US20030150383A1 - Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method - Google Patents

Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
US20030150383A1
US20030150383A1 US10/371,700 US37170003A US2003150383A1 US 20030150383 A1 US20030150383 A1 US 20030150383A1 US 37170003 A US37170003 A US 37170003A US 2003150383 A1 US2003150383 A1 US 2003150383A1
Authority
US
United States
Prior art keywords
film formation
film
chamber
chambers
time required
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/371,700
Inventor
Shiro Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/371,700 priority Critical patent/US20030150383A1/en
Publication of US20030150383A1 publication Critical patent/US20030150383A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Definitions

  • the present invention relates to a semiconductor device such as a thin-film transistor manufacturing apparatus, and a thin-film transistor manufacturing method using the apparatus.
  • FIG. 1 is a cross-sectional view showing a structure of the thin-film transistor to be used as pixel display switching devices in active matrix display panels. A bottom-gate type is shown in this figure.
  • the gate electrode 2 has both sides in a tapered shape widening toward the transparent substrate 1 .
  • a silicon oxide film 4 is formed through a silicon nitride film 3 .
  • the silicon nitride film 3 prevents impurities contained in the transparent substrate 1 from penetrating an active region (to be described later), and the silicon oxide film 4 functions as a gate insulating film.
  • a polycrystalline silicon film 5 so as to straddle the gate electrode 2 .
  • the polycrystalline silicon film 5 becomes the active region of the thin-film transistor.
  • the polycrystalline silicon film 5 is positioned a stopper 6 of an insulating material, such as silicon oxide.
  • a portion of the polycrystalline silicon film 5 covered by the stopper 6 becomes a channel region 5 c , and other portions of the polycrystalline silicon film 5 become a source region 5 s and a drain region 5 d .
  • the silicon oxide film 7 and silicon nitride film 8 serve as interlayer insulating films to protect the polycrystalline silicon film 5 that includes the source region 5 s and drain region 5 d.
  • Contact holes 9 are formed at predetermined locations in the silicon oxide film 7 and silicon nitride film 8 on the source region 5 s and drain region 5 d .
  • a source electrode 10 s and a drain electrode 10 d which connect to the source region 5 s and drain region 5 d , are positioned at the contact holes 9 .
  • an acrylic resin layer 11 On the silicon nitride film 8 , on which the source electrode 10 s and drain electrode 10 d are positioned, an acrylic resin layer 11 , which is transparent to visible light, is formed.
  • the acrylic resin layer 11 planarizes the surface by filling in the unevenness caused by the gate electrode 2 and stopper 6 .
  • a contact hole 12 is formed in the acrylic resin layer 11 on the source electrode 10 s .
  • a transparent electrode 13 such as of indium tin oxide (ITO), that connects to the source electrode 10 s through the contact hole 12 is then positioned so as to extend on the acrylic resin layer 11 .
  • the transparent electrode 13 forms a pixel electrode in a liquid crystal display panel.
  • the polycrystalline silicon film 5 is formed with a sufficiently large crystal grain diameter so that it functions as the active region of the thin-film transistor.
  • a known method for forming a large crystal grain diameter of the polycrystalline silicon film 5 is laser annealing using an excimer laser. In laser annealing, amorphous silicon is formed onto the silicon oxide film 4 , which becomes a gate insulating film, and after the hydrogen contained in the amorphous silicon is first removed through a low temperature heat treatment, the silicon is irradiated with the excimer laser and is initially melted so that the silicon crystallizes. Since portions on the transparent substrate 1 reaching high temperatures are localized due to the use of this sort of laser annealing method, a glass substrate having a low melting point can be used for the transparent substrate 1 .
  • Formation of the silicon oxide film and silicon nitride film comprising the gate insulating film and interlayer insulating film is also possible at a low temperature of 400° C. or less and employs a highly flexible plasma CVD method. Since the plasma CVD method also makes it possible for the formation of amorphous silicon films, the formation of the amorphous silicon film, which becomes the polycrystalline silicon film 5 , is normally performed by the same apparatus in succession to the formation of the gate insulating film.
  • the impurities prevent carrier movement in the channel region 5 c and cause the operating characteristics to deteriorate.
  • the plasma CVD method when the gate insulating film and the amorphous silicon film, which becomes the polycrystalline silicon film 5 , are formed in succession within the same film formation chamber, it becomes easy to contaminate the amorphous silicon film with the residual reactant gas used in the formation of the gate insulating film.
  • the same film is formed on the inner wall of the film formation chamber.
  • the semiconductor device manufacturing apparatus of the present invention comprises a first film formation chamber for depositing in succession at least two types of insulating films onto a substrate, a second film formation chamber for depositing a semiconductor film onto the substrate, and a transfer chamber for connecting the first film formation chamber to the second film formation chamber and for transferring the substrate from the first film formation chamber to the second film formation chamber, or from the second film formation chamber to the first film formation chamber, where one of the first or second film formation chambers performs a film formation process in succession to a film formation process of the other chamber.
  • the semiconductor device manufacturing apparatus comprises the first film formation chamber for forming a first material film on the substrate, and the second film formation chamber for forming, after the first material film, a second material film unlike the first material film, where a ratio of a number of the first film formation chambers to that of the second film formation chambers is proportional to a ratio of the time required for film formation in the first film formation chamber to the time required for film formation in the second film formation chamber so that the first film formation chambers and the second film formation chambers are disposed with their numbers in a predetermined ratio.
  • the time required for film formation in the first film formation chambers is longer than the time required for film formation in the second film formation chambers, and in correspondence a plurality of the first film formation chambers having a number greater than that of the second film formation chambers and performing film formation at a predetermined time difference from each other.
  • the gate insulating films for example, can be formed in the first film formation chamber, and the semiconductor film, for example, which becomes the active region, can be formed in the second film formation chamber. Since the semiconductor film is formed in a dedicated film formation chamber, it becomes difficult for the residual reactant gas, which is used in the formation of other films, to contaminate the semiconductor film.
  • the thin-film transistor manufacturing method comprises a first process for forming a gate electrode on one principal plane of the substrate, a second process for forming gate insulating films covering the gate electrode on the substrate, a third process for forming the semiconductor film of an island shape on the gate insulating films so as to straddle the gate insulating films, and a fourth process for forming interlayer insulating films on the semiconductor film, where the second process processes in parallel a plurality of the substrates in a plurality of first film formation chambers at a predetermined time difference shorter than the time required for film formation, and the third process processes the substrates in succession in a single second film formation chamber at a time shorter than the film formation time in the second film formation chamber.
  • the gate insulating film is formed in the plurality of first film formation chambers, and the semiconductor film is formed in the single second film formation chamber. Since the semiconductor film is formed in the dedicated chamber, there is no contamination during film formation by the residual reactant gas used for forming the other films. Furthermore, since a plurality of first film formation chambers are disposed for the gate insulating film, for which film formation becomes long, utilization efficiency of each film formation chamber improves when the gate insulating film and semiconductor film are formed in succession.
  • the silicon film is formed as the semiconductor film in the dedicated film formation chamber, only the silicon film adheres to the inner wall of the film formation chamber or electrodes, so that even in a case where silicon films are formed in succession, the impurities do not discharge from the film adhering to the inner wall or electrodes of the film formation chamber. Therefore, contamination by impurities that prevent the migration of carriers to the active region is inhibited for the case of the thin-film transistor, thus preventing the degradation of the operating characteristics of the thin-film transistor. Furthermore, while the silicon film, which becomes the active region, is formed in a film formation chamber different from that for the gate insulating films, a drop in productivity can be prevented with an increase in time required for film formation kept to a minimum.
  • FIG. 1 is a cross-sectional view showing a structure of a conventional thin-film transistor.
  • FIG. 2 is a schematic diagram showing a structure of a thin-film transistor manufacturing apparatus of the present invention.
  • FIG. 3 is a timing diagram illustrating operations of the thin-film transistor manufacturing apparatus of the present invention.
  • FIGS. 4A, 4B, 4 C, 4 D, 4 E, and 4 F are cross-sectional views showing respective processes of a thin-film transistor manufacturing method of the present invention.
  • FIG. 2 is a schematic diagram showing a structure of the thin-film transistor manufacturing apparatus of the present invention
  • FIG. 3 is a timing diagram illustrating the timing of the film formation process.
  • a first to fourth film formation chambers PC 1 to PC 4 are disposed so as to surround a transfer chamber TC with each housing a substrate S.
  • the first to third film formation chambers PC 1 to PC 3 successively form a silicon nitride film and a silicon oxide film onto the substrates S, and the fourth film chamber PC 4 forms an amorphous silicon film.
  • the silicon nitride film is formed by receiving a supply of SiH 4 , NH 3 , and N 2
  • the silicon oxide film is formed by receiving a supply of SiH 4 and N 2 O.
  • the amorphous silicon film is formed by receiving a supply of silane and hydrogen.
  • a load lock LL is disposed in parallel with film formation chambers PC 1 to PC 4 in the periphery of the transfer chamber TC, and temporarily houses the substrate S to be loaded into the transfer chamber TC or the substrate S to be taken out after the film formation process. After a predetermined number (for example 12 substrates per lot) of substrates S are loaded from outside the apparatus in the loading operation, the load lock LL vents the outside air that was loaded with the substrates S and replaces it with an inert gas, such as nitrogen, so as to prevent outside air from flowing into the transfer chamber TC. In an unloading process, after the film formation process completes, the load lock LL holds the substrates S until they approach room temperature so as to prevent sudden changes in temperature of the substrates S.
  • the transfer chamber TC transfers the substrates S between the film formation chambers PC 1 to PC 4 and the load lock LL in accordance with the film formation operation of the film formation chambers PC 1 to PC 4 . Namely, in a first transfer operation, substrates S are transferred from the load lock LL to the first through third film formation chambers PC 1 to PC 3 , and in a second transfer operation, the substrates S are transferred from the first through third film formation chambers PC 1 to PC 3 to the fourth film formation chamber PC 4 . In a third transfer operation, the substrate S is transferred from the fourth film formation chamber PC 4 to the load lock LL. Except during the various transfer operations, shutter mechanisms provide shielding between the transfer chamber TC and the film formation chambers PC 1 to PC 4 , and between the transfer chamber TC and the load lock LL.
  • substrates S are loaded one at a time while respectively staggered by a time duration L 0 into the first through third film formation chambers PC 1 to PC 3 , and the silicon nitride film and silicon oxide film are formed on the substrates S at a film formation time L 1 .
  • the time difference L 0 is set to be approximately 1 ⁇ 3 of the film formation time L 1 .
  • the substrates S after having undergone the film formation process at the first through third film formation chambers PC 1 to PC 3 , are loaded one at a time into the fourth film formation chamber PC 4 , and onto the substrates S are formed the amorphous silicon film at time L 2 .
  • This film formation time L 2 is set to be shorter than the time difference L 0 of the film formation processes of the first through third film formation chambers PC 1 to PC 3 .
  • the film formation process completes at the fourth film formation chamber PC 4 at time L 2 , which is 1 ⁇ 3 or less than time L 1 of the film formation process at the first through third film formation chambers PC 1 to PC 3 , three times the number of substrates S can be processed in comparison to the first through third film formation chambers PC 1 to PC 3 .
  • the substrates S to be processed in parallel at the first through third film formation chambers PC 1 to PC 3 can be processed in succession at the fourth film formation chamber PC 4 .
  • FIGS. 4A to 4 F are cross-sectional views of individual processes illustrating the manufacturing method of thin-film transistors of the present invention. These drawings show the same bottom-gate type as FIG. 1.
  • a high melting point metal such as chromium or molybdenum
  • refractory metal such as chromium or molybdenum
  • the refractory metal film 34 is patterned in a predetermined shape to form a gate electrode 22 .
  • This patterning process uses taper etching to form a tapered shape so that both sides of the gate electrode 22 widen toward the transparent substrate 21 .
  • the silicon nitride film through plasma CVD to form a silicon nitride film 23 , which prevents the precipitation of impurity ions from the transparent substrate 21 .
  • a silicon oxide film is applied to form a silicon oxide film 24 , which forms the gate insulating films together with the silicon nitride film 23 .
  • the formation of the silicon nitride film 23 and silicon oxide film 24 is performed using the respective first through third film formation chambers PC 1 to PC 3 shown in FIG. 2. Silicon is then applied on the silicon oxide film 24 through the same plasma CVD method so as to form an amorphous silicon film 25 a .
  • the formation of the amorphous silicon film 25 a is performed using the fourth film formation chamber PC 4 of the apparatus shown in FIG. 2.
  • the ratio of the processing times becomes approximately 3:1. Therefore, as shown in FIG. 2, a plurality of transparent substrates 21 are processed in succession at high efficiency. Forming the amorphous silicon film 25 a in the dedicated film formation chamber reduces the amount of impurities contaminating the amorphous silicon film 25 a .
  • the oxygen concentration is reduced from approximately 10 20 /cm 3 to 10 19 /cm 3 when comparing the case in which the silicon oxide film 24 and amorphous silicon film 25 a are formed in the same film formation chamber with the case in which the amorphous silicon film 25 a is formed in a separate film formation chamber.
  • the amorphous silicon film 25 a that was formed on the silicon oxide film 24 is heated to discharge the hydrogen contained within the film to outside the film. In this heating process, the hydrogen concentration in the amorphous silicon film 25 a is reduced to 1 atoms % or less.
  • an excimer laser is aimed at the silicon film 25 a to heat the amorphous silicon until it melts, then the silicon crystallizes to form a polycrystalline silicon film 25 .
  • silicon oxide is formed on the polycrystalline silicon film 25 to form a silicon oxide film 35 .
  • the silicon oxide film 35 is then patterned to match the shape of the gate electrode 22 , and a stopper 26 is formed to overlap the gate electrode 22 .
  • the stopper 26 In the formation of the stopper 26 , mask deviation can be eliminated by forming a resist layer to cover the silicon oxide film 35 and exposing the resist layer from the underside of the transparent substrate 21 with the gate electrode 22 as a mask. With the stopper 26 as the mask, the polycrystalline silicon film 25 is then doped with either P-type or N-type ions corresponding to the type of transistor to be formed. Namely, the polycrystalline silicon film 25 not covered by the stopper 26 is doped with P-type ions, such as of boron, when forming a P-channel transistor, or N-type ions, such as of phosphorous, when forming an N-channel transistor. This doping process forms regions exhibiting P-type or N-type conductivity in the polycrystalline silicon film 25 except in the part covered by the stopper 26 . These regions on both sides of the stopper 26 become a source region 25 s and a drain region 25 d.
  • P-type ions such as of boron
  • the excimer laser is aimed at the polycrystalline silicon film 25 , on which the source region 25 s and drain region 25 d have been formed, to heat the silicon without melting. This activates the impurity ions within the source region 25 s and drain region 25 d .
  • the polycrystalline silicon film 25 is then patterned into a island shape while leaving a predetermined width on both sides of the stopper 26 (gate electrode 22 ) so as to separate the individual transistor.
  • Silicon oxide and silicon nitride are formed in succession through plasma CVD on the polycrystalline silicon film 25 .
  • This forms two interlayer insulating films of a silicon oxide film 27 and a silicon nitride film 28 .
  • the silicon oxide film 27 and silicon nitride film 28 after being formed, are heated in a nitrogen atmosphere so that the hydrogen ions contained in the silicon nitride film 28 are introduced to the polycrystalline silicon film 25 .
  • the crystal defects within the polycrystalline silicon film 25 are filled by the hydrogen ions.
  • Contact holes 29 are formed so as to pass through the silicon oxide film 27 and silicon nitride film 28 to correspond to the source region 25 s and drain region 25 d , and at the contact holes 29 are formed a source electrode 30 s and a drain electrode 30 d of a metal, such as aluminum.
  • the source electrode 30 s and drain electrode 30 d are formed, for example, by patterning sputtered aluminum on the silicon nitride film 28 on which the contact holes 29 were formed. Next, an acrylic resin solution is applied and baked on the silicon nitride film 28 , on which the source electrode 30 s and drain electrode 30 d were formed, to form an acrylic resin layer 31 .
  • the acrylic resin layer 31 planarizes the surface by filling in the unevenness caused by the stopper 26 , source electrode 30 s , and drain electrode 30 d . Furthermore, a contact hole 32 is formed so as to pass through the acrylic resin layer 31 on the source electrode 30 s , and at the contact hole 32 is formed a transparent electrode 33 , such as of ITO, to connect to the source electrode 30 s .
  • the transparent electrode 33 is formed, for example, by patterning sputtered ITO on the acrylic resin layer 31 , on which the contact hole 32 was formed.

Abstract

First through fourth film formation chambers PC1 to PC4 are disposed in the periphery of a transfer chamber TC. If, for example, the ratio of the time required to form gate insulating films to the time required to form the silicon film as a semiconductor film is 1:3, a silicon nitride film and silicon oxide film are formed in the first through third film formation films PC1 to PC3 to become gate insulating films, and an amorphous silicon layer is formed in the fourth film formation chamber PC4 to become an active region. This makes it possible to perform formation of the amorphous silicon layer, which requires film cleaning, in a film formation chamber different from the film formation chamber for other films, and to manufacture thin-film transistors at high productivity.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a semiconductor device such as a thin-film transistor manufacturing apparatus, and a thin-film transistor manufacturing method using the apparatus. [0002]
  • 2. Description of the Prior Art [0003]
  • FIG. 1 is a cross-sectional view showing a structure of the thin-film transistor to be used as pixel display switching devices in active matrix display panels. A bottom-gate type is shown in this figure. [0004]
  • On a surface of an insulating [0005] transparent substrate 1 is positioned a gate electrode 2 of a refractory metal, such as tungsten or chromium. The gate electrode 2 has both sides in a tapered shape widening toward the transparent substrate 1. On the transparent substrate 1 on which the gate electrode 2 is positioned, a silicon oxide film 4 is formed through a silicon nitride film 3. The silicon nitride film 3 prevents impurities contained in the transparent substrate 1 from penetrating an active region (to be described later), and the silicon oxide film 4 functions as a gate insulating film. On the silicon oxide film 4 is formed a polycrystalline silicon film 5 so as to straddle the gate electrode 2. The polycrystalline silicon film 5 becomes the active region of the thin-film transistor.
  • Or the [0006] polycrystalline silicon film 5 is positioned a stopper 6 of an insulating material, such as silicon oxide. A portion of the polycrystalline silicon film 5 covered by the stopper 6 becomes a channel region 5 c, and other portions of the polycrystalline silicon film 5 become a source region 5 s and a drain region 5 d. On the polycrystalline silicon film 5, on which the stopper 5 is formed, is formed a silicon oxide film 7 and a silicon nitride film 8. The silicon oxide film 7 and silicon nitride film 8 serve as interlayer insulating films to protect the polycrystalline silicon film 5 that includes the source region 5 s and drain region 5 d.
  • [0007] Contact holes 9 are formed at predetermined locations in the silicon oxide film 7 and silicon nitride film 8 on the source region 5 s and drain region 5 d. A source electrode 10 s and a drain electrode 10 d, which connect to the source region 5 s and drain region 5 d, are positioned at the contact holes 9. On the silicon nitride film 8, on which the source electrode 10 s and drain electrode 10 d are positioned, an acrylic resin layer 11, which is transparent to visible light, is formed. The acrylic resin layer 11 planarizes the surface by filling in the unevenness caused by the gate electrode 2 and stopper 6.
  • A [0008] contact hole 12 is formed in the acrylic resin layer 11 on the source electrode 10 s. A transparent electrode 13, such as of indium tin oxide (ITO), that connects to the source electrode 10 s through the contact hole 12 is then positioned so as to extend on the acrylic resin layer 11. The transparent electrode 13 forms a pixel electrode in a liquid crystal display panel.
  • In the above-mentioned thin-film transistor, a plurality of which are arranged in a matrix on the [0009] transparent substrate 1 together with pixel electrodes, image data supplied to the drain electrode 10 d is impressed onto the respective pixel electrode in response to a scanning control signal that is impressed on the gate electrode 2.
  • The [0010] polycrystalline silicon film 5 is formed with a sufficiently large crystal grain diameter so that it functions as the active region of the thin-film transistor. A known method for forming a large crystal grain diameter of the polycrystalline silicon film 5 is laser annealing using an excimer laser. In laser annealing, amorphous silicon is formed onto the silicon oxide film 4, which becomes a gate insulating film, and after the hydrogen contained in the amorphous silicon is first removed through a low temperature heat treatment, the silicon is irradiated with the excimer laser and is initially melted so that the silicon crystallizes. Since portions on the transparent substrate 1 reaching high temperatures are localized due to the use of this sort of laser annealing method, a glass substrate having a low melting point can be used for the transparent substrate 1.
  • Formation of the silicon oxide film and silicon nitride film comprising the gate insulating film and interlayer insulating film is also possible at a low temperature of 400° C. or less and employs a highly flexible plasma CVD method. Since the plasma CVD method also makes it possible for the formation of amorphous silicon films, the formation of the amorphous silicon film, which becomes the [0011] polycrystalline silicon film 5, is normally performed by the same apparatus in succession to the formation of the gate insulating film.
  • When impurities are added during film formation in the [0012] polycrystalline silicon film 5, which forms the active region of the thin-film transistor, the impurities prevent carrier movement in the channel region 5 c and cause the operating characteristics to deteriorate. In the plasma CVD method, when the gate insulating film and the amorphous silicon film, which becomes the polycrystalline silicon film 5, are formed in succession within the same film formation chamber, it becomes easy to contaminate the amorphous silicon film with the residual reactant gas used in the formation of the gate insulating film. Usually, during the formation of the gate insulating film, the same film is formed on the inner wall of the film formation chamber. With this sort of film formed, when the plasma for forming the amorphous silicon film within the film formation chamber is excited, the impurities are discharged from the film formed on the inner wall of the film formation chamber. Since the impurities discharged within the film formation chamber are taken into the amorphous silicon film, it is difficult to prevent the contamination by impurities even though the reactant gas within the film formation chamber is completely discharged.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to make it difficult for impurities to contaminate the active layer during formation of the semiconductor device, such as the thin-film transistor, and to provide an apparatus and manufacturing method to enable the manufacture of the thin-film transistor at high efficiency. [0013]
  • The semiconductor device manufacturing apparatus of the present invention comprises a first film formation chamber for depositing in succession at least two types of insulating films onto a substrate, a second film formation chamber for depositing a semiconductor film onto the substrate, and a transfer chamber for connecting the first film formation chamber to the second film formation chamber and for transferring the substrate from the first film formation chamber to the second film formation chamber, or from the second film formation chamber to the first film formation chamber, where one of the first or second film formation chambers performs a film formation process in succession to a film formation process of the other chamber. [0014]
  • Furthermore, in another aspect of the present invention, the semiconductor device manufacturing apparatus comprises the first film formation chamber for forming a first material film on the substrate, and the second film formation chamber for forming, after the first material film, a second material film unlike the first material film, where a ratio of a number of the first film formation chambers to that of the second film formation chambers is proportional to a ratio of the time required for film formation in the first film formation chamber to the time required for film formation in the second film formation chamber so that the first film formation chambers and the second film formation chambers are disposed with their numbers in a predetermined ratio. [0015]
  • In another aspect of the present invention, in the above-mentioned semiconductor device manufacturing apparatus, the time required for film formation in the first film formation chambers is longer than the time required for film formation in the second film formation chambers, and in correspondence a plurality of the first film formation chambers having a number greater than that of the second film formation chambers and performing film formation at a predetermined time difference from each other. [0016]
  • According to the present invention, the gate insulating films, for example, can be formed in the first film formation chamber, and the semiconductor film, for example, which becomes the active region, can be formed in the second film formation chamber. Since the semiconductor film is formed in a dedicated film formation chamber, it becomes difficult for the residual reactant gas, which is used in the formation of other films, to contaminate the semiconductor film. [0017]
  • In another aspect of the present invention, the thin-film transistor manufacturing method comprises a first process for forming a gate electrode on one principal plane of the substrate, a second process for forming gate insulating films covering the gate electrode on the substrate, a third process for forming the semiconductor film of an island shape on the gate insulating films so as to straddle the gate insulating films, and a fourth process for forming interlayer insulating films on the semiconductor film, where the second process processes in parallel a plurality of the substrates in a plurality of first film formation chambers at a predetermined time difference shorter than the time required for film formation, and the third process processes the substrates in succession in a single second film formation chamber at a time shorter than the film formation time in the second film formation chamber. [0018]
  • According to the present invention, the gate insulating film is formed in the plurality of first film formation chambers, and the semiconductor film is formed in the single second film formation chamber. Since the semiconductor film is formed in the dedicated chamber, there is no contamination during film formation by the residual reactant gas used for forming the other films. Furthermore, since a plurality of first film formation chambers are disposed for the gate insulating film, for which film formation becomes long, utilization efficiency of each film formation chamber improves when the gate insulating film and semiconductor film are formed in succession. [0019]
  • According to the present invention having the above-mentioned features, since the silicon film is formed as the semiconductor film in the dedicated film formation chamber, only the silicon film adheres to the inner wall of the film formation chamber or electrodes, so that even in a case where silicon films are formed in succession, the impurities do not discharge from the film adhering to the inner wall or electrodes of the film formation chamber. Therefore, contamination by impurities that prevent the migration of carriers to the active region is inhibited for the case of the thin-film transistor, thus preventing the degradation of the operating characteristics of the thin-film transistor. Furthermore, while the silicon film, which becomes the active region, is formed in a film formation chamber different from that for the gate insulating films, a drop in productivity can be prevented with an increase in time required for film formation kept to a minimum.[0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view showing a structure of a conventional thin-film transistor. [0021]
  • FIG. 2 is a schematic diagram showing a structure of a thin-film transistor manufacturing apparatus of the present invention. [0022]
  • FIG. 3 is a timing diagram illustrating operations of the thin-film transistor manufacturing apparatus of the present invention. [0023]
  • FIGS. 4A, 4B, [0024] 4C, 4D, 4E, and 4F are cross-sectional views showing respective processes of a thin-film transistor manufacturing method of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 2 is a schematic diagram showing a structure of the thin-film transistor manufacturing apparatus of the present invention, and FIG. 3 is a timing diagram illustrating the timing of the film formation process. These drawings show a case having four film formation chambers. [0025]
  • A first to fourth film formation chambers PC[0026] 1 to PC4 are disposed so as to surround a transfer chamber TC with each housing a substrate S. The first to third film formation chambers PC1 to PC3 successively form a silicon nitride film and a silicon oxide film onto the substrates S, and the fourth film chamber PC4 forms an amorphous silicon film. For example, at the first to third film formation chambers PC1 to PC3, the silicon nitride film is formed by receiving a supply of SiH4, NH3, and N2, and the silicon oxide film is formed by receiving a supply of SiH4 and N2 O. At the fourth film formation chamber PC4, the amorphous silicon film is formed by receiving a supply of silane and hydrogen.
  • A load lock LL is disposed in parallel with film formation chambers PC[0027] 1 to PC4 in the periphery of the transfer chamber TC, and temporarily houses the substrate S to be loaded into the transfer chamber TC or the substrate S to be taken out after the film formation process. After a predetermined number (for example 12 substrates per lot) of substrates S are loaded from outside the apparatus in the loading operation, the load lock LL vents the outside air that was loaded with the substrates S and replaces it with an inert gas, such as nitrogen, so as to prevent outside air from flowing into the transfer chamber TC. In an unloading process, after the film formation process completes, the load lock LL holds the substrates S until they approach room temperature so as to prevent sudden changes in temperature of the substrates S.
  • The transfer chamber TC transfers the substrates S between the film formation chambers PC[0028] 1 to PC4 and the load lock LL in accordance with the film formation operation of the film formation chambers PC1 to PC4. Namely, in a first transfer operation, substrates S are transferred from the load lock LL to the first through third film formation chambers PC1 to PC3, and in a second transfer operation, the substrates S are transferred from the first through third film formation chambers PC1 to PC3 to the fourth film formation chamber PC4. In a third transfer operation, the substrate S is transferred from the fourth film formation chamber PC4 to the load lock LL. Except during the various transfer operations, shutter mechanisms provide shielding between the transfer chamber TC and the film formation chambers PC1 to PC4, and between the transfer chamber TC and the load lock LL.
  • As shown in FIG. 3, substrates S are loaded one at a time while respectively staggered by a time duration L[0029] 0 into the first through third film formation chambers PC1 to PC3, and the silicon nitride film and silicon oxide film are formed on the substrates S at a film formation time L1. The time difference L0 is set to be approximately ⅓ of the film formation time L1. As a result, at the first through third film formation chambers PC1 to PC3, the film formation process for one substrate S completes at the passage of every time duration L0. The substrates S, after having undergone the film formation process at the first through third film formation chambers PC1 to PC3, are loaded one at a time into the fourth film formation chamber PC4, and onto the substrates S are formed the amorphous silicon film at time L2. This film formation time L2 is set to be shorter than the time difference L0 of the film formation processes of the first through third film formation chambers PC1 to PC3. In other words, since the film formation process completes at the fourth film formation chamber PC4 at time L2, which is ⅓ or less than time L1 of the film formation process at the first through third film formation chambers PC1 to PC3, three times the number of substrates S can be processed in comparison to the first through third film formation chambers PC1 to PC3. As a result, the substrates S to be processed in parallel at the first through third film formation chambers PC1 to PC3 can be processed in succession at the fourth film formation chamber PC4.
  • In this sort of manufacturing apparatus, equivalent film formation is possible simply by increasing, compared to the case where the three films are formed in the same film formation chamber, the total manufacturing time for the formation of the silicon nitride film, silicon oxide film, and amorphous silicon film by the time required for transferring the substrates S. Since only the amorphous silicon film is formed at this time at the fourth film formation chamber PC[0030] 4, any contamination of the amorphous silicon film with impurities can be prevented.
  • FIGS. 4A to [0031] 4F are cross-sectional views of individual processes illustrating the manufacturing method of thin-film transistors of the present invention. These drawings show the same bottom-gate type as FIG. 1.
  • (a) First Process (FIG. 4A) [0032]
  • On an insulating [0033] transparent substrate 21 is sputtered a high melting point metal (refractory metal), such as chromium or molybdenum, to form a refractory metal film 34. The refractory metal film 34 is patterned in a predetermined shape to form a gate electrode 22. This patterning process uses taper etching to form a tapered shape so that both sides of the gate electrode 22 widen toward the transparent substrate 21.
  • (b) Second Process (FIG. 4B) [0034]
  • On the [0035] transparent substrate 21 is applied the silicon nitride film through plasma CVD to form a silicon nitride film 23, which prevents the precipitation of impurity ions from the transparent substrate 21. Next, in the same film formation chamber using the same plasma CVD method, a silicon oxide film is applied to form a silicon oxide film 24, which forms the gate insulating films together with the silicon nitride film 23. The formation of the silicon nitride film 23 and silicon oxide film 24 is performed using the respective first through third film formation chambers PC1 to PC3 shown in FIG. 2. Silicon is then applied on the silicon oxide film 24 through the same plasma CVD method so as to form an amorphous silicon film 25 a. The formation of the amorphous silicon film 25 a is performed using the fourth film formation chamber PC4 of the apparatus shown in FIG. 2. With the time required for the formation of silicon nitride film 23 and silicon oxide film 24 at, for example, approximately 270 seconds and the time required for the formation of the amorphous silicon film 25 a at, for example, approximately 90 seconds, the ratio of the processing times becomes approximately 3:1. Therefore, as shown in FIG. 2, a plurality of transparent substrates 21 are processed in succession at high efficiency. Forming the amorphous silicon film 25 a in the dedicated film formation chamber reduces the amount of impurities contaminating the amorphous silicon film 25 a. On the basis of actual measured values, it was confirmed that the oxygen concentration is reduced from approximately 1020/cm3 to 1019/cm3 when comparing the case in which the silicon oxide film 24 and amorphous silicon film 25 a are formed in the same film formation chamber with the case in which the amorphous silicon film 25 a is formed in a separate film formation chamber.
  • (c) Third Process (FIG. 4C) [0036]
  • The [0037] amorphous silicon film 25 a that was formed on the silicon oxide film 24 is heated to discharge the hydrogen contained within the film to outside the film. In this heating process, the hydrogen concentration in the amorphous silicon film 25 a is reduced to 1 atoms % or less. After the hydrogen is discharged, an excimer laser is aimed at the silicon film 25 a to heat the amorphous silicon until it melts, then the silicon crystallizes to form a polycrystalline silicon film 25. Next, through the plasma CVD method, silicon oxide is formed on the polycrystalline silicon film 25 to form a silicon oxide film 35. The silicon oxide film 35 is then patterned to match the shape of the gate electrode 22, and a stopper 26 is formed to overlap the gate electrode 22. In the formation of the stopper 26, mask deviation can be eliminated by forming a resist layer to cover the silicon oxide film 35 and exposing the resist layer from the underside of the transparent substrate 21 with the gate electrode 22 as a mask. With the stopper 26 as the mask, the polycrystalline silicon film 25 is then doped with either P-type or N-type ions corresponding to the type of transistor to be formed. Namely, the polycrystalline silicon film 25 not covered by the stopper 26 is doped with P-type ions, such as of boron, when forming a P-channel transistor, or N-type ions, such as of phosphorous, when forming an N-channel transistor. This doping process forms regions exhibiting P-type or N-type conductivity in the polycrystalline silicon film 25 except in the part covered by the stopper 26. These regions on both sides of the stopper 26 become a source region 25 s and a drain region 25 d.
  • (d) Fourth Process (FIG. 4D) [0038]
  • The excimer laser is aimed at the [0039] polycrystalline silicon film 25, on which the source region 25 s and drain region 25 d have been formed, to heat the silicon without melting. This activates the impurity ions within the source region 25 s and drain region 25 d. The polycrystalline silicon film 25 is then patterned into a island shape while leaving a predetermined width on both sides of the stopper 26 (gate electrode 22) so as to separate the individual transistor.
  • (e) Fifth Process (FIG. 4E) [0040]
  • Silicon oxide and silicon nitride are formed in succession through plasma CVD on the [0041] polycrystalline silicon film 25. This forms two interlayer insulating films of a silicon oxide film 27 and a silicon nitride film 28. The silicon oxide film 27 and silicon nitride film 28, after being formed, are heated in a nitrogen atmosphere so that the hydrogen ions contained in the silicon nitride film 28 are introduced to the polycrystalline silicon film 25. As a result, the crystal defects within the polycrystalline silicon film 25 are filled by the hydrogen ions.
  • (f) Sixth Process (FIG. 4F) [0042]
  • Contact holes [0043] 29 are formed so as to pass through the silicon oxide film 27 and silicon nitride film 28 to correspond to the source region 25 s and drain region 25 d, and at the contact holes 29 are formed a source electrode 30 s and a drain electrode 30 d of a metal, such as aluminum. The source electrode 30 s and drain electrode 30 d are formed, for example, by patterning sputtered aluminum on the silicon nitride film 28 on which the contact holes 29 were formed. Next, an acrylic resin solution is applied and baked on the silicon nitride film 28, on which the source electrode 30 s and drain electrode 30 d were formed, to form an acrylic resin layer 31. The acrylic resin layer 31 planarizes the surface by filling in the unevenness caused by the stopper 26, source electrode 30 s, and drain electrode 30 d. Furthermore, a contact hole 32 is formed so as to pass through the acrylic resin layer 31 on the source electrode 30 s, and at the contact hole 32 is formed a transparent electrode 33, such as of ITO, to connect to the source electrode 30 s. The transparent electrode 33 is formed, for example, by patterning sputtered ITO on the acrylic resin layer 31, on which the contact hole 32 was formed.
  • The above-mentioned first through sixth processes form the bottom-gate thin-film transistor. [0044]
  • It should be noted that although four film formation chambers were used in this embodiment to form the gate insulating films and the semiconductor film at a 3:1 ratio, the number of film formation chambers is not limited to four. A comparable effect can be obtained even with three, or five or more film formation chambers disposed provided the film formation chambers are used in accordance with the ratio of the time required to form the gate insulating films to the time required to form the semiconductor film. [0045]
  • While there has been described what are at present considered to be preferred embodiments of the invention, it will be understood that various modifications may be made thereto, and it is intended that the appended claims cover all such modifications as fall within the true spirit and scope of the invention. [0046]

Claims (10)

What is claimed is:
1. A semiconductor device manufacturing apparatus comprising:
a first film formation chamber for depositing in succession at least two types of insulating films onto a substrate;
a second film formation chamber for depositing a semiconductor film onto the substrate; and
a transfer chamber for connecting said first film formation chamber to said second film formation chamber and for transferring the substrate from said first film formation chamber to said second film formation chamber, or from said second film formation chamber to said first film formation chamber;
one of said first or second film formation chamber performs a film formation process in succession to a film formation process of the other chamber.
2. The semiconductor device manufacturing apparatus according to claim 1 wherein:
a plurality of said first film formation chambers are disposed in accordance with a ratio of a time required for film formation in said first film formation chamber to a time required for film formation in said second film formation chamber, and the plurality of said first film formation chambers perform film formation processing staggered at a predetermined time difference.
3. The semiconductor device manufacturing apparatus according to claim 1 wherein:
said first and second film formation chambers are disposed so that a number of said first film formation chambers and a number of said second film formation chambers have a predetermined ratio other than 1 in accordance to a predetermined ratio other than 1 of the time required for film formation in said first film formation chamber to the time required for film formation in said second film formation chamber.
4. The semiconductor device manufacturing apparatus according to claim 3 wherein:
the time required for film formation in said first film formation chamber is longer than the time required for film formation in said second film formation chamber, and in correspondence a plurality of said first film formation chambers having a number greater than that of said second film formation chambers and performing film formation at a predetermined time difference from each other.
5. The semiconductor device manufacturing apparatus according to claim 3 wherein:
said time difference of film formation processes at a plurality of respective said first film formation chambers is set to be equal or longer than the time required for film formation in said second film formation chambers.
6. The semiconductor device manufacturing apparatus according to claim 1 wherein:
the insulating films formed at said first film formation chamber and the semiconductor film formed at said second film formation chamber together form part of a thin-film transistor.
7. The semiconductor device manufacturing apparatus comprising:
the first film formation chamber for forming a first material film on the substrate; and
the second film formation chamber for forming, after said first material film, a second material film unlike said first material film;
a ratio of a number of said first film formation chambers to that of said second film formation chambers is proportional to a ratio of the time required for film formation in said first film formation chamber to the time required for film formation in said second film formation chamber so that said first film formation chambers and said second film formation chambers are disposed with their numbers in a predetermined ratio.
8. The semiconductor device manufacturing apparatus according to claim 7 wherein:
the time required for film formation in said first film formation chambers is longer than the time required for film formation in said second film formation chambers, and in correspondence a plurality of said first film formation chambers having a number greater than that of said second film formation chambers and performing film formation at a predetermined time difference from each other.
9. The semiconductor device manufacturing apparatus according to claim 8 wherein:
said time difference of film formation processes at a plurality of respective said first film formation chambers is set to be equal or longer than the time required for film formation in said second film formation chambers.
10. The semiconductor device manufacturing apparatus according to claim 7 wherein:
said first material film formed at said first film formation chamber is a silicon nitride film and/or a silicon oxide film, said second material film formed at said second film formation chamber is a semiconductor film, and together form part of a thin-film transistor.
US10/371,700 1997-10-14 2003-02-22 Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method Abandoned US20030150383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/371,700 US20030150383A1 (en) 1997-10-14 2003-02-22 Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9280360A JPH11121754A (en) 1997-10-14 1997-10-14 Device and method for manufacturing thin-film transistor
JPHEI9-280360 1997-10-14
US09/169,833 US6103557A (en) 1997-10-14 1998-10-12 Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method
US59702600A 2000-06-20 2000-06-20
US10/371,700 US20030150383A1 (en) 1997-10-14 2003-02-22 Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US59702600A Continuation 1997-10-14 2000-06-20

Publications (1)

Publication Number Publication Date
US20030150383A1 true US20030150383A1 (en) 2003-08-14

Family

ID=17623929

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/169,833 Expired - Lifetime US6103557A (en) 1997-10-14 1998-10-12 Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method
US10/371,700 Abandoned US20030150383A1 (en) 1997-10-14 2003-02-22 Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/169,833 Expired - Lifetime US6103557A (en) 1997-10-14 1998-10-12 Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method

Country Status (3)

Country Link
US (2) US6103557A (en)
JP (1) JPH11121754A (en)
KR (1) KR100560586B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229512A (en) * 2000-02-10 2001-08-24 Tdk Corp Thin film magnetic head and method of manufacture
US7271489B2 (en) * 2003-10-15 2007-09-18 Megica Corporation Post passivation interconnection schemes on top of the IC chips
JP2002141512A (en) * 2000-11-06 2002-05-17 Advanced Display Inc Patterning method of thin film, tft array substrate using the patterning method, and manufacturing method of the tft array substrate
JP2002167661A (en) * 2000-11-30 2002-06-11 Anelva Corp Magnetic multilayered film deposition system
KR100428804B1 (en) * 2001-02-23 2004-04-29 삼성전자주식회사 Method of forming a layer in an integrated circuit device process, a method for fabricating a trench isolaton using the same and a trench isolation structure
US7521805B2 (en) * 2004-10-12 2009-04-21 Megica Corp. Post passivation interconnection schemes on top of the IC chips
KR20150010065A (en) * 2013-07-18 2015-01-28 삼성디스플레이 주식회사 Method of forming an oxide semiconductor device, and method of manufacturing a display device having an oxide semiconductor device
JP7311553B2 (en) * 2021-03-29 2023-07-19 株式会社Kokusai Electric SUBSTRATE PROCESSING APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND PROGRAM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483651A (en) * 1980-08-14 1984-11-20 Tokyo Ohka Kogyo Kabushiki Kaisha Automatic apparatus for continuous treatment of leaf materials with gas plasma
US4592306A (en) * 1983-12-05 1986-06-03 Pilkington Brothers P.L.C. Apparatus for the deposition of multi-layer coatings
US5327624A (en) * 1986-07-16 1994-07-12 Mitsubishi Denki Kabushiki Kaisha Method for forming a thin film on a semiconductor device using an apparatus having a load lock
US5834068A (en) * 1996-07-12 1998-11-10 Applied Materials, Inc. Wafer surface temperature control for deposition of thin films
US5849629A (en) * 1995-10-31 1998-12-15 International Business Machines Corporation Method of forming a low stress polycide conductors on a semiconductor chip
US6204519B1 (en) * 1996-03-10 2001-03-20 Semicondutor Energy Laboratory Co., Ltd. Thin film semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243202A (en) * 1990-04-25 1993-09-07 Casio Computer Co., Ltd. Thin-film transistor and a liquid crystal matrix display device using thin-film transistors of this type
JP2690613B2 (en) * 1990-10-11 1997-12-10 キヤノン株式会社 Method and apparatus for forming multilayer film
JPH05182923A (en) * 1991-05-28 1993-07-23 Semiconductor Energy Lab Co Ltd Laser annealing method
JPH06224392A (en) * 1993-01-25 1994-08-12 Hitachi Ltd Semiconductor device and manufacture thereof
JPH07211651A (en) * 1994-01-26 1995-08-11 Matsushita Electric Ind Co Ltd Film deposition
US5527567A (en) * 1994-09-02 1996-06-18 Ceram Incorporated Metalorganic chemical vapor deposition of layered structure oxides
KR100300263B1 (en) * 1995-08-04 2001-12-17 구사마 사부로 Manufacturing method of thin film transistor, manufacturing method of active matrix substrate and liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483651A (en) * 1980-08-14 1984-11-20 Tokyo Ohka Kogyo Kabushiki Kaisha Automatic apparatus for continuous treatment of leaf materials with gas plasma
US4592306A (en) * 1983-12-05 1986-06-03 Pilkington Brothers P.L.C. Apparatus for the deposition of multi-layer coatings
US5327624A (en) * 1986-07-16 1994-07-12 Mitsubishi Denki Kabushiki Kaisha Method for forming a thin film on a semiconductor device using an apparatus having a load lock
US5849629A (en) * 1995-10-31 1998-12-15 International Business Machines Corporation Method of forming a low stress polycide conductors on a semiconductor chip
US6204519B1 (en) * 1996-03-10 2001-03-20 Semicondutor Energy Laboratory Co., Ltd. Thin film semiconductor device
US5834068A (en) * 1996-07-12 1998-11-10 Applied Materials, Inc. Wafer surface temperature control for deposition of thin films

Also Published As

Publication number Publication date
KR19990037052A (en) 1999-05-25
KR100560586B1 (en) 2006-05-25
US6103557A (en) 2000-08-15
JPH11121754A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
US6265247B1 (en) Thin-film transistor and manufacturing method for improved contact hole
US6570184B2 (en) Thin film transistor and method for manufacturing the same
US6265730B1 (en) Thin-film transistor and method of producing the same
US20020055207A1 (en) Method for fabricating thin-film transistor
KR100430020B1 (en) Thin film transistor and method for manufacturing the same
US6335232B1 (en) Method of manufacturing a thin film transistor
US6956237B2 (en) Thin film transistor array substrate and method for manufacturing the same
US6103557A (en) Semiconductor device or thin-film transistor manufacturing apparatus and manufacturing method
US20100075506A1 (en) Apparatus and method for manufacturing semiconductor element and semiconductor element manufactured by the method
JPH09258247A (en) Production of liquid crystal display device and film forming device
JP2779492B2 (en) Thin film transistor device and method of manufacturing the same
US6566173B1 (en) Polycrystalline silicon thin film transistor and manufacturing method thereof
JP3029288B2 (en) Liquid crystal display
JP3471082B2 (en) Coating method for reaction chamber of CVD apparatus
JP2003188187A (en) Method for forming polycrystalline silicon thin film
KR100675640B1 (en) Method for fabricating liquid crystal display device by using alternating magnetic field crystallization
KR20070043393A (en) Method for crystalizing armophous silicon and method of manufacturing thin film transistor using the same
JPH1098085A (en) Plasma-processing device and thin-film transistor manufacturing method
JP3441337B2 (en) Active matrix type liquid crystal display
JP2002190604A (en) Thin-film transistor, liquid crystal display device using the thin-film transistor and electroluminescence display device
JPH09129698A (en) Semiconductor manufacturing equipment
JPS59182569A (en) Polycrystalline silicon thin-film transistor
JPH11103070A (en) Thin film transistor
KR100685409B1 (en) Thin film transistor and method for fabricating the same
KR20080098978A (en) A formation method of doped polysilicon thin films through a energy transport layer

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION