US20030157028A1 - Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease - Google Patents

Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease Download PDF

Info

Publication number
US20030157028A1
US20030157028A1 US10/204,307 US20430702A US2003157028A1 US 20030157028 A1 US20030157028 A1 US 20030157028A1 US 20430702 A US20430702 A US 20430702A US 2003157028 A1 US2003157028 A1 US 2003157028A1
Authority
US
United States
Prior art keywords
weight
formulations
dose
active ingredient
cosolvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/204,307
Other versions
US6964759B2 (en
Inventor
David Lewis
David Ganderton
Brian Meakin
Gaetano Brambilla
Alessandra Ferraris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiesi Farmaceutici SpA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to CHIESI FARMACEUTICI S.P.A. reassignment CHIESI FARMACEUTICI S.P.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRAMBILLA, GAETANO, FERRARIS, ALESSANDRA, GANDERTON, DAVID, LEWIS, DAVID, MEAKIN, BRIAN
Publication of US20030157028A1 publication Critical patent/US20030157028A1/en
Application granted granted Critical
Publication of US6964759B2 publication Critical patent/US6964759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine

Definitions

  • the present invention relates to formulations for administration through pressurized metered dose inhalers containing a quaternary ammonium salt with anticholinergic action in solution in a hydrofluorocarbon propellant, a cosolvent and a low volatility component. More particularly, the invention relates to formulations containing ipratropium bromide in solution, in which the concentration of active ingredient corresponds to single doses ranging from 80 to 320 ⁇ g and the amount of respirable particles is directly related to the dose itself. “Single dose” means the amount of active ingredient delivered by a single actuation of the inhaler.
  • formulations of the invention can be useful for the treatment of any respiratory disease and in particular for the treatment of the chronic obstructive pulmonary disease.
  • COPD chronic obstructive pulmonary disease
  • Anticholinergic quaternary ammonium salts such as oxitropium bromide, tiotropium bromide and ipratropium bromide, are usually prescribed in the form of inhalatory formulations, for patients suffering from said disease, due to their bronchodilating, antisecretive and bronchospasm-preventive actions.
  • Said drugs particularly ipratropium bromide, induce less prompt bronchodilation than conventional P2-agonists, but provide greater peak response and longer duration of action. Said characteristics make them particularly suitable for the chronic treatment rather than the acute one (Ferguson G. et al. N Engl J Med 1993, 328, 1017-1022).
  • Wood et al also observed for doses of at least 160 ⁇ g a longer duration of action, up to 12 hours: such prolonged effect would allow for a bis in die (b.i.d.) (twice a day) administration with evident advantages in terms of patient compliance.
  • the effectiveness of an aerosol device is a function of the dose deposited in the peripheral tract of the pulmonary tree, that is, in turn mainly affected by the particle size distribution.
  • the particle size is quantified by measuring a characteristic equivalent sphere diameter, known as median aerodynamic diameter (MAD). Particles having a MAD ranging from 0.8 to 5 microns ( ⁇ m) are usually considered respirable, i.e. capable of being deposited into the lower airways. It has also been established that, in the case of anticholinergic drugs for use in obstructive pulmonary diseases, the optimal particle size should be approximately 3 ⁇ m (Zanen P et al. Int. J. Pharm. 1995, 114, 111-115 ; Thorax 1996, 51, 977-980).
  • the size distribution of the delivered particles almost exclusively depends on the particle size distribution of the suspended particles, and hence on the process used for preparing them (milling or precipitation). Any kind of adjustments of the particle size of the delivered aerosol can be carried out by those skilled in the art, by suitably changing amounts and types of excipients, surface tension of the propellant, size of the metering chamber and diameter of the actuator orifice.
  • the preparation of suspension formulations at higher concentrations of drugs aimed at delivering higher single doses could however involve problems intrinsically difficult to be solved. Under high concentration conditions, the suspended particles could, indeed, give rise to aggregation, particularly during storage, so to an increment of the size of particles.
  • Hydrofluoroalkanes and in particular 1,1,1,2-tetrafluoroethane (HFA 134a) and 1,1,1,2,3,3,3-heptafluoropropane (HFA 227) have been acknowledged to be the best candidates as substitutes for CFCs.
  • High-dosage suspension formulations in which CFCs are replaced with HFAs would nevertheless exhibit the same pitfalls in term of physical stability and therapeutical efficacy as mentioned above; moreover, in the case of anticholinergic quaternary ammonium salts such as ipratropium bromide, the possibility of preparing formulations of adequate physical stability during storage would further be compromised or even prevented by the partial solubility of said active ingredient in HFA (Brambilla et al. Int J Pharm 1999, 186, 53-61); in fact, the size of the suspended particles could grow during storage as a consequence of the partial or total recrystallization of the small amount of dissolved solute, thus worsening the problems deriving from the lack of steady particle size distribution.
  • solution compositions should unavoidably been used.
  • Said compositions provide a number of advantages in that they are easier to be prepared and could allow to avoid the physical stability problems potentially linked to the high dosage suspension formulations.
  • solution formulation are not rid of potential drawbacks as they can give rise, for instance, to more severe problems of chemical instability.
  • the suspended particles no longer contribute to the total volume, the problem of ensuring a direct relationship between increase in dosage and increase in the drug deposited at the therapeutical site (respiratory tract) is even more dramatic.
  • solution formulations comprising an anticholinergic drug, such as ipratropium bromide to be used with pressurised metered dose inhalers, in which the active ingredient concentration corresponds to single doses ranging from 80 to 320 ⁇ g, characterized by adequate chemical stability for pharmaceutical use and capable of providing, on actuation, an amount of respirable particles directly proportional to the delivered dose.
  • Said formulations would turn out to be useful for the treatment of respiratory ailments such as chronic obstructive pulmonary disease.
  • the object of the present invention is to provide solution formulations comprising an anticholinergic quaternary ammonium salt selected from oxitropium bromide, tiotropium bromide and especially ipratropium bromide, to be used with pressurized metered dose inhalers for the treatment of COPD, said solutions being chemically stable and capable of:
  • the respirable fraction can favorably correspond to that of the CFC suspension formulations presently available on the market.
  • a solution formulation comprising from 0.11% to 1.14% by weight of an anticholinergic quaternary ammonium salt and a carrier consisting of a hydrofluoroalkane propellant, a cosolvent and a low volatility component that also has solvent properties.
  • the hydrofluoroalkane propellant is HFA 134a
  • the cosolvent is ethanol
  • the low volatility component is glycerol
  • a solution formulation comprising from 0.14%-0.28% by weight of ipratropium bromide and a carrier consisting of HFA 134a as a propellant, 13% by weight of ethanol and 1% by weight of glycerol.
  • WO 98/56349 the Applicant disclosed solution compositions for use in an aerosol inhaler, comprising an active ingredient, a propellant containing a hydrofluoroalkane (HFA), a cosolvent and further comprising a low volatility component to increase the median aerodynamic diameter (MAD) of the aerosol particles on actuation of the inhaler;
  • HFA hydrofluoroalkane
  • MAD median aerodynamic diameter
  • Said formulations proved to be pharmaceutically equivalent to the presently marketed formulations, consisting of CFC suspensions (Ganderton D et al. J. Aerosol Med. 1999, 12, 119).
  • a low volatility component allows to minimize the amount of cosolvent, in this case ethanol, added to the formulation and hence to avoid the negative effects on the respirable/therapeutically effective dose due to the increase of its relative percentage.
  • the median aerodynamic diameter (MAD) of the droplets remains substantially unchanged at increasing concentrations, therefore the respirable dose is directly related to the dose obtained on actuation of the inhaler. As a consequence, the increase in the respirable fraction concentration remains steady. Contrary to what reported in the prior art (Dolovich M Aerosol Science and Technology 1995, 22, 392-399) it has in fact surprisingly been found that in the formulations of the invention the respirable fraction does not decrease as the single dose increases. Furthermore, by suitably adjusting the actuator orifice diameter, it is possible, as the delivered dose increases, to steadily increase the respirable dose so that this is also linearly related to the dose of the CFC suspension formulations presently available on the market. Said feature makes the formulations of the invention therapeutically preferable as they avoid possible problems related to a non-linear response, such as accumulation, greater side effects or vice versa less effective therapeutical action.
  • WO 94/13262 generically disclosed and claimed aerosol HFA solution formulations comprising 0.001%-2.5% of ipratropium bromide in the presence of ethanol as cosolvent and of small amounts of organic or inorganic acids.
  • the specific examples however only relate to formulations with active ingredient concentrations (0.0187%-0.0748% by weight) corresponding to doses for single actuation ranging from 10 to 40 ⁇ g and containing 15% by weight of ethanol.
  • organic or inorganic acids are used for ensuring higher chemical stability of the active ingredient, and not for solving the technical problem related with the preparation of high dosage formulations providing a respirable dose therapeutically effective and directly related to the concentration.
  • the formulations of the invention can be prepared as described in WO 98/56349 and comprise a quaternary ammonium salt provided of anticholinergic action, such as oxitropium bromide, tiotropium bromide, ipratropium bromide in a concentration that, depending on the characteristics of the active ingredient, ranges from 0.11% to 1.14% by weight and which, in turn, could give rise, by suitably adjusting the volume of the metering chamber, to single doses ranging from 60 to 640 ⁇ g. More preferably, the active ingredient is a quaternary ammonium salt provided with anticholinergic action in a concentration ranging from 0.12% to 0.56% by weight.
  • a quaternary ammonium salt provided of anticholinergic action such as oxitropium bromide, tiotropium bromide, ipratropium bromide in a concentration that, depending on the characteristics of the active ingredient, ranges from 0.11% to 1.14% by weight and which, in turn,
  • the active ingredient is ipratropium bromide in a concentration ranging from 0.14% to 0.28% by weight.
  • the formulation containing 0.14% ipratropium bromide can be used for delivering single doses of 80 and 160 ⁇ g, while that containing 0.28% for single doses of 160 and 320 ⁇ g.
  • the low volatility component has a vapor pressure at 25° C. not above 0.1 kPa, preferably not above 0.05 pKa.
  • Particularly suitable for the use of the invention are glycols, in particular propylene glycol, polyethylene glycol and most preferably glycerol.
  • the invention also comprises all the substances, alone or in admixture, having similar vapor pressure characteristics and suitable solvent power for the active ingredients belonging to the anticholinergic quaternary ammonium salts.
  • the composition preferably contains at least 0.2%, more preferably 1% by weight of said component and anyway no more than 6%.
  • the cosolvent has advantageously higher polarity than the propellant and is preferably an alcohol, more preferably ethanol.
  • the amount of cosolvent in the composition is below 19% by weight, preferably it does not exceed 15% by weight more preferably it does not exceed 13% by weight.
  • Preferred hydrofluoroalkane propellants are HFA 134a, HFA 227 or mixtures thereof.
  • the formulations of the invention are preferably stored in pressurized inhalers for aerosol, part or all of their inner metal surfaces being made of anodized aluminium, stainless steel or coated with an inert organic coating agent. It has, in fact, been observed that in this type of cans the active ingredient remains chemically stable during storage, even at concentrations higher than 0.11% by weight.
  • the inhalers can be equipped with any suitable conventional or unconventional dispensing valve, preferably a metered dose valve as well as any suitable conventional or unconventional metering chamber.
  • the inhalers are equipped with an actuator with orifice diameter from 0.25 to 0.50 mm, preferably 0.3 mm and with a metering chamber with a volume from 25 ⁇ l to 100 ⁇ l.
  • the volume of metering chamber and the orifice diameter of the actuator will be suitably selected by the person skilled in order to deliver the desired single dose as well as to the best performances in term of respirable dose.
  • the invention relates to, the use of said formulations in the treatment of bronchopulmonary diseases, in particular chronic obstructive pulmonary disease.
  • the invention refers also to a process for the preparation of pharmaceutical formulations according to claims 1-6 which consists in filling the components into the metered dose inhaler in the following order: active ingredient, low volatility component, cosolvent and finally propellant through the valve.
  • aerosol formulations of the invention described below are prepared according to the following method.
  • the components necessary to the formulation are transferred into 12 ml aerosol cans in the following order: drug, low volatility component, absolute ethanol.
  • Results were obtained as a mean of 3-4 cans. For each device, 5-25 cumulative actuations were carried out after discarding the first 5.
  • Deposition of the drug on each ACI plate was determined by high pressure liquid chromatography (HPLC).
  • HPLC high pressure liquid chromatography
  • Mean metered dose was calculated from the cumulative deposition in the actuator and ACI (stages); mean delivered dose was calculated from the cumulative deposition in the ACI.
  • Mean respirable dose fine particle dose was obtained from the deposition on Stages 3 to filter corresponding to particles ⁇ 4.71 ⁇ m, divided by the number of actuations per experiment.
  • MAD and associated GSD (standard geometric deviation) values were obtained from probit transformation of cumulative percent undersize—log (ACI effective cut-off particle size diameter) and linear regression analysis of the resultant data, (Ph. Eur. Supp 1999).
  • MAD is substantially unaffected by the active ingredient concentration, so that the amount of droplets with size lower than 4.7 ⁇ m (respirable dose) is linearly related to the nominal dose.
  • a Bespak BK357 valve is crimped onto the same aerosol bottle. Shaking and ultra-sonication ensured a homogeneous solution was formed before a pre-determined mass of HFA 134a is filled through the valve.
  • Final formulations have a total volume into cans having a volume of 12 ⁇ 0.3 ml (20° C.), corresponding to that of the standard aerosol cans.
  • the components are expressed as percentages by weight of the total formulation.
  • Visual appearance of all manufactured formulations is assessed using a polarized light source immediately after preparation and again after 3 weeks storage at 4.0 ⁇ 0.4° C. Observations where further confirmed after 10 months storage at 4.0 ⁇ 0.4° C.
  • Ipratropium bromide is found to crystallise for the following ethanol levels (% by weight): 14.7, 15.0, 16.8, 17.2, 17.5, 17.9 while is found not to crystallise for the following ethanol levels: 18.9, 19.2, 20.6, 21.0, 21.3, 22.2, 22.6, 23.0, 23.4, 24.5, 29.7, 38.9, 40.1.
  • the formulation containing an ethanol level of 19% by weight depresses the respirable dose ( ⁇ 4.7 ⁇ m); it also reduces the MAD from 2.2-2.9 ⁇ m to 1.2-1.3 ⁇ m; and increases the Geometric Standard Deviation (GSD) from 2.1-2.6 to 4.3-6.2. TABLE 2 Performances of a the formulation without the low volatility component containing as active ingredient ipratropium bromide corresponding to nominal doses of 80 and 160 ⁇ g.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Formulations for the administration through pressurized metered dose aerosol inhalers containing an anticholineric drug in solution in a hydrofluorocarbon propellant, a cosolvent and a low volatility component, and the use thereof in chronic obstructive pulmonary disease.

Description

  • The present invention relates to formulations for administration through pressurized metered dose inhalers containing a quaternary ammonium salt with anticholinergic action in solution in a hydrofluorocarbon propellant, a cosolvent and a low volatility component. More particularly, the invention relates to formulations containing ipratropium bromide in solution, in which the concentration of active ingredient corresponds to single doses ranging from 80 to 320 μg and the amount of respirable particles is directly related to the dose itself. “Single dose” means the amount of active ingredient delivered by a single actuation of the inhaler. [0001]
  • The formulations of the invention can be useful for the treatment of any respiratory disease and in particular for the treatment of the chronic obstructive pulmonary disease. [0002]
  • The term chronic obstructive pulmonary disease (COPD) refers to a spectrum of diseases such as chronic bronchitis, asthma and lung emphysema, characterized by bronchospasm, cough, hypersecretion and dyspnea which are more and more frequent also due to tabagism as well as an increase of atmospheric pollution. Such disease has social relevance in that it involves repeated, expensive treatments. [0003]
  • Anticholinergic quaternary ammonium salts, such as oxitropium bromide, tiotropium bromide and ipratropium bromide, are usually prescribed in the form of inhalatory formulations, for patients suffering from said disease, due to their bronchodilating, antisecretive and bronchospasm-preventive actions. [0004]
  • Said drugs, particularly ipratropium bromide, induce less prompt bronchodilation than conventional P2-agonists, but provide greater peak response and longer duration of action. Said characteristics make them particularly suitable for the chronic treatment rather than the acute one (Ferguson G. et al. [0005] N Engl J Med 1993, 328, 1017-1022).
  • Although the single optimal dose for the administration of nebulized ipratropium bromide in the treatment of COPD has been established to be 0.4 mg (Gross N J et al [0006] Am Rev Respir Dis 1989, 139, 1188-1191), the dosage via pressurized metered dose inhalers has not yet been univocally established. Some authors (Ferguson G. et al, passim) have however suggested that treatment of said disease could benefit from use of higher doses than recommended ones (54-109 μg). Recent studies (Ikeda A et al. Thorax 1996, 51, 48-53; Shivaram U et al. Resp Med 1997, 91, 327-334; Wood F et al. Amer J Resp Crit Care Med 1999, 159, A 523) have demonstrated that the administration of single doses ranging from 80 to 320 μg is beneficial for the improvement in lung function, maximal workload and oxygen consumption.
  • Wood et al also observed for doses of at least 160 μg a longer duration of action, up to 12 hours: such prolonged effect would allow for a bis in die (b.i.d.) (twice a day) administration with evident advantages in terms of patient compliance. [0007]
  • The formulations currently available on the market in the form of metered dose aerosols in chlorofluorocarbons (Freon 11 and Freon 12) suspensions are able of delivering single doses of 20 or 40 μg and the recommended posology envisions the administration of 1-2 shots 3-4 times a day. Therefore, an increase of the frequency of administration to 4-6 times a day would be necessary to guarantee a higher daily dosage regimen, thus adversely affecting the patient compliance. [0008]
  • On the other hand, the effectiveness of an aerosol device, particularly a pressurized metered dose aerosol, is a function of the dose deposited in the peripheral tract of the pulmonary tree, that is, in turn mainly affected by the particle size distribution. The particle size is quantified by measuring a characteristic equivalent sphere diameter, known as median aerodynamic diameter (MAD). Particles having a MAD ranging from 0.8 to 5 microns (μm) are usually considered respirable, i.e. capable of being deposited into the lower airways. It has also been established that, in the case of anticholinergic drugs for use in obstructive pulmonary diseases, the optimal particle size should be approximately 3 μm (Zanen P et al. [0009] Int. J. Pharm. 1995, 114, 111-115; Thorax 1996, 51, 977-980).
  • In the suspension formulations, the size distribution of the delivered particles almost exclusively depends on the particle size distribution of the suspended particles, and hence on the process used for preparing them (milling or precipitation). Any kind of adjustments of the particle size of the delivered aerosol can be carried out by those skilled in the art, by suitably changing amounts and types of excipients, surface tension of the propellant, size of the metering chamber and diameter of the actuator orifice. The preparation of suspension formulations at higher concentrations of drugs aimed at delivering higher single doses could however involve problems intrinsically difficult to be solved. Under high concentration conditions, the suspended particles could, indeed, give rise to aggregation, particularly during storage, so to an increment of the size of particles. Larger size particles deposit more quickly and can give rise to the formation of compacted and fuse agglomerates (cakes) which, in turn may impair the possibility of re-suspending the product by simple agitation. Such drawback, could jeopardize both physical stability and therapeutic efficacy of the respective formulations; moreover, even after aerosolization, said cakes could turn out to be hard to be re-dispersed, so they will deposit mainly on the oropharynx tract, to the detriment of the fraction deposited on the peripheral respiratory tract (respirable fraction). [0010]
  • It is known that the chlorofluorocarbon propellants such as Freon 11 and Freon 12, which for many years have been the preferred propellants used in the aerosols, are being phased out and also their use in medicinal formulations, although temporarily exempted, will be banished. [0011]
  • Hydrofluoroalkanes (HFAs) and in particular 1,1,1,2-tetrafluoroethane (HFA 134a) and 1,1,1,2,3,3,3-heptafluoropropane (HFA 227) have been acknowledged to be the best candidates as substitutes for CFCs. [0012]
  • A number of documents concerning the preparation of HFA formulations of ipratropium bromide are disclosed in the prior art, for example WO 91/11495, WO 91/11496 (Boehringer), WO 93/05765 (Fisons), WO 96/19168 (Astra) and WO 98/34595 (Jago); these examples, however, relate to suspension formulations in which the active ingredient concentrations (0.08-0.1% by weight) correspond to single doses of 20-50 μg; furthermore, no data concerning physical stability during storage are provided. In other documents (EP 513217, WO 92/00107, EP 587790, EP 588897, WO 94/21228, WO 94/21229, WO 98/34596, WO 98/24420), formulations containing ipratropium bromide are only cited but not exemplified. [0013]
  • High-dosage suspension formulations in which CFCs are replaced with HFAs would nevertheless exhibit the same pitfalls in term of physical stability and therapeutical efficacy as mentioned above; moreover, in the case of anticholinergic quaternary ammonium salts such as ipratropium bromide, the possibility of preparing formulations of adequate physical stability during storage would further be compromised or even prevented by the partial solubility of said active ingredient in HFA (Brambilla et al. [0014] Int J Pharm 1999, 186, 53-61); in fact, the size of the suspended particles could grow during storage as a consequence of the partial or total recrystallization of the small amount of dissolved solute, thus worsening the problems deriving from the lack of steady particle size distribution.
  • In this scenario, solution compositions should unavoidably been used. Said compositions provide a number of advantages in that they are easier to be prepared and could allow to avoid the physical stability problems potentially linked to the high dosage suspension formulations. However, even solution formulation are not rid of potential drawbacks as they can give rise, for instance, to more severe problems of chemical instability. Furthermore, since the suspended particles no longer contribute to the total volume, the problem of ensuring a direct relationship between increase in dosage and increase in the drug deposited at the therapeutical site (respiratory tract) is even more dramatic. The preparation of homogeneous solution formulations requires indeed the addition of cosolvents such as ethanol which, due to their vapor pressure higher than the propellant, increase, proportionally to their concentration, the velocity of the aerosol droplets leaving the actuator orifice. The high velocity droplets extensively deposit into the oropharyngeal tract to the detriment of the dose which penetrates into the lower airways. The higher the dosage of the drug the higher is the amount of cosolvent necessary to solubilise, and hence the lesser is the percentage of therapeutically effective droplets (respirable dose). [0015]
  • In consideration of the therapeutical requirements outlined above and problems thereof, it would be highly advantageous to provide solution formulations comprising an anticholinergic drug, such as ipratropium bromide to be used with pressurised metered dose inhalers, in which the active ingredient concentration corresponds to single doses ranging from 80 to 320 μg, characterized by adequate chemical stability for pharmaceutical use and capable of providing, on actuation, an amount of respirable particles directly proportional to the delivered dose. Said formulations would turn out to be useful for the treatment of respiratory ailments such as chronic obstructive pulmonary disease. [0016]
  • The object of the present invention is to provide solution formulations comprising an anticholinergic quaternary ammonium salt selected from oxitropium bromide, tiotropium bromide and especially ipratropium bromide, to be used with pressurized metered dose inhalers for the treatment of COPD, said solutions being chemically stable and capable of: [0017]
  • i) delivering high single doses, of at least 60 μg and preferably 80 μg; [0018]
  • ii) provide an amount of respirable particles directly proportional to the delivered dose; [0019]
  • iii) allow b.i.d. administration with evident advantages in terms of patient compliance. [0020]
  • In the formulations of the invention, to make the transition from CFC formulations to HFA formulations easier, the respirable fraction can favorably correspond to that of the CFC suspension formulations presently available on the market. [0021]
  • According to a first embodiment of the invention, there is provided a solution formulation comprising from 0.11% to 1.14% by weight of an anticholinergic quaternary ammonium salt and a carrier consisting of a hydrofluoroalkane propellant, a cosolvent and a low volatility component that also has solvent properties. [0022]
  • In a preferred embodiment the hydrofluoroalkane propellant is HFA 134a, the cosolvent is ethanol and the low volatility component is glycerol. [0023]
  • According to a more particular embodiment of the invention, there is provided a solution formulation comprising from 0.14%-0.28% by weight of ipratropium bromide and a carrier consisting of HFA 134a as a propellant, 13% by weight of ethanol and 1% by weight of glycerol. [0024]
  • In WO 98/56349 the Applicant disclosed solution compositions for use in an aerosol inhaler, comprising an active ingredient, a propellant containing a hydrofluoroalkane (HFA), a cosolvent and further comprising a low volatility component to increase the median aerodynamic diameter (MAD) of the aerosol particles on actuation of the inhaler; the examples concerning ipratropium bromide however refer to formulations in which the active ingredient concentrations corresponded to the usual single doses (20-40 μg). Said formulations proved to be pharmaceutically equivalent to the presently marketed formulations, consisting of CFC suspensions (Ganderton D et al. J. Aerosol Med. 1999, 12, 119). [0025]
  • It has now been found that by using a low volatility component with suitable solvent power for the active ingredient, homogeneous solution formulations are obtained even in the presence of concentrations of an anticholinergic quaternary ammonium salt comprised between 0.11% and 1.14% by weight (which equates to 0.11-1.14 g of active ingredient per 100 g of formulation). In particular, it is possible to prepare homogeneous solution formulations in the presence of 0.14%-0.28% by weight ipratropium bromide corresponding to single doses ranging from 80 to 320 μg. [0026]
  • The use of a low volatility component allows to minimize the amount of cosolvent, in this case ethanol, added to the formulation and hence to avoid the negative effects on the respirable/therapeutically effective dose due to the increase of its relative percentage. [0027]
  • In the formulations of the invention, the median aerodynamic diameter (MAD) of the droplets remains substantially unchanged at increasing concentrations, therefore the respirable dose is directly related to the dose obtained on actuation of the inhaler. As a consequence, the increase in the respirable fraction concentration remains steady. Contrary to what reported in the prior art (Dolovich M Aerosol Science and Technology 1995, 22, 392-399) it has in fact surprisingly been found that in the formulations of the invention the respirable fraction does not decrease as the single dose increases. Furthermore, by suitably adjusting the actuator orifice diameter, it is possible, as the delivered dose increases, to steadily increase the respirable dose so that this is also linearly related to the dose of the CFC suspension formulations presently available on the market. Said feature makes the formulations of the invention therapeutically preferable as they avoid possible problems related to a non-linear response, such as accumulation, greater side effects or vice versa less effective therapeutical action. [0028]
  • WO 94/13262 generically disclosed and claimed aerosol HFA solution formulations comprising 0.001%-2.5% of ipratropium bromide in the presence of ethanol as cosolvent and of small amounts of organic or inorganic acids. The specific examples however only relate to formulations with active ingredient concentrations (0.0187%-0.0748% by weight) corresponding to doses for single actuation ranging from 10 to 40 μg and containing 15% by weight of ethanol. Furthermore, organic or inorganic acids are used for ensuring higher chemical stability of the active ingredient, and not for solving the technical problem related with the preparation of high dosage formulations providing a respirable dose therapeutically effective and directly related to the concentration. [0029]
  • The Applicant has also proved that formulations prepared according to the teaching of said application, with high concentrations of ipratropium bromide, require the use of ethanol in remarkable percentages which significantly jeopardize the performances in terms of respirable fraction. It has been indeed demonstrated that, in solution formulation only consisting of HFA as a propellant and ethanol as a co-solvent, the amount of ethanol necessary to solubilize ipratropium bromide in concentrations corresponding to single doses ranging from 80 to 160 μg is of at least about 19% by weight. On the other hand, formulations containing such a large amount of ethanol, of at least 19% by weight, give rise to a reduced respirable dose and a decrease in the MAD. [0030]
  • The formulations of the invention can be prepared as described in WO 98/56349 and comprise a quaternary ammonium salt provided of anticholinergic action, such as oxitropium bromide, tiotropium bromide, ipratropium bromide in a concentration that, depending on the characteristics of the active ingredient, ranges from 0.11% to 1.14% by weight and which, in turn, could give rise, by suitably adjusting the volume of the metering chamber, to single doses ranging from 60 to 640 μg. More preferably, the active ingredient is a quaternary ammonium salt provided with anticholinergic action in a concentration ranging from 0.12% to 0.56% by weight. [0031]
  • Even more preferably, the active ingredient is ipratropium bromide in a concentration ranging from 0.14% to 0.28% by weight. According to the volume of the metering chamber, the formulation containing 0.14% ipratropium bromide can be used for delivering single doses of 80 and 160 μg, while that containing 0.28% for single doses of 160 and 320 μg. Advantageously, the low volatility component has a vapor pressure at 25° C. not above 0.1 kPa, preferably not above 0.05 pKa. Particularly suitable for the use of the invention are glycols, in particular propylene glycol, polyethylene glycol and most preferably glycerol. However, the invention also comprises all the substances, alone or in admixture, having similar vapor pressure characteristics and suitable solvent power for the active ingredients belonging to the anticholinergic quaternary ammonium salts. The composition preferably contains at least 0.2%, more preferably 1% by weight of said component and anyway no more than 6%. [0032]
  • The cosolvent has advantageously higher polarity than the propellant and is preferably an alcohol, more preferably ethanol. In this case, the amount of cosolvent in the composition is below 19% by weight, preferably it does not exceed 15% by weight more preferably it does not exceed 13% by weight. [0033]
  • All the percentages are expressed as gram per 100 g of formulation. [0034]
  • Preferred hydrofluoroalkane propellants are HFA 134a, HFA 227 or mixtures thereof. [0035]
  • The formulations of the invention are preferably stored in pressurized inhalers for aerosol, part or all of their inner metal surfaces being made of anodized aluminium, stainless steel or coated with an inert organic coating agent. It has, in fact, been observed that in this type of cans the active ingredient remains chemically stable during storage, even at concentrations higher than 0.11% by weight. The inhalers can be equipped with any suitable conventional or unconventional dispensing valve, preferably a metered dose valve as well as any suitable conventional or unconventional metering chamber. Advantageously, the inhalers are equipped with an actuator with orifice diameter from 0.25 to 0.50 mm, preferably 0.3 mm and with a metering chamber with a volume from 25 μl to 100 μl. However, the volume of metering chamber and the orifice diameter of the actuator will be suitably selected by the person skilled in order to deliver the desired single dose as well as to the best performances in term of respirable dose. [0036]
  • Finally, the invention relates to, the use of said formulations in the treatment of bronchopulmonary diseases, in particular chronic obstructive pulmonary disease. [0037]
  • Specific embodiments of the invention are described in detail in the following. [0038]
  • The invention refers also to a process for the preparation of pharmaceutical formulations according to claims 1-6 which consists in filling the components into the metered dose inhaler in the following order: active ingredient, low volatility component, cosolvent and finally propellant through the valve. [0039]
  • EXAMPLE 1 Ipratropium Bromide Aerosol Solution Formulation in a Carrier Constituted of HFA 134a as a Propellant, Ethanol as a Co-Solvent and Glycerol as a Low Volatility Component
  • The aerosol formulations of the invention described below are prepared according to the following method. The components necessary to the formulation are transferred into 12 ml aerosol cans in the following order: drug, low volatility component, absolute ethanol. [0040]
  • After crimping the valve onto the can, the propellant is added through the valve. The weight gain of the can after addition of each component is recorded to evaluate the weight percentage of each component in the formulation. [0041]
    Amounts
    Dose of a single
    Per unit actuation
    Components mg % by weight μg
    Ipratropium bromide 19.2-38.4 0.14-0.28 80-320
    Absolute ethanol 13
    Glycerol  1
    HFA 134a q.s. to 13714
  • The aerodynamic particle size distribution of each tested formulation was characterized using a Multistage Cascade Impactor according to the procedure described in European Pharmacopoeia 2[0042] nd edition, 1995, part V.5.9.1, pages 15-17. In this specific case, an Andersen Cascade Impactor (ACI) was used.
  • Results were obtained as a mean of 3-4 cans. For each device, 5-25 cumulative actuations were carried out after discarding the first 5. [0043]
  • Deposition of the drug on each ACI plate was determined by high pressure liquid chromatography (HPLC). Mean metered dose was calculated from the cumulative deposition in the actuator and ACI (stages); mean delivered dose was calculated from the cumulative deposition in the ACI. Mean respirable dose (fine particle dose) was obtained from the deposition on Stages 3 to filter corresponding to particles ≦4.71 μm, divided by the number of actuations per experiment. [0044]
  • MAD and associated GSD (standard geometric deviation) values were obtained from probit transformation of cumulative percent undersize—log (ACI effective cut-off particle size diameter) and linear regression analysis of the resultant data, (Ph. Eur. Supp 1999). [0045]
  • The delivery characteristics of formulations containing increasing amounts of ipratropium bromide present in cans equipped with standard Bespack BK 360 actuators with 0.3 mm orifice diameter and a metering chamber volume of 50 μl are reported in Table 1. The use of a metering chamber volume of 100 μl allows a 320 kg strength variant of the 160 μg formulation. [0046]
  • It can be observed that MAD is substantially unaffected by the active ingredient concentration, so that the amount of droplets with size lower than 4.7 μm (respirable dose) is linearly related to the nominal dose. [0047]
  • Only at a nominal dose of 320 μg, a slight decrease of the respirable fraction is observed. [0048]
    TABLE 1
    Performances of formulations containing as active ingredient
    ipratropium bromide at different concentrations, such as to
    give raise to the reported nominal doses.
    Nominal Metered Delivered Respirable Respirable
    Dose(1) dose(2) dose(3) dose(4) fraction(5) MAD
    (μg) (μg) (μg) (μg) (%) (μm) GSD
    20 20.6 ± 1.6 18.8 ± 1.6  6.8 ± 1.1 33.3 ± 3.8 2.4 ± 0.3 2.1 ± 0.8
    40 42.2 ± 1.8 38.7 ± 1.9 11.7 ± 1.2 31.5 ± 3.8 2.2 ± 0.1 2.1 ± 0.1
    80 78.5 ± 0.4 72.7 ± 0.6 23.3 ± 4.5 32.0 ± 6.1 2.7 ± 0.3 2.2 ± 0.1
    160 161.1 ± 12.5 149.2 ± 10.7 45.2 ± 2.5 30.4 ± 3.5 2.5 ± 0.2 2.3 ± 0.1
    320 321.4 ± 2.0  290.5 ± 1.9  73.2 ± 3.0 25.2 ± 1.2 2.9 ± 0.2 2.6 ± 0.1
  • EXAMPLE 2 Ipratropium Bromide Aerosol Solution Formulation in HFA 134a as a Propellant and Ethanol as a Co-Solvent
  • Determination of the Solubility of Ipratropium Bromide in Ethanol [0049]
  • 20.1±0.2 mg of ipratropium bromide is weighed into Saint-Gobain aerosol bottles. [0050]
  • Increased volumes of absolute ethanol are added to the same aerosol bottle using a Gilson variable pipette. [0051]
  • A Bespak BK357 valve is crimped onto the same aerosol bottle. Shaking and ultra-sonication ensured a homogeneous solution was formed before a pre-determined mass of HFA 134a is filled through the valve. [0052]
  • The individual weight of ipratropium bromide, ethanol, and HFA134a addition is recorded using a four-figure analytical balance. [0053]
  • Final formulations have a total volume into cans having a volume of 12±0.3 ml (20° C.), corresponding to that of the standard aerosol cans. The components are expressed as percentages by weight of the total formulation. Visual appearance of all manufactured formulations is assessed using a polarized light source immediately after preparation and again after 3 weeks storage at 4.0±0.4° C. Observations where further confirmed after 10 months storage at 4.0±0.4° C. [0054]
  • Ipratropium bromide is found to crystallise for the following ethanol levels (% by weight): 14.7, 15.0, 16.8, 17.2, 17.5, 17.9 while is found not to crystallise for the following ethanol levels: 18.9, 19.2, 20.6, 21.0, 21.3, 22.2, 22.6, 23.0, 23.4, 24.5, 29.7, 38.9, 40.1. [0055]
  • Therefore about 19% by weight of ethanol is required to solubilise an amount of ipratropium bromide (0.14% by weight) which could give rise, by suitably selecting the volume of the metering chamber, to single doses of 80 and 160 μg within a HFA 134a formulation. [0056]
  • The formula of the corresponding composition is reported below. [0057]
    Amount
    Dose of a single
    Per unit actuation
    Components mg % by weight μg
    Ipratropium bromide 20.1 0.14 80-160
    Absolute ethanol 2735 19
    HFA 134a q.s. to 14397
  • Delivery performances of the HFA formulations corresponding to single nominal doses of 80 and 160 μg [0058]
  • The delivery characteristics of the formulation in cans equipped with standard Bespack BK 360 actuators with 0.3 mm orifice diameter and a metering chamber volume of 50 μl are reported in Table 2. The use of a metering chamber volume of 100 μl allows a 160 μg strength variant of the 80 μg formulation. [0059]
  • The relevant parameters were determined as described in Example 1. [0060]
  • It can be observed that, the formulation containing an ethanol level of 19% by weight depresses the respirable dose (≦4.7 μm); it also reduces the MAD from 2.2-2.9 μm to 1.2-1.3 μm; and increases the Geometric Standard Deviation (GSD) from 2.1-2.6 to 4.3-6.2. [0061]
    TABLE 2
    Performances of a the formulation without the low volatility
    component containing as active ingredient ipratropium bromide
    corresponding to nominal doses of 80 and 160 μg.
    Nominal Metered Delivered Respirable Respirable
    Dose dose dose dose fraction MAD
    (μg) (μg) (μg) (μg) (%) (μm) GSD
    80  76.6 ± 1.6  70.0 ± 1.0 20.0 ± 1.3 28.7 ± 1.5 1.2 ± 0.1 4.3 ± 0.4
    160 158.5 ± 2.0 144.2 ± 1.7 31.4 ± 1.3 21.8 ± 1.1 1.3 ± 0.2 6.2 ± 0.2

Claims (7)

1. A pharmaceutical formulation for use in a metered dose aerosol inhaler, comprising an active ingredient consisting of an anticholinergic quaternary ammonium salt in solution in a mixture consisting of a hydrofluoroalkane propellant, a cosolvent and a low volatility component, wherein the concentration of the active in gredient ranges from 0.11% to 1.14% by weight and the single dose delivered on actuation ranges from 60 to 640 μg.
2. A formulation according to claim 1, in which the active ingredient is ipratropium bromide in concentrations ranging from 0.14 to 0.28% by weight.
3. A formulation according to claims 1-2, in which the propellant is HFA 134a, the low volatility component is glycerol and the cosolvent is ethanol.
4. A formulation according to claims 1-3 in which the ethanol percentage is 13% by weight and that of glycerol is 1% by weight.
5. Pharmaceutical formulations according to claims 1-4 for use in pressurized metered dose aerosol inhalers in the treatment of bronchopulmonary diseases, and in particular chronic obstructive pulmonary disease.
6. Compositions according to any one of claims 1-5 contained in metered dose aerosol inhalers having part or all of the inner metal surfaces made of anodized aluminium, stainless steel or coated with an inert organic coating agent.
7. A process for the preparation of pharmaceutical formulations according to claims 1-6 which consists in filling the components into the metered dose inhaler in the following order: active ingredient, low volatility component, cosolvent and finally propellant through the valve.
US10/204,307 2000-02-22 2001-02-19 Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease Expired - Fee Related US6964759B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2000A000312 2000-02-22
IT2000MI000312A IT1317846B1 (en) 2000-02-22 2000-02-22 FORMULATIONS CONTAINING AN ANTICOLINERGIC DRUG FOR THE TREATMENT OF CHRONIC OBSTRUCTIVE BRONCOPNEUMOPATHY.
PCT/EP2001/001833 WO2001062227A2 (en) 2000-02-22 2001-02-19 Anticholinergic drug formulations for treatment of chronic obstr uctive pulmonary disease

Publications (2)

Publication Number Publication Date
US20030157028A1 true US20030157028A1 (en) 2003-08-21
US6964759B2 US6964759B2 (en) 2005-11-15

Family

ID=11444121

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/204,307 Expired - Fee Related US6964759B2 (en) 2000-02-22 2001-02-19 Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease

Country Status (12)

Country Link
US (1) US6964759B2 (en)
EP (1) EP1257254B1 (en)
AT (1) ATE308317T1 (en)
AU (1) AU776742B2 (en)
BR (1) BR0108584A (en)
CA (1) CA2400691A1 (en)
DE (1) DE60114571T2 (en)
DK (1) DK1257254T3 (en)
ES (1) ES2249424T3 (en)
IT (1) IT1317846B1 (en)
JO (1) JO2381B1 (en)
WO (1) WO2001062227A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190289A1 (en) * 2000-05-12 2003-10-09 David Lewis Formulations containing a glucocorticoid drug for the treatment of bronchopulmonary diseases
US20030190287A1 (en) * 1997-06-13 2003-10-09 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US20040033201A1 (en) * 1999-06-18 2004-02-19 3M Innovative Properties Company Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US20040102469A1 (en) * 2002-09-13 2004-05-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Method for reducing the mortality rate
US20050034720A1 (en) * 2000-01-07 2005-02-17 Gaetano Brambilla Aerosol inhaler
US20050142071A1 (en) * 1998-11-25 2005-06-30 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20050163722A1 (en) * 2001-07-02 2005-07-28 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US6964759B2 (en) 2000-02-22 2005-11-15 Chiesi Farmaceutici S.P.A. Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
US6967017B1 (en) 1999-07-23 2005-11-22 Chiesi Farmaceutici S.P.A. Formulations of steroid solutions for inhalatory administration
US7018618B2 (en) 2000-05-22 2006-03-28 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
WO2006036473A1 (en) * 2004-09-24 2006-04-06 3M Innovative Properties Company Medicinal aerosol formulations and methods of synthesizing ingredients therefor
US7381402B2 (en) 2004-02-27 2008-06-03 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US9980962B2 (en) * 2014-01-28 2018-05-29 Unity Biotechnology, Inc Use of sulfonamide inhibitors of Bcl-2 to treat senescence-associated lung conditions such as pulmonary fibrosis and chronic obstructive pulmonary disease
US10328058B2 (en) 2014-01-28 2019-06-25 Mayo Foundation For Medical Education And Research Treating atherosclerosis by removing senescent foam cell macrophages from atherosclerotic plaques
US11517572B2 (en) 2014-01-28 2022-12-06 Mayo Foundation For Medical Education And Research Killing senescent cells and treating senescence-associated conditions using a SRC inhibitor and a flavonoid

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257324A1 (en) * 2000-05-22 2006-11-16 Chiesi Farmaceutici S.P.A. Pharmaceutical solution formulations for pressurised metered dose inhalers
EP1321159A1 (en) * 2001-12-21 2003-06-25 CHIESI FARMACEUTICI S.p.A. Pressurized metered dose inhaler (pMDI) actuators with laser drilled orifices
US7255102B2 (en) * 2002-02-01 2007-08-14 Generex Pharmaceuticals Inc. Metered dose spray device for use with macromolecular pharmaceutical agents such as insulin
EP1415647A1 (en) * 2002-10-23 2004-05-06 CHIESI FARMACEUTICI S.p.A. "Long-acting beta-2 agonists ultrafine formulations"
PT3494995T (en) * 2002-03-01 2020-03-30 Chiesi Farm Spa Formoterol superfine formulation
EP1340492A1 (en) * 2002-03-01 2003-09-03 CHIESI FARMACEUTICI S.p.A. Aerosol formulations for pulmonary administration of medicaments having systemic effects
DE10214263A1 (en) * 2002-03-28 2003-10-16 Boehringer Ingelheim Pharma HFA suspension formulations containing an anticholinergic
WO2005037949A2 (en) 2003-10-07 2005-04-28 Chrysalis Technologies Incorporated Aerosol formulations of butalbital, lorazepam, ipratropium, baclofen, morphine and scopolamine
DE102006023770A1 (en) * 2006-05-20 2007-11-22 Boehringer Ingelheim Pharma Gmbh & Co. Kg Propellant-free aerosol formulation for inhalation
EP2077132A1 (en) 2008-01-02 2009-07-08 Boehringer Ingelheim Pharma GmbH & Co. KG Dispensing device, storage device and method for dispensing a formulation
US10011906B2 (en) 2009-03-31 2018-07-03 Beohringer Ingelheim International Gmbh Method for coating a surface of a component
EP3508239B1 (en) 2009-05-18 2020-12-23 Boehringer Ingelheim International GmbH Adapter, inhalant apparatus and atomizer
CN107412212B (en) 2009-05-29 2021-01-22 珍珠治疗公司 Pulmonary delivery of long-acting muscarinic antagonists and long-acting beta2Compositions of adrenergic receptor agonists and related methods and systems
US8815258B2 (en) 2009-05-29 2014-08-26 Pearl Therapeutics, Inc. Compositions, methods and systems for respiratory delivery of two or more active agents
CN102905694B (en) * 2009-11-17 2015-10-14 西普拉有限公司 Inhalation solution
US10016568B2 (en) 2009-11-25 2018-07-10 Boehringer Ingelheim International Gmbh Nebulizer
UA107097C2 (en) 2009-11-25 2014-11-25 Бьорінгер Інгельхайм Інтернаціональ Гмбх Dispenser
WO2011064163A1 (en) 2009-11-25 2011-06-03 Boehringer Ingelheim International Gmbh Nebulizer
EP2585151B1 (en) 2010-06-24 2018-04-04 Boehringer Ingelheim International GmbH Nebulizer
WO2012130757A1 (en) 2011-04-01 2012-10-04 Boehringer Ingelheim International Gmbh Medical device comprising a container
US9827384B2 (en) 2011-05-23 2017-11-28 Boehringer Ingelheim International Gmbh Nebulizer
WO2013152894A1 (en) 2012-04-13 2013-10-17 Boehringer Ingelheim International Gmbh Atomiser with coding means
RU2696582C2 (en) 2013-03-15 2019-08-05 Перл Терапьютикс, Инк. Methods and systems for conditioning disperse crystalline materials
ES2836977T3 (en) 2013-08-09 2021-06-28 Boehringer Ingelheim Int Nebulizer
WO2015018904A1 (en) 2013-08-09 2015-02-12 Boehringer Ingelheim International Gmbh Nebulizer
US10195374B2 (en) 2014-05-07 2019-02-05 Boehringer Ingelheim International Gmbh Container, nebulizer and use
WO2015169430A1 (en) 2014-05-07 2015-11-12 Boehringer Ingelheim International Gmbh Nebulizer
KR102492824B1 (en) 2014-05-07 2023-01-30 베링거 인겔하임 인터내셔날 게엠베하 Nebulizer, indicator device and container

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653961A (en) * 1995-03-31 1997-08-05 Minnesota Mining And Manufacturing Company Butixocort aerosol formulations in hydrofluorocarbon propellant
US5683677A (en) * 1988-12-06 1997-11-04 Riker Laboratories, Inc. Medicinal aerosol formulations
US6006745A (en) * 1990-12-21 1999-12-28 Minnesota Mining And Manufacturing Company Device for delivering an aerosol
US6045778A (en) * 1992-12-09 2000-04-04 Boehringer Ingelheim Pharmaceuticals, Inc. Stabilized medicinal aerosol solution formulations
US6143277A (en) * 1995-04-14 2000-11-07 Glaxo Wellcome Inc. Metered dose inhaler for salmeterol
US6149892A (en) * 1995-04-14 2000-11-21 Glaxowellcome, Inc. Metered dose inhaler for beclomethasone dipropionate
US6253762B1 (en) * 1995-04-14 2001-07-03 Glaxo Wellcome Inc. Metered dose inhaler for fluticasone propionate
US6290930B1 (en) * 1998-12-18 2001-09-18 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes and budesonide
US6413496B1 (en) * 1996-12-04 2002-07-02 Biogland Ireland (R&D) Limited Pharmaceutical compositions and devices for their administration
US6451285B2 (en) * 1998-06-19 2002-09-17 Baker Norton Pharmaceuticals, Inc. Suspension aerosol formulations containing formoterol fumarate and a fluoroalkane propellant
US20030066525A1 (en) * 1998-11-25 2003-04-10 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20030190278A1 (en) * 2002-04-08 2003-10-09 Yan Mei Wang Controlled deposition of nanotubes
US20030206870A1 (en) * 1997-06-13 2003-11-06 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US6645466B1 (en) * 1998-11-13 2003-11-11 Jago Research Ag Dry powder for inhalation

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361306A (en) 1966-03-31 1968-01-02 Merck & Co Inc Aerosol unit dispensing uniform amounts of a medically active ingredient
US3622053A (en) 1969-12-10 1971-11-23 Schering Corp Aerosol inhaler with flip-up nozzle
MX3864E (en) 1975-05-27 1981-08-26 Syntex Corp A PROCESS TO PREPARE THE CRYSTALLINE COMPOUND 6-FLUIRO-11B 21-DIHIROXI-16 17-ISOPROPILIDENDIOXIPREGNA-1 4-DIEN-3 20-DIONA
US4185100A (en) 1976-05-13 1980-01-22 Johnson & Johnson Topical anti-inflammatory drug therapy
US4499108A (en) 1983-06-08 1985-02-12 Schering Corporation Stable pleasant-tasting albuterol sulfate pharmaceutical formulations
IT1196142B (en) 1984-06-11 1988-11-10 Sicor Spa PROCEDURE FOR THE PREPARATION OF 16.17-ACETALS OF PREGNANIC DERIVATIVES AND NEW COMPOUNDS OBTAINED
US5192528A (en) 1985-05-22 1993-03-09 Liposome Technology, Inc. Corticosteroid inhalation treatment method
GB8828477D0 (en) 1988-12-06 1989-01-05 Riker Laboratories Inc Medical aerosol formulations
IL97065A (en) 1990-02-02 1994-01-25 Fisons Plc Aerosol propellant compositions
EP0563048A1 (en) 1990-12-19 1993-10-06 Smithkline Beecham Corporation Aerosol formulations
EP0504112A3 (en) 1991-03-14 1993-04-21 Ciba-Geigy Ag Pharmaceutical aerosol formulations
WO1992020391A1 (en) 1991-05-21 1992-11-26 Abbott Laboratories Aerosol inhalation device
EP0601036B1 (en) 1991-08-29 1999-04-28 Broncho-Air Medizintechnik AG Medical device for inhalating doses of spray
NZ244439A (en) 1991-09-25 1994-01-26 Fisons Plc Pressurised aerosol compositions comprising hydrofluoroalkane, dispersed
IL104068A (en) 1991-12-12 1998-10-30 Glaxo Group Ltd Surfactant-free pharmaceutical aerosol formulation comprising 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoro-n- propane as propellant
NZ246421A (en) 1991-12-18 1996-05-28 Minnesota Mining & Mfg Aerosol formulation containing a drug and a propellant and which is substantially free of surfactant
DE4230876A1 (en) 1992-03-17 1993-09-23 Asta Medica Ag COMPRESSED GAS PACKS USING POLYOXYETHYLENE GLYCERYL OLEATES
SE9203743D0 (en) 1992-12-11 1992-12-11 Astra Ab EFFICIENT USE
AU4066693A (en) 1992-12-23 1994-07-19 Bernhard Hugemann Compacted drug body for use in the mechanical generation of inhalable active-substance particles
WO1994021228A1 (en) 1993-03-17 1994-09-29 Minnesota Mining And Manufacturing Company Aerosol formulation containing a diol-diacid derived dispersing aid
ES2122261T3 (en) 1993-03-17 1998-12-16 Minnesota Mining & Mfg AEROSOL FORMULATION CONTAINING A DISPERSION ADJUVANT DERIVED FROM AN ESTER, AMIDA OR MERCAPTOESTER.
US6596260B1 (en) 1993-08-27 2003-07-22 Novartis Corporation Aerosol container and a method for storage and administration of a predetermined amount of a pharmaceutically active aerosol
EP0735884B1 (en) 1993-12-20 2000-04-26 Minnesota Mining And Manufacturing Company Flunisolide aerosol formulations
GB9425160D0 (en) 1994-12-10 1995-02-08 Glaxo Group Ltd Medicaments
CN1088580C (en) 1994-12-22 2002-08-07 阿斯特拉公司 Aerosol drug formulations
GB9426252D0 (en) 1994-12-24 1995-02-22 Glaxo Group Ltd Pharmaceutical composition
DE4446891A1 (en) 1994-12-27 1996-07-04 Falk Pharma Gmbh Stable aqueous budesonide solution
DK0820279T3 (en) 1995-04-14 2002-10-07 Smithkline Beecham Corp Dosing metered inhaler for Albuterol
GB9612297D0 (en) 1996-06-11 1996-08-14 Minnesota Mining & Mfg Medicinal aerosol formulations
EP0914143A1 (en) 1996-07-08 1999-05-12 Rhone-Poulenc Rorer Limited Medicinal cyclosporin-a aerosol solution formulation
WO1998003533A1 (en) 1996-07-24 1998-01-29 Oligos Etc. And Oligos Therapeutics, Inc. Antisense oligonucleotides as antibacterial agents
GB9616237D0 (en) 1996-08-01 1996-09-11 Norton Healthcare Ltd Aerosol formulations
GB9620187D0 (en) 1996-09-27 1996-11-13 Minnesota Mining & Mfg Medicinal aerosol formulations
AU726510B2 (en) 1996-12-04 2000-11-09 Consort Medical Plc Pharmaceutical compositions and devices for their administration
DK1014943T3 (en) 1997-02-05 2002-10-14 Jago Res Ag Medical aerosol formulations
US6126919A (en) 1997-02-07 2000-10-03 3M Innovative Properties Company Biocompatible compounds for pharmaceutical drug delivery systems
US5891419A (en) 1997-04-21 1999-04-06 Aeropharm Technology Limited Environmentally safe flunisolide aerosol formulations for oral inhalation
GB2326334A (en) * 1997-06-13 1998-12-23 Chiesi Farma Spa Pharmaceutical aerosol compositions
BR7702049U (en) 1997-09-05 1999-09-14 Chiesi Farma Spa Spray nozzle for use in an oral inhaler for aerosol medicines
US5954047A (en) 1997-10-17 1999-09-21 Systemic Pulmonary Development, Ltd. Methods and apparatus for delivering aerosolized medication
US6045784A (en) 1998-05-07 2000-04-04 The Procter & Gamble Company Aerosol package compositions containing fluorinated hydrocarbon propellants
SE9802073D0 (en) 1998-06-11 1998-06-11 Astra Ab New use
AU759222B2 (en) 1998-06-18 2003-04-10 Boehringer Ingelheim Pharmaceuticals, Inc. Pharmaceutical formulations for aerosols with two or more active substances
US6241969B1 (en) 1998-06-26 2001-06-05 Elan Corporation Plc Aqueous compositions containing corticosteroids for nasal and pulmonary delivery
NZ509328A (en) 1998-07-24 2002-11-26 Jago Res A Medicinal aerosol formulations
ES2193726T3 (en) 1998-08-04 2003-11-01 Jago Res Ag MEDICINAL AEROSOL FORMULATIONS.
DE19847969A1 (en) 1998-10-17 2000-04-20 Boehringer Ingelheim Pharma Stable liquid formulation of formoterol in solution or suspension medium, used after dilution for treatment of asthma by inhalation
BR9914507A (en) 1998-10-17 2001-06-26 Boehringer Ingelheim Pharma Active substance concentrate with formoterol, suitable for storage
US6004537A (en) 1998-12-18 1999-12-21 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes, budesonide and formoterol
SK286981B6 (en) 1999-03-05 2009-08-06 Chiesi Farmaceutici S.P.A. Powder for use in a dry powder inhaler, carrier for the powder and method for the production of powder
US6315985B1 (en) 1999-06-18 2001-11-13 3M Innovative Properties Company C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
DE60019167T2 (en) 1999-12-24 2006-05-11 Glaxo Group Ltd., Greenford PHARMACEUTICAL AEROSOL FORMULATION CONTAINING SALMETEROL AND FLUTICASONE
IT1317846B1 (en) 2000-02-22 2003-07-15 Chiesi Farma Spa FORMULATIONS CONTAINING AN ANTICOLINERGIC DRUG FOR THE TREATMENT OF CHRONIC OBSTRUCTIVE BRONCOPNEUMOPATHY.

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683677A (en) * 1988-12-06 1997-11-04 Riker Laboratories, Inc. Medicinal aerosol formulations
US5695743A (en) * 1988-12-06 1997-12-09 Riker Laboratories, Inc. Medicinal aerosol formulations
US6006745A (en) * 1990-12-21 1999-12-28 Minnesota Mining And Manufacturing Company Device for delivering an aerosol
US6045778A (en) * 1992-12-09 2000-04-04 Boehringer Ingelheim Pharmaceuticals, Inc. Stabilized medicinal aerosol solution formulations
US5653961A (en) * 1995-03-31 1997-08-05 Minnesota Mining And Manufacturing Company Butixocort aerosol formulations in hydrofluorocarbon propellant
US6143277A (en) * 1995-04-14 2000-11-07 Glaxo Wellcome Inc. Metered dose inhaler for salmeterol
US6149892A (en) * 1995-04-14 2000-11-21 Glaxowellcome, Inc. Metered dose inhaler for beclomethasone dipropionate
US6253762B1 (en) * 1995-04-14 2001-07-03 Glaxo Wellcome Inc. Metered dose inhaler for fluticasone propionate
US6413496B1 (en) * 1996-12-04 2002-07-02 Biogland Ireland (R&D) Limited Pharmaceutical compositions and devices for their administration
US20030206870A1 (en) * 1997-06-13 2003-11-06 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US20030077230A1 (en) * 1998-06-19 2003-04-24 Blondino Frank E. Pressurized metered dose inhalers and pharmaceutical aerosol fomulations
US6451285B2 (en) * 1998-06-19 2002-09-17 Baker Norton Pharmaceuticals, Inc. Suspension aerosol formulations containing formoterol fumarate and a fluoroalkane propellant
US6645466B1 (en) * 1998-11-13 2003-11-11 Jago Research Ag Dry powder for inhalation
US20030066525A1 (en) * 1998-11-25 2003-04-10 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20040096399A1 (en) * 1998-11-25 2004-05-20 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US6290930B1 (en) * 1998-12-18 2001-09-18 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes and budesonide
US20030190278A1 (en) * 2002-04-08 2003-10-09 Yan Mei Wang Controlled deposition of nanotubes

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190287A1 (en) * 1997-06-13 2003-10-09 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US20040062720A1 (en) * 1997-06-13 2004-04-01 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US8420058B2 (en) 1997-06-13 2013-04-16 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US20090311196A1 (en) * 1997-06-13 2009-12-17 Chiesi Farmaceutici S.P.A Pharmaceutical aerosol composition
US7601336B2 (en) 1997-06-13 2009-10-13 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US7347199B1 (en) 1998-11-25 2008-03-25 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US8142763B2 (en) 1998-11-25 2012-03-27 Chiesi Farmaceutici S.P.A. Pressurized metered dose inhalers (MDI) containing a solution comprising ipratropium bromide, HFA propellant, and co-solvent and comprising a container with a specific internal surface composition and/or lining
US20050142071A1 (en) * 1998-11-25 2005-06-30 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20080115782A1 (en) * 1998-11-25 2008-05-22 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (mdi)
US20040033201A1 (en) * 1999-06-18 2004-02-19 3M Innovative Properties Company Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US20050220717A1 (en) * 1999-06-18 2005-10-06 3M Innovative Properties Company Steroid solution aerosol products with enhanced chemical stability
US6967017B1 (en) 1999-07-23 2005-11-22 Chiesi Farmaceutici S.P.A. Formulations of steroid solutions for inhalatory administration
US20050034720A1 (en) * 2000-01-07 2005-02-17 Gaetano Brambilla Aerosol inhaler
US6964759B2 (en) 2000-02-22 2005-11-15 Chiesi Farmaceutici S.P.A. Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
US20030190289A1 (en) * 2000-05-12 2003-10-09 David Lewis Formulations containing a glucocorticoid drug for the treatment of bronchopulmonary diseases
US20060083693A1 (en) * 2000-05-22 2006-04-20 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US7018618B2 (en) 2000-05-22 2006-03-28 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US8168598B2 (en) 2001-07-02 2012-05-01 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US20050163722A1 (en) * 2001-07-02 2005-07-28 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US7696178B2 (en) 2001-07-02 2010-04-13 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US20100098642A1 (en) * 2001-07-02 2010-04-22 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US7939502B2 (en) 2001-07-02 2011-05-10 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US20110212912A1 (en) * 2001-07-02 2011-09-01 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US20060205758A1 (en) * 2002-09-13 2006-09-14 Boehringer Ingelheim Pharma Gmbh & Co. Kg Method for reducing the mortality rate
US20040102469A1 (en) * 2002-09-13 2004-05-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Method for reducing the mortality rate
US7381402B2 (en) 2004-02-27 2008-06-03 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US20070286815A1 (en) * 2004-09-24 2007-12-13 Bechtold Kevin J Medicinal Aerosol Formulations and Methods of Synthesizing Ingredients Therefor
WO2006036473A1 (en) * 2004-09-24 2006-04-06 3M Innovative Properties Company Medicinal aerosol formulations and methods of synthesizing ingredients therefor
US9980962B2 (en) * 2014-01-28 2018-05-29 Unity Biotechnology, Inc Use of sulfonamide inhibitors of Bcl-2 to treat senescence-associated lung conditions such as pulmonary fibrosis and chronic obstructive pulmonary disease
US9993472B2 (en) 2014-01-28 2018-06-12 Unity Biotechnology, Inc. Treatment for osteoarthritis in a joint by administering a means for inhibiting MDM2
US10010546B2 (en) 2014-01-28 2018-07-03 Unity Biotechnology, Inc. Treatment of ophthalmic conditions by selectively removing senescent cells from the eye
US10130628B2 (en) 2014-01-28 2018-11-20 Unity Biotechnology, Inc. Treatment of joint pain
US10213426B2 (en) 2014-01-28 2019-02-26 Unity Biotechnology, Inc. Method of optimizing conditions for selectively removing a plurality of senescent cells from a tissue or a mixed cell population
US10258618B2 (en) 2014-01-28 2019-04-16 Unity Biotechnology, Inc. Treating pulmonary conditions by selectively removing senescent cells from the lung using an intermittent dosing regimen
US10328058B2 (en) 2014-01-28 2019-06-25 Mayo Foundation For Medical Education And Research Treating atherosclerosis by removing senescent foam cell macrophages from atherosclerotic plaques
US10328073B2 (en) 2014-01-28 2019-06-25 Unity Biotechnology, Inc. Use of sulfonamide inhibitors of BCL-2 and BCL-xL to treat ophthalmic disease by selectively removing senescent cells
US10478432B2 (en) 2014-01-28 2019-11-19 Unity Biotechnology, Inc. Compositions of matter for treatment of ophthalmic conditions by selectively removing senescent cells from the eye
US10478433B2 (en) 2014-01-28 2019-11-19 Unity Biotechnology, Inc. Unit dose of an aryl sulfonamide that is effective for treating eye disease and averting potential vision loss
US11351167B2 (en) 2014-01-28 2022-06-07 Buck Institute For Research On Aging Treating cognitive decline and other neurodegenerative conditions by selectively removing senescent cells from neurological tissue
US11517572B2 (en) 2014-01-28 2022-12-06 Mayo Foundation For Medical Education And Research Killing senescent cells and treating senescence-associated conditions using a SRC inhibitor and a flavonoid
US11963957B2 (en) 2014-01-28 2024-04-23 Mayo Foundation For Medical Education And Research Treating cardiovascular disease by selectively eliminating senescent cells

Also Published As

Publication number Publication date
EP1257254B1 (en) 2005-11-02
IT1317846B1 (en) 2003-07-15
AU4645001A (en) 2001-09-03
DE60114571D1 (en) 2005-12-08
ITMI20000312A0 (en) 2000-02-22
ATE308317T1 (en) 2005-11-15
DE60114571T2 (en) 2006-06-08
ES2249424T3 (en) 2006-04-01
WO2001062227A2 (en) 2001-08-30
EP1257254A2 (en) 2002-11-20
US6964759B2 (en) 2005-11-15
WO2001062227A3 (en) 2002-03-07
DK1257254T3 (en) 2006-03-20
CA2400691A1 (en) 2001-08-30
ITMI20000312A1 (en) 2001-08-22
BR0108584A (en) 2003-03-25
AU776742B2 (en) 2004-09-23
JO2381B1 (en) 2006-12-12

Similar Documents

Publication Publication Date Title
US6964759B2 (en) Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
CA2352483C (en) Pharmaceutical aerosol composition containing hfa 227 and hfa 134a
US20030190287A1 (en) Pharaceutical aerosol composition
US20070286814A1 (en) Stable aerosol pharmaceutical formulations
SK13342003A3 (en) Medical aerosol formulations
SK284430B6 (en) Pharmaceutical composition for use in an aerosol inhaler, aerosol inhaler and method of filling an aerosol inhaler
US20030190289A1 (en) Formulations containing a glucocorticoid drug for the treatment of bronchopulmonary diseases
US20130295023A1 (en) Inhalation Solutions
KR101778814B1 (en) Pharmaceutical aerosol formulations of formoterol and beclometasone dipropionate
WO2008047239A2 (en) Stable aerosol pharmaceutical formulations

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHIESI FARMACEUTICI S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEWIS, DAVID;GANDERTON, DAVID;MEAKIN, BRIAN;AND OTHERS;REEL/FRAME:013924/0980

Effective date: 20021007

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20091115