc 1111 Lys Pro Asp Thr Leu Gly Leu Asn Thr Arg Leu Tyr Lys Trp Ile Pro 345 350 355 cag aat gat ctt ctt ggt cac cca aaa acc aga gct ttt ata act cat 1159 Gln Asn Asp Leu Leu Gly His Pro Lys Thr Arg Ala Phe Ile Thr His 360 365 370 ggt gga gcc aat ggc atc tat gag gca atc tac cat gga atc cct atg 1207 Gly Gly Ala Asn Gly Ile Tyr Glu Ala Ile Tyr His Gly Ile Pro Met 375 380 385 390 gtg ggc gtt cca ttg ttt gca gat caa cct gat aac att gca cac atg 1255 Val Gly Val Pro Leu Phe Ala Asp Gln Pro Asp Asn Ile Ala His Met 395 400 405 aag gcc aag gga gca gct gtt agt ttg gac ttc cac aca atg tcg agt 1303 Lys Ala Lys Gly Ala Ala Val Ser Leu Asp Phe His Thr Met Ser Ser 410 415 420 aca gac tta ctc aat gca ctg aag aca gta att aat gat cct tta tat 1351 Thr Asp Leu Leu Asn Ala Leu Lys Thr Val Ile Asn Asp Pro Leu Tyr 425 430 435 aaa gag aat gct atg aaa tta tca aga att cat cat gat caa cca gtg 1399 Lys Glu Asn Ala Met Lys Leu Ser Arg Ile His His Asp Gln Pro Val 440 445 450 aag ccc ctt gat cga gca gtc ttc tgg att gaa ttt gtc atg cgc cat 1447 Lys Pro Leu Asp Arg Ala Val Phe Trp Ile Glu Phe Val Met Arg His 455 460 465 470 aaa gga gcc aag cac ctt cgg gtt gca gcc cac gac ctc acc tgg ttc 1495 Lys Gly Ala Lys His Leu Arg Val Ala Ala His Asp Leu Thr Trp Phe 475 480 485 cag tac cac tct ttg gat gtg act ggg ttc ctg ctg gcc tgt gtg gca 1543 Gln Tyr His Ser Leu Asp Val Thr Gly Phe Leu Leu Ala Cys Val Ala 490 495 500 act gtg ata ttc atc atc aca aaa tgt ctg ttt tgt gtc tgg aag ttt 1591 Thr Val Ile Phe Ile Ile Thr Lys Cys Leu Phe Cys Val Trp Lys Phe 505 510 515 gtt aga aca gga aag aag ggg aaa aga gat taattacgtc tgaggctgga 1641 Val Arg Thr Gly Lys Lys Gly Lys Arg Asp 520 525 agctgggaaa cccaataaat gaactccttt agtttattac aacaagaaga cgttgtgata 1701 caagagattc ctttcttctt gtgacaaaac atctttcaaa acttaccttg tcaagtcaaa 1761 atttgtttta gtacctgttt aaccattaga aatatttcat gtcaaggagg aaaacattag 1821 ggaaaacaaa aatgatataa agccatacga ggttatattg aaatgtattg agcttatatt 1881 gaaatttatt gttccaattc acaggttaca tgaaaaaaaa tttactaagc ttaactacat 1941 gtcacacatt gtacatggaa acaagaacat taagaagtcc actgacagta tcagtactgt 2001 tttgcaaata ctcagcatac tttggatcca tttcatgcag gattgtgttg ttttaactgt 2061 tgttgaggaa actaataaat aattaaattg t 2092 8 528 PRT H. sapiens 8 Met Ser Met Lys Trp Thr Ser Ala Leu Leu Leu Ile Gln Leu Ser Cys 1 5 10 15 Tyr Phe Ser Ser Gly Ser Cys Gly Lys Val Leu Val Trp Pro Thr Glu 20 25 30 Phe Ser His Trp Met Asn Ile Lys Thr Ile Leu Asp Glu Leu Val Gln 35 40 45 Arg Gly His Glu Val Thr Val Leu Ala Ser Ser Ala Ser Ile Ser Phe 50 55 60 Asp Pro Asn Ser Pro Ser Thr Leu Lys Phe Glu Val Tyr Pro Val Ser 65 70 75 80 Leu Thr Lys Thr Glu Phe Glu Asp Ile Ile Lys Gln Leu Val Lys Arg 85 90 95 Trp Ala Glu Leu Pro Lys Asp Thr Phe Trp Ser Tyr Phe Ser Gln Val 100 105 110 Gln Glu Ile Met Trp Thr Phe Asn Asp Ile Leu Arg Lys Phe Cys Lys 115 120 125 Asp Ile Val Ser Asn Lys Lys Leu Met Lys Lys Leu Gln Glu Ser Arg 130 135 140 Phe Asp Val Val Leu Ala Asp Ala Val Phe Pro Phe Gly Glu Leu Leu 145 150 155 160 Ala Glu Leu Leu Lys Ile Pro Phe Val Tyr Ser Leu Arg Phe Ser Pro 165 170 175 Gly Tyr Ala Ile Glu Lys His Ser Gly Gly Leu Leu Phe Pro Pro Ser 180 185 190 Tyr Val Pro Val Val Met Ser Glu Leu Ser Asp Gln Met Thr Phe Ile 195 200 205 Glu Arg Val Lys Asn Met Ile Tyr Val Leu Tyr Phe Glu Phe Trp Phe 210 215 220 Gln Ile Phe Asp Met Lys Lys Trp Asp Gln Phe Tyr Ser Glu Val Leu 225 230 235 240 Gly Arg Pro Thr Thr Leu Ser Glu Thr Met Ala Lys Ala Asp Ile Trp 245 250 255 Leu Ile Arg Asn Tyr Trp Asp Phe Gln Phe Pro His Pro Leu Leu Pro 260 265 270 Asn Val Glu Phe Val Gly Gly Leu His Cys Lys Pro Ala Lys Pro Leu 275 280 285 Pro Lys Glu Met Glu Glu Phe Val Gln Ser Ser Gly Glu Asn Gly Val 290 295 300 Val Val Phe Ser Leu Gly Ser Met Val Ser Asn Thr Ser Glu Glu Arg 305 310 315 320 Ala Asn Val Ile Ala Ser Ala Leu Ala Lys Ile Pro Gln Lys Val Leu 325 330 335 Trp Arg Phe Asp Gly Asn Lys Pro Asp Thr Leu Gly Leu Asn Thr Arg 340 345 350 Leu Tyr Lys Trp Ile Pro Gln Asn Asp Leu Leu Gly His Pro Lys Thr 355 360 365 Arg Ala Phe Ile Thr His Gly Gly Ala Asn Gly Ile Tyr Glu Ala Ile 370 375 380 Tyr His Gly Ile Pro Met Val Gly Val Pro Leu Phe Ala Asp Gln Pro 385 390 395 400 Asp Asn Ile Ala His Met Lys Ala Lys Gly Ala Ala Val Ser Leu Asp 405 410 415 Phe His Thr Met Ser Ser Thr Asp Leu Leu Asn Ala Leu Lys Thr Val 420 425 430 Ile Asn Asp Pro Leu Tyr Lys Glu Asn Ala Met Lys Leu Ser Arg Ile 435 440 445 His His Asp Gln Pro Val Lys Pro Leu Asp Arg Ala Val Phe Trp Ile 450 455 460 Glu Phe Val Met Arg His Lys Gly Ala Lys His Leu Arg Val Ala Ala 465 470 475 480 His Asp Leu Thr Trp Phe Gln Tyr His Ser Leu Asp Val Thr Gly Phe 485 490 495 Leu Leu Ala Cys Val Ala Thr Val Ile Phe Ile Ile Thr Lys Cys Leu 500 505 510 Phe Cys Val Trp Lys Phe Val Arg Thr Gly Lys Lys Gly Lys Arg Asp 515 520 525 9 24 DNA H. sapiens 9 taccttttag ttgtctcttt gtca 24 10 21 DNA H. sapiens 10 ttcctggagt cttctgtatg a 21 11 20 DNA H. sapiens 11 catcccttgt tcttctcatt 20 12 20 DNA H. sapiens 12 cgggactgga aaataaatat 20 13 17 DNA H. sapiens 13 ggggtttcac cgtgtta 17 14 18 DNA H. sapiens 14 aaagccaagc agcactaa 18 15 20 DNA H. sapiens 15 ccacatgctc agactgttaa 20 16 19 DNA H. sapiens 16 caaaaatacc ccactaccc 19 17 21 DNA H. sapiens 17 cccttgttct tctcattgtt a 21 18 22 DNA H. sapiens 18 ttcagtaagc ttgtttcatg at 22 19 17 DNA H. sapiens 19 cctggccaaa ttgactt 17 20 18 DNA H. sapiens 20 caggaaccca gtcacatc 18 21 21 DNA H. sapiens 21 ggggaaaaga gattaattac g 21 22 18 DNA H. sapiens 22 agccaagcag cactaatc 18 23 20 DNA H. sapiens 23 tccaattcac aggttacatg 20 24 18 DNA H. sapiens 24 agccaagcag cactaatc 18 25 27 DNA H. sapiens 25 tggatgaata taaagacaat cctggat 27 26 27 DNA H. sapiens 26 tggatgaata taaacacaat cctggat 27 27 27 DNA H. sapiens 27 aagtgttaat agttatcatg aaacaag 27 28 27 DNA H. sapiens 28 aagtgttaat agctatcatg aaacaag 27 29 27 DNA H. sapiens 29 tgaagcccct tgatcgagca gtcttct 27 30 27 DNA H. sapiens 30 tgaagcccct tgaacgagca gtcttct 27 31 27 DNA H. sapiens 31 tgaagcccct tgatcgagca gtcttct 27 32 27 DNA H. sapiens 32 tgaagcccct tgatagagca gtcttct 27 33 27 DNA H. sapiens 33 gatataaagc catacgaggt tatattg 27 34 27 DNA H. sapiens 34 gatataaagc catatgaggt tatattg 27 35 26 DNA H. sapiens 35 caggttacat gaaaaaaaat ttacta 26 36 26 DNA H. sapiens 36 caggttacat gaaaaacaat ttacta 26 37 27 DNA H. sapiens 37 ttgttgagga agctaataaa taattaa 27 38 27 DNA H. sapiens 38 ttgttgagga aactaataaa taattaa 27 39 1854 DNA H. sapiens CDS (15)...(1584) 39 tgcattgcac cagg atg tct gtg aaa tgg act tca gta att ttg cta ata 50 Met Ser Val Lys Trp Thr Ser Val Ile Leu Leu Ile 1 5 10 caa ctg agc ttt tgc ttt agc tct ggg aat tgt gga aag gtg ctg gtg 98 Gln Leu Ser Phe Cys Phe Ser Ser Gly Asn Cys Gly Lys Val Leu Val 15 20 25 tgg gca gca gaa tac agc cat tgg atg aat ata aag aca atc ctg gat 146 Trp Ala Ala Glu Tyr Ser His Trp Met Asn Ile Lys Thr Ile Leu Asp 30 35 40 gag ctt att cag aga ggt cat gag gtg act gta ctg gca tct tca gct 194 Glu Leu Ile Gln Arg Gly His Glu Val Thr Val Leu Ala Ser Ser Ala 45 50 55 60 tcc att ctt ttt gat ccc aac aac tca tcc gct ctt aaa att gaa att 242 Ser Ile Leu Phe Asp Pro Asn Asn Ser Ser Ala Leu Lys Ile Glu Ile 65 70 75 tat ccc aca tct tta act aaa act gag ttg gag aat ttc atc atg caa 290 Tyr Pro Thr Ser Leu Thr Lys Thr Glu Leu Glu Asn Phe Ile Met Gln 80 85 90 cag att aag aga tgg tca gac ctt cca aaa gat aca ttt tgg tta tat 338 Gln Ile Lys Arg Trp Ser Asp Leu Pro Lys Asp Thr Phe Trp Leu Tyr 95 100 105 ttt tca caa gta cag gaa atc atg tca ata ttt ggt gac ata act aga 386 Phe Ser Gln Val Gln Glu Ile Met Ser Ile Phe Gly Asp Ile Thr Arg 110 115 120 aag ttc tgt aaa gat gta gtt tca aat aag aaa ttt atg aaa aaa gta 434 Lys Phe Cys Lys Asp Val Val Ser Asn Lys Lys Phe Met Lys Lys Val 125 130 135 140 caa gag tca aga ttt gac gtc att ttt gca gat gct att ttt ccc tgt 482 Gln Glu Ser Arg Phe Asp Val Ile Phe Ala Asp Ala Ile Phe Pro Cys 145 150 155 agt gag ctg ctg gct gag cta ttt aac ata ccc ttt gtg tac agt ctc 530 Ser Glu Leu Leu Ala Glu Leu Phe Asn Ile Pro Phe Val Tyr Ser Leu 160 165 170 agc ttc tct cct ggc tac act ttt gaa aag cat agt gga gga ttt att 578 Ser Phe Ser Pro Gly Tyr Thr Phe Glu Lys His Ser Gly Gly Phe Ile 175 180 185 ttc cct cct tcc tac gta cct gtt gtt atg tca gaa tta act gat caa 626 Phe Pro Pro Ser Tyr Val Pro Val Val Met Ser Glu Leu Thr Asp Gln 190 195 200 atg act ttc atg gag agg gta aaa aat atg atc tat gtg ctt tac ttt 674 Met Thr Phe Met Glu Arg Val Lys Asn Met Ile Tyr Val Leu Tyr Phe 205 210 215 220 gac ttt tgg ttc gaa ata ttt gac atg aag aag tgg gat cag ttt tat 722 Asp Phe Trp Phe Glu Ile Phe Asp Met Lys Lys Trp Asp Gln Phe Tyr 225 230 235 agt gaa gtt cta gga aga ccc act aca tta tct gag aca atg ggg aaa 770 Ser Glu Val Leu Gly Arg Pro Thr Thr Leu Ser Glu Thr Met Gly Lys 240 245 250 gct gac gta tgg ctt att cga aac tcc tgg aat ttt cag ttt cca tat 818 Ala Asp Val Trp Leu Ile Arg Asn Ser Trp Asn Phe Gln Phe Pro Tyr 255 260 265 cca ctc tta cca aat gtt gat ttt gtt gga gga ctc cac tgc aaa cct 866 Pro Leu Leu Pro Asn Val Asp Phe Val Gly Gly Leu His Cys Lys Pro 270 275 280 gcc aaa ccc ctg cct aag gaa atg gaa gac ttt gta cag agc tct gga 914 Ala Lys Pro Leu Pro Lys Glu Met Glu Asp Phe Val Gln Ser Ser Gly 285 290 295 300 gaa aat ggt gtt gtg gtg ttt tct ctg ggg tca atg gtc agt aac atg 962 Glu Asn Gly Val Val Val Phe Ser Leu Gly Ser Met Val Ser Asn Met 305 310 315 aca gaa gaa agg gcc aac gta att gca tca gcc ctg gcc cag atc cca 1010 Thr Glu Glu Arg Ala Asn Val Ile Ala Ser Ala Leu Ala Gln Ile Pro 320 325 330 caa aag gtt ctg tgg aga ttt gat ggg aat aaa cca gat acc tta ggt 1058 Gln Lys Val Leu Trp Arg Phe Asp Gly Asn Lys Pro Asp Thr Leu Gly 335 340 345 ctc aat act cgg ctc tac aag tgg ata ccc cag aat gac ctt cta ggt 1106 Leu Asn Thr Arg Leu Tyr Lys Trp Ile Pro Gln Asn Asp Leu Leu Gly 350 355 360 cat cca aag acc aga gct ttt ata act cat ggt gga gcc aat ggc atc 1154 His Pro Lys Thr Arg Ala Phe Ile Thr His Gly Gly Ala Asn Gly Ile 365 370 375 380 tac gag gca atc tac cat ggg atc cct atg gtg ggg att cca ttg ttt 1202 Tyr Glu Ala Ile Tyr His Gly Ile Pro Met Val Gly Ile Pro Leu Phe 385 390 395 gcc gat caa cct gat aac att gct cac atg aag gcc agg gga gca gct 1250 Ala Asp Gln Pro Asp Asn Ile Ala His Met Lys Ala Arg Gly Ala Ala 400 405 410 gtt aga gtg gac ttc aac aca atg tcg agt aca gac ttg ctg aat gca 1298 Val Arg Val Asp Phe Asn Thr Met Ser Ser Thr Asp Leu Leu Asn Ala 415 420 425 ttg aag aga gta att aat gat cct tca tat aaa gag aat gtt atg aaa 1346 Leu Lys Arg Val Ile Asn Asp Pro Ser Tyr Lys Glu Asn Val Met Lys 430 435 440 tta tca aga att caa cat gat caa cca gtg aag ccc ctg gat cga gca 1394 Leu Ser Arg Ile Gln His Asp Gln Pro Val Lys Pro Leu Asp Arg Ala 445 450 455 460 gtc ttc tgg att gaa ttt gtc atg cgc cac aaa gga gct aaa cac ctt 1442 Val Phe Trp Ile Glu Phe Val Met Arg His Lys Gly Ala Lys His Leu 465 470 475 cgg gtt gca gcc cac gac ctc acc tgg ttc cag tac cac tct ttg gat 1490 Arg Val Ala Ala His Asp Leu Thr Trp Phe Gln Tyr His Ser Leu Asp 480 485 490 gtg att ggg ttc ctg ctg gtc tgt gtg gca act gtg ata ttt atc gtc 1538 Val Ile Gly Phe Leu Leu Val Cys Val Ala Thr Val Ile Phe Ile Val 495 500 505 aca aaa tgt tgt ctg ttt tgt ttc tgg aag ttt gct aga aaa gca a 1584 Thr Lys Cys Cys Leu Phe Cys Phe Trp Lys Phe Ala Arg Lys Ala 510 515 520 agaagggaaa aaatgattag ttatatctga gatttgaagc tggaaaacct gataggtgag 1644 actacttcag tttattccag caagaaagat tgtgatgcaa gatttctttc ttcctgagac 1704 aaaaaaaaaa aaagaaaaaa aaatcttttc aaaatttact ttgtcaaata aaaatttgtt 1764 tttcagagat ttaccaccca gttcatggtt agaaatattt tgtggcaatg aagaaaacac 1824 tacggaaaat aaaaaataag ataaagcctt 1854 40 524 PRT H. sapiens 40 Met Ser Val Lys Trp Thr Ser Val Ile Leu Leu Ile Gln Leu Ser Phe 1 5 10 15 Cys Phe Ser Ser Gly Asn Cys Gly Lys Val Leu Val Trp Ala Ala Glu 20 25 30 Tyr Ser His Trp Met Asn Ile Lys Thr Ile Leu Asp Glu Leu Ile Gln 35 40 45 Arg Gly His Glu Val Thr Val Leu Ala Ser Ser Ala Ser Ile Leu Phe 50 55 60 Asp Pro Asn Asn Ser Ser Ala Leu Lys Ile Glu Ile Tyr Pro Thr Ser 65 70 75 80 Leu Thr Lys Thr Glu Leu Glu Asn Phe Ile Met Gln Gln Ile Lys Arg 85 90 95 Trp Ser Asp Leu Pro Lys Asp Thr Phe Trp Leu Tyr Phe Ser Gln Val 100 105 110 Gln Glu Ile Met Ser Ile Phe Gly Asp Ile Thr Arg Lys Phe Cys Lys 115 120 125 Asp Val Val Ser Asn Lys Lys Phe Met Lys Lys Val Gln Glu Ser Arg 130 135 140 Phe Asp Val Ile Phe Ala Asp Ala Ile Phe Pro Cys Ser Glu Leu Leu 145 150 155 160 Ala Glu Leu Phe Asn Ile Pro Phe Val Tyr Ser Leu Ser Phe Ser Pro 165 170 175 Gly Tyr Thr Phe Glu Lys His Ser Gly Gly Phe Ile Phe Pro Pro Ser 180 185 190 Tyr Val Pro Val Val Met Ser Glu Leu Thr Asp Gln Met Thr Phe Met 195 200 205 Glu Arg Val Lys Asn Met Ile Tyr Val Leu Tyr Phe Asp Phe Trp Phe 210 215 220 Glu Ile Phe Asp Met Lys Lys Trp Asp Gln Phe Tyr Ser Glu Val Leu 225 230 235 240 Gly Arg Pro Thr Thr Leu Ser Glu Thr Met Gly Lys Ala Asp Val Trp 245 250 255 Leu Ile Arg Asn Ser Trp Asn Phe Gln Phe Pro Tyr Pro Leu Leu Pro 260 265 270 Asn Val Asp Phe Val Gly Gly Leu His Cys Lys Pro Ala Lys Pro Leu 275 280 285 Pro Lys Glu Met Glu Asp Phe Val Gln Ser Ser Gly Glu Asn Gly Val 290 295 300 Val Val Phe Ser Leu Gly Ser Met Val Ser Asn Met Thr Glu Glu Arg 305 310 315 320 Ala Asn Val Ile Ala Ser Ala Leu Ala Gln Ile Pro Gln Lys Val Leu 325 330 335 Trp Arg Phe Asp Gly Asn Lys Pro Asp Thr Leu Gly Leu Asn Thr Arg 340 345 350 Leu Tyr Lys Trp Ile Pro Gln Asn Asp Leu Leu Gly His Pro Lys Thr 355 360 365 Arg Ala Phe Ile Thr His Gly Gly Ala Asn Gly Ile Tyr Glu Ala Ile 370 375 380 Tyr His Gly Ile Pro Met Val Gly Ile Pro Leu Phe Ala Asp Gln Pro 385 390 395 400 Asp Asn Ile Ala His Met Lys Ala Arg Gly Ala Ala Val Arg Val Asp 405 410 415 Phe Asn Thr Met Ser Ser Thr Asp Leu Leu Asn Ala Leu Lys Arg Val 420 425 430 Ile Asn Asp Pro Ser Tyr Lys Glu Asn Val Met Lys Leu Ser Arg Ile 435 440 445 Gln His Asp Gln Pro Val Lys Pro Leu Asp Arg Ala Val Phe Trp Ile 450 455 460 Glu Phe Val Met Arg His Lys Gly Ala Lys His Leu Arg Val Ala Ala 465 470 475 480 His Asp Leu Thr Trp Phe Gln Tyr His Ser Leu Asp Val Ile Gly Phe 485 490 495 Leu Leu Val Cys Val Ala Thr Val Ile Phe Ile Val Thr Lys Cys Cys 500 505 510 Leu Phe Cys Phe Trp Lys Phe Ala Arg Lys Ala Lys 515 520 41 1686 DNA H. sapiens exon (392)...(1126) 41 tccccagttt cacaaaaata tgtggaccat gtttagtcat ttaatcttta gttttgtgtc 60 aaatggactg cagaaacaag atctgtcact gctactgttc tggacactct tctaaaatat 120 attgcataag acagatggca tgtccataca agatccttga tattagctga aggatagcac 180 tcataaacat aaaagggaaa ttaatcacat ctgtgtgaac agatcattta ccttcatttg 240 tctctttgcc atccacatgc tcagactgtt gatttaatga tattgtatgt actttgactt 300 ataagggtta cattttaact tcttggctaa tttatctttg gacataacca tgagaaatga 360 cagaaaggaa cagcaactgg aaaacaagca ttgcattgca ccaggatgtc tgtgaaatgg 420 acttcagtaa ttttgctaat acaactgagc ttttgcttta gctctgggaa ttgtggaaag 480 gtgctggtgt gggcagcaga atacagccat tggatgaata taaagacaat cctggatgag 540 cttattcaga gaggtcatga ggtgactgta ctggcatctt cagcttccat tctttttgat 600 cccaacaact catccgctct taaaattgaa atttatccca catctttaac taaaactgag 660 ttggagaatt tcatcatgca acagattaag agatggtcag accttccaaa agatacattt 720 tggttatatt tttcacaagt acaggaaatc atgtcaatat ttggtgacat aactagaaag 780 ttctgtaaag atgtagtttc aaataagaaa tttatgaaaa aagtacaaga gtcaagattt 840 gacgtcattt ttgcagatgc tatttttccc tgtagtgagc tgctggctga gctatttaac 900 ataccctttg tgtacagtct cagcttctct cctggctaca cttttgaaaa gcatagtgga 960 ggatttattt tccctccttc ctacgtacct gttgttatgt cagaattaac tgatcaaatg 1020 actttcatgg agagggtaaa aaatatgatc tatgtgcttt actttgactt ttggttcgaa 1080 atatttgaca tgaagaagtg ggatcagttt tatagtgaag ttctaggtaa gtattttttt 1140 caatcagtaa catgaagctc taacttattt gtgtctttga agcagagctt atataaagcc 1200 ataaagtcag ggtagtgggg ttttggtaag tgaatttata aaacaaaaat acaagatgat 1260 ctattaatct cacaaatatt atagaaaagc ttaaattaca gggtcagtta aaaccctgtg 1320 gccatcactc acacagaaca ccccaggaaa tcataaacct atacattagt gcatctaaga 1380 ctttaagcaa ttacacatct gttttactat acattgtttt acatcttaaa aacagtaaaa 1440 tccatcaaat aacttcttac tgaatgcata gatttagaat gagtagttac acatttttct 1500 acaactatct atataactgc agaaattgtt ttttcttgta aacttgtttt cttatttaga 1560 aatcaaaaga tgttcccata ttaccagaag gtttccttca cagtaaagag agataatgtc 1620 tatacctcag atgcaaaaat caataagggc aatttgaagt ttctaatgtt tctatactct 1680 tgcagg 1686 42 1340 DNA H. sapiens exon (668)...(816) 42 atagtttttg gaactaggcc cctttattag aacatatgag acaattaagg tggagtacaa 60 tttttatttc ataatttctc aaaaatttct agctataatg tacaaatata tttacttaaa 120 aatattatta agatcttagc ttgaatctaa aagagtagtt ggtacaagga tttcagccat 180 actctcaaca tagtccacag ttcacttgaa ccaaagataa aagaattagc ttaatgagtt 240 gtgtaaacta gactatttct tagaaaatta tttttatggg tagagtagaa ttaattgatt 300 atggagctca aagagttgtt taaatgtccg tatgctacta ttgaagcttt aagagaaaag 360 aaattttatg tttaactttc tatggctcat tttaataatt gtttatgatt atgagcatac 420 tgatgcgaca ttagagatgt agcttaacct cacaattctc ctactacttt gtctttctta 480 taaatacaca tgggcaaaat atgtaataca taaaattaaa ttatatctat atatgaatat 540 gtgtatatat ttttcaaagc acagatattt gcctacattt ttgcctacat tattctaacc 600 cctttcagaa atttacctaa agtaattatc ttgtgtcatc cacctttttt ttttctattc 660 ctgtcaggaa gacccactac attatctgag acaatgggga aagctgacgt atggcttatt 720 cgaaactcct ggaattttca gtttccatat ccactcttac caaatgttga ttttgttgga 780 ggactccact gcaaacctgc caaacccctg cctaaggtaa acatactttt gttggtttta 840 ttttgttggc tttgaatttt cagtagaaat gattctatag tcttctttca gagtgtttga 900 cttacactga aagaaagatg ggaaatgggt ggggtaaagc agataccaat tagaaactca 960 tgtgcacgtt aataccatca cacgtatatg agttttatga gtattacaaa tagagaggaa 1020 tactaaggag actttgaaaa tagggttggt taaattaaag tcttcattat gcaataccta 1080 agaaggtatt ggtcatccaa tcaaataata tttacaaagg gattagcaca aaacacaggt 1140 aagtgcagaa ttttcagaga aaaaaataga cacagtttct gtccccacat accttacatt 1200 ctacttcaaa agatagaata tgtgcaagta ataaaaatta tataaaaact attatctgaa 1260 ggaaaaacgc aataccaaga aagcatcagt ggagataata gaaagtatcc tgcagtcact 1320 gattagtaag atgggtaccg 1340 43 1822 DNA H. sapiens exon (732)...(863) 43 tatatacaat gtctgtatga taaatgagac tcctggcact aattcataga aattccaaat 60 tacattacca gactccagaa tgtcagcggt tcttaaccac cagcttttat ttattttatt 120 ttttttagtt tttgaaaaac taccagaaaa ctctgaacaa actttaagtg aagtataaag 180 cattgtagag aaacataaat gtagatataa aattatccca actgtgagta gcttatcctc 240 agagctcata gttagggaag taaaccacta actgtttcca actaagagaa ttctacagaa 300 aacctgcctg aaataaacac aagggattta gtagaacaac aatataggat taaagctgag 360 tggtcccact ttccaagaac ctatattagt aactttagta atgaaagtga agagtcgtgt 420 attaatattt ttaacattat ctccctgaca acaatgtaat agctccattt cttttctccc 480 ttacacacat gcacacaaat acatacacat acacacatat ttacacaaat atccttaaca 540 gcatccacct atctcatatt atacatctac ttgcaaaaaa actgagtgat tgggtcagtt 600 aaaaaatatt atttactcca ataattcctc aaaatactgg attttctctc tttagtaatt 660 tgcaccaatt cttttggtag tgcccgctgt gctaatactc ttttgtgatg aagcaaattc 720 tttcttcaca ggaaatggaa gactttgtac agagctctgg agaaaatggt gttgtggtgt 780 tttctctggg gtcaatggtc agtaacatga cagaagaaag ggccaacgta attgcatcag 840 ccctggccca gatcccacaa aaggtaagat gaagtgcctt actggtgtgg aaaactactg 900 aaagaggctg ttaaagtttg aagtaatcca attatagaaa cttctgataa atgtgaagtt 960 gaccaaaagt tgaaaaatta gaacaaggat aatcttggag aaactatgag aagtttgaaa 1020 attgtggttg catttttttt taaatggtgt taagtatgaa cattccccta tgtaaatatg 1080 ctgacaataa attgaatgga gaaaggtatt taaaaagtgt ttggagactt ctcacctcct 1140 gtccataaaa ttttgaattg tgtatgtgat ctacatagga aaggatatta aagagtagat 1200 tgaactcttc catagctgaa tatagcctta aatatgcttg tatagcatcc accgacagaa 1260 gtaatagttg tgcctcagac ttaggggttg catgtggccc tggaggagtt actacccttg 1320 gtatgcatga gtagttccta ttagcatcag tgggaactca gtactccata tgtattcaca 1380 aaaggcaact tgagacccac agttattttt aatttctgat attaacactc atacatactg 1440 ctgaatttaa ctcaatatat ttcagttaag tgaaaatggt gcttaatgta gtctttagaa 1500 tgactttcag gtgttttcac aaaaaacgta tatccagaac tgtgtccttt tagaaataca 1560 agtaaaattt ttgataatta gcttcaaaac agttttccta atctcagcag tatccaatga 1620 gtgaagaaca cttgactgac tcttgggtca cctctattac ttattgtact ctggaagctc 1680 ttggtgaatg tttacgatta tgggatgtag tatttctgtt tgcactttaa gtcaaatgct 1740 tgtataaaat acgtgacaac aaatggagaa tattggctct gttagtagtt atgcggtata 1800 ttctctgttt aaggatcttt gg 1822 44 1591 DNA H. sapiens exon (138)...(225) exon (1067)...(1286) 44 attctattta cattagcctt tgagtagttc ttatttacta acatcccttg atctcattcc 60 tactctttat acagttctca cattctataa cttttgaatt ccactcatgg aataaaatat 120 tttctttatt gtaacaggtt ctgtggagat ttgatgggaa taaaccagat accttaggtc 180 tcaatactcg gctctacaag tggatacccc agaatgacct tctaggtaag actctggtga 240 acaaatactg aatatattag taacagcaca ttagagtgtt aatagttcat catgaaacaa 300 gcttattgaa tatttgttaa ggaaaaacaa aatgtaactt ctttatattg attttccagt 360 cttaagggag aaagaataca ttataatttt tggcatttta tgatatacac ccacattctt 420 tatagtctga atcgggggaa tctttatttc aggtgttatt atatctcaca aaatttttca 480 ataacttcct gggctgtctc tctgtctcct atttctacaa ctttacacct gtttttttcc 540 tctcccgcag ggttatttga aatgccacta aaaataatag ctcttctatc accagtgact 600 ctgtattttc tgaagaatta aactgctaat cttaatcata cagtgatgat acatttcacg 660 atgaagtgtg acctgtcctt cctcaatcct agcaccacca ccaaaccact gcctgctgcc 720 ttgcccaccc catatatcac actctgtgac tgtcacttaa aataagagtt cacttcatgc 780 ctatctcttt gctgtcttct tttttgcaca tttttgaaat ctagaatgca atttttcatt 840 agcccaactg gaaatcttgt attgttttgc agtctgaagt cacacacacc gtatagcctt 900 cagttacata cccagtacaa gtacgtgttt tttcctccga agtctgaaac acaattttaa 960 tttagttcag tgttttagct ggaaaacact gtcactttca gagcctttca ttgtgcatct 1020 cattttattc ctatgagtaa ttttgctaaa attcatccaa tcctaggtca tccaaagacc 1080 agagctttta taactcatgg tggagccaat ggcatctacg aggcaatcta ccatgggatc 1140 cctatggtgg ggattccatt gtttgccgat caacctgata acattgctca catgaaggcc 1200 aggggagcag ctgttagagt ggacttcaac acaatgtcga gtacagactt gctgaatgca 1260 ttgaagagag taattaatga tccttcgtga gtagaacaat atttttcact aggtggtatt 1320 tacagatagc ttctcttgtc aatagtgagt gtgagtttca tcctttttat aagagactaa 1380 ttttgaaaga atttaatgat ttaaccaatc tgaaatctgc ttttattttt ataagttatt 1440 taaaaattga atttgaaaca catacatcta aagaatagcc agttagtgaa acaattttct 1500 acacaaaaat aattttaaaa ggatatagat aatacaaaaa atacatttct taaaaatttg 1560 acataattaa tccatagaag aaaggaagaa t 1591 45 596 DNA H. sapiens exon (19)...(549) 45 ctttattttt atctttcaga tataaagaga atgttatgaa attatcaaga attcaacatg 60 atcaaccagt gaagcccctg gatcgagcag tcttctggat tgaatttgtc atgcgccaca 120 aaggagctaa acaccttcgg gttgcagccc acgacctcac ctggttccag taccactctt 180 tggatgtgat tgggttcctg ctggtctgtg tggcaactgt gatatttatc gtcacaaaat 240 gttgtctgtt ttgtttctgg aagtttgcta gaaaagcaaa gaagggaaaa aatgattagt 300 tatatctgag atttgaagct ggaaaacctg ataggtgaga ctacttcagt ttattccagc 360 aagaaagatt gtgatgcaag atttctttct tcctgagaca aaaaaaaaaa aagaaaaaaa 420 aatcttttca aaatttactt tgtcaaataa aaatttgttt ttcagagatt taccacccag 480 ttcatggtta gaaatatttt gtggcaatga agaaaacact acggaaaata aaaaataaga 540 taaagcctta tgagctcgta ttgaaatttg ttgaacttat atcgcggatc ctactg 596 46 20 DNA H. sapiens 46 cttggctaat ttatctttgg 20 47 19 DNA H. sapiens 47 cccactaccc tgactttat 19 48 20 DNA H. sapiens 48 ggacataacc atgagaaatg 20 49 19 DNA H. sapiens 49 agctctgctt caaagacac 19 50 21 DNA H. sapiens 50 tgtccgtatg ctactattga a 21 51 21 DNA H. sapiens 51 tgtgctaatc cctttgtaaa t 21 52 22 DNA H. sapiens 52 tttttttttc tattcctgtc ag 22 53 17 DNA H. sapiens 53 ctttacccca cccattt 17 54 20 DNA H. sapiens 54 cccttgatct cattcctact 20 55 24 DNA H. sapiens 55 aactggctat tctttagatg tatg 24 56 25 DNA H. sapiens 56 cattcctact ctttatacag ttctc 25 57 17 DNA H. sapiens 57 cccccgattc agactat 17 58 20 DNA H. sapiens 58 cccttgatct cattcctact 20 59 24 DNA H. sapiens 59 aactggctat tctttagatg tatg 24 60 18 DNA H. sapiens 60 tcctccgaag tctgaaac 18 61 23 DNA H. sapiens 61 tataaaaagg atgaaactca cac 23 62 18 DNA H. sapiens 62 caagccccca agttatgt 18 63 20 DNA H. sapiens 63 cagtaggatc cgcgatataa 20 64 20 DNA H. sapiens 64 tctgaggggt tttgtctgta 20 65 20 DNA H. sapiens 65 ccgcgatata agttcaacaa 20 66 20 DNA H. sapiens 66 ggacataacc atgagaaatg 20 67 19 DNA H. sapiens 67 ttaagagcgg atgagttgt 19 68 20 DNA H. sapiens 68 tcatcatgca acagattaag 20 69 20 DNA H. sapiens 69 cactacaggg aaaaatagca 20 70 20 DNA H. sapiens 70 accctttgtg tacagtctca 20 71 19 DNA H. sapiens 71 agctctgctt caaagacac 19 72 21 DNA H. sapiens 72 ttgcctacat tattctaacc c 21 73 17 DNA H. sapiens 73 ctttacccca cccattt 17 74 25 DNA H. sapiens 74 cattcctact ctttatacag ttctc 25 75 17 DNA H. sapiens 75 cccccgattc agactat 17 76 25 DNA H. sapiens 76 cattcctact ctttatacag ttctc 25 77 17 DNA H. sapiens 77 cccccgattc agactat 17 78 18 DNA H. sapiens 78 tcctccgaag tctgaaac 18 79 23 DNA H. sapiens 79 tataaaaagg atgaaactca cac 23 80 20 DNA H. sapiens 80 tctgaggggt tttgtctgta 20 81 22 DNA H. sapiens 81 ttttttgtct caggaagaaa ga 22 82 24 DNA H. sapiens 82 aaaaaaagaa aaaaaaatct tttc 24 83 20 DNA H. sapiens 83 ccgcgatata agttcaacaa 20 84 22 DNA H. sapiens 84 tgcattgcac caggatgtct gt 22 85 21 DNA H. sapiens 85 gcattgcacc aagatgtctg t 21 86 23 DNA H. sapiens 86 tcctggatga gcttattcag aga 23 87 23 DNA H. sapiens 87 tcctggatga gcctattcag aga 23 88 21 DNA H. sapiens 88 cattttggtt atatttttca c 21 89 21 DNA H. sapiens 89 cattttggtt ttatttttca c 21 90 21 DNA H. sapiens 90 cataactaga aagttctgta a 21 91 21 DNA H. sapiens 91 cataactagg aagttctgta a 21 92 20 DNA H. sapiens 92 cctggctaca cttttgaaaa 20 93 20 DNA H. sapiens 93 cctggctaca tttttgaaaa 20 94 21 DNA H. sapiens 94 gaagacccac tacattatct g 21 95 21 DNA H. sapiens 95 gaagacccac tacgttatct g 21 96 26 DNA H. sapiens 96 aattttcagt ttccatatcc actctt 26 97 26 DNA H. sapiens 97 aattttcagt ttcctcatcc actctt 26 98 22 DNA H. sapiens 98 taggtctcaa tactcggctc ta 22 99 22 DNA H. sapiens 99 taggtctcaa tactcggctg ta 22 100 19 DNA H. sapiens 100 tacaagtgga taccccaga 19 101 19 DNA H. sapiens 101 tataagtgga taccccaga 19 102 26 DNA H. sapiens 102 gggagaaaga atacattata attttt 26 103 25 DNA H. sapiens 103 gggagaaaga atacttataa ttttt 25 104 21 DNA H. sapiens 104 ttccattgtt tgccgatcaa c 21 105 21 DNA H. sapiens 105 ttccattgtt tgctgatcaa c 21 106 21 DNA H. sapiens 106 gaatgcattg aagagagtaa t 21 107 21 DNA H. sapiens 107 gaatgcattg cagagagtaa t 21 108 22 DNA H. sapiens 108 ctggtctgtg tggcaactgt ga 22 109 22 DNA H. sapiens 109 ctggtctgtg tggcgactgt ga 22 110 19 DNA H. sapiens 110 taagataaag ccttatgag 19 111 19 DNA H. sapiens 111 taagataaag acttatgag 19 112 1976 DNA H. sapiens CDS (11)...(1598) 112 taagaccagg atg tct ctg aaa tgg acg tca gtc ttt ctg ctg ata cag 49 Met Ser Leu Lys Trp Thr Ser Val Phe Leu Leu Ile Gln 1 5 10 ctc agt tgt tac ttt agc tct gga agc tgt gga aag gtg cta gtg tgg 97 Leu Ser Cys Tyr Phe Ser Ser Gly Ser Cys Gly Lys Val Leu Val Trp 15 20 25 ccc aca gaa tac agc cat tgg ata aat atg aag aca atc ctg gaa gag 145 Pro Thr Glu Tyr Ser His Trp Ile Asn Met Lys Thr Ile Leu Glu Glu 30 35 40 45 ctt gtt cag agg ggt cat gag gtg act gtg ttg aca tct tcg gct tct 193 Leu Val Gln Arg Gly His Glu Val Thr Val Leu Thr Ser Ser Ala Ser 50 55 60 act ctt gtc aat gcc agt aaa tca tct gct att aaa tta gaa gtt tat 241 Thr Leu Val Asn Ala Ser Lys Ser Ser Ala Ile Lys Leu Glu Val Tyr 65 70 75 cct aca tct tta act aaa aat gat ttg gaa gat tct ctt ctg aaa att 289 Pro Thr Ser Leu Thr Lys Asn Asp Leu Glu Asp Ser Leu Leu Lys Ile 80 85 90 ctc gat aga tgg ata tat ggt gtt tca aaa aat aca ttt tgg tca tat 337 Leu Asp Arg Trp Ile Tyr Gly Val Ser Lys Asn Thr Phe Trp Ser Tyr 95 100 105 ttt tca caa tta caa gaa ttg tgt tgg gaa tat tat gac tac agt aac 385 Phe Ser Gln Leu Gln Glu Leu Cys Trp Glu Tyr Tyr Asp Tyr Ser Asn 110 115 120 125 aag ctc tgt aaa gat gca gtt ttg aat aag aaa ctt atg atg aaa cta 433 Lys Leu Cys Lys Asp Ala Val Leu Asn Lys Lys Leu Met Met Lys Leu 130 135 140 caa gag tca aag ttt gat gtc att ctg gca gat gcc ctt aat ccc tgt 481 Gln Glu Ser Lys Phe Asp Val Ile Leu Ala Asp Ala Leu Asn Pro Cys 145 150 155 ggt gag cta ctg gct gaa cta ttt aac ata ccc ttt ctg tac agt ctt 529 Gly Glu Leu Leu Ala Glu Leu Phe Asn Ile Pro Phe Leu Tyr Ser Leu 160 165 170 cga ttc tct gtt ggc tac aca ttt gag aag aat ggt gga gga ttt ctg 577 Arg Phe Ser Val Gly Tyr Thr Phe Glu Lys Asn Gly Gly Gly Phe Leu 175 180 185 ttc cct cct tcc tat gta cct gtt gtt atg tca gaa tta agt gat caa 625 Phe Pro Pro Ser Tyr Val Pro Val Val Met Ser Glu Leu Ser Asp Gln 190 195 200 205 atg att ttc atg gag agg ata aaa aat atg ata cat atg ctt tat ttt 673 Met Ile Phe Met Glu Arg Ile Lys Asn Met Ile His Met Leu Tyr Phe 210 215 220 gac ttt tgg ttt caa att tat gat ctg aag aag tgg gac cag ttt tat 721 Asp Phe Trp Phe Gln Ile Tyr Asp Leu Lys Lys Trp Asp Gln Phe Tyr 225 230 235 agt gaa gtt cta gga aga ccc act aca tta ttt gag aca atg ggg aaa 769 Ser Glu Val Leu Gly Arg Pro Thr Thr Leu Phe Glu Thr Met Gly Lys 240 245 250 gct gaa atg tgg ctc att cga acc tat tgg gat ttt gaa ttt cct cgc 817 Ala Glu Met Trp Leu Ile Arg Thr Tyr Trp Asp Phe Glu Phe Pro Arg 255 260 265 cca ttc tta cca aat gtt gat ttt gtt gga gga ctt cac tgt aaa cca 865 Pro Phe Leu Pro Asn Val Asp Phe Val Gly Gly Leu His Cys Lys Pro 270 275 280 285 gcc aaa ccc ctg cct aag gaa atg gaa gag ttt gtg cag agc tct gga 913 Ala Lys Pro Leu Pro Lys Glu Met Glu Glu Phe Val Gln Ser Ser Gly 290 295 300 gaa aat ggt att gtg gtg ttt tct ctg ggg tcg atg atc agt aac atg 961 Glu Asn Gly Ile Val Val Phe Ser Leu Gly Ser Met Ile Ser Asn Met 305 310 315 tca gaa gaa agt gcc aac atg att gca tca gcc ctt gcc cag atc cca 1009 Ser Glu Glu Ser Ala Asn Met Ile Ala Ser Ala Leu Ala Gln Ile Pro 320 325 330 caa aag gtt cta tgg aga ttt gat ggc aag aag cca aat act tta ggt 1057 Gln Lys Val Leu Trp Arg Phe Asp Gly Lys Lys Pro Asn Thr Leu Gly 335 340 345 tcc aat act cga ctg tac aag tgg tta ccc cag aat gac ctt ctt ggt 1105 Ser Asn Thr Arg Leu Tyr Lys Trp Leu Pro Gln Asn Asp Leu Leu Gly 350 355 360 365 cat ccc aaa acc aaa gct ttt ata act cat ggt gga acc aat ggc atc 1153 His Pro Lys Thr Lys Ala Phe Ile Thr His Gly Gly Thr Asn Gly Ile 370 375 380 tat gag gcg atc tac cat ggg atc cct atg gtg ggc att ccc ttg ttt 1201 Tyr Glu Ala Ile Tyr His Gly Ile Pro Met Val Gly Ile Pro Leu Phe 385 390 395 gcg gat caa cat gat aac att gct cac atg aaa gcc aag gga gca gcc 1249 Ala Asp Gln His Asp Asn Ile Ala His Met Lys Ala Lys Gly Ala Ala 400 405 410 ctc agt gtg gac atc agg acc atg tca agt aga gat ttg ctc aat gca 1297 Leu Ser Val Asp Ile Arg Thr Met Ser Ser Arg Asp Leu Leu Asn Ala 415 420 425 ttg aag tca gtc att aat gac cct gtc tat aaa gag aat gtc atg aaa 1345 Leu Lys Ser Val Ile Asn Asp Pro Val Tyr Lys Glu Asn Val Met Lys 430 435 440 445 tta tca aga att cat cat gac caa cca atg aag ccc ctg gat cga gca 1393 Leu Ser Arg Ile His His Asp Gln Pro Met Lys Pro Leu Asp Arg Ala 450 455 460 gtc ttc tgg att gag ttt gtc atg cgc cac aaa gga gcc aag cac ctt 1441 Val Phe Trp Ile Glu Phe Val Met Arg His Lys Gly Ala Lys His Leu 465 470 475 cga gtc gca gct cac aac ctc acc tgg atc cag tac cac tct ttg gat 1489 Arg Val Ala Ala His Asn Leu Thr Trp Ile Gln Tyr His Ser Leu Asp 480 485 490 gtg ata gca ttc ctg ctg gcc tgc gtg gca act gtg ata ttt atc atc 1537 Val Ile Ala Phe Leu Leu Ala Cys Val Ala Thr Val Ile Phe Ile Ile 495 500 505 aca aaa ttt tgc ctg ttt tgt ttc cga aag ctt gcc aaa aca gga aag 1585 Thr Lys Phe Cys Leu Phe Cys Phe Arg Lys Leu Ala Lys Thr Gly Lys 510 515 520 525 aag aag aaa aga g attagttata tcaaaagcct gaagtggaat gactgaaaga 1638 Lys Lys Lys Arg tgggactcct cctttatttc agcatggagg gttttaaatg gaggatttcc tttttcctgt 1698 gacaaaacat cttttcacta cttaccttgt taagacaaaa tttattttcc agggatttaa 1758 tacgtacttt agttggaatt attctatgtc aatgattttt aagctatgaa aaatacaatg 1818 gggggaagga tagcatttgg agatatacct aatgttaaat gacgagttac tggatgcagc 1878 acgccaacat ggcacatgta tacatatgta gctaacctca cgttgtgcac atgtacccta 1938 aaacttaaag tataatttaa aaaaagcaaa gggtaccg 1976 113 530 PRT H. sapiens 113 Met Ser Leu Lys Trp Thr Ser Val Phe Leu Leu Ile Gln Leu Ser Cys 1 5 10 15 Tyr Phe Ser Ser Gly Ser Cys Gly Lys Val Leu Val Trp Pro Thr Glu 20 25 30 Tyr Ser His Trp Ile Asn Met Lys Thr Ile Leu Glu Glu Leu Val Gln 35 40 45 Arg Gly His Glu Val Thr Val Leu Thr Ser Ser Ala Ser Thr Leu Val 50 55 60 Asn Ala Ser Lys Ser Ser Ala Ile Lys Leu Glu Val Tyr Pro Thr Ser 65 70 75 80 Leu Thr Lys Asn Asp Leu Glu Asp Ser Leu Leu Lys Ile Leu Asp Arg 85 90 95 Trp Ile Tyr Gly Val Ser Lys Asn Thr Phe Trp Ser Tyr Phe Ser Gln 100 105 110 Leu Gln Glu Leu Cys Trp Glu Tyr Tyr Asp Tyr Ser Asn Lys Leu Cys 115 120 125 Lys Asp Ala Val Leu Asn Lys Lys Leu Met Met Lys Leu Gln Glu Ser 130 135 140 Lys Phe Asp Val Ile Leu Ala Asp Ala Leu Asn Pro Cys Gly Glu Leu 145 150 155 160 Leu Ala Glu Leu Phe Asn Ile Pro Phe Leu Tyr Ser Leu Arg Phe Ser 165 170 175 Val Gly Tyr Thr Phe Glu Lys Asn Gly Gly Gly Phe Leu Phe Pro Pro 180 185 190 Ser Tyr Val Pro Val Val Met Ser Glu Leu Ser Asp Gln Met Ile Phe 195 200 205 Met Glu Arg Ile Lys Asn Met Ile His Met Leu Tyr Phe Asp Phe Trp 210 215 220 Phe Gln Ile Tyr Asp Leu Lys Lys Trp Asp Gln Phe Tyr Ser Glu Val 225 230 235 240 Leu Gly Arg Pro Thr Thr Leu Phe Glu Thr Met Gly Lys Ala Glu Met 245 250 255 Trp Leu Ile Arg Thr Tyr Trp Asp Phe Glu Phe Pro Arg Pro Phe Leu 260 265 270 Pro Asn Val Asp Phe Val Gly Gly Leu His Cys Lys Pro Ala Lys Pro 275 280 285 Leu Pro Lys Glu Met Glu Glu Phe Val Gln Ser Ser Gly Glu Asn Gly 290 295 300 Ile Val Val Phe Ser Leu Gly Ser Met Ile Ser Asn Met Ser Glu Glu 305 310 315 320 Ser Ala Asn Met Ile Ala Ser Ala Leu Ala Gln Ile Pro Gln Lys Val 325 330 335 Leu Trp Arg Phe Asp Gly Lys Lys Pro Asn Thr Leu Gly Ser Asn Thr 340 345 350 Arg Leu Tyr Lys Trp Leu Pro Gln Asn Asp Leu Leu Gly His Pro Lys 355 360 365 Thr Lys Ala Phe Ile Thr His Gly Gly Thr Asn Gly Ile Tyr Glu Ala 370 375 380 Ile Tyr His Gly Ile Pro Met Val Gly Ile Pro Leu Phe Ala Asp Gln 385 390 395 400 His Asp Asn Ile Ala His Met Lys Ala Lys Gly Ala Ala Leu Ser Val 405 410 415 Asp Ile Arg Thr Met Ser Ser Arg Asp Leu Leu Asn Ala Leu Lys Ser 420 425 430 Val Ile Asn Asp Pro Val Tyr Lys Glu Asn Val Met Lys Leu Ser Arg 435 440 445 Ile His His Asp Gln Pro Met Lys Pro Leu Asp Arg Ala Val Phe Trp 450 455 460 Ile Glu Phe Val Met Arg His Lys Gly Ala Lys His Leu Arg Val Ala 465 470 475 480 Ala His Asn Leu Thr Trp Ile Gln Tyr His Ser Leu Asp Val Ile Ala 485 490 495 Phe Leu Leu Ala Cys Val Ala Thr Val Ile Phe Ile Ile Thr Lys Phe 500 505 510 Cys Leu Phe Cys Phe Arg Lys Leu Ala Lys Thr Gly Lys Lys Lys Lys 515 520 525 Arg Asp 530 114 2312 DNA H. sapiens exon (692)...(1425) 114 accctcctgc tcccatctgc catgatcact ggaaaaccct catttatttt ttaaagggtc 60 cagaaaatgc taatctatag agatagaaat tagattagtg gttgcctagg gtaggatgga 120 tgcaaaattt cagagtgggg ggttagaggc tattgtatag aatcttttgg agataatact 180 gattattgta gtgaaagtaa aattctgtga atatactagg aaacattgaa ctgtacacac 240 taattggtga gtcatatggt atatgaatta tgtgtcaaca aagttttaga agacattact 300 tgcaccacga tattaaaaaa tgccgtttga gttgtataat tacttcttct ctctatgtca 360 agggcaccga acaggcagga gcctctcact tgccactgtt cttaacagta ttataaaata 420 attacataag acaggttact tacatattct aggtcataaa aattattgct tgactagagt 480 aattgtaaac ataaaagaac accaaacaca ctaaaataaa tatgaggtca tcaatctttt 540 gttggtctcc ttggcatgca cctattcaga ctgttagtat tatgtattta cttcaaattt 600 tagcagttat attttaactt gattgatttt tcctcagata taagtatgag aaatgacaga 660 aagaaacaac aactggaaaa gaagcattgc ataagaccag gatgtctctg aaatggacgt 720 cagtctttct gctgatacag ctcagttgtt actttagctc tggaagctgt ggaaaggtgc 780 tagtgtggcc cacagaatac agccattgga taaatatgaa gacaatcctg gaagagcttg 840 ttcagagggg tcatgaggtg actgtgttga catcttcggc ttctactctt gtcaatgcca 900 gtaaatcatc tgctattaaa ttagaagttt atcctacatc tttaactaaa aatgatttgg 960 aagattctct tctgaaaatt ctcgatagat ggatatatgg tgtttcaaaa aatacatttt 1020 ggtcatattt ttcacaatta caagaattgt gttgggaata ttatgactac agtaacaagc 1080 tctgtaaaga tgcagttttg aataagaaac ttatgatgaa actacaagag tcaaagtttg 1140 atgtcattct ggcagatgcc cttaatccct gtggtgagct actggctgaa ctatttaaca 1200 taccctttct gtacagtctt cgattctctg ttggctacac atttgagaag aatggtggag 1260 gatttctgtt ccctccttcc tatgtacctg ttgttatgtc agaattaagt gatcaaatga 1320 ttttcatgga gaggataaaa aatatgatac atatgcttta ttttgacttt tggtttcaaa 1380 tttatgatct gaagaagtgg gaccagtttt atagtgaagt tctaggtaag tcatgtgtct 1440 aactggtgct tattaagttc taacttttct gtgcctttga aggtgagctt atataaatat 1500 aatgtcagaa gatagtgttt ttaagggaaa ttatgaattg caaatgtaag atgatctatc 1560 agtctcaaaa atattataga atgttgacct tatagaatca gttagaaccc tggggccatc 1620 actactacag gacacccaga gagtcataaa ccttcattgt aaagcactaa tgatttcttt 1680 aaactatcac atatcatttt gctatacatt ttttcatctt taaaaaaagt caatagatac 1740 ctcaagaaac atcttcatga aggcagacac ataaatttag tatttacaca tatttctaga 1800 aaaattatca atgcaggatt gaggaatttg tttctctttg agttcctcag tttcctcatt 1860 tagaaattaa attttgtttt tcatgtaaga aggattcctt cacagttgag taatatagtg 1920 gctctactcc agaaacagaa gcctaaaact tgagatttct aatgtttata cattccttca 1980 ataacaggtt gacaattatt tctttcaaaa actgaaatct tgttgaaagt gaacatctaa 2040 gttttaatct atattttatt aaactgcatc tctccatcaa agaaaatagg ggccaaatta 2100 agggagagca catatctcta tgtcaataaa ttctgaaaat gttttaattc tcatttgtaa 2160 atatatttat tttaaaaatc taattatatt aagatcttac gatgaaccaa gacagtagta 2220 ggtgtaaaga tttcagtgtt gagctcaaaa aactcatggt ttactttgag aaccaaggat 2280 caagggctag cttaataaac tgtagacact ag 2312 115 1021 DNA H. sapiens exon (413)...(565) 115 accatgatcc aatcacctgc cactgggtcc ctccctggac acatggggat tatggggatt 60 ataattcaag atgagaggag atttgggtgg ggacagtcaa accatattag tgacttattt 120 taataattat ttatgattgt gaatatactg atgttacatt aaagatgtga tttcttctta 180 cagatctctg aatacattgc cttccttata tatacatatg agcaacatat gcaataaata 240 aaatctaaat tatgactata tataaatgta tttatatata ttttatcaat gcacagacat 300 tttatatatg tttgggtatg ttattccaag tcctttcagg aaaatacctg catattcaaa 360 taacaattct cgtgttagct accttttgtt ttgttttgtt tttttccatc aggaagaccc 420 actacattat ttgagacaat ggggaaagct gaaatgtggc tcattcgaac ctattgggat 480 tttgaatttc ctcgcccatt cttaccaaat gttgattttg ttggaggact tcactgtaaa 540 ccagccaaac ccctgcctaa ggtaaatgta ttcttgtttc atttgtttgc ttgacatttt 600 cagaaggaat ggctggatat gtttctttca gagtgtttaa ctcagagtga ggggaatatg 660 ggaggtcaaa aacaaggact tgccattaga aaatcatata tttctgtagt atcacaagta 720 tgtgaatgtt attatcatta aagaccaaag aggtttacta gggagatttt gaaaacaggg 780 ttggttaaag taaggccttc attgtgccac ccaaaagata gtatgattca tttcttcaaa 840 aaatatttgt agagtgatta atacaaacca caggtaagtg ctggattttc agagaataaa 900 ggtagcacag tttctgctcc ctcatgcctt acattgtact ttgaaagata gaataaaaac 960 aagtgaaaaa gaaaagtcta aaaagtgtta ttaaggaaag accacaatga taaagaaata 1020 t 1021 116 480 DNA H. sapiens exon (43)...(174) 116 tgctgttgct cttttctgat agaacaaatt ctttcttcac aggaaatgga agagtttgtg 60 cagagctctg gagaaaatgg tattgtggtg ttttctctgg ggtcgatgat cagtaacatg 120 tcagaagaaa gtgccaacat gattgcatca gcccttgccc agatcccaca aaaggttaga 180 taaagtgcct taactgtgga tggctactaa atgaatctgt taaactcttc aagagtccat 240 tacagaaatg ttctgcctga aaatttaact gctatgatag ttctaattat ctcagacatc 300 tgttcaaagc aaaaacatat atggaagatc ttaaaatcat aaagagagga gttttggttg 360 ataataacgt tggcattaat attgtgatca gaaggaaata tatttaagag gtgctagtga 420 agtttggtat tatcatggta tcgtagcatg tacatagaaa tcactaaatt ctgccctgtc 480 117 1602 DNA H. sapiens exon (368)...(455) exon (1295)...(1514) 117 tgagtcaagg gctgactttg aatagaatgg gaggtaggtt tgccctaagc agcttaactt 60 ttccctttag catagagttt gggttgccaa gatttatttt cctttcacaa tctcatgtgt 120 ctagctatta tgttagaaat gtcattattt ctttatatac aaaattgatt ataaaagtaa 180 cgacattaaa cgtgggtatt caacttacct caaactttta gtagttctca ttacttgaca 240 tcacttcttc ttatttcttc atcttttata tggattaact aactgattat taatctcttc 300 agaattctaa catgctatgt ttttagagtt ctattcattg aacaagatat tttccttgcc 360 ctaacaggtt ctatggagat ttgatggcaa gaagccaaat actttaggtt ccaatactcg 420 actgtacaag tggttacccc agaatgacct tcttggtaag attctggaga acaaacagtg 480 aatatattag taacagcaaa ttggagtgat aatagttcaa cataaaacaa acatatttag 540 catttattat tggaaaacta aaaaacaaat caaatttaac tactttatat ttattttcca 600 gtcttagtat aaaaagaatg cactatagta gttggcattt tattacatac agtcacattc 660 tttatggtca gaataaaaat ctctttgttc aggtgtaatt tcctctcaca ggttttaaat 720 aacatcctgg attttctgtc tgtctcctat ttatgcagct ttacctctgt tctttcccct 780 actgcagggt tatttcaaca ggcactgaaa aatagcggac acttttctat taccagtgac 840 tctacttttt atgggaataa ataaccaatc tttatcatga taaaatgata acacatttca 900 tgatgatgca taaccggtcc ttcctcagcc ccacctccac cctactccct gctgcctttt 960 aaaaaaaatt aaatatttta aatattttaa gtatttaaat attttttaaa tatgtaaatg 1020 tgacctcatt atttataata cttaaaagac cacgttcttg tatacccaat cttattcttt 1080 ttttttgcac attttaattt tttaattaag aatatgcttt ttcattttgt tcacctggca 1140 attcttctga aatttgaaaa caatttcaat gcagttttgt gggtataatg ttacctaggg 1200 aacagttttg ctttaagttc cttatattgt gcatttctta ttcaattctc ataccttgta 1260 attaataatt ttgttaaaat gcatccactt ttaggtcatc ccaaaaccaa agcttttata 1320 actcatggtg gaaccaatgg catctatgag gcgatctacc atgggatccc tatggtgggc 1380 attcccttgt ttgcggatca acatgataac attgctcaca tgaaagccaa gggagcagcc 1440 ctcagtgtgg acatcaggac catgtcaagt agagatttgc tcaatgcatt gaagtcagtc 1500 attaatgacc ctgtgtgagt attacagttt tgtgaccagg tggtatttat aaattatttt 1560 gtcaacagtg aatatgaatt ttaacccgtt tttaagagac ta 1602 118 978 DNA H. sapiens exon (326)...(978) 118 caaaaagatc attctcaaat tccatttcca ctatcttact tatagcactt agaatggctc 60 ataatatttt ctgctccaga aaacattaac tttcccaccg aaaattccat ttttcatttt 120 taaaggtatt tgtcagtgat aaaactccaa tttaaaaacc aaactttctg taatgacatg 180 aattaaaaca ttgaaatttc atgccaattc agtgacactt actttcaatc atttgtgtga 240 cacttttcaa agaccatcca tagacttgat atgcttaagc aataaattta cttttaatgt 300 tgatatcttt atatttatcc ttcagctata aagagaatgt catgaaatta tcaagaattc 360 atcatgacca accaatgaag cccctggatc gagcagtctt ctggattgag tttgtcatgc 420 gccacaaagg agccaagcac cttcgagtcg cagctcacaa cctcacctgg atccagtacc 480 actctttgga tgtgatagca ttcctgctgg cctgcgtggc aactgtgata tttatcatca 540 caaaattttg cctgttttgt ttccgaaagc ttgccaaaac aggaaagaag aagaaaagag 600 attagttata tcaaaagcct gaagtggaat gactgaaaga tgggactcct cctttatttc 660 agcatggagg gttttaaatg gaggatttcc tttttcctgt gacaaaacat cttttcacta 720 cttaccttgt taagacaaaa tttattttcc agggatttaa tacgtacttt agttggaatt 780 attctatgtc aatgattttt aagctatgaa aaatacaatg gggggaagga tagcatttgg 840 agatatacct aatgttaaat gacgagttac tggatgcagc acgccaacat ggcacatgta 900 tacatatgta gctaacctca cgttgtgcac atgtacccta aaacttaaag tataatttaa 960 aaaaagcaaa gggtaccg 978 119 20 DNA H. sapiens 119 catgcaccta ttcagactgt 20 120 20 DNA H. sapiens 120 tgggtgtcct gtagtagtga 20 121 25 DNA H. sapiens 121 attgattttt cctcagatat aagta 25 122 22 DNA H. sapiens 122 tcataatttc ccttaaaaac ac 22 123 22 DNA H. sapiens 123 atatgtttgg gtatgttatt cc 22 124 18 DNA H. sapiens 124 ccatattccc ctcactct 18 125 23 DNA H. sapiens 125 atacctgcat attcaaataa caa 23 126 18 DNA H. sapiens 126 tatccagcca ttccttct 18 127 22 DNA H. sapiens 127 agttttgtgg gtataatgtt ac 22 128 19 DNA H. sapiens 128 aaacgggtta aaattcata 19 129 25 DNA H. sapiens 129 tcataccttg taattaataa ttttg 25 130 20 DNA H. sapiens 130 cgggttaaaa ttcatattca 20 131 18 DNA H. sapiens 131 tcatgccaat tcagtgac 18 132 17 DNA H. sapiens 132 accctccatg ctgaaat 17 133 21 DNA H. sapiens 133 tcaaagacca tccatagact t 21 134 19 DNA H. sapiens 134 ggagtcccat ctttcagtc 19 135 25 DNA H. sapiens 135 attgattttt cctcagatat aagta 25 136 19 DNA H. sapiens 136 atttactggc attgacaag 19 137 25 DNA H. sapiens 137 attgattttt cctcagatat aagta 25 138 22 DNA H. sapiens 138 tgtacagaaa gggtatgtta aa 22 139 20 DNA H. sapiens 139 aaaaatkatt tggaagattc 20 140 22 DNA H. sapiens 140 tcataatttc ccttaaaaac ac 22 141 23 DNA H. sapiens 141 atacctgcat attcaaataa caa 23 142 18 DNA H. sapiens 142 tatccagcca ttccttct 18 143 25 DNA H. sapiens 143 tcataccttg taattaataa ttttg 25 144 20 DNA H. sapiens 144 cgggttaaaa ttcatattca 20 145 21 DNA H. sapiens 145 tcaaagacca tccatagact t 21 146 19 DNA H. sapiens 146 ggagtcccat ctttcagtc 19 147 20 DNA H. sapiens 147 tgatacagct cagttgttac 20 148 20 DNA H. sapiens 148 tgatacagct cggttgttac 20 149 20 DNA H. sapiens 149 tgttgacatc ttcggcttct 20 150 20 DNA H. sapiens 150 tgttgacatc gtcggcttct 20 151 23 DNA H. sapiens 151 ctttaactaa aaatgatttg gaa 23 152 23 DNA H. sapiens 152 ctttaactaa aaattatttg gaa 23 153 22 DNA H. sapiens 153 tttaacatac cctttctgta ca 22 154 22 DNA H. sapiens 154 tttaacatac cctttccgta ca 22 155 22 DNA H. sapiens 155 ttggaggact tcactgtaaa cc 22 156 22 DNA H. sapiens 156 ttggaggact tcagtgtaaa cc 22 157 23 DNA H. sapiens 157 tatgaggcga tctaccatgg gat 23 158 23 DNA H. sapiens 158 tatgaggcaa tctaccatgg gat 23 159 24 DNA H. sapiens 159 cccttgtttg cggatcaaca tgat 24 160 24 DNA H. sapiens 160 cccttgtttg tggatcaaca tgat 24 161 22 DNA H. sapiens 161 aaagagaatg tcatgaaatt at 22 162 22 DNA H. sapiens 162 aaagagaata tcatgaaatt at 22 163 21 DNA H. sapiens 163 gcttgccaaa acaggaaaga a 21 164 21 DNA H. sapiens 164 gcttgccaaa aaaggaaaga a 21

Claims (10)

What is claimed is:
1. An isolated nucleic acid molecule comprising a UGT2B sequence polymorphism of SEQ ID NOs:25-38; 84-111 or 147-164, as part of other than a naturally occurring chromosome.
2. A nucleic acid probe for detection of UGT2B locus polymorphisms, comprising a polymorphic sequence of SEQ ID NOs:25-38; 84-111 or 147-164.
3. A nucleic acid probe according to claim 2, wherein said probe is conjugated to a detectable marker.
4. An array of oligonucleotides comprising:
two or more probes for detection of UGT2B locus polymorphisms, said probes comprising at least one form of a polymorphic sequences of SEQ ID NOs:25-38; 84-111 is or 147-164.
5. A method for detecting in an individual a polymorphism in a UGT2B metabolism of a substrate, the method comprising:
analyzing the genome of said individual for the presence of at least one UGT2B polymorphism of SEQ ID NOs:25-38; 84-111 or 147-164; wherein the presence of said predisposing polymorphism is indicative of an alteration in UGT2B expression or activity.
6. A method according to claim 5, wherein said analyzing step comprises detection of specific binding between the genomic DNA of said individual with an array of oligonucleotides comprising:
two or more probes for detection of UGT2B locus polymorphisms, said probes comprising at least one form of a polymorphic sequence of SEQ ID NOs:25-38; 84-111 or 147-164.
7. A method according to claim 5, wherein said alteration in UGT2B expression is tissue specific.
8. A method according to claim 5, wherein said alteration in UGT2B expression is in response to a UGT2B modifier.
9. A method according to claim 8, wherein said modifier induces UGT2B expression.
10. A method according to claim 8, wherein said modifier inhibits UGT2B expression.
US10/205,522 1998-07-28 2002-07-24 Genotyping human UDP-Glucuronsyltransferase 2B15 (UGT2B15) genes Abandoned US20030077629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/205,522 US20030077629A1 (en) 1998-07-28 2002-07-24 Genotyping human UDP-Glucuronsyltransferase 2B15 (UGT2B15) genes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9439198P 1998-07-28 1998-07-28
US09/356,806 US6586175B1 (en) 1998-07-28 1999-07-20 Genotyping the human UDP-glucuronosyltransferase 2B7 (UGT2B7) gene
US10/205,522 US20030077629A1 (en) 1998-07-28 2002-07-24 Genotyping human UDP-Glucuronsyltransferase 2B15 (UGT2B15) genes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/356,806 Continuation US6586175B1 (en) 1998-07-28 1999-07-20 Genotyping the human UDP-glucuronosyltransferase 2B7 (UGT2B7) gene

Publications (1)

Publication Number Publication Date
US20030077629A1 true US20030077629A1 (en) 2003-04-24

Family

ID=22244887

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/356,806 Expired - Fee Related US6586175B1 (en) 1998-07-28 1999-07-20 Genotyping the human UDP-glucuronosyltransferase 2B7 (UGT2B7) gene
US10/205,522 Abandoned US20030077629A1 (en) 1998-07-28 2002-07-24 Genotyping human UDP-Glucuronsyltransferase 2B15 (UGT2B15) genes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/356,806 Expired - Fee Related US6586175B1 (en) 1998-07-28 1999-07-20 Genotyping the human UDP-glucuronosyltransferase 2B7 (UGT2B7) gene

Country Status (6)

Country Link
US (2) US6586175B1 (en)
EP (1) EP1100968A1 (en)
JP (1) JP2002521067A (en)
AU (1) AU5225699A (en)
CA (1) CA2334957A1 (en)
WO (1) WO2000006776A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099960A1 (en) * 2001-01-26 2003-05-29 The University Of Chicago Compositions and methods for optimizing UGT2B7 substrate dosings and for predicting UGT2B7 substrate toxicity
US20030152968A1 (en) * 1999-02-16 2003-08-14 Arch Development Corporation Methods for detection of promoter polymorphism in a UGT gene promoter
US20040203034A1 (en) * 2003-01-03 2004-10-14 The University Of Chicago Optimization of cancer treatment with irinotecan
US20070197574A1 (en) * 2003-05-30 2007-08-23 Ratain Mark J Methods and compositions for predicting irinotecan toxicity
US20090247475A1 (en) * 2004-03-05 2009-10-01 The Regents Of The University Of California Methods and compositions relating to pharmacogenetics of different gene variants in the context of irinotecan-based therapies
US20090306026A1 (en) * 2005-11-11 2009-12-10 Tuiten Jan J A Pharmaceutical Formulations and Uses Thereof in the Treatment of Female Sexual Dysfunction
CN108949946A (en) * 2017-05-25 2018-12-07 上海市预防医学研究院 UGT2 gene polymorphism sites relevant to anti-tubercular drug physical property hepatic injury generation and its application

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526342A (en) * 1999-11-23 2003-09-09 ディアデクサス インコーポレーテッド Novel methods of diagnosing, monitoring, staging, imaging and treating breast cancer
US7238471B1 (en) 1999-11-23 2007-07-03 Diadexus, Inc. Method of diagnosing, monitoring, staging, imaging and treating breast cancer
US6987014B2 (en) * 2000-08-30 2006-01-17 Applera Corporation Isolated nucleic acid molecules encoding human drug metabolizing proteins
DE10100238A1 (en) * 2001-01-05 2002-08-22 Hannover Med Hochschule Methods for predicting the potential risk for carcinoma and inflammatory bowel diseases and related tests
US7033790B2 (en) 2001-04-03 2006-04-25 Curagen Corporation Proteins and nucleic acids encoding same
DE10207971A1 (en) * 2002-02-25 2003-09-11 Norbert Dahmen Procedure for the identification of side effects relevant marker profiles
KR100849166B1 (en) 2005-02-07 2008-07-30 인제대학교 산학협력단 - 14 Single nucleotide polymorphic of UDP-glucuronosyltransferase 1A4 and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641668A (en) * 1992-11-27 1997-06-24 Ciba-Geigy Corporation Proteins having glycosyltransferase activity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012987A1 (en) 1991-01-10 1992-08-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services The genetic locus ugt1 and a mutation therein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641668A (en) * 1992-11-27 1997-06-24 Ciba-Geigy Corporation Proteins having glycosyltransferase activity

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152968A1 (en) * 1999-02-16 2003-08-14 Arch Development Corporation Methods for detection of promoter polymorphism in a UGT gene promoter
US20060147907A9 (en) * 1999-02-16 2006-07-06 Arch Development Corporation Methods for detection of promoter polymorphism in a UGT gene promoter
US20070092902A1 (en) * 1999-02-16 2007-04-26 Anna Di Rienzo Methods for Detection of Promoter Polymorphism in UGT Gene Promoter
US20030099960A1 (en) * 2001-01-26 2003-05-29 The University Of Chicago Compositions and methods for optimizing UGT2B7 substrate dosings and for predicting UGT2B7 substrate toxicity
US20040203034A1 (en) * 2003-01-03 2004-10-14 The University Of Chicago Optimization of cancer treatment with irinotecan
US20070197574A1 (en) * 2003-05-30 2007-08-23 Ratain Mark J Methods and compositions for predicting irinotecan toxicity
US7807350B2 (en) 2003-05-30 2010-10-05 The University Of Chicago Methods for predicting irinotecan toxicity
US20090247475A1 (en) * 2004-03-05 2009-10-01 The Regents Of The University Of California Methods and compositions relating to pharmacogenetics of different gene variants in the context of irinotecan-based therapies
US20090306026A1 (en) * 2005-11-11 2009-12-10 Tuiten Jan J A Pharmaceutical Formulations and Uses Thereof in the Treatment of Female Sexual Dysfunction
CN108949946A (en) * 2017-05-25 2018-12-07 上海市预防医学研究院 UGT2 gene polymorphism sites relevant to anti-tubercular drug physical property hepatic injury generation and its application

Also Published As

Publication number Publication date
EP1100968A1 (en) 2001-05-23
CA2334957A1 (en) 2000-02-10
WO2000006776A1 (en) 2000-02-10
JP2002521067A (en) 2002-07-16
US6586175B1 (en) 2003-07-01
AU5225699A (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US6432639B1 (en) Isolated CYP3A4 nucleic acid molecules and detection methods
US6479236B2 (en) Genotyping the human UDP-glucuronosyltransferase 1 (UGT1) gene
US6586175B1 (en) Genotyping the human UDP-glucuronosyltransferase 2B7 (UGT2B7) gene
US6448003B1 (en) Genotyping the human phenol sulfotransferbase 2 gene STP2
KR101141543B1 (en) Polynucleotides derived from ALDH4A1, PINK1, DDOST, KIF17, LMX1A, SRGAP2, ASB3, PSME4, ANXA4, GMCL1, and MAP2 genes comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods using the same
JP2003144176A (en) Detection method for gene polymorphism
EP1194595A1 (en) Polymorphisms in the human hmg-coa reductase gene
US6444427B1 (en) Polymorphisms in a diacylglycerol acyltransferase gene, and methods of use thereof
US20040018550A1 (en) Antibodies immunologically specific for a DNA repair endonuclease and methods of use thereof
EP1218537B1 (en) Biallelic markers related to genes involved in drug metabolism
US20020143162A1 (en) Methods
KR101187317B1 (en) Polymorphic markers predicting susceptibility to diffuse-type gastric cancer and the prediction method thereof using the same
JP3682688B2 (en) Osteoporosis drug sensitivity prediction method and reagent kit therefor
EP1100962A1 (en) Genetic polymorphisms in the human neurokinin 1 receptor gene and their uses in diagnosis and treatment of diseases
JP2002521063A (en) Human CCR-2 gene polymorphism
KR100909372B1 (en) Methods for diagnosing premature ovarian failure using polynucleotides comprising single nucleotide polymorphism
WO2000039331A1 (en) Single nucleotide polymorphism in a pyruvate dehydrogenase kinase isoenzyme 2 (pdk2) in humans
JP3684921B2 (en) Osteoporosis drug sensitivity prediction method
US20030223986A1 (en) Methods
US20030143560A1 (en) Mutant DNA encoding peroxisome proliferator-activated receptor-gamma coactivator-1
US20030190607A1 (en) Methods
JP2000189165A (en) Genetic diagnosis of bovine chediak-higashi syndrome
KR20070107202A (en) Polynucleotides comprising single nucleotide polymorphism, microarrays and diagnostic kits comprising the same, and methods for diagnosing premature ovarian failure using the same
WO2000075294A1 (en) Glycogenin, glycogenin pseudogenes, and uses thereof to determine risk for developing type 2 diabetes
JP2000189176A (en) Gene diagnosis of bovine chediak-higashi syndrome

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION