Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20030122477 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 10/042,749
Fecha de publicación3 Jul 2003
Fecha de presentación4 Dic 2002
Fecha de prioridad19 Ene 1996
También publicado comoUS5744907, US7021982
Número de publicación042749, 10042749, US 2003/0122477 A1, US 2003/122477 A1, US 20030122477 A1, US 20030122477A1, US 2003122477 A1, US 2003122477A1, US-A1-20030122477, US-A1-2003122477, US2003/0122477A1, US2003/122477A1, US20030122477 A1, US20030122477A1, US2003122477 A1, US2003122477A1
InventoresSurjit Chadha, Charles Watkins
Cesionario originalMicron Technology, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Binders for field emission displays
US 20030122477 A1
Resumen
Binders, both inorganic and organic, are used for providing sufficient binding action to hold powder phosphor particles together as well as to the glass screen of a field emission display device.
Imágenes(3)
Previous page
Next page
Reclamaciones(19)
We claim:
1. An improved field emission display device, comprising:
a transparent anode;
phosphor material deposited on said anode; and
binder material covering said anode and phosphor material, whereby shedding of said phosphor material is substantially eliminated.
2. An improved field emission display device according to claim 1 wherein said binder material is conductive.
3. An improved field emission display device according to claim 1 wherein said binder material is semiconductive.
4. An improved field emission display device according to claim 1 wherein said binder material is selected from the group including: tin(II) 2-ethylhexanoate, tin (IV) isopropoxide, tin (II) oxalate, titanium (IV) ethoxide, zinc 2,4-pentane dionate, zinc acetate, zinc oxalate indium oxalate, cadmium oxalate,
5. An improved field emission display device according to claim 1 wherein said binder material is selected from the group including: poly(propylene carbonate), poly(propylene carbonate) and poly(ethylene Carbonate) sold by PAC Polymers Inc. of Greenville, Del. as QPAC40 Emulsion, QPAC40 amd QPAC-25, respectively.
6. An improved field emission display device according to claim 1 wherein said binder material is selected from the group including: polyvinyl alcohol, potassium silicate, and ammonium silicate.
7. An improved field emission display device according to claim 1 wherein the glass screen is coated with transparent conducting film selected from the group including: indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO2) doped with antimony (Sb), cadmium oxide (CdO), and cadmium tin oxide (cadmium stannate) Cd2SnO4.
8. An improved field emission display device according to claim 1 wherein the binder material is an organometallic compound selected from the group including: cadmium (Cd), titanium (Ti), zinc (Zn), tin (Sn), indium (In), antimony (Sb), tungsten (W), niobium (Nb), which form conductive and/or semiconductive oxides when heated.
9. An improved field emission display device according to claim 1 wherein said binder material is transparent.
10. A method for forming an improved field emission display device, comprising the steps of:
providing a transparent anode;
depositing phosphor material on said anode; and
applying binder material to said anode and phosphor material, whereby the phosphor material is bound together and to said anode so that shedding of said phosphor material is substantially eliminated.
11. A method according to claim 10 wherein said binder material is conductive.
12. A method according to claim 10 wherein said binder material is semiconductive.
13. A method according to claim 10 wherein said binder material is selected from the group including: tin(II) 2-ethylhexanoate, tin (IV) isopropoxide, tin (II) oxalate, titanium (IV) ethoxide, zinc 2,4-pentane dionate, zinc acetate, and zinc oxalate.
14. A method according to claim 10 wherein said binder material is selected from the group including: poly(propylene carbonate), poly(propylene carbonate) and poly(ethylene Carbonate) sold by PAC Polymers Inc. of Greenville, Del. as QPAC40 Emulsion, QPAC40 and QPAC-25, respectively.
15. A method according to claim 10 wherein said binder material is selected from the group including: polyvinyl alcohol, potassium silicate, and ammonium silicate.
16. A method according to claim 10 wherein the glass screen is coated with transparent conducting film selected from the group including: indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO2) doped with antimony (Sb), cadmium oxide (CdO), and cadmium tin oxide (Cadmium stannate) Cd2SnO4.
17. A method according to claim 10 wherein the binder material is an organometallic compound selected from the group including: cadmium (Cd), titanium (Ti), zinc (Zn), tin (Sn), indium (In), antimony (Sb), tungsten (W), niobium (Nb), further comprising the step of heating said binder material to form conductive and/or semiconductive oxides.
18. A method according to claim 10 wherein said binder material is transparent.
19. A method according to claim 10 wherein said binder material is heated to remove any organics and leave behind a conducting or semiconducting oxide which binds the phosphor particles to each other and to the glass screen.
Descripción
    GOVERNMENT RIGHTS
  • [0001] This invention was made with Government support under Contract No. DABT63-93-C-0025, awarded by the Advanced Research Projects Agency (ARPA). The Government has certain rights in this invention.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The present invention generally relates to an improvement in the binding of phosphors to the display screen of field emission displays and, in particular, to the use of inorganic and organic binder materials which may be either conductive or semi-conductive.
  • [0003]
    Field emission display (FED) technology utilizes a matrix addressable array of pointed, thin film, cold field emission cathodes in combination with a phosphor luminescent screen, as represented for example by U. S. Pat. No. 5,210,472, the disclosure of which is incorporated herein by reference. An emissive flat panel display operates on the principles of cathodoluminescent phosphors excited by cold cathode field emission electrons. A faceplate having a cathodoluminescent phosphor coating, similar to that of a cathode ray tube, receives patterned electron bombardment from an opposing baseplate thereby providing a light image which can be seen by a viewer. The faceplate is separated from the base plate by a narrow vacuum gap. Arrays of electron emission sites (emitters) are typically sharp cones on the cathode that produce electron emission in the presence of an intense electric field. A positive voltage is applied to an extraction grid, relative to the sharp emitters, to provide the intense electric field required for generating cold cathode electron emission.
  • [0004]
    FEDs are less tolerant to particle shedding from the faceplate than CRTs, and thus excellent and repeatable adhesion and faceplate integrity are required. The cathode of the field emission display is in very close proximity to the faceplate and is sensitive to any electronegative chemicals arriving on the cold cathode emitter surfaces, which could absorb them and increase the value of the emitter work function. Typically FEDs are operated at anode voltages well below those of conventional CRTs. The material properties of the surface, distance along the surface, and changes in the orientation of the surface relative to a straight line between the two voltage nodes determine the voltage at which flashover between the cathode and faceplate occurs. Because FEDs employ lower anode voltages, phosphor material screening and the process of binding them to each other and to the faceplate have to be optimized and tightly controlled to minimize the dead layer and allow for effective excitation of the phosphor. Most phosphor lifetimes are largely determined by the total accumulated charge delivered per unit area through the life of the display.
  • SUMMARY OF THE INVENTION
  • [0005]
    The present invention relates to the use of binders, both inorganic and organic, for providing sufficient binding action to hold powder phosphor particles together as well as on the glass screen of a field emission display. The binder materials can be either conductive or semi-conductive in nature.
  • DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT
  • [0006]
    Field emission displays emit visible light following excitation of a phosphor screen via electrons from a cold cathode based on either silicon (Si), molybdenum (Mo), tungsten (W), etc. microtips. As the phosphor coated screen is in very close proximity with the microtips, any particles which come loose from the phosphor screen could cause fatal damage to the tips or shorting. As such, the present invention proposes to the use of binders, both inorganic and organic, for providing sufficient binding action to hold the powder phosphor particles together as well as on the glass screen. Furthermore as the phosphor screen of a field emission display is not normally aluminized, as are most cathode ray tubes, there is a possibility of space charge build up which could lead to a decreased luminescent efficiency. Thus the present invention further proposes that the binder materials used be of a conductive or a semi-conductive nature to eliminate this problem.
  • [0007]
    Preferably the binder, according to the present invention, is polyvinyl alcohol, potassium silicate, ammonium silicate, or it may be such that heating the phosphor/binder screen yields a conductive binder, e.g., tin(II) 2-ethylhexanoate, tin (IV) isopropoxide, tin (II) oxalate, titanium (IV) ethoxide, zinc 2,4-pentane dionate, zinc acetate, zinc oxalate. Suitable binder materials include poly(propylene carbonate), poly(propylene carbonate) and poly(ethylene Carbonate) sold by PAC Polymers Inc. of Greenville, Del. as QPAC40 Emulsion, QPAC40 and QPAC-25, respectively.
  • [0008]
    For these compounds a simple heating process removes the organics and leaves behind a conducting or semiconducting oxide which binds the phosphor particles to each other and to the glass screen. The glass screen is normally coated with transparent conducting film such as indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO2) with antimony (Sb) doping, cadmium oxide (CdO), cadmium tin oxide Cd2SnO4, (cadmium stannate) etc.
  • [0009]
    In general these organometallic compounds would be from the following group: cadmium (Cd), titanium (Ti), zinc (Zn), tin (Sn), indium (In), antimony (Sb), tungsten (W), niobium (Nb), etc. which would form conductive and semiconductive oxides when heated. In addition, these oxides are preferably transparent.
  • [0010]
    Three phosphors (green, red, blue) are applied to the faceplate in separate (wet application i.e., as a slurry or electrophoresis or dry application i.e., as a powder on a wetted faceplate) operations. The phosphor particles range in size from 1 to 5 μm in diameter and are coated to a thickness of 1-10 μm, or 1-3 particles deep. The subject binders are applied with or after the phosphors in a similar wet operation.
  • [0011]
    The preferred method for applying these binders is by spray coating, or by adding to the phosphor material during its deposition.
  • [0012]
    In another embodiment, the anode may be patterned with a mask, such as photoresist, to prevent accumulation of the conductive binder in unwanted areas, such as between conductive traces.
  • [0013]
    The binding material is heat treated to temperatures in the range of to 20° C. to 600° C. for a period of from 2 to 200 minutes under pressures of from 760 to 10−6 Torr in an atmosphere of air or somewhat reducing atmosphere, depending on the type of binder.
  • [0014]
    The present invention may be subject to many modifications and changes without departing from the spirit or essential, characteristics thereof. The present embodiment should therefor be considered in all respects as being illustrative and not restrictive of the scope of the invention as defined by the appended claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3714011 *17 Jul 197030 Ene 1973Columbia Broadcasting Sys IncMethod of electrophoretic deposition of cathodoluminescent materials
US3763051 *21 Jun 19712 Oct 1973Gte Sylvania IncPhosphor suspension for dip-coating metallic segments
US4568479 *17 Sep 19844 Feb 1986Rca CorporationMethod for preparing phosphor adapted for producing photosensitive layers from an acid slurry
US4680231 *20 Nov 198514 Jul 1987Futaba Denshi Kogyo Kabushiki KaishaLow-velocity electron excited phosphor
US5073463 *12 Sep 198917 Dic 1991Sony CorporationMethod of manufacturing a phosphor screen for cathode ray tubes
US5404074 *16 Jun 19934 Abr 1995Sony CorporationImage display
US5531880 *13 Sep 19942 Jul 1996Microelectronics And Computer Technology CorporationMethod for producing thin, uniform powder phosphor for display screens
US5536383 *19 Oct 199516 Jul 1996Commissariat A L'energie AtomiqueSuspension for the deposition of luminescent materials by electrophoresis particularly for producing flat screens
US5697824 *7 Jun 199516 Dic 1997Microelectronics And Computer Technology Corp.Method for producing thin uniform powder phosphor for display screens
US5744907 *19 Ene 199628 Abr 1998Micron Display Technology, Inc.Binders for field emission displays
US5844361 *13 Dic 19961 Dic 1998Motorola, Inc.Field emission display having a stabilized phosphor
US5945780 *30 Jun 199731 Ago 1999Motorola, Inc.Node plate for field emission display
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US20060013944 *14 Jul 200419 Ene 2006Teco Nanotech Co., Ltd.Developable phosphor coating mixture solution and method for manufacturing anodic phosphor layer
US20070161317 *14 Ene 200512 Jul 2007Klaus-Dieter BauerMethod for producing discharge lamps
Clasificaciones
Clasificación de EE.UU.313/497
Clasificación internacionalC09K11/02
Clasificación cooperativaH01J2329/00, C09K11/02
Clasificación europeaC09K11/02
Eventos legales
FechaCódigoEventoDescripción
8 Abr 2008CCCertificate of correction
2 Sep 2009FPAYFee payment
Year of fee payment: 4
15 Nov 2013REMIMaintenance fee reminder mailed
4 Abr 2014LAPSLapse for failure to pay maintenance fees
27 May 2014FPExpired due to failure to pay maintenance fee
Effective date: 20140404