Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20030135162 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 10/053,143
Fecha de publicación17 Jul 2003
Fecha de presentación17 Ene 2002
Fecha de prioridad17 Ene 2002
También publicado comoUS7722638, US20080091229
Número de publicación053143, 10053143, US 2003/0135162 A1, US 2003/135162 A1, US 20030135162 A1, US 20030135162A1, US 2003135162 A1, US 2003135162A1, US-A1-20030135162, US-A1-2003135162, US2003/0135162A1, US2003/135162A1, US20030135162 A1, US20030135162A1, US2003135162 A1, US2003135162A1
InventoresThomas Deyette, Eric Houde, Scott Diamond, Mark Van Diver, Colin Hart, Glenn Wadleigh
Cesionario originalScimed Life Systems, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Delivery and retrieval manifold for a distal protection filter
US 20030135162 A1
Resumen
Devices and methods for delivery or retrieval of a distal protection device. A distal protection assembly may comprise an outer sheath, an inner shaft disposed within a lumen of the outer sheath, a distal protection device disposed at a distal end of the inner shaft; and a manifold coupled to a proximal end of the outer sheath that is adapted for moving the outer sheath relative to the inner shaft.
Imágenes(6)
Previous page
Next page
Reclamaciones(45)
What is claimed is:
1. A distal protection assembly, comprising:
an outer sheath having a proximal end, a distal end, and a lumen extending therethrough;
an inner shaft disposed within the lumen, the inner shaft having a proximal end and a distal end;
a distal protection device disposed at the distal end of the inner shaft;
a manifold coupled to the proximal end of the inner shaft, the manifold including an actuator assembly; and
the actuator assembly coupled to the proximal end of the outer sheath and capable of moving the outer sheath relative to the inner shaft.
2. The distal protection assembly in accordance with claim 1, wherein the distal protection device comprises a filter.
3. The distal protection assembly in accordance with claim 1, wherein the distal protection device comprises a mesh.
4. The distal protection assembly in accordance with claim 1, wherein the distal protection device comprises a strut.
5. The distal protection assembly in accordance with claim 1, wherein the distal protection device comprises a rib.
6. The distal protection assembly in accordance with claim 1, wherein the actuator assembly includes a button.
7. The distal protection assembly in accordance with claim 6, wherein the button is longitudinally movable.
8. The distal protection assembly in accordance with claim 6, further comprising an actuator retention cover.
9. The distal protection assembly in accordance with claim 1, wherein the actuation assembly includes a gear.
10. The distal protection assembly in accordance with claim 9, further comprising a proximal tubular member coupled to the outer sheath.
11. The distal protection assembly in accordance with claim 10, wherein the proximal tubular member further comprises teeth.
12. The distal protection assembly in accordance with claim 11, wherein the gear is engagable with the teeth.
13. The distal protection assembly in accordance with claim 12, wherein the actuator assembly further comprises a thumbwheel coupled to the gear.
14. The distal protection assembly in accordance with claim 12, wherein the actuator assembly further comprises a button coupled to the gear.
15. The distal protection assembly in accordance with claim 14, wherein pressing the button moves the outer sheath distally relative to the inner shaft.
16. The distal protection assembly in accordance with claim 14, wherein pressing the button moves the outer sheath proximally relative to the inner shaft.
17. The distal protection assembly in accordance with claim 14, wherein the button is axially rotatable.
18. The distal protection assembly in accordance with claim 17, wherein axial rotation of the button results in movement of the outer sheath relative to the inner shaft.
19. The distal protection assembly in accordance with claim 12, wherein the actuation assembly further comprises a second gear and a second button.
20. The distal protection assembly in accordance with claim 19, wherein pressing the second button moves the outer tube in a direction that is opposite to pressing the first button.
21. A distal protection assembly, comprising:
an outer sheath having a proximal end, a distal end, a lumen extending therethrough, and a proximal tubular member tube coupled to the proximal end;
the proximal tubular member including teeth;
an inner shaft disposed within the lumen, the inner shaft having a proximal end and a distal end;
a distal protection device disposed at the distal end of the inner shaft;
a manifold coupled to the proximal end of the inner shaft, the manifold including an actuator assembly;
the actuator assembly having a gear that is engagable with the teeth; and
wherein the actuator assembly is coupled to the proximal tubular member and capable of moving the outer sheath relative to the inner shaft.
22. The distal protection assembly in accordance with claim 21, wherein the distal protection device comprises a filter.
23. The distal protection assembly in accordance with claim 21, wherein the distal protection device comprises a mesh.
24. The distal protection assembly in accordance with claim 21, wherein the distal protection device comprises a strut.
25. The distal protection assembly in accordance with claim 21, wherein the distal protection device comprises a rib.
26. The distal protection assembly in accordance with claim 21, wherein the actuation assembly includes a thumbwheel coupled to the gear.
27. The distal protection assembly in accordance with claim 21, wherein the actuator assembly further comprises a button coupled to the gear.
28. The distal protection assembly in accordance with claim 27, wherein pressing the button moves the outer sheath distally relative to the inner shaft.
29. The distal protection assembly in accordance with claim 27, wherein pressing the button moves the outer sheath proximally relative to the inner shaft.
30. The distal protection assembly in accordance with claim 27, wherein the button is axially rotatable.
31. The distal protection assembly in accordance with claim 30, wherein axial rotation of the button results in movement of the outer sheath relative to the inner shaft.
32. The distal protection assembly in accordance with claim 21, wherein the actuation assembly further comprises a second gear and a second button.
33. The distal protection assembly in accordance with claim 32, wherein pressing the second button moves the outer tube in a direction that is opposite to pressing the button.
34. A method of actuating a distal protection assembly, comprising the steps of:
providing a distal protection assembly including an outer sheath having a proximal end, a distal end, and a lumen extending therethrough; an inner shaft disposed within the lumen, the inner shaft having a proximal end and a distal end; a distal protection device disposed at the distal end of the inner shaft; a manifold coupled to the proximal end of the inner shaft, the manifold including an actuator assembly; and the actuator assembly coupled to the proximal end of the outer sheath and capable of moving the outer sheath relative to the inner shaft;
actuating the actuator assembly; and
wherein actuating the actuator assembly shifts the distal protection device between a delivery position and a retrieval position.
35. The method in accordance with claim 34, wherein the step of actuating the actuator assembly further comprises collapsing the distal protection device.
36. The method in accordance with claim 34, wherein the step of actuating the actuator assembly further comprises expanding the distal protection device.
37. The method in accordance with claim 34, wherein the actuator assembly includes a gear.
38. The method in accordance with claim 37, wherein the gear is engageable with a proximal tubular member disposed at the distal end of the outer sheath.
39. The method in accordance with claim 38, wherein the step of actuating the actuator assembly further comprises rotating a thumbwheel coupled to the gear.
40. The method in accordance with claim 38, wherein the actuator assembly further comprises a button coupled to the gear and wherein the step of actuating the actuator assembly includes pressing the button.
41. The method in accordance with claim 40, wherein the step of pressing the button results in the outer sheath moving distally relative to the inner shaft.
42. The method in accordance with claim 40, wherein the step of pressing the button results in the outer sheath moving proximally relative to the inner shaft.
43. The method in accordance with claim 40, wherein the actuator assembly further comprises a second gear and a second button coupled to the proximal tubular member and wherein the step of actuating the actuator further comprises pressing the second button.
44. The method in accordance with claim 43, wherein pressing the second button moves the outer tube in a direction that is opposite to pressing the button.
45. The method in accordance with claim 38, wherein the step of actuating the actuator assembly includes axially rotating a button and wherein rotating the button results in movement of the outer sheath relative to the inner shaft.
Descripción
    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    The present invention relates generally to devices and methods for treating occluded or stenoic blood vessels. More particularly, the present invention relates to devices and methods for using and retrieving a distal protection device from the vasculature of a patient.
  • [0003]
    2. Description of the Related Art
  • [0004]
    Atherosclerosis and other forms of vascular disease are a major health problem in the United States and the world. Generally, vascular disease results in blood vessels becoming blocked or narrowed. This blockage can result in a lack of oxygen for the heart. It is critical that the heart muscle be well oxygenated so that the blood pumping action of the heart is not impaired.
  • [0005]
    Occluded or stenotic blood vessels may be treated with a number of medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. These treatments are relatively non-invasive methods of treating a stenotic lesion. Angioplasty techniques typically involve the use of a balloon catheter. The balloon catheter is advanced over a guidewire such that the balloon is positioned adjacent a stenotic lesion. The balloon is then inflated and the stenosis is expanded. During an atherectomy procedure, the stenotic lesion is typically mechanically cut away from the blood vessel wall.
  • [0006]
    During angioplasty and atherectomy procedures, stenotic debris is often separated from the stenosis and may be free to flow within the lumen of the vessel. If this debris enters the circulatory system, it could block other vascular regions including the neural vasculature or in the lungs. During angioplasty procedures, stenotic debris may also break loose due to manipulation of the blood vessel. Because of this debris, a number of devices termed distal protection devices have been developed to filter out this debris.
  • [0007]
    Before using a distal protection device, the device will need to be delivered to an area downstream of where treatment will take place. It is important that the device be delivered properly and efficiently. A need, therefore, exists for devices for delivery of distal protection devices.
  • [0008]
    After an intravascular procedure has been performed, the distal protection device will need to be removed from the vasculature. Because the distal protection devices are typical used in an expanded condition, it may be difficult to remove the device. A need, therefore exists for devices suitable for retrieval of distal protection devices.
  • BRIEF SUMMARY OF THE INVENTION
  • [0009]
    The present invention pertains to a novel distal protection assembly for delivering or retrieving a distal protection filter. A distal protection assembly may comprise an outer sheath, an inner shaft disposed within a lumen of the outer sheath, a distal protection device coupled to a distal end of the inner shaft, and a manifold coupled to the outer sheath. The manifold may include an actuation assembly that, when actuated, may result in movement of the outer sheath relative to the inner shaft. This movement will shift the filter between a delivered position and a retrieved position.
  • [0010]
    The manifold may comprise a proximal end, a distal end, a handle region, an opening located between the proximal end and the distal end, and may include a rail. An actuator assembly may be disposed at the opening. The actuator assembly may comprise a button having a proximal end, a distal end, and a lumen extending therethrough. The proximal end of the outer sheath is coupled to the distal end of the button. The button may be longitudinally movable along the rail such that movement of the button results in a substantially similar movement of the outer sheath relative to the inner shaft. The manifold may, thus, be actuated to shift the distal protection device between a delivery position and a retrieval position by longitudinal movement of the button.
  • [0011]
    Alternatively, the outer sheath may further comprise or be coupled to a proximal tubular member. The proximal tubular member may further comprise teeth. The actuator assembly may comprise a gear coupled to a thumbwheel, or one or more buttons. The teeth may engage the gear so that rotation of the thumbwheel, or pressing or rotating a button may result in movement of the outer sheath relative to the inner shaft.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • [0012]
    [0012]FIG. 1 is plan overview of a distal protection assembly;
  • [0013]
    [0013]FIG. 2 is an enlarged view of a distal protection device of FIG. 1 in a retrieved position;
  • [0014]
    [0014]FIG. 3 is an enlarged view of a distal protection device of FIG. 1 in a delivered position;
  • [0015]
    [0015]FIG. 4 is a perspective view of a manifold;
  • [0016]
    [0016]FIG. 5 is a perspective view of the manifold of FIG. 4, wherein the actuator retention cover is removed;
  • [0017]
    [0017]FIG. 6 is a perspective view of an alternative embodiment of a manifold;
  • [0018]
    [0018]FIG. 7 is a perspective of a second alternative embodiment of a manifold;
  • [0019]
    [0019]FIG. 8 is a perspective view of the manifold shown in FIG. 7;
  • [0020]
    [0020]FIG. 9 is a perspective view of an alternative embodiment of the manifold shown in FIG. 7;
  • [0021]
    [0021]FIG. 10 is a perspective view of a second alternative embodiment of the manifold shown in FIG. 7;
  • [0022]
    [0022]FIG. 11 is a perspective view of a third alternative embodiment of a manifold;
  • [0023]
    [0023]FIG. 11 is an enlarged view through section 11A-11A; and
  • [0024]
    [0024]FIG. 12 is an exploded view of the manifold of FIG. 11, wherein the actuator assembly is removed.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0025]
    The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention.
  • [0026]
    When delivering or retrieving a distal protection filter, it may be important to secure the position of the filter (or filter wire) relative to a delivery or retrieval sheath. This may allow a clinician to accurately deliver or retrieve the filter and minimize unwanted or unplanned movement thereof. FIG. 1 is a plan overview of a distal protection assembly 10. Distal protection assembly 10 includes an outer sheath 12 having a lumen 18, an inner shaft 20 disposed within lumen 18, a distal protection filter 26 coupled to inner shaft 20, and a manifold 28 coupled to a proximal end 14 of outer sheath 12. Manifold 28 may be used to actuate sheath 12 relative to shaft 20 in order to deliver or retrieve filter 26. In this embodiment manifold 28 is shown systematically, in the subsequently described manifold embodiments a detailed description is provided.
  • [0027]
    Outer sheath 12 having proximal end 14, a distal end 16, and lumen 18 extending therethrough may be comprised of materials including, but not limited to, metals, stainless steel, nickel alloys, nickel-titanium alloys, thermoplastics, high performance engineering resins, fluorinated ethylene propylene (FEP), polymer, polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyurethane, polytetrafluoroethylene (PTFE), polyether-ether ketone (PEEK), polyimide, polyamide, polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polysufone, nylon, perfluoro(propyl vinyl ether) (PFA), polycarbonate, acrylonitrile butadiene styrene (ABS), etc.
  • [0028]
    At least a portion of inner shaft 20 may be disposed within lumen 18. Inner shaft 20 includes a proximal end 22 and a distal end 24. Inner shaft 20 may be comprised of materials similar to those listed above. For example, inner shaft 20 may comprise a stainless steel or nickel-titanium alloy guidewire.
  • [0029]
    Distal protection filter 26 may be disposed at distal end 24 of inner shaft 20. Filter 26 may be comprised of a polyurethane sheet and include at least one opening that may be, for example, formed by known laser techniques. The holes or openings are sized to allow blood flow therethrough but restrict flow of debris or emboli floating in the body lumen or cavity. Filter 26 may be generally cone-shaped, and have a proximal and a distal end. The distal end may be a narrow, “V”-shaped end and is fixedly secured or formed to shaft 26. The proximal end has a relatively wide opening. Alternatively, filter 26 may be cylindrical with a relatively rounded distal end.
  • [0030]
    Filter 26 operates between a closed collapsed profile and an open radiallyexpanded deployed profile for collecting debris in a body lumen. Filter 26 may include a collapsible proximally-tapered frame having a mouth and a plurality of longitudinally-extending ribs. In an expanded profile, the mouth is opened and the ribs extend radially outwardly to support the mouth. In an alternate embodiment, filter 26 may comprise a number of differing objects including, but not limited to, a filter, a basket, a filter basket, a sheath, a capture sheath, a capturing device, one or more struts, one or more ribs, a mesh, a net, an expandable object, a self-expanding object, and combinations thereof. A number of differing configurations of filter 26 may be substituted without departing from the spirit of the invention.
  • [0031]
    Manifold 28 may be polymeric or, for example, be comprised of materials similar to those listed above. Outer sheath 12 may be coupled to manifold 28. For example, outer sheath 12 may be coupled to an actuation assembly of manifold 28 such that outer sheath 12 is movable relative to inner shaft 20 by actuating the actuation assembly. Examples of mechanisms for moving outer sheath 12 are described below. Inner shaft 20 may also be coupled to manifold 28. For example, inner shaft 20 may pass through an opening or lumen within manifold 28. In addition, shaft 20 may be fixed relative to manifold 28 by a collet 149 (please see FIG. 4) or other suitable structures.
  • [0032]
    Filter 26 may be delivered or retrieved by actuating manifold 28 to move outer sheath 12 relative to inner shaft 20. Filter 26 is understood to be retrieved when it is collapsed and wherein at least a portion thereof is contained within outer sheath 12. FIG. 2 is an enlarged view of filter 26 in a retrieved position. Retrieval results in distal protection filter 26 being in a configuration suitable for removal from the vasculature.
  • [0033]
    Filter 26 is understood to be delivered when it is expanded and wherein at least a portion of thereof is not contained within outer sheath 12. FIG. 3 is an enlarged view of filter 26 in a delivered position. Delivery results in filter 26 being in a configuration within the vasculature suitable for collecting intravascular debris.
  • [0034]
    [0034]FIG. 4 is a perspective view of manifold 128 according to an embodiment of the invention. Similar to what is disclosed above, actuation of manifold 128 may result in movement of outer sheath 12 relative to inner shaft 20. This actuation may shift filter 26 between a delivery position and a retrieval position.
  • [0035]
    Manifold 128 may comprise a proximal end 130, a distal end 132, and a handle region 134. Handle region 134 is sized appropriately for a person's hand to hold and be able to actuate manifold 128. Manifold 128 may further comprise an opening 136 located between proximal end 130 and distal end 132. In an exemplary embodiment, opening 136 may further comprise a rail 138.
  • [0036]
    An actuator assembly 140 may be disposed at opening 136. Actuator assembly 140 may comprise a button 142 having a proximal end 144, a distal end 146, and a lumen 148 extending therethrough. Button 142 may comprise a number of shapes including symmetric, flat, concave, etc. Proximal end 14 of outer sheath 12 is coupled to distal end 146 of button 142. For example, outer sheath 12 may be secured to actuator assembly 140 by adhesive or heat bonding techniques.
  • [0037]
    Proximal end 22 of inner shaft 20 may pass through lumen 148. In an exemplary embodiment, proximal end 22 of inner shaft 20 passes through lumen 148, through proximal end 144 of button 142, is secured to manifold 128 proximate to proximal end 130 of manifold 128 by a collet 149, and may extend out of proximal end 130 of manifold 128. According to this embodiment, manifold 128 may be used as a subassembly for a number of different over-the-wire catheters.
  • [0038]
    Button 142 may be longitudinally movable along rail 138. Because outer sheath 12 is coupled to distal end 146 of button 142, movement of button 142 results in a substantially similar movement of outer sheath 12 relative to inner shaft 20. Movement of button 142 in the proximal direct may, for example, move outer sheath 12 proximally to shift filter 26 into a delivered position. Analogously, distal movement of button 142 may move outer sheath 12 distally and shift filter 26 into a retrieved position. It should be appreciated that the direction of motion required to shift the relative position of filter 26 relative to sheath 12 may be altered without departing from the scope of the invention.
  • [0039]
    Distal end 132 of manifold 128 may further comprise an actuator retention cover 150. Actuator retention cover 150 holds button 142 in position and may allow for only the desired motion of button 142. FIG. 5 is a perspective view of manifold 128 with actuator retention cover 150 removed.
  • [0040]
    In an alternate embodiment, outer sheath 12 may be fixed relative to manifold 128 and inner shaft 20 may be coupled to actuator assembly 140. According to this embodiment, longitudinal movement of button 142 would move inner shaft 20 relative to outer sheath 12. This embodiment may be particularly important if a specific direction of actuation (e.g., actuating button 142 proximally or distally) is preferred by a clinician.
  • [0041]
    [0041]FIG. 6 is a perspective view of an alternative embodiment of a manifold according to an embodiment of the invention. Manifold 228 may comprise proximal end 230, distal end 232, and handle region 234 sized appropriately for a person's hand to hold and be able to actuate manifold 228.
  • [0042]
    Outer sheath 12 may further comprise or be coupled to a proximal tubular member 252. Proximal tubular member 252 may include a proximal end 254 and a distal end 256. Proximal tubular member 252 may be slidably disposed within manifold 228. Proximal end 254 and distal end 256 of proximal tubular member 252 may prevent excessive movement (i.e., movement in excess of what is required to deliver or retrieve filter 26) of outer sheath 12 relative to inner shaft 20 and manifold 228.
  • [0043]
    Proximal end 22 of inner shaft 20 may pass through proximal tubular member 252 and may extend through proximal end 230 of manifold 228. In an exemplary embodiment, proximal end 22 of inner shaft 20 passes through proximal tubular member 252 and is secured to manifold 228 proximate to proximal end 230 of manifold 228, for example by a collet.
  • [0044]
    Proximal tubular member 252 may further comprise teeth 258 and actuator assembly 240 may comprise a gear 260 coupled to a thumbwheel 262. Teeth 258 may engage gear 260 of actuator assembly 240. Rotation of thumbwheel 262, thus, may result in rotation of gear 260 and movement of outer sheath 12 relative to inner shaft 20. According to this embodiment, manifold 228 may be actuated to shift filter 26 between a delivery position and a retrieval position by rotation of thumbwheel 262.
  • [0045]
    [0045]FIG. 7 is a perspective view of a second alternative embodiment of a manifold according to an embodiment of the invention. Similar to what is disclosed above, manifold 328 may comprise proximal end 330, distal end 332, handle region 334, and actuation assembly 340.
  • [0046]
    [0046]FIG. 8 is perspective view of manifold 328. Similar to what is disclosed above, outer sheath 12 may further comprise or be coupled to proximal tubular member 352 having proximal end 354, distal end 356, and teeth 358. Proximal end 22 of inner shaft 20 may pass through proximal tubular member 352 and be secured to manifold 328 proximate to proximal end 330 of manifold 328.
  • [0047]
    Actuator assembly 340 may comprise gear 360 coupled to button 342. Teeth 358 may engage gear 360 of actuator assembly 340. Pressing button 342 may result in rotation of gear 360 that can ultimately result in movement of outer sheath 12 relative to inner shaft 20. According to this embodiment, manifold 328 may be actuated to shift filter 26 between a delivery position and a retrieval position by pressing button 342.
  • [0048]
    Button 342 includes teeth 343 that engage a second gear 361 that is coupled to gear 360. According to this embodiment, pressing button 342 results in movement of second gear 361, which subsequently results in movement of gear 360. Including more than one gear allows a designer to alter the gear configurations in order to set the desired mechanical properties of assembly 340. For example, increasing the diameter of gear 361 relative to gear 360 may increase the mechanical advantage of assembly 340. Similarly, altering the gear ratios of gears 360,361 may also result in an increased mechanical advantage. A number of different configurations of gears 360,361 may be used in this and other similar embodiments without departing from the spirit of the invention.
  • [0049]
    In use, it may be understood that pressing button 342 may result in movement of outer sheath 12 in only a single direction depending on the configuration of gear 360. For example, FIG. 8 depicts gear 360 configured such that pressing button 342 results in distal movement of outer sheath 12 so as to shift filter 26 to the retrieved position. Alternatively, FIG. 9 depicts an alternative manifold 428 wherein pressing of button 442 results in proximal movement of outer sheath 12 so as to shift filter 26 to the delivered position.
  • [0050]
    According to the embodiment shown in FIG. 9, manifold 428 may comprise proximal end 430, distal end 432, and handle region 434. Outer sheath 12 may further comprise or be coupled to proximal tubular member 452 having proximal end 454, distal end 456, and teeth 458. Proximal end 22 of inner shaft 20 may pass through proximal tubular member 452 and be secured to manifold 428 proximate to proximal end 430 of manifold 428 in a manner similar to those described above.
  • [0051]
    Actuator assembly 440 may comprise gear 460 coupled to button 442. Teeth 458 may engage gear 460 of actuator assembly 440 so that pressing button 442 may result in rotation of gear 460 that can ultimately result in movement of outer sheath 12 proximally relative to inner shaft 20.
  • [0052]
    [0052]FIG. 10 is a perspective view of a third alternative embodiment of manifold 528 according to an embodiment of the invention. Similar to what is disclosed above, manifold 528 may comprise proximal end 530, distal end 532, and handle region 534.
  • [0053]
    Outer sheath 12 may further comprise or be coupled to proximal tubular member 552 having proximal end 554, distal end 556, and teeth 558. Actuator assembly 540 may comprise gear 560 coupled to button 542 by a second gear 561. Teeth 558 may engage gear 560 of actuator assembly 540 so that pressing button 542 may result in rotation of gear 560 that can ultimately result in movement of outer sheath 12 relative to inner shaft 20. Similar to what is described above, button 542 includes teeth 543 that engage a second gear 561 such that pressing button 542 results in movement of second gear 561, which subsequently results in movement of gear 560.
  • [0054]
    Actuator assembly 540 further comprises a second button 542 a. Button 542a includes teeth (not shown, but essentially the same as teeth 543) that engage second gear 561 so that pressing button 542 a results in rotation of gear 561 and gear 560 that ultimately results in movement of outer sheath 12 relative to inner shaft 20 in a direction that is opposite to pressing button 542. According to this embodiment, manifold 528 comprises the ability to shift filter 26 to either the delivery position or the retrieval position depending on whether button 542 or 542 a is pressed.
  • [0055]
    [0055]FIG. 11 is a perspective view of a third embodiment of a manifold according to an embodiment of the invention. Similar to what is disclosed above, manifold 628 may comprise proximal end 630, distal end 632, and handle region 634.
  • [0056]
    Outer sheath 12 may further comprise or be coupled to proximal tubular member 652 having proximal end 654, distal end 656, and teeth 658. Actuator assembly 640 may comprise gear 660 coupled to button 642 that is axially rotatable. Teeth 658 may engage gear 660 of actuator assembly 640. Axial rotation of button 642 may result in movement of outer sheath 12 relative to inner shaft 20. According to this embodiment, manifold 628 may be actuated to shift filter 26 between a delivery position and a retrieval position by rotation button 642.
  • [0057]
    [0057]FIG. 11A is a cross-sectional view of manifold 628 taken through line 11A-11A. According to this embodiment, proximal tubular member 652 may further comprise a key 664 adapted to engage a notch 666 handle region 634. Key 664 may substantially prevent axial rotation of proximal tubular member 652 when actuator assembly 640 is rotated. Rotation of proximal tubular member 652 may interfere with the movement of outer sheath 12 relative to inner shaft 20.
  • [0058]
    [0058]FIG. 12 is an exploded view of manifold 628 wherein actuator assembly 640 has been removed. FIG. 12 is provided so as to more clearly illustrate the elements of manifold 628.
  • [0059]
    Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3952747 *28 Mar 197427 Abr 1976Kimmell Jr Garman OFilter and filter insertion instrument
US4046150 *17 Jul 19756 Sep 1977American Hospital Supply CorporationMedical instrument for locating and removing occlusive objects
US4425908 *22 Oct 198117 Ene 1984Beth Israel HospitalBlood clot filter
US4590938 *4 May 198427 May 1986Segura Joseph WMedical retriever device
US4650466 *1 Nov 198517 Mar 1987Angiobrade PartnersAngioplasty device
US4723549 *18 Sep 19869 Feb 1988Wholey Mark HMethod and apparatus for dilating blood vessels
US4794928 *10 Jun 19873 Ene 1989Kletschka Harold DAngioplasty device and method of using the same
US4807626 *30 Dic 198528 Feb 1989Mcgirr Douglas BStone extractor and method
US4842579 *29 Jul 198827 Jun 1989Surgical Systems & Instruments, Inc.Atherectomy device
US4921478 *23 Feb 19881 May 1990C. R. Bard, Inc.Cerebral balloon angioplasty system
US4921484 *25 Jul 19881 May 1990Cordis CorporationMesh balloon catheter device
US4926858 *7 Ago 198922 May 1990Devices For Vascular Intervention, Inc.Atherectomy device for severe occlusions
US4998539 *13 Dic 198812 Mar 1991Delsanti Gerard LMethod of using removable endo-arterial devices to repair detachments in the arterial walls
US5002560 *8 Sep 198926 Mar 1991Advanced Cardiovascular Systems, Inc.Expandable cage catheter with a rotatable guide
US5011488 *20 Ago 199030 Abr 1991Robert GinsburgThrombus extraction system
US5100423 *21 Ago 199031 Mar 1992Medical Engineering & Development Institute, Inc.Ablation catheter
US5102415 *30 Ago 19907 Abr 1992Guenther Rolf WApparatus for removing blood clots from arteries and veins
US5133733 *31 Oct 199028 Jul 1992William Cook Europe A/SCollapsible filter for introduction in a blood vessel of a patient
US5224953 *1 May 19926 Jul 1993The Beth Israel Hospital AssociationMethod for treatment of obstructive portions of urinary passageways
US5290310 *13 Jul 19921 Mar 1994Howmedica, Inc.Hemostatic implant introducer
US5324306 *28 May 199328 Jun 1994Howmedica, Inc.Hemostatic implant introducer
US5329942 *20 Mar 199219 Jul 1994Cook, IncorporatedMethod for filtering blood in a blood vessel of a patient
US5330484 *13 Ago 199119 Jul 1994William Cook Europe A/SDevice for fragmentation of thrombi
US5421832 *12 May 19946 Jun 1995Lefebvre; Jean-MarieFilter-catheter and method of manufacturing same
US5423742 *14 Oct 199313 Jun 1995Schneider EuropeMethod for the widening of strictures in vessels carrying body fluid
US5433723 *28 Feb 199418 Jul 1995Angiomed AgApparatus for widening a stenosis
US5449372 *14 Jun 199112 Sep 1995Scimed Lifesystems, Inc.Temporary stent and methods for use and manufacture
US5536242 *25 Oct 199516 Jul 1996Scimed Life Systems, Inc.Intravascular device utilizing fluid to extract occlusive material
US5549626 *23 Dic 199427 Ago 1996New York Society For The Ruptured And Crippled Maintaining The Hospital For Special SurgeryVena caval filter
US5658296 *21 Nov 199419 Ago 1997Boston Scientific CorporationMethod for making surgical retrieval baskets
US5662671 *17 Jul 19962 Sep 1997Embol-X, Inc.Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5720764 *10 Jun 199524 Feb 1998Naderlinger; EduardVena cava thrombus filter
US5728066 *10 Dic 199617 Mar 1998Daneshvar; YousefInjection systems and methods
US5749848 *13 Nov 199512 May 1998Cardiovascular Imaging Systems, Inc.Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US5769816 *30 Abr 199623 Jun 1998Embol-X, Inc.Cannula with associated filter
US5779716 *6 Oct 199514 Jul 1998Metamorphic Surgical Devices, Inc.Device for removing solid objects from body canals, cavities and organs
US5792157 *30 Sep 199611 Ago 1998Scimed Life Systems, Inc.Expandable intravascular occlusion material removal devices and methods of use
US5795322 *9 Abr 199618 Ago 1998Cordis CorporationCatheter with filter and thrombus-discharge device
US5800457 *5 Mar 19971 Sep 1998Gelbfish; Gary A.Intravascular filter and associated methodology
US5800525 *4 Jun 19971 Sep 1998Vascular Science, Inc.Blood filter
US5810874 *22 Ene 199722 Sep 1998Cordis CorporationTemporary filter catheter
US5814064 *6 Mar 199729 Sep 1998Scimed Life Systems, Inc.Distal protection device
US5876367 *5 Dic 19962 Mar 1999Embol-X, Inc.Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5895399 *9 Oct 199620 Abr 1999Embol-X Inc.Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5906619 *24 Jul 199725 May 1999Medtronic, Inc.Disposable delivery device for endoluminal prostheses
US5910154 *12 Feb 19988 Jun 1999Embol-X, Inc.Percutaneous catheter and guidewire having filter and medical device deployment
US5911734 *8 May 199715 Jun 1999Embol-X, Inc.Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5925016 *27 Sep 199520 Jul 1999Xrt Corp.Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure
US5925053 *2 Sep 199720 Jul 1999Children's Medical Center CorporationMulti-lumen polymeric guidance channel, method for promoting nerve regeneration, and method of manufacturing a multi-lumen nerve guidance channel
US5925060 *13 Mar 199820 Jul 1999B. Braun CelsaCovered self-expanding vascular occlusion device
US5928264 *1 Ago 199727 Jul 1999Sugar Surgical Technologies, Inc.Tissue grasping device
US5935139 *3 May 199610 Ago 1999Boston Scientific CorporationSystem for immobilizing or manipulating an object in a tract
US5941869 *16 May 199724 Ago 1999Prolifix Medical, Inc.Apparatus and method for controlled removal of stenotic material from stents
US5941896 *16 Dic 199724 Ago 1999Montefiore Hospital And Medical CenterFilter and method for trapping emboli during endovascular procedures
US5947995 *6 Ago 19987 Sep 1999Samuels; Shaun Lawrence WilkieMethod and apparatus for removing blood clots and other objects
US5954745 *15 May 199821 Sep 1999Gertler; JonathanCatheter-filter set having a compliant seal
US6010522 *24 Jul 19964 Ene 2000Embol-X, Inc.Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US6013085 *7 Nov 199711 Ene 2000Howard; JohnMethod for treating stenosis of the carotid artery
US6027520 *5 Abr 199922 Feb 2000Embol-X, Inc.Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6042598 *5 Abr 199928 Mar 2000Embol-X Inc.Method of protecting a patient from embolization during cardiac surgery
US6051014 *13 Oct 199818 Abr 2000Embol-X, Inc.Percutaneous filtration catheter for valve repair surgery and methods of use
US6051015 *28 Oct 199818 Abr 2000Embol-X, Inc.Modular filter with delivery system
US6053932 *20 May 199825 Abr 2000Scimed Life Systems, Inc.Distal protection device
US6059814 *29 Ago 19979 May 2000Medtronic Ave., Inc.Filter for filtering fluid in a bodily passageway
US6066149 *30 Sep 199723 May 2000Target Therapeutics, Inc.Mechanical clot treatment device with distal filter
US6066158 *25 Jul 199623 May 2000Target Therapeutics, Inc.Mechanical clot encasing and removal wire
US6068645 *7 Jun 199930 May 2000Tu; HoshengFilter system and methods for removing blood clots and biological material
US6086605 *17 Dic 199711 Jul 2000Embol-X, Inc.Cannula with associated filter and methods of use during cardiac surgery
US6168579 *4 Ago 19992 Ene 2001Scimed Life Systems, Inc.Filter flush system and methods of use
US6171327 *24 Feb 19999 Ene 2001Scimed Life Systems, Inc.Intravascular filter and method
US6171328 *9 Nov 19999 Ene 2001Embol-X, Inc.Intravascular catheter filter with interlocking petal design and methods of use
US6179851 *15 Jun 199930 Ene 2001Scimed Life Systems, Inc.Guiding catheter for positioning a medical device within an artery
US6179859 *16 Jul 199930 Ene 2001Baff LlcEmboli filtration system and methods of use
US6179861 *23 Dic 199930 Ene 2001Incept LlcVascular device having one or more articulation regions and methods of use
US6203550 *6 Ene 199920 Mar 2001Medtronic, Inc.Disposable delivery device for endoluminal prostheses
US6203561 *23 Dic 199920 Mar 2001Incept LlcIntegrated vascular device having thrombectomy element and vascular filter and methods of use
US6206868 *14 Jun 199927 Mar 2001Arteria Medical Science, Inc.Protective device and method against embolization during treatment of carotid artery disease
US6214026 *23 Dic 199910 Abr 2001Incept LlcDelivery system for a vascular device with articulation region
US6221006 *9 Feb 199924 Abr 2001Artemis Medical Inc.Entrapping apparatus and method for use
US6224620 *18 Nov 19991 May 2001Embol-X, Inc.Devices and methods for protecting a patient from embolic material during surgery
US6231544 *12 May 199715 May 2001Embol-X, Inc.Cardioplegia balloon cannula
US6235044 *4 Ago 199922 May 2001Scimed Life Systems, Inc.Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue
US6235045 *6 Dic 199922 May 2001Embol-X, Inc.Cannula with associated filter and methods of use
US6238412 *11 Nov 199829 May 2001William DubrulBiological passageway occlusion removal
US6245087 *3 Ago 199912 Jun 2001Embol-X, Inc.Variable expansion frame system for deploying medical devices and methods of use
US6245088 *14 Ago 199912 Jun 2001Samuel R. LoweryRetrievable umbrella sieve and method of use
US6245089 *30 Sep 199912 Jun 2001Scimed Life Systems, Inc.Distal protection device and method
US6258115 *21 Abr 199810 Jul 2001Artemis Medical, Inc.Bifurcated stent and distal protection system
US6264663 *26 Ene 199824 Jul 2001Metamorphic Surgical Devices, LlcDevice for removing solid objects from body canals, cavities and organs including an invertable basket
US6264672 *25 Oct 199924 Jul 2001Biopsy Sciences, LlcEmboli capturing device
US6270513 *3 Dic 19997 Ago 2001Embol-X, Inc.Methods of protecting a patient from embolization during surgery
US6277138 *17 Ago 199921 Ago 2001Scion Cardio-Vascular, Inc.Filter for embolic material mounted on expandable frame
US6277139 *31 Mar 200021 Ago 2001Scion Cardio-Vascular, Inc.Vascular protection and embolic material retriever
US6280413 *8 Jul 199728 Ago 2001Medtronic Ave, Inc.Thrombolytic filtration and drug delivery catheter with a self-expanding portion
US6344049 *12 Sep 20005 Feb 2002Scion Cardio-Vascular, Inc.Filter for embolic material mounted on expandable frame and associated deployment system
US6355051 *4 Mar 199912 Mar 2002Bioguide Consulting, Inc.Guidewire filter device
US6533772 *7 Abr 200018 Mar 2003Innex CorporationGuide wire torque device
US6685722 *10 Nov 19993 Feb 2004Microvention, Inc.Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US6755854 *31 Jul 200129 Jun 2004Advanced Cardiovascular Systems, Inc.Control device and mechanism for deploying a self-expanding medical device
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US7264632 *5 Jun 20034 Sep 2007Medtronic Vascular, Inc.Controlled deployment delivery system
US765503414 Nov 20062 Feb 2010Medtronic Vascular, Inc.Stent-graft with anchoring pins
US766216521 May 200316 Feb 2010Salviac LimitedEmbolic protection device
US766216613 Feb 200616 Feb 2010Advanced Cardiocascular Systems, Inc.Sheathless embolic protection system
US767812919 Mar 200416 Mar 2010Advanced Cardiovascular Systems, Inc.Locking component for an embolic filter assembly
US767813119 Ene 200716 Mar 2010Advanced Cardiovascular Systems, Inc.Single-wire expandable cages for embolic filtering devices
US77806946 Oct 200324 Ago 2010Advanced Cardiovascular Systems, Inc.Intravascular device and system
US778069731 Ene 200724 Ago 2010Salviac LimitedEmbolic protection system
US778071630 Jun 200624 Ago 2010Abbott LaboratoriesDelivery system for a medical device
US778534221 May 200331 Ago 2010Salviac LimitedEmbolic protection device
US779448930 Jun 200614 Sep 2010Abbott LaboratoriesDelivery system for a medical device
US779905127 Jun 200521 Sep 2010Salviac LimitedSupport frame for an embolic protection device
US779906531 Ene 200721 Sep 2010Abbott LaboratoriesDelivery system for a medical device
US78156604 Feb 200819 Oct 2010Advanced Cardivascular Systems, Inc.Guide wire with embolic filtering attachment
US781567127 Jul 200719 Oct 2010Medtronic Vascular, Inc.Controlled deployment delivery system
US783324228 Dic 200616 Nov 2010Salviac LimitedEmbolic protection device
US78377018 Mar 200523 Nov 2010Salviac LimitedEmbolic protection device
US784206315 Dic 200430 Nov 2010Salviac LimitedEmbolic protection device
US78420641 Ago 200630 Nov 2010Advanced Cardiovascular Systems, Inc.Hinged short cage for an embolic protection device
US784206625 Abr 200730 Nov 2010Salviac LimitedEmbolic protection system
US784617631 Ene 20077 Dic 2010Salviac LimitedEmbolic protection system
US786727327 Jun 200711 Ene 2011Abbott LaboratoriesEndoprostheses for peripheral arteries and other body vessels
US787906526 Ene 20071 Feb 2011Advanced Cardiovascular Systems, Inc.Locking component for an embolic filter assembly
US789225112 Nov 200322 Feb 2011Advanced Cardiovascular Systems, Inc.Component for delivering and locking a medical device to a guide wire
US790142630 Ene 20028 Mar 2011Salviac LimitedEmbolic protection device
US790142719 Dic 20088 Mar 2011Salviac LimitedFilter element with retractable guidewire tip
US791882011 Sep 20095 Abr 2011Advanced Cardiovascular Systems, Inc.Device for, and method of, blocking emboli in vessels such as blood arteries
US792734913 Jun 200719 Abr 2011Salviac LimitedSupport frame for an embolic protection device
US793166618 Ene 201026 Abr 2011Advanced Cardiovascular Systems, Inc.Sheathless embolic protection system
US795964626 Jun 200714 Jun 2011Abbott Cardiovascular Systems Inc.Filter device for embolic protection systems
US79596476 Dic 200714 Jun 2011Abbott Cardiovascular Systems Inc.Self furling umbrella frame for carotid filter
US79723524 Nov 20045 Jul 2011Salviac LimitedEmbolic protection system
US797235625 Jun 20075 Jul 2011Abbott Cardiovascular Systems, Inc.Flexible and conformable embolic filtering devices
US797656017 Ene 200712 Jul 2011Abbott Cardiovascular Systems Inc.Embolic filtering devices
US800279027 Jun 200523 Ago 2011Salviac LimitedSupport frame for an embolic protection device
US80168544 Feb 200813 Sep 2011Abbott Cardiovascular Systems Inc.Variable thickness embolic filtering devices and methods of manufacturing the same
US802953013 Oct 20104 Oct 2011Abbott Cardiovascular Systems Inc.Guide wire with embolic filtering attachment
US80527165 Ene 20078 Nov 2011Salviac LimitedEmbolic protection system
US805273214 Nov 20068 Nov 2011Medtronic Vascular, Inc.Delivery system for stent-graft with anchoring pins
US80575048 Mar 200515 Nov 2011Salviac LimitedEmbolic protection device
US811411513 Jun 200714 Feb 2012Salviac LimitedSupport frame for an embolic protection device
US81237761 Jun 200528 Feb 2012Salviac LimitedEmbolic protection system
US813737729 Abr 200820 Mar 2012Abbott LaboratoriesEmbolic basket
US814244229 Abr 200827 Mar 2012Abbott LaboratoriesSnare
US817779115 Abr 200915 May 2012Abbott Cardiovascular Systems Inc.Embolic protection guide wire
US821620931 May 200710 Jul 2012Abbott Cardiovascular Systems Inc.Method and apparatus for delivering an agent to a kidney
US821627021 Dic 200610 Jul 2012Salviac LimitedEmbolic protection device
US822144813 Jun 200717 Jul 2012Salviac LimitedEmbolic protection device
US822667813 Jun 200724 Jul 2012Salviac LimitedEmbolic protection device
US824131920 Ago 200714 Ago 2012Salviac LimitedEmbolic protection system
US826268928 Sep 200111 Sep 2012Advanced Cardiovascular Systems, Inc.Embolic filtering devices
US830875325 Feb 201013 Nov 2012Advanced Cardiovascular Systems, Inc.Locking component for an embolic filter assembly
US83288427 Feb 201111 Dic 2012Salviac LimitedFilter element with retractable guidewire tip
US838281331 Ene 200726 Feb 2013Abbott LaboratoriesDelivery system for a medical device
US843090113 Jun 200730 Abr 2013Salviac LimitedEmbolic protection device
US845468213 Abr 20104 Jun 2013Medtronic Vascular, Inc.Anchor pin stent-graft delivery system
US84861282 Sep 200416 Jul 2013Abbott LaboratoriesDelivery system for a medical device
US850077220 Mar 20076 Ago 2013Cook Medical Technologies LlcDistal protection device
US850078910 Jul 20086 Ago 2013C. R. Bard, Inc.Device for catheter sheath retraction
US859154029 Sep 200326 Nov 2013Abbott Cardiovascular Systems Inc.Embolic filtering devices
US860313113 Dic 200610 Dic 2013Salviac LimitedEmbolic protection device
US880834612 Ene 200719 Ago 2014C. R. Bard, Inc.Stent delivery system
US884558310 Ene 200730 Sep 2014Abbott Cardiovascular Systems Inc.Embolic protection devices
US885222615 Jul 20117 Oct 2014Salviac LimitedVascular device for use during an interventional procedure
US925930531 Mar 200516 Feb 2016Abbott Cardiovascular Systems Inc.Guide wire locking mechanism for rapid exchange and other catheter systems
US94211152 Ago 201323 Ago 2016C. R. Bard, Inc.Device for catheter sheath retraction
US20040093063 *5 Jun 200313 May 2004Wright Michael T.Controlled deployment delivery system
US20050182475 *2 Sep 200418 Ago 2005Jimmy JenDelivery system for a medical device
US20070100422 *30 Jun 20063 May 2007Shumer Daniel HDelivery system for a medical device
US20070118201 *30 Jun 200624 May 2007Pappas Jeffrey MDelivery system for a medical device
US20070162070 *13 Dic 200612 Jul 2007Salviac LimitedEmbolic protection device
US20070191864 *31 Ene 200716 Ago 2007Shumer Daniel HDelivery System For A Medical Device
US20070191865 *31 Ene 200716 Ago 2007Pappas Jeffrey MDelivery System For A Medical Device
US20070219579 *20 Mar 200720 Sep 2007Cook IncorporatedDistal protection device
US20080114442 *14 Nov 200615 May 2008Medtronic Vascular, Inc.Delivery System for Stent-Graft With Anchoring Pins
US20080114443 *14 Nov 200615 May 2008Medtronic Vascular, Inc.Stent-Graft With Anchoring Pins
US20080262590 *19 Abr 200723 Oct 2008Medtronic Vascular, Inc.Delivery System for Stent-Graft
US20100168834 *29 Dic 20091 Jul 2010Wilson-Cook Medical Inc.Delivery Device
WO2007005799A1 *30 Jun 200611 Ene 2007Abbott LaboratoriesDelivery system for a medical device
Clasificaciones
Clasificación de EE.UU.604/236
Clasificación internacionalA61F2/01
Clasificación cooperativaA61F2002/018, A61F2230/0006, A61F2230/0067, A61F2230/0093, A61F2002/011, A61F2/01
Clasificación europeaA61F2/01
Eventos legales
FechaCódigoEventoDescripción
17 May 2002ASAssignment
Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEYETTE, THOMAS JR.;HOUDE, ERIC;DIAMOND, SCOTT A.;AND OTHERS;REEL/FRAME:012909/0375
Effective date: 20020108
6 Nov 2006ASAssignment
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA
Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868
Effective date: 20050101
Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA
Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868
Effective date: 20050101