US20030159927A1 - Colloidal particles used in sensing arrays - Google Patents

Colloidal particles used in sensing arrays Download PDF

Info

Publication number
US20030159927A1
US20030159927A1 US10/266,550 US26655002A US2003159927A1 US 20030159927 A1 US20030159927 A1 US 20030159927A1 US 26655002 A US26655002 A US 26655002A US 2003159927 A1 US2003159927 A1 US 2003159927A1
Authority
US
United States
Prior art keywords
detecting
sensor
chemical analyte
poly
analyte according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/266,550
Inventor
Nathan Lewis
Brett Doleman
Shawn Briglin
Erik Severin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Smiths Detection Inc
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23626320&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030159927(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/328,871 external-priority patent/US6537498B1/en
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Priority to US10/266,550 priority Critical patent/US20030159927A1/en
Publication of US20030159927A1 publication Critical patent/US20030159927A1/en
Priority to US11/108,538 priority patent/US7955561B2/en
Assigned to SMITHS DETECTION, INC. reassignment SMITHS DETECTION, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SMITHS DETECTION-PASADENA, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/817Enzyme or microbe electrode

Definitions

  • This invention relates generally to sensors for detecting analytes in fluids. More particularly, it relates to an array of sensors useful for constructing “electronic noses” for analyzing complex vapors and producing a sample output.
  • the present invention relates to a device for detecting a chemical analyte in a fluid, which includes gases, vapors and liquids.
  • the present invention relates to a device for detecting a chemical analyte, comprising: a sensor array connected to a measuring apparatus having at least one sensor comprising regions of nonconductive material and conductive material compositionally different than the nonconductive material, wherein the conductive material comprises a nanoparticle; and a response path through the regions of nonconductive material and the conductive material.
  • the sensor array is based on a variety of “chemiresistor” elements. Such elements are simply prepared and are readily modified chemically to respond to a broad range of analytes.
  • these sensors yield a rapid, low power signal in response to an analyte of interest, and their signals are readily integrated with software or hardware-based neural networks.
  • the signal output can be in the form of resistance, impedance, capacitance, optics, fluorescence or other means useful for purposes of analyte identification.
  • device includes a substrate having at least one surface and at least two sensors fabricated onto the surface, wherein each sensor has a first and second electrical lead which are electrically connected to a chemically sensitive resistor.
  • the resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic material) and conductive regions (comprising a conductive material or particle).
  • the electrical path between the first and second leads is transverse to (i.e., passes through) the plurality of alternating nonconductive and conductive regions.
  • the resistor provides a difference in resistance between the conductive elements when 1) contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration or 2) contacted with a fluid comprising a first chemical analyte at a concentration, than when contacted with a fluid comprising a second chemical analyte (different from the first) at the same concentration.
  • the variability in chemical sensitivity from sensor to sensor is conveniently provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions.
  • the conductive material in each resistor is held constant (e.g., the same conductive material such as polypyrrole, or carbon black), while the nonconductive material varies between resistors (e.g., different polymers).
  • the conductive material is a conductive particle, such as a nanoparticle.
  • the alternating nonconductive regions can be a covalently attached ligand to a conductive core (the conductive region).
  • These ligands can be polyhomo- or polyheterofunctionalized, thereby being suitable for the detection of various analytes.
  • Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing various differences in resistance.
  • An electronic nose for detecting an analyte in a fluid can be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
  • Such electronic noses can incorporate a variety of additional components, including means for monitoring the temporal response of each sensor, assembling and analyzing sensor data to determine analyte identity, analyte concentration, or quality control determinations. Methods of making and using the disclosed sensors, arrays and electronic noses are also provided.
  • FIG. 1(A) shows an overview of sensor design
  • FIG. 1(B) shows an overview of sensor operation
  • FIG. 1(C) shows an overview of system operation.
  • FIG. 2 shows a cyclic voltammogram of a poly(pyrrole)-coated platinum electrode.
  • the electrolyte was 0.10 M [(C 4 H 9 ) 4 N] + [ClO 4 ] ⁇ in acetonitrile, with a scan rate of 0.10 V s ⁇ 1 .
  • FIG. 3(A) shows the optical spectrum of a spin coated poly(pyrrole) film that had been washed with methanol to remove excess pyrrole and reduced phosphomolybdic acid.
  • FIG. 3(B) shows the optical spectrum of a spin-coated poly(pyrrole) film on indium-tin-oxide after 10 potential cycles between +0.70 and ⁇ 1.00 V vs.
  • SCE Single Calomel Reference Electrode
  • the spectra were obtained in 0.10 M KCl—H 2 O.
  • FIG. 4(A) shows a schematic of a sensor array showing an enlargement of one of the modified ceramic capacitors used as sensing elements.
  • the response patterns to various analytes generated by the sensor array described in Table 5 are displayed for acetone FIG. 4(B); benzene FIG. 4(C); and ethanol FIG. 4(D).
  • FIGS. 5 shows the principle component analysis of autoscaled data from individual sensors containing different polymers.
  • A poly(styrene);
  • B poly- ⁇ -methyl styrene;
  • C poly(styrene-acrylonitrile);
  • D poly(styrene-allyl alcohol).
  • FIGS. 6 (A) and 6 (B) shows the principle component analysis of data obtained from all sensors described in Table 5. Conditions and symbols are identical to FIGS. 5 (A)- 5 (D).
  • FIG. 6A shows data represented in the first three principle components pc1, pc2 and pc3, while FIG. 6B shows the data when represented in pc1, pc2, and pc4.
  • FIG. 6B shows the data when represented in pc1, pc2, and pc4.
  • a higher degree of discrimination between some solvents could be obtained by considering the fourth principle component as illustrated by larger separations between chloroform, tetrahydrofuran, and isopropyl alcohol in FIG. 6B.
  • FIG. 8 shows the resistance response of a poly(N-vinylpyrrolidone):carbon black (20 w/w % carbon black) sensor element to methanol, acetone, and benzene.
  • Each trace is normalized by the resistance of the sensor element (approx. 125 ⁇ ) before each exposure.
  • FIG. 9 shows the first three principal components for the response of a carbon-black based sensor array with 10 elements.
  • the non-conductive components of the composites used are listed in Table 5, and the resistors were 20 w/w % carbon black.
  • FIGS. 10 (A)-(B) shows a synthetic scheme of various nanoparticles of the present invention.
  • FIGS. 11 (A)-(B) shows response patterns of various sensors in an array to different analytes.
  • the present invention provides sensor arrays for detecting an analyte in a fluid, which may be gaseous or liquid in nature in conjunction with an electrical measuring apparatus. These arrays comprise a plurality of compositionally different chemical sensors.
  • the present invention relates to a device for detecting a chemical analyte comprising: a sensor array connected to a measuring apparatus having at least one sensor comprising regions of nonconductive material and conductive material compositionally different than the nonconductive material, wherein the conductive material comprises a nanoparticle; and a response path through the regions of nonconductive material and the conductive material.
  • the sensor array is based on a variety of “chemiresistor” elements.
  • Each sensor comprises at least first and second conductive leads electrically coupled to and separated by a chemically sensitive resistor.
  • the leads may be any convenient conductive material, usually a metal, and may be interdigitized to manipulate the circuit resistance and maximize the signal to noise ratio.
  • the resistor comprises a plurality of alternating nonconductive and conductive regions transverse to the electrical path between the conductive leads.
  • the resistors are fabricated by blending a conductive material with a nonconductive material, e.g., an organic polymer, such that the electrically conductive path between the leads coupled to the resistor is interrupted by gaps of non-conductive organic polymer material.
  • a conductive material e.g., an organic polymer
  • the matrix regions separating the particles provide the gaps.
  • the colloid is a nanoparticle that is optionally stabilized.
  • the nonconductive gaps range in path length from about 10 to 1,000 angstroms, usually on the order of 100 angstroms, providing individual resistance of about 10 to 1,000 m ⁇ , usually on the order of 100 m ⁇ , across each gap.
  • the path length and resistance of a given gap is not constant, but rather is believed to change as the nonconductive organic polymer of the region absorbs, adsorbs or imbibes an analyte.
  • the dynamic aggregate resistance provided by these gaps in a given resistor is a linear or non-linear function of analyte permeation of the nonconductive regions.
  • the conductive material may also contribute to the dynamic aggregate resistance as a linear or nonlinear function of analyte permeation (e.g., when the conductive material is a conductive organic polymer, such as polypyrrole).
  • the resistor comprises a plurality of alternating regions of a conductor with regions of an insulator.
  • the electrical pathway that an electrical charge traverses between the two contacting electrodes traverses both the region of a conductor and the region of an insulator.
  • the conducting region can be anything that can carry electrons from atom to atom, including, but not limited to, a material, a particle, a metal, a polymer, a substrate, an ion, an alloy, an organic material, (e.g., carbon, graphite, etc.) an inorganic material, a biomaterial, a solid, a liquid, a gas or mixtures thereof.
  • the insulating region (i.e., non-conductive region) can be anything that can impede electron flow from atom to atom, including, but not limited to, a material, a polymer, a plasticizer, an organic material, an organic polymer, a filler, a ligand, an inorganic material, a biomaterial, a solid, a liquid, a gas and mixtures thereof.
  • conductive materials and nonconductive organic polymer materials can be used.
  • Table 1 provides exemplary conductive materials for use in resistor fabrication; mixtures, such as those listed, can also be used.
  • Table 2 provides exemplary nonconductive organic polymer materials; blends and copolymers, such as the polymers listed here, can also be used. Combinations, concentrations, blend stoichiometries, percolation thresholds, etc. are readily determined empirically by fabricating and screening prototype resistors (chemiresistors) as described below.
  • Organic Conductors conducting polymers poly(anilines), poly(thiophenes), poly(pyrroles), poly(acetylenes), etc.)), carbonaceous materials (carbon blacks, graphite, coke, C 60 , etc.), charge transfer complexes (tetramethylparaphenylenediamine-chloranile, alkali metal tetracyanoquinodimethane complexes, tetrathiofulvalene halide complexes, etc.), etc.
  • Inorganic Conductors metals and metal alloys (Ag, Au, Cu, Pt, AuCu alloy, etc.), highly doped semiconductors (Si, GaAs, InP, MoS 2 , TiO 2 , etc.), conductive metal oxides (In 2 O 3 , SnO 2 , Na x Pt 3 O 4 , etc.), superconductors (YBa 2 Cu 3 O 7 , Tl 2 Ba 2 Ca 2 Cu 3 O 10 , etc.), etc.
  • Mixed inorganic/organic Conductors Tetracyanoplatinate complexes, Iridium halocarbonyl complexes, stacked macrocyclic complexes, etc.
  • Main-chain carbon polymers poly(dienes), poly(alkenes), poly(acrylics), poly(methacrylics), poly(vinyl ethers), poly(vinyl thioethers), poly(vinyl alcohols), poly(vinyl ketones), poly(vinyl halides), poly(vinyl nitriles), poly(vinyl esters), poly(styrenes), poly(arylenes), etc.
  • Main-chain acyclic heteroatom polymers poly(oxides), poly(carbonates), poly(esters), poly(anhydrides), poly(urethanes), poly(sulfonates), poly(siloxanes), poly(sulfides), poly(thioesters), poly(sulfones), poly(sulfonamides), poly(amides), poly(ureas), poly(phosphazenes), poly(silanes), poly(silazanes), etc.
  • the conductive material is a conductive particle, such as a colloidal nanoparticle.
  • nanoparticle refers to a conductive cluster, such as a metal cluster, having a diameter on the nanometer scale. As described more fully below, such nanoparticles are optionally stabilized with organic ligands.
  • the nonconductive region can optionally be a ligand that is attached to a central core making up the nanoparticle.
  • ligands i.e., caps
  • the nanoparticles, i.e., clusters, are stabilized by the attached ligands.
  • concentration of the synthetic reagents the particle size can be manipulated and controlled.
  • the resistors are nanoparticles comprising a central core conducting element and an insulating attached ligand optionally in a polymer matrix.
  • various conducting materials are suitable for the central core.
  • the nanoparticles have a metal core.
  • Preferred metal cores include, but are not limited to, Au, Ag, Pt, Pd, Cu, Ni, AuCu and mixtures thereof.
  • Gold (Au) is especially preferred.
  • These metallic nanoparticles can be synthesized using a variety of methods. In a preferred method of synthesis, a modification of the protocol developed by House et al. ( 30 ) (the teachings of which are incorporated herein by reference), can be used.
  • the starting molar ratio of HAuCl 4 to alkanethiol is selected to construct particles of the desired diameter.
  • the organic phase reduction of HAuCl 4 by an alkanethiol and sodium borohydride leads to stable, modestly polydisperse, alkanethiolate-protected gold clusters having a core dimension of about 1 nm to about 100 nm.
  • the nanoparticles range in size from about 1 nm to about 50 nm. More preferably, the nanoparticles range in size from about 5 nm to about 20 nm.
  • Ligands or caps of various chemical classes are suitable for use in the present invention.
  • Ligands include, but are not limited to, alkanethiols having alkyl chain lengths of about C 1 -C 30 .
  • the alkyl chain lengths of the alkanethiols are between about C 3 to about C 12 .
  • the nanoparticles' conductivity decreases as alkane length increases.
  • Alkanethiols suitable for use can also be polyhomofunctionalized or polyheterofunctionalized (such as, at the ⁇ -position, or last position of the chain).
  • polyhomofunctionalized means that the same chemical moiety has been used to modify the ligand at various positions within the ligand.
  • Chemical moieties suitable for functional modification include, but are not limited to, bromo, chloro, iodo, fluoro, amino, hydroxyl, thio, phosphino, alkylthio, cyano, nitro, amido, carboxyl, aryl, heterocyclyl, ferrocenyl or heteroaryl.
  • the ligands can be attached to the central core by various methods including, but not limited to, covalent attachment, and electrostatic attachment.
  • polyheterofunctionalized means that different chemical moieties or functional groups are used to modify the ligands at various positions.
  • place exchange reactions ( 34 ).
  • This reaction can be a simultaneous exchange of a mixture of thiols onto the nanoparticle, or alternatively, a stepwise progressive exchange of different thiols, isolating the nanoparticle product after each step.
  • the place exchange reaction replaces an existing alkanethiol with an alkanethiol comprising a functional group.
  • Suitable ligands include, but are not limited to, polymers, such as polyethylene glycol; surfactants, detergents, biomolecules, such as polysaccharides: protein complexes, polypeptides, dendrimeric materials, oligonucleotides, fluorescent moieties and radioactive groups.
  • the core acts as a scaffolding, which can support more complex organic ligands.
  • These scaffolding can be used as a solid support for combinatorial synthesis.
  • various functional groups can be attached to the core to achieve structural diversity.
  • the combinatorial synthesis can be performed using a robotic armature system.
  • these systems include automated workstations like the automated apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.) which mimic the manual operations performed by a synthetic chemist.
  • the nature and implementation of modifications to these methods (if any) so that they can operate will be apparent to persons skilled in the relevant art.
  • sensors are prepared as composites of “naked” nanoparticles and an insulating material is added.
  • the term “naked nanoparticles” means that the core has no covalently attached ligands or caps.
  • insulating materials can be used in this embodiment.
  • Preferred insulating materials are organic polymers. Suitable organic polymers include, but are not limited to, polycaprolactone, polystyrene, and poly(methyl methacrylate). Varying the insulating material types, concentration, size, etc., provides the diversity necessary for an array of sensors.
  • the metal to insulating polymer ratio is about 50% to about 90% (wt/wt).
  • the metal to insulating polymer ratio is about 85% to about 90% (wt/wt).
  • Sensors can also be prepared using the nanoparticle and an alkylthiol ligand as the sole insulating matrix.
  • varying the ligand, ligand size and functionalization can provide sensor diversity.
  • Sensor films can be cast on interdigitated electrode substrates. Sensors that are comprised either of naked nanoparticles or nanoparticles having ligands show a reversible increase in electrical resistance upon exposure to chemical vapors. Moreover, it has been shown that as the length of the ligand chain increases, the conductivity of the resistors decreases.
  • Nanoparticles such as alkylthiol-capped gold colloids, are soluble or dispersible in a wide range of organic solvents having a large spectrum of polarity. This diverse solubility permits a good selection of co-soluble insulating materials.
  • Alternative capping agents which include amines and phosphines, can extend the use to virtually any solvent. Simultaneous variation of ligand and insulating material, such as organic polymers, can provide great diversity in multidimensional sensor arrays.
  • the chemical analyte diffuses into and is dispersed within the nanoparticle ligands or insulating material and thereby changes the electrical properties of the sensors. These property changes which are then detected include, but are not limited to, resistance, capacitance, conductivity, magnetism, optical changes and impedance.
  • the sensor arrays of the present invention comprise other sensor types.
  • Various sensors suitable for detection of analytes include, but are not limited to: surface acoustic wave (SAW) sensors; quartz microbalance sensors; conductive composites; chemiresitors; metal oxide gas sensors, such as tin oxide gas sensors; organic gas sensors; metal oxide field effect transistor (MOSFET); piezoelectric devices; infrared sensors; sintered metal oxide sensors; Pd-gate MOSFET; metal FET structures; metal oxide sensors, such as a Tuguchi gas sensors; phthalocyanine sensors; electrochemical cells; conducting polymer sensors; catalytic gas sensors; organic semiconducting gas sensors; solid electrolyte gas sensors; piezoelectric quartz crystal sensors; dye-impregnated polymer films on fiber optic detectors; polymer-coated micromirrors; electrochemical gas detectors; chemically sensitive field-effect transistors; carbon black-polymer composite chemiresistors; micro-electro-mechanical system
  • SAW surface
  • the chemiresistors of the present invention can be fabricated by many techniques including, but not limited to, solution casting, suspension casting and mechanical mixing.
  • solution casting routes are advantageous because they provide homogeneous structures and are easy to process.
  • resistor elements can be easily fabricated by spin, spray or dip coating. Since all elements of the resistor must be soluble, however, solution casting routes are somewhat limited in their applicability. Suspension casting still provides the possibility of spin, spray or dip coating, but more heterogeneous structures than with solution casting are expected.
  • mechanical mixing there are no solubility restrictions since it involves only the physical mixing of the resistor components, but device fabrication is more difficult since spin, spray and dip coating are no longer possible. A more detailed discussion of each of these follows.
  • the chemiresistors can be fabricated by solution casting.
  • the oxidation of pyrrole by phosphomolybdic acid presented herein represents such a system.
  • the phosphomolybdic acid and pyrrole are dissolved in tetrahydrofuran (THF) and polymerization occurs upon solvent evaporation.
  • THF tetrahydrofuran
  • the choice of non-conductive polymers in this route is, of course, limited to those that are soluble in the reaction media.
  • the doping procedure exposure to I 2 vapor, for instance
  • the doping procedure can be performed on the blend to render the substituted poly(cyclooctatetraene) conductive.
  • the choice of non-conductive polymers is limited to those that are soluble in the solvents that the undoped conducting polymer is soluble in and to those stable to the doping reaction.
  • Certain conducting polymers can also be synthesized via a soluble precursor polymer. In these cases, blends between the precursor polymer and the non-conducting polymer can first be formed followed by chemical reaction to convert the precursor polymer into the desired conducting polymer. For instance, poly(p-phenylene vinylene) can be synthesized through a soluble sulfonium precursor.
  • Blends between this sulfonium precursor and the non-conductive polymer can be formed by solution casting. After which, the blend can be subjected to thermal treatment under vacuum to convert the sulfonium precursor into the desired poly(p-phenylene vinylene).
  • suspension casting one or more of the components of the resistor is suspended and the others dissolved in a common solvent.
  • Suspension casting is a rather general technique applicable to a wide range of species, such as carbon blacks or colloidal metals, which can be suspended in solvents by vigorous mixing or sonication.
  • the non-conductive polymer is dissolved in an appropriate solvent (such as THF, acetonitrile, water, etc.). Colloidal silver is then suspended in this solution and the resulting mixture is used to dip coat electrodes.
  • spray deposition can be used.
  • the temperature can be elevated to promote a uniform film formation.
  • the stable dispersions and homogenous films of these nanoparticles can also facilitate reproducible fabrication of the vapor sensors.
  • the individual elements can be optimized for a particular application by varying their chemical make up and morphologies.
  • the chemical nature of the resistors determines to which analytes they will respond and their ability to distinguish different analytes.
  • the relative ratio of conductive to insulating components determines the magnitude of the response since the resistance of the elements becomes more sensitive to sorbed molecules as the percolation threshold is approached.
  • the film morphology is also important in determining response characteristics. For instance, thin films respond more quickly to analytes than do thick ones.
  • sensors can be chosen that are appropriate for the analytes expected in a particular application, their concentrations, and the desired response times. Further optimization can then be performed in an iterative fashion as feedback on the performance of an array under particular conditions becomes available.
  • the resistor may itself form a substrate for attaching the lead or the resistor.
  • the structural rigidity of the resistors may be enhanced through a variety of techniques: chemical or radiation cross-linking of polymer components (dicumyl peroxide radical cross-linking, UV-radiation cross-linking of poly(olefins), sulfur cross-linking of rubbers, e-beam cross-linking of Nylon, etc.), the incorporation of polymers or other materials into the resistors to enhance physical properties (for instance, the incorporation of a high molecular weight, high transition metal (Tm) polymers), the incorporation of the resistor elements into supporting matrices, such as clays or polymer networks (forming the resistor blends within poly(methylmethacrylate) networks or within the lamellae of montmorillonite, for instance), etc.
  • the resistor is deposited as a surface layer on a solid matrix that provides means for supporting the leads.
  • the solid matrix is a chemically in
  • Sensor arrays particularly well-suited to scaled up production are fabricated using integrated circuit (IC) design technologies.
  • the chemiresistors can easily be integrated onto the front end of a simple amplifier interfaced to an A/D converter to efficiently feed the data stream directly into a neural network software or hardware analysis section.
  • Micro-fabrication techniques can integrate the chemiresistors directly onto a micro-chip which contains the circuitry for analogue signal conditioning/processing and then data analysis. This provides for the production of millions of incrementally different sensor elements in a single manufacturing step using ink-jet technology. Controlled compositional gradients in the chemiresistor elements of a sensor array can be induced in a method analogous to how a color ink-jet printer deposits and mixes multiple colors.
  • a sensor array of a million distinct elements only requires a 1 cm ⁇ 1 cm sized chip employing lithography at the 10 ⁇ m feature level, which is within the capacity of conventional commercial processing and deposition methods. This technology permits the production of sensitive, small-sized, stand-alone chemical sensors.
  • Preferred sensor arrays have a predetermined inter-sensor variation in the structure or composition of the nonconductive organic polymer regions.
  • the variation may be quantitative and/or qualitative.
  • the concentration of the nonconductive organic polymer in the blend can be varied across sensors.
  • a variety of different organic polymers may be used in different sensors.
  • a variety of capped colloids can be used as different sensors.
  • a capped colloid system can be used in conjunction with a variety of polymer matrices as different sensors.
  • An electronic nose for detecting an analyte in a fluid is fabricated by electrically coupling the sensor leads of an array of compositionally different sensors to an electrical measuring device. The device measures changes in resistivity at each sensor of the array, preferably simultaneously and preferably over time. Frequently, the device includes signal processing means and is used in conjunction with a computer and data structure for comparing a given response profile to a structure-response profile database for qualitative and quantitative analysis.
  • such a nose comprises at least ten, usually at least 100, and often at least 1000 different sensors, though with mass deposition fabrication techniques described herein or otherwise known in the art, arrays of on the order of at least 10 6 sensors are readily produced.
  • each resistor provides a first electrical resistance between its conductive leads when the resistor is contacted with a first fluid comprising a chemical analyte at a first concentration, and a second electrical resistance between its conductive leads when the resistor is contacted with a second fluid comprising the same chemical analyte at a second different concentration.
  • the fluids may be liquid or gaseous in nature.
  • the first and second fluids may reflect samples from two different environments, a change in the concentration of an analyte in a fluid sampled at two time points, a sample and a negative control, etc.
  • the sensor array necessarily comprises sensors which respond differently to a change in an analyte concentration, i.e., the difference between the first and second electrical resistance of one sensor is different from the difference between the first and second electrical resistance of another sensor.
  • the temporal response of each sensor is recorded.
  • the temporal response of each sensor may be normalized to a maximum percent increase and percent decrease in resistance which produces a response pattern associated with the exposure of the analyte.
  • a structure-function database correlating analytes and response profiles is generated. Unknown analyte may then be characterized or identified using response pattern comparison and recognition algorithms.
  • analyte detection systems comprising sensor arrays, an electrical measuring device for detecting resistance across each chemiresistor, a computer, a data structure of sensor array response profiles, and a comparison algorithm are provided.
  • the electrical measuring device is an integrated circuit comprising neural network-based hardware and a digital-analog converter (DAC) multiplexed to each sensor, or a plurality of DACs, each connected to different sensor(s).
  • DAC digital-analog converter
  • a wide variety of analytes and fluids may be analyzed by the disclosed sensors, arrays and noses so long as the subject analyte is capable of generating a differential response across a plurality of sensors of the array.
  • Analyte applications include broad ranges of chemical classes including, but not limited to organics such as alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics and derivatives of such organics, e.g., halide derivatives, etc., biomolecules such as sugars, isoprenes and isoprenoids, fatty acids and derivatives, etc.
  • commercial applications of the sensors, arrays and noses include environmental toxicology and remediation, biomedicine, materials quality control, food and agricultural products monitoring, etc.
  • the general method for using the disclosed sensors, arrays and electronic noses, for detecting the presence of an analyte in a fluid involves resistively sensing the presence of an analyte in a fluid with a chemical sensor comprising first and second conductive leads electrically coupled to and separated by a chemically sensitive resistor as described above by measuring a first resistance between the conductive leads when the resistor is contacted with a first fluid comprising an analyte at a first concentration and a second different resistance when the resistor is contacted with a second fluid comprising the analyte at a second different concentration.
  • This example illustrates the synthesis of colloidal gold nanoparticles with covalently attached alkylthiol ligands.
  • the gold nanoparticles described herein were prepared using a procedure similar to the protocol developed by House et al. All solutions were prepared using volumetric procedures. Into a 100 ml flask, HAuCl 4 (0.3047 mmol) and tetraoctyl-ammonium bromide (0.6764 mmol) were added. A yellow solution was formed which immediately turned brown. The mixture was shaken and, while stirring, 1-dodecanethiol (0.08684 mmol) was added followed by sodium borohydride (3.352 mmol). After about 12 hours, the organic layer was separated and left an interphase layer. The aqueous layer was extracted a second time with hexane, which again left an interphase layer.
  • the organic layer was evaporated in vacuo to about 5 mL and about 200 ml of absolute ethanol was added. The solution was stirred at ⁇ 78° C. for 4 hours and 30 ml of water was added until a precipitate appeared. Afterwards, the precipitated product was collected and washed with cold ethanol. The solution was concentrated under vacuum, but without rotation. The dried product (20.3 mg) was confirmed by UV-Vis spectroscopic analysis.
  • the capacitors were coated with a toluene solution of gold nanoparticles from Example 1 and their resistance was measured.
  • the capacitors had approximately 0.5 M ⁇ resistance.
  • This example illustrates the use of gold nanoparticles as the conductive element in vapor sensors. Studies focused on the fabrication and application of nanoscale gold conductors in polymer composite sensors.
  • the conductors were prepared with a modified procedure of Hostetler et al. (33). Briefly, short alkyl chain thiols were used as the passivating agent in conductor fabrication. Pentanethiol and hexanethiol capped particles, although soluble, generally have high electrical resistance. Propanethiol passivated gold nanoparticles formed highly conductive, but less soluble, aggregates during the purification procedure when a ratio of 6:1 gold:thiol was used. This passivated gold material was used as the conductor region. An array of 17 sensors was constructed using various organic polymers as the insulating region (see, Table 3), along with the propyl cap region.
  • PEVA 25 is poly(ethylene-co-vinyl acetate 25% vinylacetate); PS is poly(styrene); PMMA is poly(methyl methacrylate); PVPyrolidone is polyvinylpyrolidone; PCL is polycaprolactone; and polyethylenimine is linear polyethylenimine.
  • “gold” Target Target Sensor polymer (mg) Solvent (mL) (mg/ml) (mg) polymer (mg) polymer (mL) 1; 11 A PEVA 25 170 Toluene 20 8.5 23.2 2.577 0.303 2; 12 C PS 141 Toluene 20 7.05 23.2 2.577 0.365 3; 13 F PMMA 185 THF 20 9.25 23.2 2.577 0.278 4; 14 P PVPyrolidone 100 Ethanol 20 5 23.2 2.577 0.515 5; 15 L PCL 150 Toluene 20 7.5 23.2 2.577 0.343 6; 16 R Polyethylenimine 105 Ethanol 15 7 23.2 2.577 0.368 7; 17 None
  • Poly(pyrrole) sensors were made by mixing two solutions, one of which contained 0.29 mmoles pyrrole in 5.0 ml tetrahydrofuran, with the other containing 0.25 mmoles phosphomolybdic acid and 30 mg of non-conducting organic material (e.g., a polymer) in 5.0 ml of tetrahydrofuran.
  • the mixture of these two solutions resulted in a w:w ratio of pyrrole to polymer of 2:3.
  • An inexpensive, quick method for creating the chemiresistor array elements was accomplished by effecting a cross-sectional cut through commercial 22 nF ceramic capacitors (Kemet Electronics Corporation).
  • a data set obtained from a single exposure of the array to an odorant produced a set of descriptors (i.e., resistances), d i .
  • the data obtained from multiple exposures thus produced a data matrix D where each row, designated by j, consisted of n descriptors describing a single member of the data set (i.e., a single exposure to an odor). Since the baseline resistance and the relative changes in resistance varied among sensors, the data matrix was autoscaled before further processing ( 19 ). In this preprocessing technique, all the data associated with a single descriptor (i.e., a column in the data matrix) were centered around zero with unit standard deviation
  • d i is the mean value for descriptor i and ⁇ i is the corresponding standard deviation.
  • Principle component analysis was performed to determine linear combinations of the data such that the maximum variance [defined as the square of the standard deviation] between the members of the data set was obtained in n mutually orthogonal dimensions.
  • the linear combinations of the data resulted in the largest variance [or separation] between the members of the data set in the first principle component (pc1) and produced decreasing magnitudes of variance from the second to the n th principle component (pc2-pcn).
  • the coefficients required to transform the autoscaled data into principle component space were determined by multiplying the data matrix, D, by its transpose, D T (i.e., diagonalizing the matrix) ( 19 )
  • This operation produced the correlation matrix, R, whose diagonal elements were unity and whose off-diagonal elements were the correlation coefficients of the data. The total variance in the data was thus given by the sum of the diagonal elements in R.
  • the n eigenvalues, and the corresponding n eigenvectors, were then determined for R. Each eigenvector contained a set of n coefficients which were used to transform the data by linear combination into one of its n principle components. The corresponding eigenvalue yielded the fraction of the total variance that was contained in that principle component.
  • This operation produced a principle component matrix, P, which had the same dimensions as the original data matrix. Under these conditions, each row of the matrix P was still associated with a particular odor and each column was associated with a particular principle component.
  • C was a vector containing the coefficients for the linear combination.
  • a key to the ability to fabricate chemically diverse sensing elements was the preparation of processable, air stable films of electrically conducting organic polymers. This was achieved through the controlled chemical oxidation of pyrrole (PY) using phosphomolybdic acid (H 3 PMo 12 O 40 )( 20 ) in tetrahydrofuran:
  • oxidation of pyrrole trimers by phosphomolybdic acid is expected to be thermodynamically favorable.
  • This allowed processing of the monomer-oxidant solution i.e., spin coating, dip coating, introduction of plasticizers, etc.
  • polymerization to form thin films was simply effected by evaporation of the solvent.
  • the dc electrical conductivity of poly(pyrrole) films formed by this method on glass slides, after rinsing the films with methanol to remove excess phosphomolybdic acid and/or monomer was on the order of 15-30 S-cm ⁇ 1 for films ranging from 40-100 nm in thickness.
  • FIG. 2 shows the cyclic voltammetric behavior of a chemically polymerized poly(pyrrole) film following ten cycles from ⁇ 1.00 V to +0.70 V vs. SCE.
  • the cathodic wave at ⁇ 0.40 V corresponded to the reduction of poly(pyrrole) to its neutral, nonconducting state
  • the anodic wave at ⁇ 0.20 V corresponded to the reoxidation of poly(pyrrole) to its conducting state ( 24 ).
  • FIG. 3A shows the optical spectrum of a processed polypyrrole film that had been spin-coated on glass and then rinsed with methanol.
  • the single absorption maximum was characteristic of a highly oxidized poly(pyrrole) ( 26 ), and the absorption band at 4.0 eV was characteristic of an interband transition between the conduction and valence bands.
  • the lack of other bands in this energy range was evidence for the presence of bipolaron states (see, FIG. 3A), as have been observed in highly oxidized poly(pyrrole) ( 26 ).
  • Sensor arrays consisted of as many as 14 different elements, with each element synthesized to produce a distinct chemical composition and, thus, a distinct sensor response for its polymer film.
  • the resistance, R, of each film-coated individual sensor was automatically recorded before, during, and after exposure to various odorants.
  • a typical trial consisted of a 60 sec rest period in which the sensors were exposed to flowing air (3.0 liter-min ⁇ 1 ), a 60 sec exposure to a mixture of air (3.0 liter-min ⁇ 1 ) and air that had been saturated with solvent (0.5-3.5 liter-min ⁇ 1 ), and then a 240 sec exposure to air (3.0 liter-min ⁇ 1 ).
  • FIGS. 4 B- 4 D depict representative examples of sensor amplitude responses of a sensor array (see, Table 5).
  • data were recorded for three separate exposures to vapors of acetone, benzene, and ethanol flowing in air.
  • the response patterns generated by the sensor array described in Table 5 are displayed for: (B) acetone; (C) benzene; and (D) ethanol.
  • the sensor response was defined as the maximum percent increase and decrease of the resistance divided by the initial resistance (gray bar and black bar, respectively) of each sensor upon exposure to solvent vapor. In many cases, sensors exhibited reproducible increases and decreases in resistance.
  • An exposure consisted of: (i) a 60 sec rest period in which the sensors were exposed to flowing air (3.0 liter-min ⁇ 1 ); (ii) a 60 sec exposure to a mixture of air (3.0 liter-min ⁇ 1 ) and air that had been saturated with solvent (0.5 liter-min ⁇ 1 ); and (iii) a 240 sec exposure to air (3.0 liter-min ⁇ 1 ). It is readily apparent that these odorants each produced a distinctive response on the sensor array.
  • FIG. 6 shows the principle component analysis for all 14 sensors described in Table 5 and FIGS. 4 and 5.
  • FIG. 6A or 6 B When the solvents were projected into a three dimensional odor space (FIG. 6A or 6 B), all eight solvents were easily distinguished with the specific array discussed herein. Detection of an individual test odor, based only on the criterion of observing ⁇ 1% ⁇ R max /R i values for all elements in the array, was readily accomplished at the parts per thousand level with no control over the temperature or humidity of the flowing air. Further increases in sensitivity are likely after a thorough utilization of the temporal components of the ⁇ R max /R i data as well as a more complete characterization of the noise in the array.
  • This type of polymer-based array is chemically flexible, is simple to fabricate, modify, and analyze, and utilizes a low power dc resistance readout signal transduction path to convert chemical data into electrical signals. It provides a new approach to broadly-responsive odor sensors for fundamental and applied investigations of chemical mimics for the mammalian sense of smell. Such systems are useful for evaluating the generality of neural network algorithms developed to understand how the mammalian olfactory system identifies the directionality, concentration, and identity of various odors.
  • a 10 element sensor array consisting of carbon-black composites formed with a series of non-conductive polymers (see, Table 6) was exposed to acetone, benzene, chloroform, ethanol, hexane, methanol, and toluene over a two day period. A total of 58 exposures to these analytes were performed in this time period. In all cases, resistance changes in response to the analytes were positive, and with the exception of acetone, reversible (see, FIG. 8). The maximum positive deviations were then subjected to principal component analysis in a manner analogous to that described for the poly(pyrrole) based sensor.
  • FIG. 9 shows the results of the principal component analysis for the entire 10-element array. With the exception of overlap between toluene with benzene, the analytes were distinguished from one and other.
  • Cited References 1. Lundström et al. (1991) Nature 352:47-50; 2. Shurmer and Gardner (1992) Sens. Act. B 8:1-11; 3. Reed (1992) Neuron 8:205-209; 4. Lancet and Ben-Airie (1993) Curr. Bio . 3:668-674; 5. Kauer (1991) TINS 14:79-85; 6. DeVries and Baylor (1993) Cell 10(S):139-149; 7. Gardner et al. (1991) Sens. Act. B 4:117-121; 8. Gardner et al. (1991) Sens. Act. B 6:71-75; 9. Corcoran et al. (1993) Sens. Act. B 15:32-37; 10.

Abstract

Chemical sensors for detecting analytes in fluids comprising a plurality of alternating nonconductive regions (comprising a nonconductive material) and conductive regions (comprising a conductive material). In preferred embodiments, the conducting region comprises a nanoparticle. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application Serial No. 60/088,630, filed Jun. 9, 1998, and U.S. Provisional Patent Application Serial No. 60/118,833, filed Feb. 5, 1999 both applications are hereby expressly incorporated by reference in their entirety for all purposes.[0001]
  • FIELD OF INVENTION
  • This invention relates generally to sensors for detecting analytes in fluids. More particularly, it relates to an array of sensors useful for constructing “electronic noses” for analyzing complex vapors and producing a sample output. [0002]
  • BACKGROUND OF THE INVENTION
  • There is considerable interest in developing sensors that act as analogs of the mammalian olfactory system ([0003] 1-2). This system is thought to utilize probabilistic repertoires of many different receptors to recognize a single odorant (3-4). In such a configuration, the burden of recognition is not on highly specific receptors, as in the traditional “lock-and-key” molecular recognition approach to chemical sensing, but lies instead on the distributed pattern processing of the olfactory bulb and the brain (5-6).
  • Prior attempts to produce a broadly responsive sensor array have exploited heated metal oxide thin film resistors ([0004] 7-9), polymer sorption layers on the surfaces of acoustic wave resonators (10-11), arrays of electrochemical detectors (12-14), or conductive polymers (15-16). Arrays of metal oxide thin film resistors, typically based on SnO2 films that have been coated with various catalysts, yield distinct, diagnostic responses for several vapors (7-9). However, due to the lack of understanding of catalyst function, SnO2 arrays do not allow deliberate chemical control of the response of elements in the arrays nor reproducibility of response from array to array. Surface acoustic wave resonators are extremely sensitive to both mass and acoustic impedance changes of the coatings in array elements, but the signal transduction mechanism involves somewhat complicated electronics, requiring frequency measurement to 1 Hz while sustaining a 100 MHz Rayleigh wave in the crystal (10-11). Attempts have also been made to construct sensors with conducting polymer elements that have been grown electrochemically through nominally identical polymer films and coatings (15-18). Moreover, Pearce et al., (1993) Analyst 118:371-377, and Gardner et al., (1994) Sensors and Actuators B 18-19:240-243 describe, polypyrrole-based sensor arrays for monitoring beer flavor. Shurmer (1990) U.S. Pat. No. 4,907,441, describes general sensor arrays with particular electrical circuitry.
  • Although the foregoing systems have some usefulness, these still remains a need in the art for a low cost, broadly responsive analyte detection sensor array based on a variety of sensors. The present invention fulfills this and other needs. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a device for detecting a chemical analyte in a fluid, which includes gases, vapors and liquids. As such, the present invention relates to a device for detecting a chemical analyte, comprising: a sensor array connected to a measuring apparatus having at least one sensor comprising regions of nonconductive material and conductive material compositionally different than the nonconductive material, wherein the conductive material comprises a nanoparticle; and a response path through the regions of nonconductive material and the conductive material. In certain aspects, the sensor array is based on a variety of “chemiresistor” elements. Such elements are simply prepared and are readily modified chemically to respond to a broad range of analytes. In addition, these sensors yield a rapid, low power signal in response to an analyte of interest, and their signals are readily integrated with software or hardware-based neural networks. The signal output can be in the form of resistance, impedance, capacitance, optics, fluorescence or other means useful for purposes of analyte identification. [0006]
  • In certain aspects, device includes a substrate having at least one surface and at least two sensors fabricated onto the surface, wherein each sensor has a first and second electrical lead which are electrically connected to a chemically sensitive resistor. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic material) and conductive regions (comprising a conductive material or particle). The electrical path between the first and second leads is transverse to (i.e., passes through) the plurality of alternating nonconductive and conductive regions. In use, the resistor provides a difference in resistance between the conductive elements when 1) contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration or 2) contacted with a fluid comprising a first chemical analyte at a concentration, than when contacted with a fluid comprising a second chemical analyte (different from the first) at the same concentration. [0007]
  • The variability in chemical sensitivity from sensor to sensor is conveniently provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. For example, in one embodiment, the conductive material in each resistor is held constant (e.g., the same conductive material such as polypyrrole, or carbon black), while the nonconductive material varies between resistors (e.g., different polymers). [0008]
  • In another embodiment, the conductive material is a conductive particle, such as a nanoparticle. In certain embodiments, the alternating nonconductive regions can be a covalently attached ligand to a conductive core (the conductive region). These ligands can be polyhomo- or polyheterofunctionalized, thereby being suitable for the detection of various analytes. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing various differences in resistance. An electronic nose for detecting an analyte in a fluid can be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor. Such electronic noses can incorporate a variety of additional components, including means for monitoring the temporal response of each sensor, assembling and analyzing sensor data to determine analyte identity, analyte concentration, or quality control determinations. Methods of making and using the disclosed sensors, arrays and electronic noses are also provided. [0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1(A) shows an overview of sensor design; FIG. 1(B) shows an overview of sensor operation; and FIG. 1(C) shows an overview of system operation. [0010]
  • FIG. 2 shows a cyclic voltammogram of a poly(pyrrole)-coated platinum electrode. The electrolyte was 0.10 M [(C[0011] 4H9)4N]+ [ClO4] in acetonitrile, with a scan rate of 0.10 V s−1.
  • FIG. 3(A) shows the optical spectrum of a spin coated poly(pyrrole) film that had been washed with methanol to remove excess pyrrole and reduced phosphomolybdic acid. FIG. 3(B) shows the optical spectrum of a spin-coated poly(pyrrole) film on indium-tin-oxide after 10 potential cycles between +0.70 and −1.00 V vs. SCE (Saturated Calomel Reference Electrode) in 0.10 M [(C[0012] 4H9)4N]+ [ClO4] in acetonitrile at a scan rate of 0.10 V-s−1. The spectra were obtained in 0.10 M KCl—H2O.
  • FIG. 4(A) shows a schematic of a sensor array showing an enlargement of one of the modified ceramic capacitors used as sensing elements. The response patterns to various analytes generated by the sensor array described in Table 5 are displayed for acetone FIG. 4(B); benzene FIG. 4(C); and ethanol FIG. 4(D). [0013]
  • FIGS. [0014] 5(A)-(D) shows the principle component analysis of autoscaled data from individual sensors containing different polymers. (A) poly(styrene); (B) poly-α-methyl styrene; (C) poly(styrene-acrylonitrile); (D) poly(styrene-allyl alcohol).
  • FIGS. [0015] 6(A) and 6(B) shows the principle component analysis of data obtained from all sensors described in Table 5. Conditions and symbols are identical to FIGS. 5(A)-5(D). FIG. 6A shows data represented in the first three principle components pc1, pc2 and pc3, while FIG. 6B shows the data when represented in pc1, pc2, and pc4. A higher degree of discrimination between some solvents could be obtained by considering the fourth principle component as illustrated by larger separations between chloroform, tetrahydrofuran, and isopropyl alcohol in FIG. 6B.
  • FIG. 7(A) shows the plot of acetone partial pressure (O) as a function of the first principle component; linear least square fit (−) between the partial pressure of acetone and the first principle component (P[0016] a=8.26·pc1+83.4, R2=0.989); acetone partial pressure (+) predicted from a multi-linear least square fit between the partial pressure of acetone and the first three principle components (Pa=8.26·pc1−0.673·pc2+6.25·pc3+83.4, R2=0.998). FIG. 7(B) shows the plot of the mole fraction of methanol, xm, (O) in a methanol-ethanol mixture as a function of the first principle component; linear least square fit (−) between xm and the first principle component (xm=0.112·pc1+0.524, R2=0.979); xm predicted from a multi-linear least square fit (+) between xm and the first three principle components (xm=0.112·pc1−0.0300·pc2−0.0444·pc3+0.524, R2=0.987).
  • FIG. 8 shows the resistance response of a poly(N-vinylpyrrolidone):carbon black (20 w/w % carbon black) sensor element to methanol, acetone, and benzene. The analyte was introduced at t=60 s for 60 s. Each trace is normalized by the resistance of the sensor element (approx. 125Ω) before each exposure. [0017]
  • FIG. 9 shows the first three principal components for the response of a carbon-black based sensor array with 10 elements. The non-conductive components of the composites used are listed in Table 5, and the resistors were 20 w/w % carbon black. [0018]
  • FIGS. [0019] 10(A)-(B) shows a synthetic scheme of various nanoparticles of the present invention.
  • FIGS. [0020] 11(A)-(B) shows response patterns of various sensors in an array to different analytes.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides sensor arrays for detecting an analyte in a fluid, which may be gaseous or liquid in nature in conjunction with an electrical measuring apparatus. These arrays comprise a plurality of compositionally different chemical sensors. In certain embodiments, the present invention relates to a device for detecting a chemical analyte comprising: a sensor array connected to a measuring apparatus having at least one sensor comprising regions of nonconductive material and conductive material compositionally different than the nonconductive material, wherein the conductive material comprises a nanoparticle; and a response path through the regions of nonconductive material and the conductive material. [0021]
  • In certain aspects, the sensor array is based on a variety of “chemiresistor” elements. Each sensor comprises at least first and second conductive leads electrically coupled to and separated by a chemically sensitive resistor. The leads may be any convenient conductive material, usually a metal, and may be interdigitized to manipulate the circuit resistance and maximize the signal to noise ratio. [0022]
  • The resistor comprises a plurality of alternating nonconductive and conductive regions transverse to the electrical path between the conductive leads. Generally, the resistors are fabricated by blending a conductive material with a nonconductive material, e.g., an organic polymer, such that the electrically conductive path between the leads coupled to the resistor is interrupted by gaps of non-conductive organic polymer material. For example, in a colloid, suspension or dispersion of particulate conductive material in a matrix of nonconductive organic polymer material, the matrix regions separating the particles provide the gaps. In certain embodiments, the colloid is a nanoparticle that is optionally stabilized. The nonconductive gaps range in path length from about 10 to 1,000 angstroms, usually on the order of 100 angstroms, providing individual resistance of about 10 to 1,000 mΩ, usually on the order of 100 mΩ, across each gap. The path length and resistance of a given gap is not constant, but rather is believed to change as the nonconductive organic polymer of the region absorbs, adsorbs or imbibes an analyte. Accordingly, the dynamic aggregate resistance provided by these gaps in a given resistor is a linear or non-linear function of analyte permeation of the nonconductive regions. In some embodiments, the conductive material may also contribute to the dynamic aggregate resistance as a linear or nonlinear function of analyte permeation (e.g., when the conductive material is a conductive organic polymer, such as polypyrrole). [0023]
  • In some embodiments, the resistor comprises a plurality of alternating regions of a conductor with regions of an insulator. Without being bound to any particular theory, it is believed that the electrical pathway that an electrical charge traverses between the two contacting electrodes traverses both the region of a conductor and the region of an insulator. In this embodiment, the conducting region can be anything that can carry electrons from atom to atom, including, but not limited to, a material, a particle, a metal, a polymer, a substrate, an ion, an alloy, an organic material, (e.g., carbon, graphite, etc.) an inorganic material, a biomaterial, a solid, a liquid, a gas or mixtures thereof. [0024]
  • The insulating region (i.e., non-conductive region) can be anything that can impede electron flow from atom to atom, including, but not limited to, a material, a polymer, a plasticizer, an organic material, an organic polymer, a filler, a ligand, an inorganic material, a biomaterial, a solid, a liquid, a gas and mixtures thereof. [0025]
  • A wide variety of conductive materials and nonconductive organic polymer materials can be used. Table 1 provides exemplary conductive materials for use in resistor fabrication; mixtures, such as those listed, can also be used. Table 2 provides exemplary nonconductive organic polymer materials; blends and copolymers, such as the polymers listed here, can also be used. Combinations, concentrations, blend stoichiometries, percolation thresholds, etc. are readily determined empirically by fabricating and screening prototype resistors (chemiresistors) as described below. [0026]
    TABLE 1
    Major Class Examples
    Organic Conductors conducting polymers (poly(anilines),
    poly(thiophenes), poly(pyrroles),
    poly(acetylenes), etc.)), carbonaceous materials
    (carbon blacks, graphite, coke, C60, etc.),
    charge transfer complexes
    (tetramethylparaphenylenediamine-chloranile,
    alkali metal tetracyanoquinodimethane
    complexes, tetrathiofulvalene halide
    complexes, etc.), etc.
    Inorganic Conductors metals and metal alloys (Ag, Au, Cu, Pt, AuCu
    alloy, etc.), highly doped semiconductors (Si,
    GaAs, InP, MoS2, TiO2, etc.), conductive metal
    oxides (In2O3, SnO2, NaxPt3O4, etc.),
    superconductors (YBa2Cu3O7,
    Tl2Ba2Ca2Cu3O10, etc.), etc.
    Mixed inorganic/organic Conductors Tetracyanoplatinate complexes, Iridium
    halocarbonyl complexes, stacked macrocyclic
    complexes, etc.
  • [0027]
    TABLE 2
    Major Class Examples
    Main-chain carbon polymers poly(dienes), poly(alkenes), poly(acrylics),
    poly(methacrylics), poly(vinyl ethers),
    poly(vinyl thioethers), poly(vinyl alcohols),
    poly(vinyl ketones), poly(vinyl halides),
    poly(vinyl nitriles), poly(vinyl esters),
    poly(styrenes), poly(arylenes), etc.
    Main-chain acyclic heteroatom polymers poly(oxides), poly(carbonates), poly(esters),
    poly(anhydrides), poly(urethanes),
    poly(sulfonates), poly(siloxanes),
    poly(sulfides), poly(thioesters),
    poly(sulfones), poly(sulfonamides),
    poly(amides), poly(ureas),
    poly(phosphazenes), poly(silanes),
    poly(silazanes), etc.
    Main-chain poly(furan tetracarboxylic acid diimides),
    heterocyclic polymers poly(benzoxazoles), poly(oxadiazoles),
    poly(benzothiazinophenothiazines),
    poly(benzothiazoles),
    poly(pyrazinoquinoxalines),
    poly(pyromellitimides), poly(quinoxalines),
    poly(benzimidazoles), poly(oxindoles),
    poly(oxoisoindolines),
    poly(dioxoisoindolines), poly(triazines),
    poly(pyridazines), poly(piperazines),
    poly(pyridines), poly(piperidines),
    poly(triazoles), poly(pyrazoles),
    poly(pyrrolidines), poly(carboranes),
    poly(oxabicyclononanes),
    poly(dibenzofurans), poly(phthalides),
    poly(acetals), poly(anhydrides),
    carbohydrates, etc.
  • In certain other embodiments, the conductive material is a conductive particle, such as a colloidal nanoparticle. As used herein the term “nanoparticle” refers to a conductive cluster, such as a metal cluster, having a diameter on the nanometer scale. As described more fully below, such nanoparticles are optionally stabilized with organic ligands. [0028]
  • Examples of colloidal nanoparticles for use in accordance with the present invention are described in the literature ([0029] 32-38). In this embodiment, the nonconductive region can optionally be a ligand that is attached to a central core making up the nanoparticle. These ligands i.e., caps, can be polyhomo or polyheterofunctionalized, thereby being suitable for detecting a variety of chemical analytes. The nanoparticles, i.e., clusters, are stabilized by the attached ligands. As explained more fully below, by varying the concentration of the synthetic reagents, the particle size can be manipulated and controlled.
  • In certain embodiments, the resistors are nanoparticles comprising a central core conducting element and an insulating attached ligand optionally in a polymer matrix. With reference to Table 1, various conducting materials are suitable for the central core. In certain preferred embodiments, the nanoparticles have a metal core. Preferred metal cores include, but are not limited to, Au, Ag, Pt, Pd, Cu, Ni, AuCu and mixtures thereof. Gold (Au) is especially preferred. These metallic nanoparticles can be synthesized using a variety of methods. In a preferred method of synthesis, a modification of the protocol developed by Brust et al. ([0030] 30) (the teachings of which are incorporated herein by reference), can be used. Using alkanethiolate gold clusters as an illustrative example, and not in any way to be construed as limiting, the starting molar ratio of HAuCl4 to alkanethiol is selected to construct particles of the desired diameter. The organic phase reduction of HAuCl4 by an alkanethiol and sodium borohydride leads to stable, modestly polydisperse, alkanethiolate-protected gold clusters having a core dimension of about 1 nm to about 100 nm. Preferably, the nanoparticles range in size from about 1 nm to about 50 nm. More preferably, the nanoparticles range in size from about 5 nm to about 20 nm.
  • In this reaction, a molar ratio of HAuCl[0031] 4 to alkanethiol of greater than 1:1 leads to smaller particle sizes, whereas a molar ratio of HAuCl4 to alkanethiol less than 1:1 yield clusters which are larger in size. Thus, by varying the ratio of HAuCl4 to alkanethiol, it is possible to generate various sizes and dimensions of nanoparticles suitable for a variety of analytes. Although not intending to be bound by any particular theory, it is believed that during the chemical reaction, as neutral gold particles begin to nucleate and grow, the size of the central core is retarded by the ligand monolayer in a controlled fashion. Using this reaction, it is then possible to generate nanoparticles of exacting sizes and dimensions.
  • Ligands or caps of various chemical classes are suitable for use in the present invention. Ligands include, but are not limited to, alkanethiols having alkyl chain lengths of about C[0032] 1-C30. In a preferred embodiment, the alkyl chain lengths of the alkanethiols are between about C3 to about C12. In this embodiment, it is noted that the nanoparticles' conductivity decreases as alkane length increases.
  • Alkanethiols suitable for use can also be polyhomofunctionalized or polyheterofunctionalized (such as, at the ω-position, or last position of the chain). As used herein, the term “polyhomofunctionalized” means that the same chemical moiety has been used to modify the ligand at various positions within the ligand. Chemical moieties suitable for functional modification include, but are not limited to, bromo, chloro, iodo, fluoro, amino, hydroxyl, thio, phosphino, alkylthio, cyano, nitro, amido, carboxyl, aryl, heterocyclyl, ferrocenyl or heteroaryl. The ligands can be attached to the central core by various methods including, but not limited to, covalent attachment, and electrostatic attachment. As used herein, the term “polyheterofunctionalized” means that different chemical moieties or functional groups are used to modify the ligands at various positions. [0033]
  • It is possible to synthesize polyheterofunctionalized clusters via place exchange reactions ([0034] 34). This reaction can be a simultaneous exchange of a mixture of thiols onto the nanoparticle, or alternatively, a stepwise progressive exchange of different thiols, isolating the nanoparticle product after each step. The place exchange reaction replaces an existing alkanethiol with an alkanethiol comprising a functional group.
  • In addition to alkanethiols, various suitable ligands include, but are not limited to, polymers, such as polyethylene glycol; surfactants, detergents, biomolecules, such as polysaccharides: protein complexes, polypeptides, dendrimeric materials, oligonucleotides, fluorescent moieties and radioactive groups. [0035]
  • In certain embodiments, the core, such as a metal core, acts as a scaffolding, which can support more complex organic ligands. These scaffolding can be used as a solid support for combinatorial synthesis. In this embodiment, various functional groups can be attached to the core to achieve structural diversity. Optionally, the combinatorial synthesis can be performed using a robotic armature system. In general, these systems include automated workstations like the automated apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.) which mimic the manual operations performed by a synthetic chemist. The nature and implementation of modifications to these methods (if any) so that they can operate will be apparent to persons skilled in the relevant art. [0036]
  • It is possible that steric crowding can accompany the introduction of numerous functional groups onto the surface of the nanoparticle core that is occupied by the ligand, such as an alkanethiolate ligand. The number of ligands and the amount of functionalization is directly proportional to the size of the central core. In practice, electrical conductivity becomes more difficult to measure when the ratio of metal to ligand decreases. Conversely, as the ratio of metal to ligand increases, the core can become too big to allow the ligands to solubilize the particle. Thus, those of skill in the art will select suitable ratios of core size to ligand amount for particular uses. [0037]
  • In certain other embodiments, sensors are prepared as composites of “naked” nanoparticles and an insulating material is added. As used herein, the term “naked nanoparticles” means that the core has no covalently attached ligands or caps. A wide variety of insulating materials can be used in this embodiment. Preferred insulating materials are organic polymers. Suitable organic polymers include, but are not limited to, polycaprolactone, polystyrene, and poly(methyl methacrylate). Varying the insulating material types, concentration, size, etc., provides the diversity necessary for an array of sensors. In one embodiment, the metal to insulating polymer ratio is about 50% to about 90% (wt/wt). Preferably, the metal to insulating polymer ratio is about 85% to about 90% (wt/wt). [0038]
  • Sensors can also be prepared using the nanoparticle and an alkylthiol ligand as the sole insulating matrix. In this embodiment, varying the ligand, ligand size and functionalization can provide sensor diversity. Sensor films can be cast on interdigitated electrode substrates. Sensors that are comprised either of naked nanoparticles or nanoparticles having ligands show a reversible increase in electrical resistance upon exposure to chemical vapors. Moreover, it has been shown that as the length of the ligand chain increases, the conductivity of the resistors decreases. [0039]
  • Nanoparticles, such as alkylthiol-capped gold colloids, are soluble or dispersible in a wide range of organic solvents having a large spectrum of polarity. This diverse solubility permits a good selection of co-soluble insulating materials. Alternative capping agents, which include amines and phosphines, can extend the use to virtually any solvent. Simultaneous variation of ligand and insulating material, such as organic polymers, can provide great diversity in multidimensional sensor arrays. [0040]
  • Without intending to be bound by any particular theory, it is believed that the chemical analyte diffuses into and is dispersed within the nanoparticle ligands or insulating material and thereby changes the electrical properties of the sensors. These property changes which are then detected include, but are not limited to, resistance, capacitance, conductivity, magnetism, optical changes and impedance. [0041]
  • In certain embodiments, the sensor arrays of the present invention comprise other sensor types. Various sensors suitable for detection of analytes include, but are not limited to: surface acoustic wave (SAW) sensors; quartz microbalance sensors; conductive composites; chemiresitors; metal oxide gas sensors, such as tin oxide gas sensors; organic gas sensors; metal oxide field effect transistor (MOSFET); piezoelectric devices; infrared sensors; sintered metal oxide sensors; Pd-gate MOSFET; metal FET structures; metal oxide sensors, such as a Tuguchi gas sensors; phthalocyanine sensors; electrochemical cells; conducting polymer sensors; catalytic gas sensors; organic semiconducting gas sensors; solid electrolyte gas sensors; piezoelectric quartz crystal sensors; dye-impregnated polymer films on fiber optic detectors; polymer-coated micromirrors; electrochemical gas detectors; chemically sensitive field-effect transistors; carbon black-polymer composite chemiresistors; micro-electro-mechanical system devices; and micro-opto-electro-mechanical system devices and Langmuir-Blodgett film sensors. In other embodiments, these foregoing sensor types comprise nanoparticles of the present invention. [0042]
  • The chemiresistors of the present invention can be fabricated by many techniques including, but not limited to, solution casting, suspension casting and mechanical mixing. In general, solution casting routes are advantageous because they provide homogeneous structures and are easy to process. With solution casting routes, resistor elements can be easily fabricated by spin, spray or dip coating. Since all elements of the resistor must be soluble, however, solution casting routes are somewhat limited in their applicability. Suspension casting still provides the possibility of spin, spray or dip coating, but more heterogeneous structures than with solution casting are expected. With mechanical mixing, there are no solubility restrictions since it involves only the physical mixing of the resistor components, but device fabrication is more difficult since spin, spray and dip coating are no longer possible. A more detailed discussion of each of these follows. [0043]
  • For systems where both the conducting and non-conducting media or their reaction precursors are soluble in a common solvent, the chemiresistors can be fabricated by solution casting. The oxidation of pyrrole by phosphomolybdic acid presented herein represents such a system. In this reaction, the phosphomolybdic acid and pyrrole are dissolved in tetrahydrofuran (THF) and polymerization occurs upon solvent evaporation. This allows for THF soluble non-conductive polymers to be dissolved into this reaction mixture, thereby allowing the blend to be formed in a single step upon solvent evaporation. The choice of non-conductive polymers in this route is, of course, limited to those that are soluble in the reaction media. For the poly(pyrrole) case described above, preliminary reactions were performed in THF, but this reaction should be generalizable to other non-aqueous solvent such as acetonitrile or ether. A variety of permutations on this scheme are possible for other conducting polymers. Some of these are listed below. Certain conducting polymers, such as substituted poly(cyclooctatetraenes), are soluble in their undoped, non-conducting state in solvents such as THF or acetonitrile. Consequently, the blends between the undoped polymer and polymer containing other organic materials can be formed from solution casting. After which, the doping procedure (exposure to I[0044] 2 vapor, for instance) can be performed on the blend to render the substituted poly(cyclooctatetraene) conductive. Again, the choice of non-conductive polymers is limited to those that are soluble in the solvents that the undoped conducting polymer is soluble in and to those stable to the doping reaction. Certain conducting polymers can also be synthesized via a soluble precursor polymer. In these cases, blends between the precursor polymer and the non-conducting polymer can first be formed followed by chemical reaction to convert the precursor polymer into the desired conducting polymer. For instance, poly(p-phenylene vinylene) can be synthesized through a soluble sulfonium precursor. Blends between this sulfonium precursor and the non-conductive polymer can be formed by solution casting. After which, the blend can be subjected to thermal treatment under vacuum to convert the sulfonium precursor into the desired poly(p-phenylene vinylene).
  • In suspension casting, one or more of the components of the resistor is suspended and the others dissolved in a common solvent. Suspension casting is a rather general technique applicable to a wide range of species, such as carbon blacks or colloidal metals, which can be suspended in solvents by vigorous mixing or sonication. In one application of suspension casting, the non-conductive polymer is dissolved in an appropriate solvent (such as THF, acetonitrile, water, etc.). Colloidal silver is then suspended in this solution and the resulting mixture is used to dip coat electrodes. [0045]
  • Mechanical mixing is suitable for all of the conductive/non-conductive combinations possible. In this technique, the materials are physically mixed in a ball-mill or other mixing device. For instance, carbon black/non-conductive polymer composites are readily made by ball-milling. When the non-conductive polymer can be melted or significantly softened without decomposition, mechanical mixing at elevated temperatures can improve the mixing process. Alternatively, composite fabrication can sometimes be improved by several sequential heat and mix steps. [0046]
  • For the nanoparticles with and without ligands, spray deposition can be used. In this method, the temperature can be elevated to promote a uniform film formation. The stable dispersions and homogenous films of these nanoparticles can also facilitate reproducible fabrication of the vapor sensors. [0047]
  • Once fabricated, the individual elements can be optimized for a particular application by varying their chemical make up and morphologies. The chemical nature of the resistors determines to which analytes they will respond and their ability to distinguish different analytes. The relative ratio of conductive to insulating components determines the magnitude of the response since the resistance of the elements becomes more sensitive to sorbed molecules as the percolation threshold is approached. The film morphology is also important in determining response characteristics. For instance, thin films respond more quickly to analytes than do thick ones. Hence, with an empirical catalogue of information on chemically diverse sensors made with varying ratios of insulating to conducting components and by differing fabrication routes, sensors can be chosen that are appropriate for the analytes expected in a particular application, their concentrations, and the desired response times. Further optimization can then be performed in an iterative fashion as feedback on the performance of an array under particular conditions becomes available. [0048]
  • The resistor may itself form a substrate for attaching the lead or the resistor. For example, the structural rigidity of the resistors may be enhanced through a variety of techniques: chemical or radiation cross-linking of polymer components (dicumyl peroxide radical cross-linking, UV-radiation cross-linking of poly(olefins), sulfur cross-linking of rubbers, e-beam cross-linking of Nylon, etc.), the incorporation of polymers or other materials into the resistors to enhance physical properties (for instance, the incorporation of a high molecular weight, high transition metal (Tm) polymers), the incorporation of the resistor elements into supporting matrices, such as clays or polymer networks (forming the resistor blends within poly(methylmethacrylate) networks or within the lamellae of montmorillonite, for instance), etc. In another embodiment, the resistor is deposited as a surface layer on a solid matrix that provides means for supporting the leads. Typically, the solid matrix is a chemically inert, non-conductive substrate, such as a glass or ceramic. [0049]
  • Sensor arrays particularly well-suited to scaled up production are fabricated using integrated circuit (IC) design technologies. For example, the chemiresistors can easily be integrated onto the front end of a simple amplifier interfaced to an A/D converter to efficiently feed the data stream directly into a neural network software or hardware analysis section. Micro-fabrication techniques can integrate the chemiresistors directly onto a micro-chip which contains the circuitry for analogue signal conditioning/processing and then data analysis. This provides for the production of millions of incrementally different sensor elements in a single manufacturing step using ink-jet technology. Controlled compositional gradients in the chemiresistor elements of a sensor array can be induced in a method analogous to how a color ink-jet printer deposits and mixes multiple colors. However, in this case rather than multiple colors, a plurality of different polymers in solution which can be deposited are used. A sensor array of a million distinct elements only requires a 1 cm×1 cm sized chip employing lithography at the 10 μm feature level, which is within the capacity of conventional commercial processing and deposition methods. This technology permits the production of sensitive, small-sized, stand-alone chemical sensors. [0050]
  • Preferred sensor arrays have a predetermined inter-sensor variation in the structure or composition of the nonconductive organic polymer regions. The variation may be quantitative and/or qualitative. For example, the concentration of the nonconductive organic polymer in the blend can be varied across sensors. Alternatively, a variety of different organic polymers may be used in different sensors. [0051]
  • In certain embodiments, a variety of capped colloids can be used as different sensors. Optionally, a capped colloid system can be used in conjunction with a variety of polymer matrices as different sensors. An electronic nose for detecting an analyte in a fluid is fabricated by electrically coupling the sensor leads of an array of compositionally different sensors to an electrical measuring device. The device measures changes in resistivity at each sensor of the array, preferably simultaneously and preferably over time. Frequently, the device includes signal processing means and is used in conjunction with a computer and data structure for comparing a given response profile to a structure-response profile database for qualitative and quantitative analysis. Typically, such a nose comprises at least ten, usually at least 100, and often at least 1000 different sensors, though with mass deposition fabrication techniques described herein or otherwise known in the art, arrays of on the order of at least 10[0052] 6 sensors are readily produced.
  • In operation, each resistor provides a first electrical resistance between its conductive leads when the resistor is contacted with a first fluid comprising a chemical analyte at a first concentration, and a second electrical resistance between its conductive leads when the resistor is contacted with a second fluid comprising the same chemical analyte at a second different concentration. The fluids may be liquid or gaseous in nature. The first and second fluids may reflect samples from two different environments, a change in the concentration of an analyte in a fluid sampled at two time points, a sample and a negative control, etc. The sensor array necessarily comprises sensors which respond differently to a change in an analyte concentration, i.e., the difference between the first and second electrical resistance of one sensor is different from the difference between the first and second electrical resistance of another sensor. [0053]
  • In a preferred embodiment, the temporal response of each sensor (resistance as a function of time) is recorded. The temporal response of each sensor may be normalized to a maximum percent increase and percent decrease in resistance which produces a response pattern associated with the exposure of the analyte. By iterative profiling of known analytes, a structure-function database correlating analytes and response profiles is generated. Unknown analyte may then be characterized or identified using response pattern comparison and recognition algorithms. Accordingly, analyte detection systems comprising sensor arrays, an electrical measuring device for detecting resistance across each chemiresistor, a computer, a data structure of sensor array response profiles, and a comparison algorithm are provided. In another embodiment, the electrical measuring device is an integrated circuit comprising neural network-based hardware and a digital-analog converter (DAC) multiplexed to each sensor, or a plurality of DACs, each connected to different sensor(s). [0054]
  • A wide variety of analytes and fluids may be analyzed by the disclosed sensors, arrays and noses so long as the subject analyte is capable of generating a differential response across a plurality of sensors of the array. Analyte applications include broad ranges of chemical classes including, but not limited to organics such as alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics and derivatives of such organics, e.g., halide derivatives, etc., biomolecules such as sugars, isoprenes and isoprenoids, fatty acids and derivatives, etc. Accordingly, commercial applications of the sensors, arrays and noses include environmental toxicology and remediation, biomedicine, materials quality control, food and agricultural products monitoring, etc. [0055]
  • The general method for using the disclosed sensors, arrays and electronic noses, for detecting the presence of an analyte in a fluid involves resistively sensing the presence of an analyte in a fluid with a chemical sensor comprising first and second conductive leads electrically coupled to and separated by a chemically sensitive resistor as described above by measuring a first resistance between the conductive leads when the resistor is contacted with a first fluid comprising an analyte at a first concentration and a second different resistance when the resistor is contacted with a second fluid comprising the analyte at a second different concentration. [0056]
  • The following examples are offered by way of illustration and not by way of limitation. [0057]
  • EXAMPLES Example 1
  • This example illustrates the synthesis of colloidal gold nanoparticles with covalently attached alkylthiol ligands. [0058]
  • The gold nanoparticles described herein were prepared using a procedure similar to the protocol developed by Brust et al. All solutions were prepared using volumetric procedures. Into a 100 ml flask, HAuCl[0059] 4 (0.3047 mmol) and tetraoctyl-ammonium bromide (0.6764 mmol) were added. A yellow solution was formed which immediately turned brown. The mixture was shaken and, while stirring, 1-dodecanethiol (0.08684 mmol) was added followed by sodium borohydride (3.352 mmol). After about 12 hours, the organic layer was separated and left an interphase layer. The aqueous layer was extracted a second time with hexane, which again left an interphase layer. The organic layer was evaporated in vacuo to about 5 mL and about 200 ml of absolute ethanol was added. The solution was stirred at −78° C. for 4 hours and 30 ml of water was added until a precipitate appeared. Afterwards, the precipitated product was collected and washed with cold ethanol. The solution was concentrated under vacuum, but without rotation. The dried product (20.3 mg) was confirmed by UV-Vis spectroscopic analysis.
  • Example 2.
  • This example illustrates conductivity measurements using the gold nanoparticles made in accordance with Example 1. [0060]
  • Conductivity measurements were recorded using ceramic capacitors (K5M 224) 22 nF, approximately 2×4×4 mm in size from Kemet Electronics. Four capacitors were prepared as described in [0061] Chem. Mater. Vol. 8, 1996, with the following modifications. The capacitors were ground off with a dremel tool. Next, the capacitors were sanded and polished. Finally the capacitors were sonicated.
  • The capacitors were coated with a toluene solution of gold nanoparticles from Example 1 and their resistance was measured. The capacitors had approximately 0.5 MΩ resistance. [0062]
  • Example 3.
  • This example illustrates the use of gold nanoparticles as the conductive element in vapor sensors. Studies focused on the fabrication and application of nanoscale gold conductors in polymer composite sensors. [0063]
  • The conductors were prepared with a modified procedure of Hostetler et al. (33). Briefly, short alkyl chain thiols were used as the passivating agent in conductor fabrication. Pentanethiol and hexanethiol capped particles, although soluble, generally have high electrical resistance. Propanethiol passivated gold nanoparticles formed highly conductive, but less soluble, aggregates during the purification procedure when a ratio of 6:1 gold:thiol was used. This passivated gold material was used as the conductor region. An array of 17 sensors was constructed using various organic polymers as the insulating region (see, Table 3), along with the propyl cap region. [0064]
  • With reference to FIG. 11, exposure response patterns of the composite sensors to diluted vapor from polar and nonpolar solvents are illustrated. The results indicated that in general, sensors containing more polar polymers respond more to polar analytes and sensors containing nonpolar polymers respond more to nonpolar analytes. Additional exposure data obtained with these composite sensors with other analytes was also obtained. (data not shown). [0065]
  • i. Reagents [0066]
    TABLE 3
    Mass Target Density Target Solvent
    g/mole (g) moles Equiv. (g) (g/mL) (μL) (mL)
    HAuC14 393.83 0.6425 1.63E−03 1 25
    N(C8H17)4Br 546.82 2.5 4.08E−03 2.23 K 120
    Propane-SH 76.17 0.1667 2.72E−04 0.021 0.841 24.626
    NaBH4 37.83 10 1.63E−02 .65 g 41
  • As discussed, the synthesis was performed as previously described in Hostetler et al. [0067] LANGMUIR (1998) 14:17-30 (33). After a reaction time of about 12 hours, the crude product was concentrated in vacuo (<60° C.) and precipitated twice from a large excess of ethanol (approximately 400 mL). The isolated black precipitate was used without further purification.
  • In the sensors below, “PEVA 25” is poly(ethylene-co-vinyl acetate 25% vinylacetate); PS is poly(styrene); PMMA is poly(methyl methacrylate); PVPyrolidone is polyvinylpyrolidone; PCL is polycaprolactone; and polyethylenimine is linear polyethylenimine. The sensors were fabricated on polished capacitors by the suspension casting methods described above. [0068]
    TABLE 4
    Conc. “gold” Target Target
    Sensor polymer (mg) Solvent (mL) (mg/ml) (mg) polymer (mg) polymer (mL)
    1; 11 A PEVA 25 170 Toluene 20 8.5 23.2 2.577 0.303
    2; 12 C PS 141 Toluene 20 7.05 23.2 2.577 0.365
    3; 13 F PMMA 185 THF 20 9.25 23.2 2.577 0.278
    4; 14 P PVPyrolidone 100 Ethanol 20 5 23.2 2.577 0.515
    5; 15 L PCL 150 Toluene 20 7.5 23.2 2.577 0.343
    6; 16 R Polyethylenimine 105 Ethanol 15 7 23.2 2.577 0.368
    7; 17 None
  • ii. Results of 5% Saturation Vapor of Analyte and 10 Exposures, ΔR/[0069] R
    sensor
    number
    1 2 3 4 5 6 7
    benzene
    Average 0.05672904 0.05718038 0.03713099 0.03563599 0.02673985 0.01901351 0.01215059
    Stdev 0.0088072  0.00243782 0.00442105 0.03755568 0.00315499 0.00170586 0.00214352
    toluene
    Average 0.06837353 0.06053369 0.04582165 0.04233825 0.03035613 0.02256229 0.01707436
    Stdev 0.00433174 0.00651897 0.00457412 0.05544662 0.00750764 0.00144145 0.00202571
    m-xylene
    Average 0.06984093 0.0555617  0.05217876 0.02436924 0.03663781 0.02393508 0.02059151
    Stdev 0.00140225 0.00357344 0.00091163 0.0091468  0.00119657 0.00047213 0.00085613
    o-xylene
    Average 0.07166558 0.04837939 0.05199948 0.02092825 0.03721334 0.02306403 0.02094237
    Stdev 0.00405308 0.00214992 0.00200939 0.01786382 0.00140922 0.00095604 0.00153367
    sensor
    number
    11 12 13 14 15 16 17
    benzene
    Average 0.01878886 0.01258975 0.00650416 0.0020327  0.00832734 0.00875545 0.00363301
    Stdev 0.00329682 0.00042475 0.000734  0.00201836 0.00198524 0.00104119 0.00080197
    toluene
    Average 0.02437261 0.01287504 0.00905139 0.0034077  0.01126709 0.01145163 0.0056044 
    Stdev 0.00307503 0.0003761  0.00070383 0.00090473 0.00187886 0.00100853 0.00078252
    m-xylene
    Average 0.02569632 0.01028668 0.01082169 0.00298597 0.0121948  0.01268389 0.00706267
    Stdev 0.00121592 0.00022425 0.00027543 0.0148297  0.00107619 0.00077306 0.00058149
    o-xylene
    Average 0.02669483 0.0087378  0.01078242 0.00379222 0.01293974 0.01244728 0.0073844 
    Stdev 0.00196557 0.0002382  0.00056744 0.00145561 0.00132586 0.00100642 0.00073839
  • Example 4
  • i. Polymer Synthesis. Poly(pyrrole) films used for conductivity, electrochemical, and optical measurements were prepared by injecting equal volumes of N[0070] 2-purged solutions of pyrrole (1.50 mmoles in 4.0 ml dry tetrahydrofuran) and phosphomolybdic acid (0.75 mmoles in 4.0 ml tetrahydrofuran) into a N2-purged test tube. Once the two solutions were mixed, the yellow phosphomolybdic acid solution turned dark green, with no observable precipitation for several hours. This solution was used for film preparation within an hour of mixing.
  • ii Sensor Fabrication. Poly(pyrrole) sensors were made by mixing two solutions, one of which contained 0.29 mmoles pyrrole in 5.0 ml tetrahydrofuran, with the other containing 0.25 mmoles phosphomolybdic acid and 30 mg of non-conducting organic material (e.g., a polymer) in 5.0 ml of tetrahydrofuran. The mixture of these two solutions resulted in a w:w ratio of pyrrole to polymer of 2:3. An inexpensive, quick method for creating the chemiresistor array elements was accomplished by effecting a cross-sectional cut through commercial 22 nF ceramic capacitors (Kemet Electronics Corporation). Mechanical slices through these capacitors revealed a series of interdigitated metal lines (25% Ag:75% Pt), separated by 15 μm, that could be readily coated with conducting polymer. The monomer—organic material—oxidant solutions were then used to dip coat interdigitated electrodes in order to provide a robust electrical contact to the polymerized organic films. After polymerization was complete, the film was insoluble and was rinsed with solvent (tetrahydrofuran or methanol) to remove residual phosphomolybdic acid and unreacted monomer. The sensors were then connected to a commercial electrical connector block, with the resistances of the various “chemiresistor” elements readily monitored by use of a multiplexing digital ohmmeter. [0071]
  • iii Instrumentation. Optical spectra were obtained on a Hewlett Packard 8452A spectrophotometer, interfaced to an IBM XT. Electrochemical experiments were performed using a Princeton Applied Research Inc. 173 potentiostat/175 universal programmer. All electrochemical experiments were performed with a Pt flag auxiliary and a Saturated Calomel reference Electrode (SCE). Spin-coating was performed on a Headway Research Inc. photoresist spin coater. Film thicknesses were determined with a Dektak Model 3030 profilometer. Conductivity measurements were performed with an osmium-tipped four point probe (Alessi Instruments Inc., tip spacing=0.050″, tip radii=0.010″). Transient resistance measurements were made with a conventional multimeter (Fluke Inc., “Hydra Data Logger” Meter). [0072]
  • Principle Component Analysis and Multi-linear Least Square Fits. A data set obtained from a single exposure of the array to an odorant produced a set of descriptors (i.e., resistances), d[0073] i. The data obtained from multiple exposures thus produced a data matrix D where each row, designated by j, consisted of n descriptors describing a single member of the data set (i.e., a single exposure to an odor). Since the baseline resistance and the relative changes in resistance varied among sensors, the data matrix was autoscaled before further processing (19). In this preprocessing technique, all the data associated with a single descriptor (i.e., a column in the data matrix) were centered around zero with unit standard deviation
  • d′ ij=(d ij −d i)/σi  (1)
  • where d[0074] i is the mean value for descriptor i and σi is the corresponding standard deviation.
  • Principle component analysis ([0075] 19) was performed to determine linear combinations of the data such that the maximum variance [defined as the square of the standard deviation] between the members of the data set was obtained in n mutually orthogonal dimensions. The linear combinations of the data resulted in the largest variance [or separation] between the members of the data set in the first principle component (pc1) and produced decreasing magnitudes of variance from the second to the nth principle component (pc2-pcn). The coefficients required to transform the autoscaled data into principle component space (by linear combination) were determined by multiplying the data matrix, D, by its transpose, DT (i.e., diagonalizing the matrix) (19)
  • R=D T ·D  (2)
  • This operation produced the correlation matrix, R, whose diagonal elements were unity and whose off-diagonal elements were the correlation coefficients of the data. The total variance in the data was thus given by the sum of the diagonal elements in R. The n eigenvalues, and the corresponding n eigenvectors, were then determined for R. Each eigenvector contained a set of n coefficients which were used to transform the data by linear combination into one of its n principle components. The corresponding eigenvalue yielded the fraction of the total variance that was contained in that principle component. This operation produced a principle component matrix, P, which had the same dimensions as the original data matrix. Under these conditions, each row of the matrix P was still associated with a particular odor and each column was associated with a particular principle component. [0076]
  • Since the values in the principle component space had no physical meaning, it was useful to express the results of the principle component analysis in terms of physical parameters such as partial pressure and mole fraction. This was achieved via a multi-linear least square fit between the principle component values and the corresponding parameter of interest. A multi-linear least square fit resulted in a linear combination of the principle components which yielded the best fit to the corresponding parameter value. Fits were achieved by appending a column with each entry being unity to the principle component matrix P, with each row, j, corresponding to a different parameter value (e.g., partial pressure), v[0077] j, contained in vector V. The coefficients for the best multi-linear fit between the principle components and parameter of interest were obtained by the following matrix operation
  • C=(P T ·P)−1 ·P T ·V  (3)
  • where C was a vector containing the coefficients for the linear combination. [0078]
  • A key to the ability to fabricate chemically diverse sensing elements was the preparation of processable, air stable films of electrically conducting organic polymers. This was achieved through the controlled chemical oxidation of pyrrole (PY) using phosphomolybdic acid (H[0079] 3PMo12O40)(20) in tetrahydrofuran:
  • PY→PY+ +e   (4)
  • 2PY+→PY2+2H+  (5)
  • H3PMo12O40+2e 2H+→H5PMo12O40  (6)
  • The redox-driven or electrochemically-induced polymerization of pyrrole has been explored previously, but this process typically yields insoluble, intractable deposits of poly(pyrrole) as the product ([0080] 21). The approach used herein was to use low concentrations of the H3PMo12O40 oxidant (E°=+0.36 V vs. SCE)(20). Since the electrochemical potential of PY/PY is more positive (E°=+1.30 V vs. SCE)(22) than that of H3PMo12O40/H5PMo12O40, the equilibrium concentration of PY+·, and thus the rate of polymerization, was relatively low in dilute solutions (0.19 M PY, 0.09 M H3PMo12O40). However, it has been shown that the oxidation potential of pyrrole oligomers decreases from +1.20 V to +0.55 to +0.26 V vs. SCE as the number of units increase from one to two to three, and that the oxidation potential of bulk poly(pyrrole) occurs at −0.10 V vs. SCE (23). As a result, oxidation of pyrrole trimers by phosphomolybdic acid is expected to be thermodynamically favorable. This allowed processing of the monomer-oxidant solution (i.e., spin coating, dip coating, introduction of plasticizers, etc.), after which time polymerization to form thin films was simply effected by evaporation of the solvent. The dc electrical conductivity of poly(pyrrole) films formed by this method on glass slides, after rinsing the films with methanol to remove excess phosphomolybdic acid and/or monomer, was on the order of 15-30 S-cm−1 for films ranging from 40-100 nm in thickness.
  • The poly(pyrrole) films produced in this work exhibited excellent electrochemical and optical properties. For example, FIG. 2 shows the cyclic voltammetric behavior of a chemically polymerized poly(pyrrole) film following ten cycles from −1.00 V to +0.70 V vs. SCE. The cathodic wave at −0.40 V corresponded to the reduction of poly(pyrrole) to its neutral, nonconducting state, and the anodic wave at −0.20 V corresponded to the reoxidation of poly(pyrrole) to its conducting state ([0081] 24). The lack of additional faradaic current, which would result from the oxidation and reduction of phosphomolybdic acid in the film, suggests that the Keggin structure of phosphomolybdic acid was not present in the film anions (25) and implies that MoO4 2−, or other anions, served as the poly(pyrrole) counterions in the polymerized films.
  • FIG. 3A shows the optical spectrum of a processed polypyrrole film that had been spin-coated on glass and then rinsed with methanol. The single absorption maximum was characteristic of a highly oxidized poly(pyrrole) ([0082] 26), and the absorption band at 4.0 eV was characteristic of an interband transition between the conduction and valence bands. The lack of other bands in this energy range was evidence for the presence of bipolaron states (see, FIG. 3A), as have been observed in highly oxidized poly(pyrrole) (26). By cycling the film in 0.10 M [(C4H9)4N]+[ClO4]-acetonitrile and then recording the optical spectra in 0.10 M KCl—H2O, it was possible to observe optical transitions characteristic of polaron states in oxidized poly(pyrrole) (see, FIG. 3B). The polaron states have been reported to produce three optical transitions (26), which were observed at 2.0, 2.9, and 4.1 eV in FIG. 3B. Upon reduction of the film (c.f. FIG. 3B), an increased intensity and a blue shift in the 2.9 eV band was observed, as expected for the π-π* transition associated with the pyrrole units contained in the polymer backbone (27).
  • As described in the experimental section, various polymers were introduced into the polymer films (Table 5). [0083]
    TABLE 5
    Polymers used in array elements*
    Sensor Polymers
    1 None
    2 none**
    3 poly(styrene
    4 poly(styrene)
    5 polyα(styrene)
    6 poly(α-methyl styrene)
    7 poly(styrene-acrylonitrile)
    8 poly(styrene-maleic anhydride)
    9 poly(styrene-allyl alcohol)
    10 poly(vinyl pyrrolidone)
    11 poly(vinyl phenol)
    12 poly(vinyl butral)
    13 poly(vinyl acetate)
    14 poly(carbonate)
  • These inclusions allowed chemical control over the binding properties and electrical conductivity of the resulting polymers. Sensor arrays consisted of as many as 14 different elements, with each element synthesized to produce a distinct chemical composition and, thus,a distinct sensor response for its polymer film. The resistance, R, of each film-coated individual sensor was automatically recorded before, during, and after exposure to various odorants. A typical trial consisted of a 60 sec rest period in which the sensors were exposed to flowing air (3.0 liter-min[0084] −1), a 60 sec exposure to a mixture of air (3.0 liter-min−1) and air that had been saturated with solvent (0.5-3.5 liter-min−1), and then a 240 sec exposure to air (3.0 liter-min−1).
  • In an initial processing of the data, the only information used was the maximum amplitude of the resistance change divided by the initial resistance, ΔR[0085] max/Ri, of each individual sensor element. Most of the sensors exhibited either increases or decreases in resistance upon exposure to different vapors, as expected from changes in the polymer properties upon exposure to different types chemicals (17-18). However, in some cases, sensors displayed an initial decrease followed by an increase in resistance in response to a test odor. Since the resistance of each sensor could increase and/or decrease relative to its initial value, two values of ΔRmax/Ri were reported for each sensor. The source of the bi-directional behavior in most cases arises from the presence of water (which by itself induced rapid decreases in the film resistance) in the reagent-grade solvents used to generate the test odors of this study. The observed behavior in response to these air-exposed, water-containing test solvents was reproducible and reversible on a given sensor array, and the environment was representative of many practical odor sensing applications in which air and water would not be readily excluded.
  • FIGS. [0086] 4B-4D depict representative examples of sensor amplitude responses of a sensor array (see, Table 5). In this experiment, data were recorded for three separate exposures to vapors of acetone, benzene, and ethanol flowing in air. The response patterns generated by the sensor array described in Table 5 are displayed for: (B) acetone; (C) benzene; and (D) ethanol. The sensor response was defined as the maximum percent increase and decrease of the resistance divided by the initial resistance (gray bar and black bar, respectively) of each sensor upon exposure to solvent vapor. In many cases, sensors exhibited reproducible increases and decreases in resistance. An exposure consisted of: (i) a 60 sec rest period in which the sensors were exposed to flowing air (3.0 liter-min−1); (ii) a 60 sec exposure to a mixture of air (3.0 liter-min−1) and air that had been saturated with solvent (0.5 liter-min−1); and (iii) a 240 sec exposure to air (3.0 liter-min−1). It is readily apparent that these odorants each produced a distinctive response on the sensor array. In additional experiments, a total of 8 separate vapors (acetone, benzene, chloroform, ethanol, isopropyl alcohol, methanol, tetrahydrofuran, and ethyl acetate), chosen to span a range of chemical and physical characteristics, were evaluated over a five-day period on a 14-element sensor array (Table 5). As discussed below, each odorant could be clearly and reproducibly identified from the others using this sensor apparatus.
  • Principle component analysis ([0087] 19) was used to simplify presentation of the data and to quantify the distinguishing abilities of individual sensors and of the array as a whole. In this approach, linear combinations of the ΔRmax/Ri data for the elements in the array were constructed such that the maximum variance (defined as the square of the standard deviation) was contained in the fewest mutually orthogonal dimensions. This allowed representation of most of the information contained in data sets shown in FIGS. 4B-4D in two (or three) dimensions. The resulting clustering, or lack thereof, of like exposure data in the new dimensional space was used as a measure of the distinguishing ability, and of the reproducibility, of the sensor array.
  • In order to illustrate the variation in sensor response of individual sensors that resulted from changes in the polymer, principle component analysis was performed on the individual, isolated responses of each of the 14 individual sensor elements in a typical array (FIG. 5). Data were obtained from multiple exposures to acetone (a), benzene (b), chloroform (c), ethanol (e), isopropyl alcohol (i), methanol (m), tetrahydrofuran (+), or ethyl acetate (@) over a period of five days with the test vapors exposed to the array in various sequences. The numbers of the figures refer to the sensor elements described in Table 5. The units along the axes indicate the amplitude of the principle component that was used to describe the particular data set for an odor. The black regions indicate clusters corresponding to a single solvent which could be distinguished from all others; gray regions highlight data of solvents whose signals overlapped with others around it. Exposure conditions were identical to those in FIG. 4. [0088]
  • Since each individual sensor produced two data values, principle component analysis of these responses resulted in only two orthogonal principal components: pc1 and pc2. As an example of the selectivity exhibited by an individual sensor element, the sensor designated as [0089] number 5 in FIG. 5 (which comprised poly(styrene)) confused acetone with chloroform, isopropyl alcohol, and tetrahydrofuran. It also confused benzene with ethyl acetate, while easily distinguishing ethanol and methanol from all other solvents. Changing the polymer to poly (α-methyl styrene) (sensor number 6 in FIG. 5) had little effect on the spatial distribution of the responses with respect to one another and with respect to the origin. Thus, as expected, a rather slight chemical modification of the polymer had little effect on the relative variance of the eight test odorants. In contrast, the addition of a cyano group in the form of poly(styrene-acrylonitrile) (sensor number 7 in FIG. 5) resulted in a larger contribution to the overall variance by benzene and chloroform, while decreasing the contribution of ethanol. Changing the substituent group in the polymer to a hydrogen bonding acid (poly(styrene-allyl alcohol), sensor number 9 in FIG. 5) increased the contribution of acetone to the overall variance while having little effect on the other odors, with the exception of confusing methanol and ethanol. These results suggest that the behavior of the sensors can be systematically altered by varying the chemical composition of the polymer.
  • FIG. 6 shows the principle component analysis for all 14 sensors described in Table 5 and FIGS. 4 and 5. When the solvents were projected into a three dimensional odor space (FIG. 6A or [0090] 6B), all eight solvents were easily distinguished with the specific array discussed herein. Detection of an individual test odor, based only on the criterion of observing ˜1% ΔRmax/Ri values for all elements in the array, was readily accomplished at the parts per thousand level with no control over the temperature or humidity of the flowing air. Further increases in sensitivity are likely after a thorough utilization of the temporal components of the ΔRmax/Ri data as well as a more complete characterization of the noise in the array.
  • The suitability of this sensor array for identifying the components of certain test mixtures has also been investigated. This task is greatly simplified if the array exhibits a predictable signal response as the concentration of a given odorant is varied, and if the responses of various individual odors are additive (i.e., if superposition is maintained). When a 19-element sensor array was exposed to a number, n, of different acetone concentrations in air, the (CH[0091] 3)2CO concentration was semi-quantitatively predicted from the first principle component. This was evident from a good linear least square fit through the first three principle components.
  • The same sensor array was also able to resolve the components in various test methanol-ethanol mixtures ([0092] 29). As shown in FIG. 7B, a linear relationship was observed between the first principle component and the mole fraction of methanol in the liquid phase, xm, in a CH3OH—C2H5OH mixture, demonstrating that superposition held for this mixture/sensor array combination. Furthermore, although the components in the mixture could be predicted fairly accurately from just the first principle component, an increase in the accuracy could be achieved using a multi-linear least square fit through the first three principle components. This relationship held for CH3OH/(CH3OH+C2H5OH) ratios of 0 to 1.0 in air-saturated solutions of this vapor mixture. The conducting polymer-based sensor arrays could therefore not only distinguish between pure test vapors, but also allowed analysis of concentrations of odorants as well as analysis of binary mixtures of vapors.
  • In summary, the results presented herein advance the area of analyte sensor design. A relatively simple array design, using only a multiplexed low-power dc electrical resistance readout signal, has been shown to readily distinguish between various test odorants. Such conducting polymer-based arrays are simple to construct and modify, and afford an opportunity to effect chemical control over the response pattern of a vapor. For example, by changing the ratio of polymer to conducting particle, it is possible to approach the percolation threshold, at which point the conductivity exhibits a very sensitive response to the presence of the sorbed molecules. Furthermore, producing thinner films will afford the opportunity to obtain decreased response times, and increasing the number of polymers and polymer backbone motifs will likely result in increased diversity among sensors. This type of polymer-based array is chemically flexible, is simple to fabricate, modify, and analyze, and utilizes a low power dc resistance readout signal transduction path to convert chemical data into electrical signals. It provides a new approach to broadly-responsive odor sensors for fundamental and applied investigations of chemical mimics for the mammalian sense of smell. Such systems are useful for evaluating the generality of neural network algorithms developed to understand how the mammalian olfactory system identifies the directionality, concentration, and identity of various odors. [0093]
  • Example 4
  • Fabrication and Testing of Carbon Black-Based Sensor Arrays. [0094]
  • i. Sensor Fabrication. Individual sensor elements were fabricated in the following manner. Each non-conductive polymer (80 mg, see Table 6) was dissolved in 6 ml of THF. [0095]
    TABLE 6
    Sensor # Non-Conductive Polymer
    1 poly(4-vinyl phenol)
    2 poly(styrene - allyl alcohol)
    3 poly(α-methyl styrene)
    4 poly(vinyl chloride - vinyl acetate)
    5 poly(vinyl acetate)
    6 poly(N-vinyl pyrrolidone)
    7 poly(bisphenol A carbonate)
    8 poly(styrene)
    9 poly(styrene-maleic anhydride)
    10 poly(sulfone)
  • Then, 20 mg of carbon black (BP 2000, Cabot Corp.) were suspended with vigorous mixing. Interdigitated electrodes (the cleaved capacitors previously described) were then dipped into this mixture and the solvent allowed to evaporate. A series of such sensor elements with differing non-conductive polymers were fabricated and incorporated into a commercial bus strip which allowed the chemiresistors to be easily monitored with a multiplexing ohmmeter. [0096]
  • ii. Sensor Array Testing. To evaluate the performance of the carbon-black based sensors, arrays with as many as 20 elements were exposed to a series of analytes. A sensor exposure consisted of (1) a 60 second exposure to flowing air (6 liter min-1), (2) a 60 second exposure to a mixture of air (6 liter min-1) and air that had been saturated with the analyte (0.5 liter min-1) and (3) a five minute recovery period during which the sensor array was exposed to flowing air (6 liter min-1). The resistance of the elements were monitored during exposure, and depending on the thickness and chemical make-up of the film, resistance changes as large as 250% could be observed in response to an analyte. In one experiment, a 10 element sensor array consisting of carbon-black composites formed with a series of non-conductive polymers (see, Table 6) was exposed to acetone, benzene, chloroform, ethanol, hexane, methanol, and toluene over a two day period. A total of 58 exposures to these analytes were performed in this time period. In all cases, resistance changes in response to the analytes were positive, and with the exception of acetone, reversible (see, FIG. 8). The maximum positive deviations were then subjected to principal component analysis in a manner analogous to that described for the poly(pyrrole) based sensor. FIG. 9 shows the results of the principal component analysis for the entire 10-element array. With the exception of overlap between toluene with benzene, the analytes were distinguished from one and other. [0097]
  • Cited References: 1. Lundström et al. (1991) [0098] Nature 352:47-50; 2. Shurmer and Gardner (1992) Sens. Act. B 8:1-11; 3. Reed (1992) Neuron 8:205-209; 4. Lancet and Ben-Airie (1993) Curr. Bio. 3:668-674; 5. Kauer (1991) TINS 14:79-85; 6. DeVries and Baylor (1993) Cell 10(S):139-149; 7. Gardner et al. (1991) Sens. Act. B 4:117-121; 8. Gardner et al. (1991) Sens. Act. B 6:71-75; 9. Corcoran et al. (1993) Sens. Act. B 15:32-37; 10. Grate and Abraham (1991) Sens. Act. B 3:85-111; 11. Grate et al. (1993) Anal. Chem. 65:1868-1881; 12. Stetter et al. (1986) Anal. Chem. 58:860-866; 13. Stetter et al. (1990) Sens. Act. B 1:43-47; 14. Stetter et al. (1993) Anal. Chem. Acta 284:1-11; 15. Pearce et al. (1993) Analyst 118:371-377; 16. Shurmer et al. (1991) Sens. Act. B 4:29-33; 17. Topart and Josowicz (1992) J. Phys. Chem. 96:7824-7830; 18. Charlesworth et al. (1993) J. Phys. Chem. 97:5418-5423; 19. Hecht (1990) Mathematics in Chemistry: An Introduction to Modern Methods (Prentice Hall, Englewood Cliffs, N.J.); 20. Pope (1983) Heteropoly and Isopoly Oxometalates (Springer-Verlag, N.Y.), chap. 4; 21: Salmon et al. (1982) J. Polym. Sci., Polym. Lett. 20: 187-193; 22. Andrieux et al. (1990) J. Am. Chem. Soc. 112:2439-2440; 23. Diaz et al. (1981) J. Electroanal Chem. 121:355-361; 24. Kanazawa et al. (1981) Synth. Met. 4:119-130; 25. Bidan et al. (1988) J. Electroanal. Chem. 251:297-306; 26. Kaufman et al. (1984) Phys. Rev. Lett. 53:1005-1008; 27. Yakushi et al. (1983) J. Chem. Phys. 79:4774-4778; and Morris et al. (1942) Can. J. Res. B 20:207-211. 30. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun., 1994, 801-802. 31. Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036-7041; 32. Templeton et al. J. Am. Chem. Soc. (1998) 120 :1906-1911;.33. Lee et al., Isr. J. Chem. (1997) 37: 213-223 (1997); 33. Hostetler et al. LANGMUIR (1998) 14:17-30; 34. Ingram et al., J. Am. Chem. Soc., (1997) 119 :9175-9178; 35. Hostetler et al., J. Am Chem. Soc.(1996) 118 :4212-4213; 36. Henglein J. Phys. Chem. (1993) 97 :5457-5471; 37. Zeiri, J. Phys. Chem.(1992) 96 :5908-5917; 38. Leffet al., LANGMUIR (1996) 4723-4730.
  • All publications, patents and patent applications mentioned in this specification are herein incorporated by reference into the specification to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. [0099]
  • Although the invention has been described with reference to preferred embodiments and examples thereof, the scope of the present invention is not limited only to those described embodiments. As will be apparent to persons skilled in the art, modifications and adaptations to the above-described invention can be made without departing from the spirit and scope of the invention, which is defined and circumscribed by the appended claims. [0100]

Claims (20)

What is claimed is:
1. A device for detecting a chemical analyte, said device comprising:
a sensor array connected to a measuring apparatus having at least one sensor comprising
regions of nonconductive material and conductive material compositionally different than said nonconductive material, wherein said conductive material comprises a nanoparticle; and
a response path through said regions of nonconductive material and said conductive material.
2. A.device for detecting a chemical analyte according to claim 1, wherein said conductive material is covalently linked to said nonconductive material.
3. A device for detecting a chemical analyte according to claim 2, wherein said nanoparticle comprises a member selected from the group consisting of an organic material, an inorganic material or a mixed inorganic-organic material.
4. A device for detecting a chemical analyte according to claim 3, wherein said nanoparticle has a core, wherein said core is a member selected from the group consisting of a metal, a metal alloy, a metal oxide, an organic complex, a semiconductor, a superconductor and a mixed inorganic-organic complex.
5. A device for detecting a chemical analyte according to claim 4, wherein said core is a metal.
6. A device for detecting a chemical analyte according to claim 5, wherein said metal is a member selected from the group consisting of Ag, Au, Cu, Pt, Pd, Ni, AuCu and mixtures thereof.
7. A device for detecting a chemical analyte according to claim 6, wherein said metal is Au.
8. A device for detecting a chemical analyte according to claim 1, wherein said nonconductive material is a ligand.
9. A device for detecting a chemical analyte according to claim 8, wherein said ligand is polyfunctionalized.
10. A device for detecting a chemical analyte according to claim 8, wherein said ligand is ω-functionalized.
11. A device for detecting a chemical analyte according to claim 8, wherein said ligand is a member selected from the group consisting of an alkanethiol, a polymer, a surfactant, a detergent, a biomolecule, a polysaccharide, a protein complex, a polypeptide, a dendrimeric material, an oligonucleotide, a fluorescent moiety, a radioactive group, and mixtures thereof.
12. A device for detecting a chemical analyte according to claim 11, wherein said ligand is a C1-C30 alkanethiol.
13. A device for detecting a chemical analyte according to claim 12, wherein said ligand is a C3-C12 alkanethiol.
14. A device for detecting a chemical analyte according to claim 12, wherein said alkanethiol is polyfunctionalized.
15. A device for detecting a chemical analyte according to claim 12, wherein said ligand is ω-functionalized.
16. A device for detecting a chemical analyte according to claim 1, wherein said nanoparticle comprises a gold cluster and an organic ligand.
17. A device for detecting a chemical analyte according to claim 1, wherein said measuring device is an electrical measuring device.
18. A device for detecting a chemical analyte according to claim 1, wherein said response is a member selected from the group consisting of resistance, impedance, capacitance, inductance, optical or a combination thereof.
19. A device for detecting a chemical analyte according to claim 1, wherein at least one sensor of said array of sensors is a member selected from the group consisting of a surface acoustic wave sensor, a quartz microbalance sensor; a conductive composite; a chemiresitor; a metal oxide gas sensor and a conducting polymer sensor, a dye-impregnated polymer film on fiber optic detector, a polymer-coated micromirror, an electrochemical gas detector, a chemically sensitive field-effect transistor, a carbon black-polymer composite, a micro-electro-mechanical system device and a micro-opto-electro-mechanical system device.
20. An analyte detection device for detecting a chemical analyte, said device comprising: a sensor array having at least one sensor comprising first and second electrical leads electrically connected to a chemically sensitive resistor, said resistor comprising a nanoparticle and providing an electrical path to said first and said second electrical leads; and an electronic measuring device electrically connected to said at least one sensor for detecting said chemical analyte.
US10/266,550 1995-03-27 2002-10-07 Colloidal particles used in sensing arrays Abandoned US20030159927A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/266,550 US20030159927A1 (en) 1995-03-27 2002-10-07 Colloidal particles used in sensing arrays
US11/108,538 US7955561B2 (en) 1998-06-09 2005-04-18 Colloidal particles used in sensing array

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/410,809 US5571401A (en) 1995-03-27 1995-03-27 Sensor arrays for detecting analytes in fluids
US08/689,227 US5698089A (en) 1995-03-27 1996-08-07 Sensor arrays for detecting analytes in fluids
US08/986,500 US6010616A (en) 1995-03-27 1997-12-08 Sensor arrays for detecting analytes in fluids
US09/328,871 US6537498B1 (en) 1995-03-27 1999-06-08 Colloidal particles used in sensing arrays
US10/266,550 US20030159927A1 (en) 1995-03-27 2002-10-07 Colloidal particles used in sensing arrays

Related Parent Applications (4)

Application Number Title Priority Date Filing Date
US08/410,809 Continuation US5571401A (en) 1995-03-27 1995-03-27 Sensor arrays for detecting analytes in fluids
US08/689,227 Continuation US5698089A (en) 1995-03-27 1996-08-07 Sensor arrays for detecting analytes in fluids
US08/986,500 Continuation-In-Part US6010616A (en) 1995-03-27 1997-12-08 Sensor arrays for detecting analytes in fluids
US09/328,871 Continuation US6537498B1 (en) 1995-03-27 1999-06-08 Colloidal particles used in sensing arrays

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/108,538 Continuation US7955561B2 (en) 1998-06-09 2005-04-18 Colloidal particles used in sensing array

Publications (1)

Publication Number Publication Date
US20030159927A1 true US20030159927A1 (en) 2003-08-28

Family

ID=23626320

Family Applications (7)

Application Number Title Priority Date Filing Date
US08/410,809 Expired - Lifetime US5571401A (en) 1995-03-27 1995-03-27 Sensor arrays for detecting analytes in fluids
US08/689,227 Expired - Lifetime US5698089A (en) 1995-03-27 1996-08-07 Sensor arrays for detecting analytes in fluids
US08/986,500 Expired - Lifetime US6010616A (en) 1995-03-27 1997-12-08 Sensor arrays for detecting analytes in fluids
US09/006,279 Expired - Lifetime US5959191A (en) 1995-03-27 1998-01-13 Sensor arrays for detecting analytes in fluids
US09/209,914 Expired - Lifetime US6017440A (en) 1995-03-27 1998-12-11 Sensor arrays for detecting microorganisms
US10/266,550 Abandoned US20030159927A1 (en) 1995-03-27 2002-10-07 Colloidal particles used in sensing arrays
US10/409,449 Abandoned US20040033165A1 (en) 1995-03-27 2003-04-07 Sensor arrays for detecting analytes in fluids

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US08/410,809 Expired - Lifetime US5571401A (en) 1995-03-27 1995-03-27 Sensor arrays for detecting analytes in fluids
US08/689,227 Expired - Lifetime US5698089A (en) 1995-03-27 1996-08-07 Sensor arrays for detecting analytes in fluids
US08/986,500 Expired - Lifetime US6010616A (en) 1995-03-27 1997-12-08 Sensor arrays for detecting analytes in fluids
US09/006,279 Expired - Lifetime US5959191A (en) 1995-03-27 1998-01-13 Sensor arrays for detecting analytes in fluids
US09/209,914 Expired - Lifetime US6017440A (en) 1995-03-27 1998-12-11 Sensor arrays for detecting microorganisms

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/409,449 Abandoned US20040033165A1 (en) 1995-03-27 2003-04-07 Sensor arrays for detecting analytes in fluids

Country Status (16)

Country Link
US (7) US5571401A (en)
EP (2) EP0950895A3 (en)
JP (2) JP3963474B2 (en)
KR (1) KR100389603B1 (en)
CN (1) CN1179208C (en)
AT (1) ATE188291T1 (en)
AU (1) AU705825B2 (en)
CA (1) CA2215332C (en)
DE (1) DE69605906T2 (en)
DK (1) DK0820585T3 (en)
ES (1) ES2144737T3 (en)
FI (1) FI973802A (en)
GR (1) GR3033092T3 (en)
PT (1) PT820585E (en)
RU (1) RU2145081C1 (en)
WO (1) WO1996030750A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081232A1 (en) * 1998-04-14 2002-06-27 California Institute Of Technology Method and system for determining analyte activity
US20050150778A1 (en) * 2002-11-18 2005-07-14 Lewis Nathan S. Use of basic polymers in carbon black composite vapor detectors to obtain enhanced sensitivity and classification performance for volatile fatty acids
US20050263394A1 (en) * 1999-08-18 2005-12-01 California Institute Of Technology Sensors and sensor arrays of conducting and insulating composites and methods of use thereof
US20060088445A1 (en) * 1999-05-10 2006-04-27 California Institute Of Technology Use of spatiotemporal response behavior in sensor arrays to detect analytes in fluids
WO2006127675A2 (en) * 2005-05-20 2006-11-30 State Of Oregon Acting By & Through The State Board Of Higher Education On Behalf Of The University Of Oregon Nanoparticles and method to control nanoparticle spacing
US20080077331A1 (en) * 1999-05-10 2008-03-27 California Institute Of Technology Methods for remote characterization of an odor
WO2008054552A2 (en) * 2006-06-12 2008-05-08 The Regents Of The University Of California Method for producing bi-continuous and high internal phase nanostructures
US20090104435A1 (en) * 2005-05-13 2009-04-23 State Of Oregon Acting By And Through The State Bo Method for Functionalizing Surfaces
US20090169730A1 (en) * 2003-02-20 2009-07-02 The Regents Of The University Of California Method of forming conductors at low temperatures using metallic nanocrystals and product
US20090312565A1 (en) * 2005-05-20 2009-12-17 Hutchison James E Compositions of AU-11 nanoparticles and their optical properties
US20100273665A1 (en) * 2007-11-20 2010-10-28 Technion Research And Development Foundation Ltd. Chemical sensors based on cubic nanoparticles capped with an organic coating
US7864322B2 (en) 2006-03-23 2011-01-04 The Research Foundation Of State University Of New York Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments
US20110015872A1 (en) * 2008-03-27 2011-01-20 Technion Research And Development Foundation Ltd. Chemical sensors based on cubic nanoparticles capped with an organic coating for detecting explosives
US8026104B2 (en) 2006-10-24 2011-09-27 Bayer Healthcare Llc Transient decay amperometry
US8394330B1 (en) 1998-10-02 2013-03-12 The California Institute Of Technology Conductive organic sensors, arrays and methods of use
US8404100B2 (en) 2005-09-30 2013-03-26 Bayer Healthcare Llc Gated voltammetry
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
WO2014068554A1 (en) * 2012-10-29 2014-05-08 Technion Research And Development Foundation Ltd. Sensor technology for diagnosing tuberculosis
US9410917B2 (en) 2004-02-06 2016-08-09 Ascensia Diabetes Care Holdings Ag Method of using a biosensor
US9933385B2 (en) 2007-12-10 2018-04-03 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US10845349B2 (en) 2012-12-21 2020-11-24 Research Triangle Institute Encased polymer nanofiber-based electronic nose
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold

Families Citing this family (356)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773162A (en) * 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
US5788833A (en) * 1995-03-27 1998-08-04 California Institute Of Technology Sensors for detecting analytes in fluids
US5951846A (en) * 1995-03-27 1999-09-14 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US5571401A (en) * 1995-03-27 1996-11-05 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US6537498B1 (en) 1995-03-27 2003-03-25 California Institute Of Technology Colloidal particles used in sensing arrays
WO2000000808A2 (en) * 1998-06-09 2000-01-06 California Institute Of Technology Colloidal particles used in sensing arrays
US6170318B1 (en) * 1995-03-27 2001-01-09 California Institute Of Technology Methods of use for sensor based fluid detection devices
GB9604525D0 (en) * 1996-03-02 1996-05-01 Univ Leeds Sensing device
US6709635B1 (en) * 1996-03-21 2004-03-23 California Institute Of Technology Gas sensor test chip
US7469237B2 (en) * 1996-05-02 2008-12-23 Cooper David L Method and apparatus for fractal computation
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
EP0934515B1 (en) 1996-10-09 2006-03-08 Symyx Technologies, Inc. Infrared spectroscopy and imaging of libraries
ES2121699B1 (en) * 1996-12-10 1999-06-16 Consejo Superior Investigacion PORTABLE SYSTEM TO DETERMINE VOLATILE ORGANIC COMPOUNDS IN SOILS.
US5832411A (en) * 1997-02-06 1998-11-03 Raytheon Company Automated network of sensor units for real-time monitoring of compounds in a fluid over a distributed area
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
EP0878711A1 (en) * 1997-05-15 1998-11-18 Interuniversitair Micro-Elektronica Centrum Vzw Chemically sensitive sensor comprising arylene alkenylene oligomers
US5880552A (en) * 1997-05-27 1999-03-09 The United States Of America As Represented By The Secretary Of The Navy Diamond or diamond like carbon coated chemical sensors and a method of making same
GB9713043D0 (en) * 1997-06-21 1997-08-27 Aromascan Plc Gas sensor
WO1999000663A1 (en) * 1997-06-30 1999-01-07 California Institute Of Technology Compositionally different polymer-based sensor elements and methods for preparing same
US6495892B2 (en) * 1997-08-08 2002-12-17 California Institute Of Technology Techniques and systems for analyte detection
EP1019715B1 (en) * 1997-08-08 2005-01-26 California Institute Of Technology Techniques and systems for analyte detection
JP2000033712A (en) * 1997-09-30 2000-02-02 Seiko Epson Corp Method for forming micro-sensor device and method for evaluating liquid function using the same
US20030180441A1 (en) * 1997-09-30 2003-09-25 Hitoshi Fukushima Manufacture of a microsensor device and a method for evaluating the function of a liquid by the use thereof
US6393895B1 (en) 1997-10-08 2002-05-28 Symyx Technologies, Inc. Method and apparatus for characterizing materials by using a mechanical resonator
US6494079B1 (en) * 2001-03-07 2002-12-17 Symyx Technologies, Inc. Method and apparatus for characterizing materials by using a mechanical resonator
DE19755516A1 (en) * 1997-12-13 1999-06-17 Conducta Endress & Hauser Measuring device for liquid and / or gas analysis and / or for measuring moisture in liquids and / or gases
US6598459B1 (en) * 1998-01-09 2003-07-29 Chi Yung Fu Artificial olfactory system
AU2584599A (en) * 1998-02-06 1999-08-23 California Institute Of Technology Sensor arrays for resolution of enantiomers
FR2776074B1 (en) * 1998-03-13 2000-04-21 Transtechnologies EQUIPMENT FOR THE ABSOLUTE OLFACTIVE CHARACTERIZATION OF AN ODORANT SUBSTANCE OR PRODUCT
US6085576A (en) 1998-03-20 2000-07-11 Cyrano Sciences, Inc. Handheld sensing apparatus
US6196057B1 (en) * 1998-04-02 2001-03-06 Reliance Electric Technologies, Llc Integrated multi-element lubrication sensor and lubricant health assessment
AU747878B2 (en) * 1998-04-09 2002-05-30 California Institute Of Technology Electronic techniques for analyte detection
US6844197B1 (en) * 1998-04-17 2005-01-18 California Institute Of Technology Method for validating that the detection ability of a sensor array mimics a human nose detection ability
AU4208099A (en) * 1998-05-27 1999-12-13 California Institute Of Technology Method of resolving analytes in a fluid
US7955561B2 (en) * 1998-06-09 2011-06-07 The California Institute Of Technology Colloidal particles used in sensing array
WO1999065386A1 (en) * 1998-06-15 1999-12-23 The Trustees Of The University Of Pennsylvania Diagnosing intrapulmonary infection and analyzing nasal sample
EP1099102B1 (en) 1998-06-19 2008-05-07 California Institute Of Technology Trace level detection of analytes using artificial olfactometry
JP2002519633A (en) * 1998-06-23 2002-07-02 カリフォルニア・インスティチュート・オブ・テクノロジー Sensor based on polymer / plasticizer
US6752964B1 (en) * 1998-06-23 2004-06-22 California Institute Of Technology Polymer/plasticizer based sensors
US6908770B1 (en) 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
FR2783051B1 (en) * 1998-09-08 2000-11-10 Commissariat Energie Atomique CHEMICAL SPECIES DETECTION FILM, CHEMICAL SENSOR, AND MANUFACTURING METHOD THEREOF
GB9820009D0 (en) * 1998-09-14 1998-11-04 Mini Agriculture & Fisheries Artificial olfactory sensing system
EP1151272B1 (en) * 1998-11-16 2009-09-30 California Institute of Technology Simultaneous determination of equilibrium and kinetic properties
JP3809734B2 (en) * 1998-11-16 2006-08-16 株式会社島津製作所 Gas measuring device
US7113069B1 (en) 1999-11-30 2006-09-26 Smiths Detection Inc. Aligned particle based sensor elements
WO2000033062A1 (en) * 1998-12-01 2000-06-08 Cyrano Sciences, Inc. Aligned particle based sensor elements
US6438497B1 (en) 1998-12-11 2002-08-20 Symyx Technologies Method for conducting sensor array-based rapid materials characterization
US6477479B1 (en) 1998-12-11 2002-11-05 Symyx Technologies Sensor array for rapid materials characterization
CA2317743A1 (en) * 1998-12-11 2000-06-22 Paul Mansky Sensor array-based system and method for rapid materials characterization
EP1058847B1 (en) * 1998-12-18 2002-07-31 Raytheon Company Stochastic array processing of sensor measurements to detect and quantify analytes
US6397661B1 (en) 1998-12-30 2002-06-04 University Of Kentucky Research Foundation Remote magneto-elastic analyte, viscosity and temperature sensing apparatus and associated methods of sensing
WO2000044822A2 (en) * 1999-01-27 2000-08-03 The United States Of America, As Represented By The Secretary Of The Navy Fabrication of conductive/non-conductive nanocomposites by laser evaporation
US7799004B2 (en) * 2001-03-05 2010-09-21 Kci Licensing, Inc. Negative pressure wound treatment apparatus and infection identification system and method
US6375693B1 (en) 1999-05-07 2002-04-23 International Business Machines Corporation Chemical-mechanical planarization of barriers or liners for copper metallurgy
US7122152B2 (en) * 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
US6194769B1 (en) * 1999-05-27 2001-02-27 Sandia Corporation Sensor devices comprising field-structured composites
US6359444B1 (en) 1999-05-28 2002-03-19 University Of Kentucky Research Foundation Remote resonant-circuit analyte sensing apparatus with sensing structure and associated method of sensing
US6783989B1 (en) 1999-06-11 2004-08-31 Physical Sciences, Inc. Toxic substance detection
WO2000078204A2 (en) * 1999-06-16 2000-12-28 California Institute Of Technology Methods for remote characterization of an odor
DE60023005T2 (en) * 1999-06-17 2006-07-20 Smiths Detection Inc., Pasadena MULTIPLE SENSOR SYSTEM AND DEVICE
WO2000078919A1 (en) * 1999-06-18 2000-12-28 Michigan State University Method and apparatus for the detection of volatile products in a sample
ATE346287T1 (en) 1999-07-16 2006-12-15 Univ Texas METHOD AND DEVICE FOR SUPPLYING SAMPLES TO A CHEMICAL SENSOR MATRIX
US6346423B1 (en) 1999-07-16 2002-02-12 Agilent Technologies, Inc. Methods and compositions for producing biopolymeric arrays
US6408250B1 (en) * 1999-08-10 2002-06-18 Battelle Memorial Institute Methods for characterizing, classifying, and identifying unknowns in samples
US6716638B1 (en) * 1999-09-13 2004-04-06 Cyrano Sciences Inc. Measuring conducting paths using infrared thermography
US6978212B1 (en) 1999-11-01 2005-12-20 Smiths Detection Inc. System for portable sensing
US6606566B1 (en) * 1999-11-01 2003-08-12 Steven A. Sunshine Computer code for portable sensing
NZ518740A (en) * 1999-11-08 2004-04-30 Univ Florida Marker detection method and apparatus to monitor drug compliance
CA2391451C (en) * 1999-11-15 2010-04-13 Cyrano Sciences, Inc. Referencing and rapid sampling in artificial olfactometry
US6703241B1 (en) 1999-11-15 2004-03-09 Cyrano Sciences, Inc. Referencing and rapid sampling in artificial olfactometry
US7501091B2 (en) 1999-12-30 2009-03-10 Smiths Detection Inc. Sensors with improved properties
US7998412B2 (en) * 2000-01-07 2011-08-16 Smart Holograms Limited Ophthalmic device comprising a holographic sensor
GB0000209D0 (en) 2000-01-07 2000-03-01 Holmetrica Limited Holographic multiplexed image sensor
EP2230314A1 (en) 2000-01-31 2010-09-22 The Board of Regents,The University of Texas System Method of sensing an analyte
US6317540B1 (en) * 2000-02-02 2001-11-13 Pirelli Cables & Systems, Llc Energy cable with electrochemical chemical analyte sensor
US6493638B1 (en) * 2000-03-01 2002-12-10 Raytheon Company Sensor apparatus for measuring volatile organic compounds
US6379969B1 (en) 2000-03-02 2002-04-30 Agilent Technologies, Inc. Optical sensor for sensing multiple analytes
US6881585B1 (en) 2000-03-06 2005-04-19 General Electric Company Method and apparatus for rapid screening of volatiles
DE60113073T2 (en) 2000-03-10 2006-08-31 Smiths Detection Inc., Pasadena CONTROL FOR AN INDUSTRIAL PROCESS WITH ONE OR MULTIPLE MULTIDIMENSIONAL VARIABLES
US6895338B2 (en) * 2000-03-10 2005-05-17 Smiths Detection - Pasadena, Inc. Measuring and analyzing multi-dimensional sensory information for identification purposes
US20080050839A1 (en) * 2000-03-21 2008-02-28 Suslick Kenneth S Apparatus and method for detecting lung cancer using exhaled breath
KR20020097206A (en) 2000-03-31 2002-12-31 라이프스캔, 인코포레이티드 Electrically-conductive patterns for monitoring the filling of medical devices
DE10017790A1 (en) * 2000-04-10 2001-10-11 Basf Ag Process for the production of biopolymer fields with real-time control
US7527821B2 (en) * 2000-05-02 2009-05-05 Smiths Detection Inc. Sensor fabricating method
US6393898B1 (en) 2000-05-25 2002-05-28 Symyx Technologies, Inc. High throughput viscometer and method of using same
US6664067B1 (en) * 2000-05-26 2003-12-16 Symyx Technologies, Inc. Instrument for high throughput measurement of material physical properties and method of using same
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US6837476B2 (en) 2002-06-19 2005-01-04 Honeywell International Inc. Electrostatically actuated valve
US7420659B1 (en) 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
EP1289661B1 (en) * 2000-06-14 2006-05-10 Board of Regents, The University of Texas System Apparatus and method for fluid injection
WO2001096025A2 (en) * 2000-06-14 2001-12-20 Board Of Regents, The University Of Texas System Systems and methods for cell subpopulation analysis
WO2001096857A2 (en) * 2000-06-14 2001-12-20 Board Of Regents, The University Of Texas System Method and apparatus for combined magnetophoretic and dielectrophoretic manipulation of analyte mixtures
US6411905B1 (en) 2000-07-18 2002-06-25 The Governors Of The University Of Alberta Method and apparatus for estimating odor concentration using an electronic nose
US7000330B2 (en) * 2002-08-21 2006-02-21 Honeywell International Inc. Method and apparatus for receiving a removable media member
US6773926B1 (en) * 2000-09-25 2004-08-10 California Institute Of Technology Nanoparticle-based sensors for detecting analytes in fluids
US6730212B1 (en) * 2000-10-03 2004-05-04 Hrl Laboratories, Llc Sensor for chemical and biological materials
US7008524B2 (en) * 2000-10-03 2006-03-07 Hrl Laboratories, Llc Sensors with variable response behavior
CA2423235A1 (en) * 2000-10-16 2002-04-25 E.I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
US6849239B2 (en) * 2000-10-16 2005-02-01 E. I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
US6688162B2 (en) 2000-10-20 2004-02-10 University Of Kentucky Research Foundation Magnetoelastic sensor for characterizing properties of thin-film/coatings
US6796733B2 (en) 2000-10-31 2004-09-28 International Imaging Materials Inc. Thermal transfer ribbon with frosting ink layer
US6990904B2 (en) * 2000-10-31 2006-01-31 International Imaging Materials, Inc Thermal transfer assembly for ceramic imaging
US6854386B2 (en) * 2000-10-31 2005-02-15 International Imaging Materials Inc. Ceramic decal assembly
US7104963B2 (en) * 2002-01-22 2006-09-12 University Of Florida Research Foundation, Inc. Method and apparatus for monitoring intravenous (IV) drug concentration using exhaled breath
US20050054942A1 (en) * 2002-01-22 2005-03-10 Melker Richard J. System and method for therapeutic drug monitoring
US6981947B2 (en) * 2002-01-22 2006-01-03 University Of Florida Research Foundation, Inc. Method and apparatus for monitoring respiratory gases during anesthesia
IL140949A0 (en) * 2001-01-17 2002-02-10 Yeda Res & Dev Nitric oxide (no) detector
US6639402B2 (en) 2001-01-31 2003-10-28 University Of Kentucky Research Foundation Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)
US20020160363A1 (en) * 2001-01-31 2002-10-31 Mcdevitt John T. Magnetic-based placement and retention of sensor elements in a sensor array
EP1362236B1 (en) * 2001-02-21 2012-06-06 Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Sensor for analysis of mixtures by global selectivity and its use in sensor system
CN100458427C (en) * 2001-02-28 2009-02-04 清华大学 Biological electro-machinal chip and application thereof
EP1373573B1 (en) * 2001-03-09 2013-10-02 TrovaGene, Inc. Conjugate probes and optical detection of analytes
ES2173048B1 (en) * 2001-03-26 2003-12-16 Univ Barcelona INSTRUMENT AND METHOD FOR ANALYSIS, IDENTIFICATION AND QUANTIFICATION OF GASES OR LIQUIDS.
FR2822952B1 (en) * 2001-03-27 2006-09-22 Seres VOLATILE SIGNATURE DETECTOR AND ASSOCIATED METHODS
US6383815B1 (en) 2001-04-04 2002-05-07 General Electric Company Devices and methods for measurements of barrier properties of coating arrays
US6567753B2 (en) 2001-04-04 2003-05-20 General Electric Company Devices and methods for simultaneous measurement of transmission of vapors through a plurality of sheet materials
US20020172620A1 (en) * 2001-04-04 2002-11-21 Potyrailo Radislav Alexandrovich Systems and methods for rapid evaluation of chemical resistance of materials
US6686201B2 (en) 2001-04-04 2004-02-03 General Electric Company Chemically-resistant sensor devices, and systems and methods for using same
US7052854B2 (en) * 2001-05-23 2006-05-30 University Of Florida Research Foundation, Inc. Application of nanotechnology and sensor technologies for ex-vivo diagnostics
EP1393069A1 (en) 2001-05-24 2004-03-03 The University Of Florida Method and apparatus for detecting environmental smoke exposure
JP4016611B2 (en) * 2001-05-25 2007-12-05 株式会社島津製作所 Odor identification device
US7302830B2 (en) 2001-06-06 2007-12-04 Symyx Technologies, Inc. Flow detectors having mechanical oscillators, and use thereof in flow characterization systems
US6494833B1 (en) 2001-06-19 2002-12-17 Welch Allyn, Inc. Conditioning apparatus for a chemical sensing instrument
US20030022150A1 (en) * 2001-07-24 2003-01-30 Sampson Jeffrey R. Methods for detecting a target molecule
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6837115B2 (en) * 2001-08-24 2005-01-04 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6860148B2 (en) 2001-08-24 2005-03-01 Symyx Technologies, Inc. High throughput fabric handle screening
US6769292B2 (en) * 2001-08-24 2004-08-03 Symyx Technologies, Inc High throughput rheological testing of materials
US6690179B2 (en) * 2001-08-24 2004-02-10 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using capacitance
US6857309B2 (en) 2001-08-24 2005-02-22 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6772642B2 (en) 2001-08-24 2004-08-10 Damian A. Hajduk High throughput mechanical property and bulge testing of materials libraries
US6736017B2 (en) 2001-08-24 2004-05-18 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6650102B2 (en) 2001-08-24 2003-11-18 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using a piezoelectric
US20030055587A1 (en) * 2001-09-17 2003-03-20 Symyx Technologies, Inc. Rapid throughput surface topographical analysis
US6807842B2 (en) 2001-09-18 2004-10-26 The Charles Stark Draper Laboratory, Inc. Molecular recognition sensor system
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US6902701B1 (en) * 2001-10-09 2005-06-07 Sandia Corporation Apparatus for sensing volatile organic chemicals in fluids
US6703819B2 (en) 2001-12-03 2004-03-09 Board Of Regents, The University Of Texas System Particle impedance sensor
US7487662B2 (en) * 2001-12-13 2009-02-10 The University Of Wyoming Research Corporation Volatile organic compound sensor system
US6866762B2 (en) * 2001-12-20 2005-03-15 Board Of Regents, University Of Texas System Dielectric gate and methods for fluid injection and control
US20030119057A1 (en) * 2001-12-20 2003-06-26 Board Of Regents Forming and modifying dielectrically-engineered microparticles
US7955559B2 (en) 2005-11-15 2011-06-07 Nanomix, Inc. Nanoelectronic electrochemical test device
US20070167853A1 (en) 2002-01-22 2007-07-19 Melker Richard J System and method for monitoring health using exhaled breath
US7179421B1 (en) * 2002-01-24 2007-02-20 Sandia Corporation Multi-pin chemiresistors for microchemical sensors
US7189360B1 (en) * 2002-01-24 2007-03-13 Sandia Corporation Circular chemiresistors for microchemical sensors
WO2003065019A1 (en) * 2002-01-25 2003-08-07 Illumina, Inc. Sensor arrays for detecting analytes in fluids
US7013709B2 (en) * 2002-01-31 2006-03-21 Symyx Technologies, Inc. High throughput preparation and analysis of plastically shaped material samples
AU2003200359A1 (en) * 2002-02-11 2003-08-28 Bayer Healthcare, Llc Non-invasive System for the Determination of Analytes in Body Fluids
US20030154031A1 (en) * 2002-02-14 2003-08-14 General Electric Company Method and apparatus for the rapid evaluation of a plurality of materials or samples
JP3882720B2 (en) 2002-02-19 2007-02-21 株式会社島津製作所 Odor measuring device
US7255677B2 (en) * 2002-03-04 2007-08-14 Smiths Detection Inc. Detection, diagnosis, and monitoring of a medical condition or disease with artificial olfactometry
US7312095B1 (en) 2002-03-15 2007-12-25 Nanomix, Inc. Modification of selectivity for sensing for nanostructure sensing device arrays
WO2003078652A2 (en) * 2002-03-15 2003-09-25 Nanomix, Inc. Modification of selectivity for sensing for nanostructure device arrays
ITTO20020244A1 (en) * 2002-03-19 2003-09-19 Infm Istituto Naz Per La Fisi COMPOSITE MATERIALS FOR SENSORISTIC APPLICATIONS AND CHEMICAL SENSOR DEVICE THAT INCLUDES THEM.
KR101100530B1 (en) * 2002-04-05 2011-12-30 이 아이 듀폰 디 네모아 앤드 캄파니 Method and apparatus for controlling a gas-emitting process and related devices
WO2003087811A1 (en) * 2002-04-05 2003-10-23 E.I. Du Pont De Nemours And Company Apparatus for analyzing mixtures of gases
US7052480B2 (en) 2002-04-10 2006-05-30 Baxter International Inc. Access disconnection systems and methods
US20040254513A1 (en) 2002-04-10 2004-12-16 Sherwin Shang Conductive polymer materials and applications thereof including monitoring and providing effective therapy
US10155082B2 (en) 2002-04-10 2018-12-18 Baxter International Inc. Enhanced signal detection for access disconnection systems
US7022098B2 (en) 2002-04-10 2006-04-04 Baxter International Inc. Access disconnection systems and methods
US7200495B2 (en) * 2002-04-11 2007-04-03 The Charles Stark Draper Laboratory Method and apparatus for analyzing spatial and temporal processes of interaction
AU2003228711C1 (en) 2002-04-26 2010-01-07 Board Of Regents, The University Of Texas System Method and system for the detection of cardiac risk factors
US20030203500A1 (en) * 2002-04-26 2003-10-30 Symyx Technologies, Inc. High throughput testing of fluid samples using an electric field
US6830668B2 (en) * 2002-04-30 2004-12-14 Conductive Technologies, Inc. Small volume electrochemical sensor
AU2003249681A1 (en) * 2002-05-31 2003-12-19 Diversa Corporation Multiplexed systems for nucleic acid sequencing
KR100596972B1 (en) * 2002-06-10 2006-07-05 경북대학교 산학협력단 Intelligent food decomposition detecting system and the way how to detect based on it
US7171312B2 (en) * 2002-07-19 2007-01-30 Smiths Detection, Inc. Chemical and biological agent sensor array detectors
EP1543322A4 (en) * 2002-07-19 2008-07-09 Smiths Detection Pasadena Inc Non-specific sensor array detectors
US6994777B2 (en) * 2002-09-04 2006-02-07 Lynntech, Inc. Chemical sensors utilizing conducting polymer compositions
US7465425B1 (en) 2002-09-09 2008-12-16 Yizhong Sun Sensor and method for detecting analytes in fluids
US8519726B2 (en) * 2002-09-09 2013-08-27 Yizhong Sun Sensor having integrated electrodes and method for detecting analytes in fluids
US20040123650A1 (en) * 2002-09-17 2004-07-01 Symyx Technologies, Inc. High throughput rheological testing of materials
AU2002368235A1 (en) * 2002-09-20 2004-04-08 The Charles Stark Draper Laboratory, Inc. Molecular recognition sensor system
US6862917B2 (en) * 2002-09-30 2005-03-08 Bae Systems Information And Electronic Systems Integration Inc. Apparatus for detecting chemical agents including olfactory interferometric lens and method of use
GB0222728D0 (en) * 2002-10-01 2002-11-06 Shell Int Research System for identifying lubricating oils
AU2003282936A1 (en) 2002-10-18 2004-05-04 Symyx Technologies, Inc. Environmental control system fluid sensing system and method comprising a sesnsor with a mechanical resonator
US7112443B2 (en) * 2002-10-18 2006-09-26 Symyx Technologies, Inc. High throughput permeability testing of materials libraries
US7043969B2 (en) 2002-10-18 2006-05-16 Symyx Technologies, Inc. Machine fluid sensor and method
US20040092004A1 (en) * 2002-11-07 2004-05-13 Hrl Laboratories, Llc Sensor for detection of enzyme and enzyme detection method for aerosolized bacteria in the enviromnment
SE524574C2 (en) * 2002-12-09 2004-08-31 Otre Ab Method of signal processing for voltammetry
US7708974B2 (en) 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
ES2212739B1 (en) * 2003-01-02 2005-04-01 Sociedad Española De Carburos Metalicos, S.A. ANALYZING SYSTEM FOR THE DETECTION OF REDUCING AND OXIDIZING GASES IN A CARRIER GAS AND GAS SENSOR BASED ON METAL OXIDES OF SEMI-CONDUCTOR TYPE.
US7721590B2 (en) 2003-03-21 2010-05-25 MEAS France Resonator sensor assembly
WO2004086027A2 (en) 2003-03-21 2004-10-07 Symyx Technologies, Inc. Mechanical resonator
WO2004086021A2 (en) * 2003-03-26 2004-10-07 E.I. Dupont De Nemours And Company Apparatus for analyzing mixtures of gases
US7645422B2 (en) * 2003-04-11 2010-01-12 Therm-O-Disc, Incorporated Vapor sensor and materials therefor
US7138090B2 (en) * 2003-04-11 2006-11-21 Therm-O-Disc, Incorporated Vapor sensor and materials therefor
US20050064452A1 (en) * 2003-04-25 2005-03-24 Schmid Matthew J. System and method for the detection of analytes
US20040223884A1 (en) * 2003-05-05 2004-11-11 Ing-Shin Chen Chemical sensor responsive to change in volume of material exposed to target particle
US9317922B2 (en) * 2003-05-16 2016-04-19 Board Of Regents The University Of Texas System Image and part recognition technology
US9234867B2 (en) 2003-05-16 2016-01-12 Nanomix, Inc. Electrochemical nanosensors for biomolecule detection
WO2004104922A2 (en) 2003-05-16 2004-12-02 Board Of Regents, The University Of Texas System Image and part recognition technology
US6917885B2 (en) * 2003-06-06 2005-07-12 Steris Inc. Method and apparatus for formulating and controlling chemical concentration in a gas mixture
WO2005011520A2 (en) 2003-07-25 2005-02-10 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
GB2405097A (en) * 2003-08-16 2005-02-23 Reckitt Benckiser Sensor equipped dispenser for air treatment media
US20050054116A1 (en) * 2003-09-05 2005-03-10 Potyrailo Radislav A. Method of manufacturing and evaluating sensor coatings and the sensors derived therefrom
KR100529233B1 (en) * 2003-09-06 2006-02-24 한국전자통신연구원 Sensor and method for manufacturing the same
US7581434B1 (en) 2003-09-25 2009-09-01 Rockwell Automation Technologies, Inc. Intelligent fluid sensor for machinery diagnostics, prognostics, and control
US7547381B2 (en) * 2003-09-26 2009-06-16 Agency For Science, Technology And Research And National University Of Singapore Sensor array integrated electrochemical chip, method of forming same, and electrode coating
US7010956B2 (en) * 2003-11-05 2006-03-14 Michael S. Head Apparatus and method for detecting an analyte
US20050129568A1 (en) * 2003-12-10 2005-06-16 Xerox Corporation Environmental system including a micromechanical dispensing device
US20050127207A1 (en) * 2003-12-10 2005-06-16 Xerox Corporation Micromechanical dispensing device and a dispensing system including the same
US20050127206A1 (en) * 2003-12-10 2005-06-16 Xerox Corporation Device and system for dispensing fluids into the atmosphere
CA2549190A1 (en) 2003-12-11 2005-06-30 Board Of Regents, The University Of Texas System Method and system for the analysis of saliva using a sensor array
US7679563B2 (en) * 2004-01-14 2010-03-16 The Penn State Research Foundation Reconfigurable frequency selective surfaces for remote sensing of chemical and biological agents
US8105849B2 (en) 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
US8101431B2 (en) 2004-02-27 2012-01-24 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems
US7247494B2 (en) * 2004-02-27 2007-07-24 Agilent Technologies, Inc. Scanner with array anti-degradation features
US7402425B2 (en) * 2004-03-02 2008-07-22 The Charles Stark Draper Laboratory, Inc. Stress-based electrostatic monitoring of chemical reactions and binding
US20080035765A1 (en) * 2004-04-20 2008-02-14 Xerox Corporation Environmental system including a micromechanical dispensing device
KR100914818B1 (en) 2004-04-22 2009-09-02 스미스 디텍션 인코포레이티드 Autonomous Monitoring Method and System Using Sensors of Different Sensitivities
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US7314597B2 (en) * 2004-05-11 2008-01-01 Science Applications International Corporation Chemical agent detection
DE102004040774B3 (en) * 2004-08-23 2006-04-27 Siemens Ag Method and device for online control of a batch process in a bioreactor
WO2006041927A2 (en) * 2004-10-04 2006-04-20 Food Quality Sensor International, Inc. Food quality sensor and methods thereof
US8236246B2 (en) 2004-10-07 2012-08-07 E I Du Pont De Nemours And Company Gas sensitive apparatus
JP2008517276A (en) * 2004-10-15 2008-05-22 ユニヴァースティ オブ ヴァージニア パテント ファウンデイション Remote sensor and field sensor system and related methods for improved detection of chemicals in the atmosphere
KR100597788B1 (en) * 2004-12-17 2006-07-06 삼성전자주식회사 Page buffer for improving program speed in nonvolatile semiconductor memory device and operating method using the same
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US7222639B2 (en) 2004-12-29 2007-05-29 Honeywell International Inc. Electrostatically actuated gas valve
TWI301542B (en) * 2005-01-05 2008-10-01 Ind Tech Res Inst Taste sensing mixture and a sensor using the same and a sensory system using the same
US7328882B2 (en) 2005-01-06 2008-02-12 Honeywell International Inc. Microfluidic modulating valve
US7445017B2 (en) 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
US20060188399A1 (en) * 2005-02-04 2006-08-24 Jadi, Inc. Analytical sensor system for field use
US20060210427A1 (en) * 2005-03-18 2006-09-21 Theil Jeremy A Integrated chemical sensing system
US20090030655A1 (en) * 2005-03-21 2009-01-29 Lewin Gregory C Analysis Methods for unmixing the response of non-linear, cross-reactive sensors and related system to single and multiple stimulants
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US20060266102A1 (en) * 2005-05-25 2006-11-30 Tolliver Charlie L System, apparatus and method for detecting unknown chemical compounds
WO2007053186A2 (en) 2005-05-31 2007-05-10 Labnow, Inc. Methods and compositions related to determination and use of white blood cell counts
US7320338B2 (en) * 2005-06-03 2008-01-22 Honeywell International Inc. Microvalve package assembly
US7517201B2 (en) 2005-07-14 2009-04-14 Honeywell International Inc. Asymmetric dual diaphragm pump
KR100842247B1 (en) * 2005-08-08 2008-06-30 한국전자통신연구원 Electronic nose sensor array, sensor system having the sensor array, method of manufacturing the sensor array and method of analyzing using the sensor system
US20090149334A1 (en) * 2005-09-01 2009-06-11 Mcgill University Methods and apparatus for detecting liquid inside individual channels in a multi-channel plate
US20070148045A1 (en) * 2005-10-12 2007-06-28 California Institute Of Technology Optoelectronic system for particle detection
US7708947B2 (en) * 2005-11-01 2010-05-04 Therm-O-Disc, Incorporated Methods of minimizing temperature cross-sensitivity in vapor sensors and compositions therefor
US20070141683A1 (en) * 2005-11-15 2007-06-21 Warner Lisa R Selective electrode for benzene and benzenoid compounds
EP1790977A1 (en) * 2005-11-23 2007-05-30 SONY DEUTSCHLAND GmbH Nanoparticle/nanofiber based chemical sensor, arrays of such sensors, uses and method of fabrication thereof, and method of detecting an analyte
US7624755B2 (en) 2005-12-09 2009-12-01 Honeywell International Inc. Gas valve with overtravel
DE102005062005A1 (en) * 2005-12-22 2007-06-28 Innovative Sensor Technology Ist Ag Device for determining and/or monitoring process parameter(s), especially moisture or temperature, has supply channel(s) configured, positioned and adapted to sensor unit so medium passes through channel(s) essentially only to sensor unit
US20080319682A1 (en) * 2006-01-31 2008-12-25 Stephen Keith Holland Method and System For Operating In-Situ (Sampling) Chemical Sensors
US7525444B2 (en) * 2006-02-17 2009-04-28 Perma-Pipe, Inc. Sensor for detecting hydrocarbons
JP2009529908A (en) * 2006-03-21 2009-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microelectronic sensor device with sensor array
US7523762B2 (en) 2006-03-22 2009-04-28 Honeywell International Inc. Modulating gas valves and systems
WO2007120381A2 (en) 2006-04-14 2007-10-25 Dexcom, Inc. Analyte sensor
US8143681B2 (en) * 2006-04-20 2012-03-27 The George Washington University Saw devices, processes for making them, and methods of use
US20100007444A1 (en) * 2006-04-20 2010-01-14 Anis Nurashikin Nordin GHz Surface Acoustic Resonators in RF-CMOS
GB0613165D0 (en) * 2006-06-28 2006-08-09 Univ Warwick Real-time infrared measurement and imaging system
US8012420B2 (en) * 2006-07-18 2011-09-06 Therm-O-Disc, Incorporated Robust low resistance vapor sensor materials
US8007704B2 (en) * 2006-07-20 2011-08-30 Honeywell International Inc. Insert molded actuator components
US20080025876A1 (en) * 2006-07-26 2008-01-31 Ramamurthy Praveen C Vapor sensor materials having polymer-grafted conductive particles
US7914460B2 (en) 2006-08-15 2011-03-29 University Of Florida Research Foundation, Inc. Condensate glucose analyzer
US7543604B2 (en) * 2006-09-11 2009-06-09 Honeywell International Inc. Control valve
US7644731B2 (en) 2006-11-30 2010-01-12 Honeywell International Inc. Gas valve with resilient seat
US20100097048A1 (en) * 2007-01-04 2010-04-22 Werner Douglas H Passive detection of analytes
JP4925835B2 (en) * 2007-01-12 2012-05-09 日東電工株式会社 Substance detection sensor
WO2008088867A1 (en) * 2007-01-19 2008-07-24 Cantimer Incorporated Piezoresistive microcantilever sensor and composition
US8309028B2 (en) * 2007-02-02 2012-11-13 Commonwealth Scientific And Industrial Research Organisation Chemiresistor for use in conducting electrolyte solution
DE102007013522A1 (en) * 2007-03-21 2008-09-25 Robert Bosch Gmbh Sensor element of a gas sensor
US8018010B2 (en) * 2007-04-20 2011-09-13 The George Washington University Circular surface acoustic wave (SAW) devices, processes for making them, and methods of use
US20090124513A1 (en) * 2007-04-20 2009-05-14 Patricia Berg Multiplex Biosensor
US8454895B2 (en) * 2007-05-03 2013-06-04 Nanyang Technological University Online contaminant detection and removal system
WO2008157403A2 (en) * 2007-06-13 2008-12-24 Board Of Regents, The University Of Texas System Method and apparatus for metal nanoparticle electrocatalytic amplification
US20090014340A1 (en) * 2007-06-15 2009-01-15 Williams John R Devices, systems, and methods for measuring glucose
WO2009013754A1 (en) 2007-07-24 2009-01-29 Technion Research And Development Foundation Ltd. Chemically sensitive field effect transistors and use thereof in electronic nose devices
WO2009026581A2 (en) * 2007-08-23 2009-02-26 Battelle Memorial Institute Molecular indicator and process of synthesizing
US8318107B2 (en) * 2007-09-05 2012-11-27 Biosense Technologies, Inc. Apparatus and method for specimen suitability testing
CN101135689B (en) * 2007-09-21 2010-12-15 华中科技大学 Electric nose development platform
US20090100897A1 (en) * 2007-10-05 2009-04-23 John Albert Elton Confidence tester for sensor array detectors
US9606078B2 (en) * 2007-11-11 2017-03-28 University Of North Florida Board Of Trustees Nanocrystalline indum tin oxide sensors and arrays
US8691390B2 (en) * 2007-11-20 2014-04-08 Therm-O-Disc, Incorporated Single-use flammable vapor sensor films
US7917309B2 (en) * 2007-12-11 2011-03-29 International Business Machines Corporation System and method for detection and prevention of influx of airborne contaminants
CN101226166B (en) * 2008-01-31 2013-08-14 浙江大学 Low-power consumption hand-hold electric nasus system for testing on-site
IL189576A0 (en) * 2008-02-18 2008-12-29 Technion Res & Dev Foundation Chemically sensitive field effect transistors for explosive detection
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
SI2271938T1 (en) 2008-04-11 2014-07-31 Board Of Regents Of The University Of Texas System Method and apparatus for nanoparticle electrogenerated chemiluminescence amplification
US8054182B2 (en) * 2008-04-16 2011-11-08 The Johns Hopkins University Remotely directed vehicle inspection method and apparatus
EP2626692A3 (en) * 2008-05-08 2014-10-01 Board of Regents of the University of Texas System Luminescent nanostructured materials for use in electrogenerated chemiluminescence
US8258450B1 (en) * 2008-06-26 2012-09-04 University Of South Florida Physical and chemical integrated flow imaging device
US8181531B2 (en) * 2008-06-27 2012-05-22 Edwin Carlen Accessible stress-based electrostatic monitoring of chemical reactions and binding
US8114043B2 (en) 2008-07-25 2012-02-14 Baxter International Inc. Electromagnetic induction access disconnect sensor
FR2934685B1 (en) 2008-07-29 2010-09-03 Commissariat Energie Atomique ELECTRIC DETECTION AND / OR QUANTIFICATION OF ORGANOPHOSPHORUS COMPOUNDS
KR101468593B1 (en) * 2008-08-14 2014-12-04 삼성전자주식회사 Wave sensor apparatus comprising gas removing unit and method of detecting target material in liquid sample
US9011670B2 (en) * 2008-08-14 2015-04-21 The Charles Stark Draper Laboratory, Inc. Three-dimensional metal ion sensor arrays on printed circuit boards
WO2010033724A2 (en) 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
JP5315156B2 (en) 2008-09-19 2013-10-16 日東電工株式会社 Manufacturing method of sensor substrate
KR20100035380A (en) * 2008-09-26 2010-04-05 삼성전자주식회사 Chemical sensor using thin film sensing member
US20100082271A1 (en) * 2008-09-30 2010-04-01 Mccann James D Fluid level and concentration sensor
CN101382531B (en) * 2008-10-08 2011-12-28 天津商业大学 Method for detecting fresh degree of shrimp by electronic nose
WO2010044860A1 (en) * 2008-10-14 2010-04-22 Skf Usa Inc. Portable vibration monitoring device
DE102008054462A1 (en) * 2008-12-10 2010-06-17 BSH Bosch und Siemens Hausgeräte GmbH Laundry treatment device with gas sensor and method for treating laundry
WO2010079490A1 (en) 2009-01-09 2010-07-15 Technion Research And Development Foundation Ltd. Volatile organic compounds as diagnostic markers in the breath for lung cancer
JP2010164344A (en) 2009-01-13 2010-07-29 Nitto Denko Corp Substance detecting sensor
JP2009150904A (en) * 2009-03-02 2009-07-09 E I Du Pont De Nemours & Co Analyzing apparatus for gas composite
US8256286B2 (en) * 2009-04-24 2012-09-04 Sober Steering Sensors, Llc System and method for detecting and measuring ethyl alcohol in the blood of a motorized vehicle driver transdermally and non-invasively in the presence of interferents
US9848760B2 (en) * 2009-06-29 2017-12-26 Gearbox, Llc Devices for continual monitoring and introduction of gastrointestinal microbes
US20110027458A1 (en) 2009-07-02 2011-02-03 Dexcom, Inc. Continuous analyte sensors and methods of making same
US9024766B2 (en) * 2009-08-28 2015-05-05 The Invention Science Fund, Llc Beverage containers with detection capability
US8898069B2 (en) * 2009-08-28 2014-11-25 The Invention Science Fund I, Llc Devices and methods for detecting an analyte in salivary fluid
FR2950436B1 (en) 2009-09-18 2013-09-20 Commissariat Energie Atomique APPARATUS AND METHOD FOR DETECTING AND / OR QUANTIFYING COMPOUNDS OF INTEREST PRESENT IN GAS FORM OR SOLUTION IN SOLVENT
EP2336765A1 (en) 2009-12-08 2011-06-22 Nanocyl S.A. Fibre-based electrochemical sensor
WO2011148371A1 (en) 2010-05-23 2011-12-01 Technion Research And Development Foundation Ltd. Detection, staging and grading of benign and malignant tumors
FR2962549B1 (en) 2010-07-08 2012-08-24 Commissariat Energie Atomique DEVICE FOR ELECTRICAL DETECTION AND / OR QUANTIFICATION BY MOLECULAR FOOTPRINTING OF ORGANOPHOSPHORUS COMPOUNDS
CN101871898B (en) * 2010-07-23 2012-05-09 华中科技大学 Smell detection method based on odor evaporation characteristic spectrum
US8920731B2 (en) 2010-09-20 2014-12-30 Kimberly-Clark Worldwide, Inc. Nonwoven-based chemi-capacitive or chemi-resistive gas sensor
US8960004B2 (en) 2010-09-29 2015-02-24 The George Washington University Synchronous one-pole surface acoustic wave resonator
WO2012051433A2 (en) 2010-10-13 2012-04-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
CN105699449A (en) 2011-05-02 2016-06-22 艾比斯生物科学公司 Multiple-analyte assay device and system
JP5386552B2 (en) * 2011-07-14 2014-01-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Gas mixture analyzer
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US9076593B2 (en) 2011-12-29 2015-07-07 Lear Corporation Heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
EP2839270B1 (en) 2012-03-26 2019-11-06 Technion Research & Development Foundation Limited A platform unit for combined sensing of pressure, temperature and humidity
WO2013166024A1 (en) * 2012-04-30 2013-11-07 Tufts University Digital quantification of single molecules
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
EP2868970B1 (en) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US10514351B2 (en) * 2014-08-18 2019-12-24 Mcmaster University Sensors and methods for detecting an oxidant
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US20160176261A1 (en) * 2014-12-17 2016-06-23 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Autonomous air conditioning system with clean air optimization and pollution detector
MX2017015691A (en) 2015-06-12 2018-04-18 Philip Morris Products Sa Sensing in aerosol generating articles.
US20160370337A1 (en) * 2015-06-16 2016-12-22 Lunatech, Llc Analysis System For Biological Compounds, And Method Of Operation
WO2017042851A1 (en) 2015-09-10 2017-03-16 株式会社 東芝 Molecule detection device, molecule detection method, and organic probe
WO2017136010A2 (en) 2015-11-03 2017-08-10 University Of Utah Research Foundation Interfacial nanofibril composite for selective alkane vapor detection
WO2017085796A1 (en) 2015-11-17 2017-05-26 株式会社アロマビット Odor sensor and odor measurement system
US10386365B2 (en) 2015-12-07 2019-08-20 Nanohmics, Inc. Methods for detecting and quantifying analytes using ionic species diffusion
US10386351B2 (en) 2015-12-07 2019-08-20 Nanohmics, Inc. Methods for detecting and quantifying analytes using gas species diffusion
JP6415751B2 (en) * 2015-12-09 2018-10-31 株式会社ソニー・インタラクティブエンタテインメント Odor presentation device
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
WO2017187663A1 (en) * 2016-04-27 2017-11-02 シャープ株式会社 Gas sensor and gas detection device
GB201608128D0 (en) 2016-05-07 2016-06-22 Smiths Medical Int Ltd Respiratory monitoring apparatus
ITUA20164230A1 (en) * 2016-06-09 2017-12-09 Univ Degli Studi Milano ENTERICAL PATHOLOGIES DETECTION SYSTEM, IN PARTICULAR IN ANIMALS, AND RELATIVE DETECTION METHOD
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US10329022B2 (en) 2016-10-31 2019-06-25 Honeywell International Inc. Adjustable sensor or sensor network to selectively enhance identification of select chemical species
WO2018109611A1 (en) 2016-12-12 2018-06-21 Philip Morris Products S.A. Product recognition in aerosol generating devices
JP6826195B2 (en) * 2017-05-08 2021-02-03 長谷川香料株式会社 How to express an image in color and color representation diagram
WO2018211642A1 (en) * 2017-05-17 2018-11-22 株式会社アロマビット Method for creating basis data for scent image
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
WO2019133014A1 (en) 2017-12-30 2019-07-04 Mark Alan Lemkin Agricultural processing system and method
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
WO2020102880A1 (en) 2018-11-20 2020-05-28 National Research Council Of Canada Sensor platform
EP3933393A4 (en) * 2019-04-02 2023-03-08 National Institute for Materials Science Measurement device, measurement method, program, and biosensor
US20230140545A1 (en) * 2021-11-04 2023-05-04 Tdk Corporation Gas sensor, method of producing gas sensor and gas measuring apparatus

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927930A (en) * 1972-07-10 1975-12-23 Polaroid Corp Light polarization employing magnetically oriented ferrite suspensions
US4225410A (en) * 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4453126A (en) * 1978-08-02 1984-06-05 The Hospital For Sick Children Measurement of anaesthetic gas concentration
US4631952A (en) * 1985-08-30 1986-12-30 Chevron Research Company Resistive hydrocarbon leak detector
US4644101A (en) * 1985-12-11 1987-02-17 At&T Bell Laboratories Pressure-responsive position sensor
US4737112A (en) * 1986-09-05 1988-04-12 American Telephone And Telegraph Company, At&T Bell Laboratories Anisotropically conductive composite medium
US4923739A (en) * 1987-07-30 1990-05-08 American Telephone And Telegraph Company Composite electrical interconnection medium comprising a conductive network, and article, assembly, and method
US5104210A (en) * 1989-04-24 1992-04-14 Monsanto Company Light control films and method of making
US5284748A (en) * 1986-03-25 1994-02-08 Immunotronics, Inc. Method for electrical detection of a binding reaction
US5384073A (en) * 1990-12-05 1995-01-24 Akzo N.V. Ligand gold bonding
US5429975A (en) * 1993-10-25 1995-07-04 United Microelectronics Corporation Method of implanting during manufacture of ROM device
US5512882A (en) * 1991-08-07 1996-04-30 Transducer Research, Inc. Chemical sensing apparatus and methods
US5571401A (en) * 1995-03-27 1996-11-05 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US5605612A (en) * 1993-11-11 1997-02-25 Goldstar Electron Co., Ltd. Gas sensor and manufacturing method of the same
US5677662A (en) * 1994-01-17 1997-10-14 Hydor S.R.L. Heat-sensitive resistive compound and method for producing it and using it
US5698771A (en) * 1995-03-30 1997-12-16 The United States Of America As Represented By The United States National Aeronautics And Space Administration Varying potential silicon carbide gas sensor
US5742223A (en) * 1995-12-07 1998-04-21 Raychem Corporation Laminar non-linear device with magnetically aligned particles
US5922537A (en) * 1996-11-08 1999-07-13 N.o slashed.AB Immunoassay, Inc. Nanoparticles biosensor
US5942674A (en) * 1997-08-04 1999-08-24 Ford Global Technologies, Inc. Method for detecting oxygen partial pressure using a phase-transformation sensor
US6002817A (en) * 1997-09-29 1999-12-14 The Regents Of The University Of Michigan Optical sensors for the detection of nitric oxide
US6202471B1 (en) * 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6537498B1 (en) * 1995-03-27 2003-03-25 California Institute Of Technology Colloidal particles used in sensing arrays

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045198A (en) * 1959-12-11 1962-07-17 James P Dolan Detection device
GB1041575A (en) * 1962-09-10 1966-09-07 Water Engineering Ltd An arrangement for detecting hydrocarbons
US3428892A (en) * 1965-09-20 1969-02-18 James E Meinhard Electronic olfactory detector having organic semiconductor barrier layer structure
JPS546240B2 (en) * 1973-12-18 1979-03-26
DE2407110C3 (en) * 1974-02-14 1981-04-23 Siemens AG, 1000 Berlin und 8000 München Sensor for the detection of a substance contained in a gas or a liquid
US4244918A (en) * 1975-12-23 1981-01-13 Nippon Soken, Inc. Gas component detection apparatus
US4142400A (en) * 1977-03-07 1979-03-06 Johnson Controls, Inc. Nitrogen dioxide sensing element and method of sensing the presence of nitrogen dioxide
US4236307A (en) * 1978-11-02 1980-12-02 Johnson Controls Inc. Method of making a nitrogen dioxide sensing element
JPS5766347A (en) * 1980-10-09 1982-04-22 Hitachi Ltd Detector for mixture gas
US4542640A (en) * 1983-09-15 1985-09-24 Clifford Paul K Selective gas detection and measurement system
US4670405A (en) * 1984-03-02 1987-06-02 The United States Of America As Represented By The United States Department Of Energy Sensor array for toxic gas detection
US4674320A (en) * 1985-09-30 1987-06-23 The United States Of America As Represented By The United States Department Of Energy Chemoresistive gas sensor
US4779451A (en) * 1986-02-17 1988-10-25 Hitachi, Ltd. System for measuring foreign materials in liquid
US4770027A (en) * 1986-03-24 1988-09-13 Katuo Ehara Method of measuring concentrations of odors and a device therefor
US4759210A (en) * 1986-06-06 1988-07-26 Microsensor Systems, Inc. Apparatus for gas-monitoring and method of conducting same
US4795968A (en) * 1986-06-30 1989-01-03 Sri International Gas detection method and apparatus using chemisorption and/or physisorption
US5023133A (en) * 1986-12-12 1991-06-11 The Lubrizol Corporation Acid sensor
GB8702390D0 (en) * 1987-02-03 1987-03-11 Warwick University Of Identifying/measuring odorants
US4911892A (en) * 1987-02-24 1990-03-27 American Intell-Sensors Corporation Apparatus for simultaneous detection of target gases
GB8708201D0 (en) * 1987-04-06 1987-05-13 Cogent Ltd Gas sensor
US4818348A (en) * 1987-05-26 1989-04-04 Transducer Research, Inc. Method and apparatus for identifying and quantifying simple and complex chemicals
US4847783A (en) * 1987-05-27 1989-07-11 Richard Grace Gas sensing instrument
JPS6415646A (en) * 1987-07-09 1989-01-19 Junkosha Co Ltd Volatile liquid detecting element and volatile liquid discriminating apparatus
US4900405A (en) * 1987-07-15 1990-02-13 Sri International Surface type microelectronic gas and vapor sensor
US4812221A (en) * 1987-07-15 1989-03-14 Sri International Fast response time microsensors for gaseous and vaporous species
US4855706A (en) * 1987-09-11 1989-08-08 Hauptly Paul D Organic liquid detector
JPH01131444A (en) * 1987-11-17 1989-05-24 Katsuo Ebara Smell discrimination device
EP0332934A3 (en) * 1988-03-14 1992-05-20 Siemens Aktiengesellschaft Apparatus for measuring the partial pressure of gases or vapours
US5137991A (en) * 1988-05-13 1992-08-11 The Ohio State University Research Foundation Polyaniline compositions, processes for their preparation and uses thereof
US4893108A (en) * 1988-06-24 1990-01-09 The United States Of America As Represented By The Secretary Of The Air Force Halogen detection with solid state sensor
US4992244A (en) * 1988-09-27 1991-02-12 The United States Of America As Represented By The Secretary Of The Navy Films of dithiolene complexes in gas-detecting microsensors
US5312762A (en) * 1989-03-13 1994-05-17 Guiseppi Elie Anthony Method of measuring an analyte by measuring electrical resistance of a polymer film reacting with the analyte
US5256574A (en) * 1989-06-26 1993-10-26 Bell Communications Research, Inc. Method for selective detection of liquid phase hydrocarbons
US5045285A (en) * 1989-09-05 1991-09-03 United States Of America As Represented By The Secretary Of The Air Force Gaseous component identification with polymeric film sensor
US5089780A (en) * 1989-10-04 1992-02-18 Hughes Aircraft Company Oil quality monitor sensor and system
DE59010934D1 (en) * 1989-10-17 2003-10-30 Paragon Ag Gas sensor arrangement
GB8927567D0 (en) * 1989-12-06 1990-02-07 Gen Electric Co Plc Detection of chemicals
US5173166A (en) * 1990-04-16 1992-12-22 Minitech Co. Electrochemical gas sensor cells
US5079944A (en) * 1990-04-27 1992-01-14 Westinghouse Electric Corp. Hydrocarbon vapor sensor and system
US5145645A (en) * 1990-06-15 1992-09-08 Spectral Sciences, Inc. Conductive polymer selective species sensor
US5310507A (en) * 1990-06-15 1994-05-10 Spectral Sciences, Inc. Method of making a conductive polymer selective species sensor
US5120421A (en) * 1990-08-31 1992-06-09 The United States Of America As Represented By The United States Department Of Energy Electrochemical sensor/detector system and method
US5238729A (en) * 1991-04-05 1993-08-24 Minnesota Mining And Manufacturing Company Sensors based on nanosstructured composite films
US5177994A (en) * 1991-05-22 1993-01-12 Suntory Limited And Tokyo Institute Of Technology Odor sensing system
CN1027607C (en) * 1991-09-09 1995-02-08 云南大学 Method for enhancing sensitivity of gas-sensitive semiconductor component
US5150603A (en) * 1991-12-13 1992-09-29 Westinghouse Electric Corp. Hydrocarbon vapor sensor and system
US5654497A (en) * 1992-03-03 1997-08-05 Lockheed Martin Energy Systems, Inc. Motor vehicle fuel analyzer
JP2704808B2 (en) * 1992-04-07 1998-01-26 株式会社ユニシアジェックス Fuel property determination device
US5469369A (en) * 1992-11-02 1995-11-21 The United States Of America As Represented By The Secretary Of The Navy Smart sensor system and method using a surface acoustic wave vapor sensor array and pattern recognition for selective trace organic vapor detection
US5337018A (en) * 1992-11-13 1994-08-09 Hughes Aircraft Company Electronic sensor for determining alcohol content of fuels
US5417100A (en) * 1993-03-10 1995-05-23 Hughes Aircraft Company Reversible sensor for detecting solvent vapors
WO1994028372A1 (en) * 1993-05-25 1994-12-08 Rosemount Inc. Organic chemical sensor
US5465608A (en) * 1993-06-30 1995-11-14 Orbital Sciences Corporation Saw vapor sensor apparatus and multicomponent signal processing
US5372785A (en) * 1993-09-01 1994-12-13 International Business Machines Corporation Solid-state multi-stage gas detector
FR2710153B1 (en) * 1993-09-17 1995-12-01 Alpha Mos Sa Methods and apparatus for detecting odorous substances and applications.
US5400641A (en) * 1993-11-03 1995-03-28 Advanced Optical Controls, Inc. Transformer oil gas extractor
JP2647798B2 (en) * 1993-12-27 1997-08-27 工業技術院長 Chemical / physical quantity identification method and device
JP3299623B2 (en) * 1994-03-23 2002-07-08 能美防災株式会社 Odor pressure measurement method, odor pressure standardization method, odor detection device, and fire detection device
GB9411515D0 (en) * 1994-06-09 1994-08-03 Aromascan Plc Detecting bacteria
DE4423289C1 (en) * 1994-07-02 1995-11-02 Karlsruhe Forschzent Gas sensor for reducing or oxidizing gases
GB9417913D0 (en) * 1994-09-06 1994-10-26 Univ Leeds Odour sensor
US5788833A (en) * 1995-03-27 1998-08-04 California Institute Of Technology Sensors for detecting analytes in fluids
US6170318B1 (en) * 1995-03-27 2001-01-09 California Institute Of Technology Methods of use for sensor based fluid detection devices
US5951846A (en) * 1995-03-27 1999-09-14 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US5674752A (en) * 1995-10-16 1997-10-07 The United States Of America As Represented By The Secretary Of The Navy Conductive polymer coated fabrics for chemical sensing
US5675070A (en) * 1996-02-09 1997-10-07 Ncr Corporation Olfatory sensor identification system and method
US5756879A (en) * 1996-07-25 1998-05-26 Hughes Electronics Volatile organic compound sensors

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927930A (en) * 1972-07-10 1975-12-23 Polaroid Corp Light polarization employing magnetically oriented ferrite suspensions
US4453126A (en) * 1978-08-02 1984-06-05 The Hospital For Sick Children Measurement of anaesthetic gas concentration
US4225410A (en) * 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4631952A (en) * 1985-08-30 1986-12-30 Chevron Research Company Resistive hydrocarbon leak detector
US4644101A (en) * 1985-12-11 1987-02-17 At&T Bell Laboratories Pressure-responsive position sensor
US5284748A (en) * 1986-03-25 1994-02-08 Immunotronics, Inc. Method for electrical detection of a binding reaction
US4737112A (en) * 1986-09-05 1988-04-12 American Telephone And Telegraph Company, At&T Bell Laboratories Anisotropically conductive composite medium
US4923739A (en) * 1987-07-30 1990-05-08 American Telephone And Telegraph Company Composite electrical interconnection medium comprising a conductive network, and article, assembly, and method
US5104210A (en) * 1989-04-24 1992-04-14 Monsanto Company Light control films and method of making
US5384073A (en) * 1990-12-05 1995-01-24 Akzo N.V. Ligand gold bonding
US5512882A (en) * 1991-08-07 1996-04-30 Transducer Research, Inc. Chemical sensing apparatus and methods
US5429975A (en) * 1993-10-25 1995-07-04 United Microelectronics Corporation Method of implanting during manufacture of ROM device
US5605612A (en) * 1993-11-11 1997-02-25 Goldstar Electron Co., Ltd. Gas sensor and manufacturing method of the same
US5677662A (en) * 1994-01-17 1997-10-14 Hydor S.R.L. Heat-sensitive resistive compound and method for producing it and using it
US5571401A (en) * 1995-03-27 1996-11-05 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US6010616A (en) * 1995-03-27 2000-01-04 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US6537498B1 (en) * 1995-03-27 2003-03-25 California Institute Of Technology Colloidal particles used in sensing arrays
US5698771A (en) * 1995-03-30 1997-12-16 The United States Of America As Represented By The United States National Aeronautics And Space Administration Varying potential silicon carbide gas sensor
US5742223A (en) * 1995-12-07 1998-04-21 Raychem Corporation Laminar non-linear device with magnetically aligned particles
US5922537A (en) * 1996-11-08 1999-07-13 N.o slashed.AB Immunoassay, Inc. Nanoparticles biosensor
US5942674A (en) * 1997-08-04 1999-08-24 Ford Global Technologies, Inc. Method for detecting oxygen partial pressure using a phase-transformation sensor
US6002817A (en) * 1997-09-29 1999-12-14 The Regents Of The University Of Michigan Optical sensors for the detection of nitric oxide
US6202471B1 (en) * 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081232A1 (en) * 1998-04-14 2002-06-27 California Institute Of Technology Method and system for determining analyte activity
US8394330B1 (en) 1998-10-02 2013-03-12 The California Institute Of Technology Conductive organic sensors, arrays and methods of use
US20060088445A1 (en) * 1999-05-10 2006-04-27 California Institute Of Technology Use of spatiotemporal response behavior in sensor arrays to detect analytes in fluids
US7966132B2 (en) 1999-05-10 2011-06-21 California Institute Of Technology Methods for remote characterization of an odor
US7189353B2 (en) 1999-05-10 2007-03-13 The California Institute Of Technology Use of spatiotemporal response behavior in sensor arrays to detect analytes in fluids
US20080077331A1 (en) * 1999-05-10 2008-03-27 California Institute Of Technology Methods for remote characterization of an odor
US20080262743A1 (en) * 1999-05-10 2008-10-23 Lewis Nathan S Methods for remote characterization of an odor
US20050263394A1 (en) * 1999-08-18 2005-12-01 California Institute Of Technology Sensors and sensor arrays of conducting and insulating composites and methods of use thereof
US20050150778A1 (en) * 2002-11-18 2005-07-14 Lewis Nathan S. Use of basic polymers in carbon black composite vapor detectors to obtain enhanced sensitivity and classification performance for volatile fatty acids
US20090169730A1 (en) * 2003-02-20 2009-07-02 The Regents Of The University Of California Method of forming conductors at low temperatures using metallic nanocrystals and product
US9410917B2 (en) 2004-02-06 2016-08-09 Ascensia Diabetes Care Holdings Ag Method of using a biosensor
US10067082B2 (en) 2004-02-06 2018-09-04 Ascensia Diabetes Care Holdings Ag Biosensor for determining an analyte concentration
US20090104435A1 (en) * 2005-05-13 2009-04-23 State Of Oregon Acting By And Through The State Bo Method for Functionalizing Surfaces
US20090099044A1 (en) * 2005-05-20 2009-04-16 Hutchison James E Nanoparticles and Method to Control Nanoparticle Spacing
US20090312565A1 (en) * 2005-05-20 2009-12-17 Hutchison James E Compositions of AU-11 nanoparticles and their optical properties
WO2006127675A3 (en) * 2005-05-20 2007-09-27 State Of Oregon Acting By & Th Nanoparticles and method to control nanoparticle spacing
WO2006127675A2 (en) * 2005-05-20 2006-11-30 State Of Oregon Acting By & Through The State Board Of Higher Education On Behalf Of The University Of Oregon Nanoparticles and method to control nanoparticle spacing
US7985869B2 (en) 2005-05-20 2011-07-26 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Compositions of AU-11 nanoparticles and their optical properties
US8877035B2 (en) 2005-07-20 2014-11-04 Bayer Healthcare Llc Gated amperometry methods
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8404100B2 (en) 2005-09-30 2013-03-26 Bayer Healthcare Llc Gated voltammetry
US9110013B2 (en) 2005-09-30 2015-08-18 Bayer Healthcare Llc Gated voltammetry methods
US11435312B2 (en) 2005-09-30 2022-09-06 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US9835582B2 (en) 2005-09-30 2017-12-05 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US8647489B2 (en) 2005-09-30 2014-02-11 Bayer Healthcare Llc Gated voltammetry devices
US10670553B2 (en) 2005-09-30 2020-06-02 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US7864322B2 (en) 2006-03-23 2011-01-04 The Research Foundation Of State University Of New York Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments
WO2008054552A3 (en) * 2006-06-12 2009-04-09 Univ California Method for producing bi-continuous and high internal phase nanostructures
WO2008054552A2 (en) * 2006-06-12 2008-05-08 The Regents Of The University Of California Method for producing bi-continuous and high internal phase nanostructures
US8026104B2 (en) 2006-10-24 2011-09-27 Bayer Healthcare Llc Transient decay amperometry
US9005527B2 (en) 2006-10-24 2015-04-14 Bayer Healthcare Llc Transient decay amperometry biosensors
US10190150B2 (en) 2006-10-24 2019-01-29 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
US11091790B2 (en) 2006-10-24 2021-08-17 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
US8470604B2 (en) 2006-10-24 2013-06-25 Bayer Healthcare Llc Transient decay amperometry
US20100273665A1 (en) * 2007-11-20 2010-10-28 Technion Research And Development Foundation Ltd. Chemical sensors based on cubic nanoparticles capped with an organic coating
US8999244B2 (en) 2007-11-20 2015-04-07 Technion Research And Development Foundation Ltd. Chemical sensors based on cubic nanoparticles capped with an organic coating
US9933385B2 (en) 2007-12-10 2018-04-03 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US10690614B2 (en) 2007-12-10 2020-06-23 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US8903661B2 (en) 2008-03-27 2014-12-02 Technion Research And Development Foundation Ltd. Chemical sensors based on cubic nanoparticles capped with an organic coating for detecting explosives
US20110015872A1 (en) * 2008-03-27 2011-01-20 Technion Research And Development Foundation Ltd. Chemical sensors based on cubic nanoparticles capped with an organic coating for detecting explosives
US10168315B2 (en) 2012-10-29 2019-01-01 Technion Research & Development Foundation Ltd. Sensor technology for diagnosing tuberculosis
US10837956B2 (en) 2012-10-29 2020-11-17 Technion Research & Development Foundation Ltd Sensor technology for diagnosing tuberculosis
WO2014068554A1 (en) * 2012-10-29 2014-05-08 Technion Research And Development Foundation Ltd. Sensor technology for diagnosing tuberculosis
US10845349B2 (en) 2012-12-21 2020-11-24 Research Triangle Institute Encased polymer nanofiber-based electronic nose
US11714075B2 (en) 2012-12-21 2023-08-01 Research Triangle Institute Encased polymer nanofiber-based electronic nose
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold

Also Published As

Publication number Publication date
FI973802A0 (en) 1997-09-26
EP0950895A3 (en) 2002-01-02
FI973802A (en) 1997-09-29
CN1179208C (en) 2004-12-08
CN1184530A (en) 1998-06-10
AU5372896A (en) 1996-10-16
JP2006010703A (en) 2006-01-12
JPH11503231A (en) 1999-03-23
KR19990014748A (en) 1999-02-25
CA2215332A1 (en) 1996-10-03
EP0950895A2 (en) 1999-10-20
US5698089A (en) 1997-12-16
PT820585E (en) 2000-06-30
EP0820585A1 (en) 1998-01-28
KR100389603B1 (en) 2003-10-08
US6017440A (en) 2000-01-25
GR3033092T3 (en) 2000-08-31
US5571401A (en) 1996-11-05
JP3963474B2 (en) 2007-08-22
RU2145081C1 (en) 2000-01-27
CA2215332C (en) 2006-11-21
US5959191A (en) 1999-09-28
DE69605906D1 (en) 2000-02-03
WO1996030750A1 (en) 1996-10-03
ES2144737T3 (en) 2000-06-16
DK0820585T3 (en) 2000-06-19
US6010616A (en) 2000-01-04
AU705825B2 (en) 1999-06-03
EP0820585B1 (en) 1999-12-29
DE69605906T2 (en) 2000-07-13
MX9707351A (en) 1998-03-31
US20040033165A1 (en) 2004-02-19
ATE188291T1 (en) 2000-01-15

Similar Documents

Publication Publication Date Title
US6537498B1 (en) Colloidal particles used in sensing arrays
US20030159927A1 (en) Colloidal particles used in sensing arrays
US7955561B2 (en) Colloidal particles used in sensing array
US5891398A (en) Sensor arrays for detecting analytes in fluids
WO2000000808A2 (en) Colloidal particles used in sensing arrays
EP0918986B1 (en) Sensors for detecting analytes in fluids
EP1019715B1 (en) Techniques and systems for analyte detection
US6773926B1 (en) Nanoparticle-based sensors for detecting analytes in fluids
US20060034731A1 (en) Sensor arrays for detecting analytes in fluids
EP1555527A1 (en) Array of chemically sensitive capacitors
Lewis et al. Sensor arrays for detecting analytes in fluids
Lewis et al. Sensor arrays for detecting microorganisms
Lewis et al. Sensors for detecting analytes in fluids

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMITHS DETECTION, INC., CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:SMITHS DETECTION-PASADENA, INC.;REEL/FRAME:016994/0101

Effective date: 20040629

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION