US20030182288A1 - Method and system for migrating data while maintaining access to data with use of the same pathname - Google Patents

Method and system for migrating data while maintaining access to data with use of the same pathname Download PDF

Info

Publication number
US20030182288A1
US20030182288A1 US10/105,492 US10549202A US2003182288A1 US 20030182288 A1 US20030182288 A1 US 20030182288A1 US 10549202 A US10549202 A US 10549202A US 2003182288 A1 US2003182288 A1 US 2003182288A1
Authority
US
United States
Prior art keywords
storage system
host storage
data
file
replacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/105,492
Other versions
US6952699B2 (en
Inventor
Mark O'Connell
Zhiling Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMC Corp
Original Assignee
EMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMC Corp filed Critical EMC Corp
Priority to US10/105,492 priority Critical patent/US6952699B2/en
Assigned to EMC CORPORATION reassignment EMC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: O'CONNELL, MARK, ZHENG, ZHILING
Publication of US20030182288A1 publication Critical patent/US20030182288A1/en
Application granted granted Critical
Publication of US6952699B2 publication Critical patent/US6952699B2/en
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: ASAP SOFTWARE EXPRESS, INC., AVENTAIL LLC, CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL SYSTEMS CORPORATION, DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., MAGINATICS LLC, MOZY, INC., SCALEIO LLC, SPANNING CLOUD APPS LLC, WYSE TECHNOLOGY L.L.C.
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT SECURITY AGREEMENT Assignors: ASAP SOFTWARE EXPRESS, INC., AVENTAIL LLC, CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL SYSTEMS CORPORATION, DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., MAGINATICS LLC, MOZY, INC., SCALEIO LLC, SPANNING CLOUD APPS LLC, WYSE TECHNOLOGY L.L.C.
Assigned to EMC IP Holding Company LLC reassignment EMC IP Holding Company LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMC CORPORATION
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. SECURITY AGREEMENT Assignors: CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., WYSE TECHNOLOGY L.L.C.
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. SECURITY AGREEMENT Assignors: CREDANT TECHNOLOGIES INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., WYSE TECHNOLOGY L.L.C.
Assigned to CREDANT TECHNOLOGIES, INC., EMC IP Holding Company LLC, DELL USA L.P., WYSE TECHNOLOGY L.L.C., DELL SOFTWARE INC., DELL PRODUCTS L.P., SCALEIO LLC, DELL MARKETING L.P., MOZY, INC., AVENTAIL LLC, EMC CORPORATION, MAGINATICS LLC, DELL SYSTEMS CORPORATION, FORCE10 NETWORKS, INC., ASAP SOFTWARE EXPRESS, INC., DELL INTERNATIONAL, L.L.C. reassignment CREDANT TECHNOLOGIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH
Assigned to DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), DELL INTERNATIONAL L.L.C., SCALEIO LLC, DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), DELL PRODUCTS L.P., EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), DELL USA L.P., DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.) reassignment DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.) RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Assigned to EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), DELL PRODUCTS L.P., DELL USA L.P., DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), DELL INTERNATIONAL L.L.C., DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), SCALEIO LLC, EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC) reassignment EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.) RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/0647Migration mechanisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • G06F3/0607Improving or facilitating administration, e.g. storage management by facilitating the process of upgrading existing storage systems, e.g. for improving compatibility between host and storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99938Concurrency, e.g. lock management in shared database
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99939Privileged access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99951File or database maintenance
    • Y10S707/99952Coherency, e.g. same view to multiple users
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99951File or database maintenance
    • Y10S707/99952Coherency, e.g. same view to multiple users
    • Y10S707/99953Recoverability

Definitions

  • the invention relates to a method and system for migrating data from original host storage systems to replacement host storage systems, and simultaneously maintaining the same pathnames.
  • NAS Network Attached System
  • clients for example, user terminals such as user computers
  • server or storage system which either has storage arrays built into the storage system, or are somehow connected to cabinets containing storage arrays.
  • servers might be a server such as is available from Sun Microsystems connected to a cabinet composed of a storage array such as those available under the names Symmetric or Clariion available from EMC Corporation.
  • An alternative to such a server/storage combination would be a combined unit which includes storage array and front end host intelligence as a single package such as is available from EMC Corporation under the identifier IP4700.
  • IP4700 For the sake of consistency, all of these types of systems will interchangeably be hereafter referred to as a “host storage system.”
  • host storage system Such a system combines block storage and file protocols in one. Examples of network protocols employed are those which are readily known to those of ordinary skill in the art as NFS, CIFS (SMB), FTP, etc.
  • the clients might be personal computers or stand-alone terminals, or other like systems having intelligence in order to operate on the client side of the protocols.
  • the network can be a Ethernet-type network and can have switches.
  • it could be a fibre channel-type environment, i.e., anything that runs the network protocol on a fibre channel environment, i.e., IP (Internet Protocol) over fibre, is another environment alternative of how Network Attached Storage is implemented.
  • An alternative way of doing migration is to allow the clients to continue to access the original host storage system while copying to the replacement host storage system occurs.
  • the problem with such a migration is that a copy is kept on the original system while trying to bring over all of the data.
  • the two host systems After the migration is completed, the two host systems have to be taken off the network for a final sweep to verify that all the data has been copied, which results in the system having to be taken off line.
  • a method of migrating data from at least one original host storage system to a replacement host storage system on a network is described.
  • a replacement host storage system is connected to a network and an original host storage system.
  • the original host storage system is then connected to the replacement host storage system and data is migrated from the original host storage system to the replacement host storage system.
  • a request is received from a client on the network concerning data stored in either the replacement host storage system or the original host storage system, it is determined if the data requested has been migrated from the original host storage system to the replacement host storage system. If the data has been migrated, the replacement host storage system acts on the client request. If the data has not been migrated, a search is conducted for the data on the original host storage system, and the data is copied to the replacement host storage system acting on the client request.
  • the original host storage system may be disconnected from the network. Alternatively, it may remain connected, but its identity changed. In all cases the replacement host storage system assumes the identity of or impersonates the original host storage system.
  • a database is built at the replacement host storage system which is indicative of what data has been migrated from the original host storage system. If the data has been migrated, the replacement host storage system file system then acts on the request. If the data has not been migrated, the original host storage system information about the file is determined and a request is sent to the original host storage system for access to the data.
  • the data migration database is stored in a persistent fashion, so any failures during movement of data in the migration process do not necessitate restarting the operation from start. Instead, data migration can be restarted from the point of failure.
  • a replacement host storage system for migrating data from an original host storage system on a network to the replacement host storage system.
  • the replacement host storage system includes a network protocol module for processing client requests when the replacement host storage system is connected to a network.
  • Means for connecting the replacement host storage system such as a port, adapters, etc., for connection to appropriate cabling, serves to allow the replacement host storage system to be directly connected to the original host storage system which may or may not be disconnected from the network. If not disconnected, the original host storage system's identity is changed and the replacement host storage system is configured to impersonate the original host storage system. Data is to be copied from the original host storage system to the replacement host storage system through such a connection.
  • a file system module is included for arranging and managing data on the replacement host storage system.
  • a data migration module serves to migrate data from the original host storage system to the replacement host storage system when connected.
  • the data migration module includes a data migration database for containing records of what data has been migrated to the replacement host storage system and where it resides.
  • the data migration module is further configured for acting on a client request from a network relative to data, when the replacement host storage system is connected to the network, and connected to the original host storage system which has been disconnected from the network.
  • the data migration module operates by determining from the database that the data is available from the replacement host storage system, and if so, having the file system module act on the data in response to the request. Alternatively, if the data migration module determines from the database that the data is not available from the replacement host storage system, it finds the data on the original host storage system, migrates it, and has the file system module act on the data in response to the request.
  • the replacement host storage system is programmed for handling the multiple work-items such that both in accordance with the method and how the system is programmed, the work-items are processed in the most time and resource efficient manner possible.
  • a thread processing a work item will, when it is finished with the work-item, continue processing the next work item, unless the thread had blocked, in which case a notification was performed by the thread which caused the scheduling of a new thread to process the remaining work-items, and the original thread returns to the thread pool for further work.
  • the data migration module is further configured and the method operates by storing on the replacement host storage system the original locations of the directories and files on the original host storage system for directories and files which were the subject of move or rename requests on the replacement host storage system. In this manner, the previous full pathname for accessing the data is preserved without disruption. This can be done in a fully networked environment, with connected clients performing unrestricted operations on the replacement host storage system, or as a separate stand-alone process in which neither of the two host storage systems are connected to a network, and only to each other.
  • the attributes of a remote file having data to be migrated are retrieved from the original host storage system. From these attributes, if it is determined the file is linked to only one file, the file is created in the replacement host storage system and the data migrated. If it is determined the data in the file is linked to more than one file, the file id and file system id is then determined from the attributes retrieved from the original storage system. A search is conducted for the file id and file system id in the database.
  • the replacement host storage system identifier for the file is retrieved and a hard link is created to the file associated with the file system identifier retrieved. If the file id and file system id are not found on the database, the file is created in the replacement host storage system, and the data associated therewith is migrated to the replacement host storage system. An identifier for the file, which uniquely identifies the file on the replacement system, is then stored in the database in a manner in which it is keyed by the file id and file system id, which uniquely identify the file on the original host storage system, as retrieved from the file attributes.
  • FIG. 1 is a block diagram of an existing network having Network Attached Storage System connected of the type on which the systems and methods described herein may be implemented;
  • FIG. 2 is a block diagram illustrating the physical implementation of one system and method described herein for migrating data from one or more original host storage systems on a network;
  • FIG. 3 is a more detailed block diagram of a replacement host storage system connected to an original host storage system for migrating data from the original host storage system to the replacement host storage system;
  • FIGS. 4 and 5 are flow diagrams illustrating the method of migrating data from at least one original host storage system to a replacement host storage system while the replacement host storage system is connected to a network, and during which access to the data by clients is maintained;
  • FIGS. 6 and 7 are flow diagrams illustrating how background migration of data is maintained in accordance with the method described herein simultaneous to acting on client requests as illustrated in FIGS. 4 and 5;
  • FIG. 8 is a schematic illustration showing directory trees for files on an original host storage system and on a replacement host storage system is created so as to maintain the original full pathname to data in a file on a replacement host storage system, as was maintained on an original host storage system;
  • FIG. 9 is a flow diagram illustrating how the original pathname is maintained for a file containing data migrated to a replacement host storage system
  • FIG. 10 illustrates directory trees on an original host storage system and on a replacement host storage system for data migrated from the original host storage system to a replacement host storage system, and further illustrating how hard links can be created to maintain hard links between files which previously were related to the same data on the original host storage system;
  • FIG. 11 is a flow diagram illustrating the method of maintaining hard links between files relating to the same data as migration from an original host storage system to a replacement host storage system is conducted.
  • FIG. 12 illustrates how requests from clients to act on data can be efficiently processed in a multi-thread environment when a first thread acting on a request pends.
  • FIG. 1 illustrates a network environment 11 employing Network Attached Storage Systems on which the method and system described herein may be implemented.
  • the network environment 11 includes network connections 15 with a plurality of clients 13 connected to the network and through a separate connection 17 from the network to a Network Attached Storage System, i.e., host storage system 19 optionally made up of a server with attached data storage 21 .
  • a Network Attached Storage System i.e., host storage system 19 optionally made up of a server with attached data storage 21 .
  • the network 15 may be an Ethernet network or it can also be a fibre channel.
  • the host storage system 19 optionally includes a storage device or system 21 with one or more disks on the back-end which actually stores data in a file system format, with the host storage system 19 running protocols, i.e., network protocols for file sharing such as NFS, CIFS, or FTP as will be readily apparent to those of ordinary skill in the art.
  • protocols i.e., network protocols for file sharing such as NFS, CIFS, or FTP as will be readily apparent to those of ordinary skill in the art.
  • the host storage system 19 might be made up of a single unit having onboard intelligence combining block storage and file protocol in one.
  • the host storage system might be made up of a server 19 such as those available from Sun Microsystems with a back-end cabinet unit 21 such as those available under the names Symmetrix or Clariion from EMC Corporation.
  • the storage system might be a stand-alone system which combines block storage and file protocols into one, such as is available from EMC Corporation under the name IP4700.
  • Clients 13 might be personal computers or stand-alone terminals with some intelligence onboard in order to execute commands on the client side of the protocols and to process data.
  • FIG. 2 illustrates how the method and system in accordance with the invention would be implemented in a network environment 11 .
  • a replacement host storage system 25 is connected directly through a connection 23 to the network 15 .
  • the connection 17 for the original host storage system 19 is severed, and the original host storage system 19 is connected directly to the replacement host storage system 25 through connection 27 .
  • connection 18 may be maintained and the identity of the original host storage system 19 changed.
  • the replacement host storage system 25 is configured to impersonate the original host storage system 19 .
  • the replacement host storage system 25 impersonates the original host storage system 19 .
  • the replacement host storage system 25 includes a network protocol module 37 capable of handling the various protocols employed on the network 15 . It also includes a data migration module 39 which is operative to migrate data, files and directories from the original host storage system 19 , as well as having its own or multiple file systems 41 on which the data, files and directories from the original host storage system 19 are stored and managed.
  • the data migration module 39 will also include a database populated with a table and other information as described hereinafter.
  • the table in the database is populated with a small record which indicates that there is no information about the original host storage system 19 , and that all information will have to be obtained remotely.
  • the information is associated with additional information in the form of what is known as a “tree id”, which represents another set of records which indicates how to retrieve information from the original host storage system.
  • the record is also stored the IP address of the original host storage system 19 so that the replacement host storage system 25 can communicate with the original host storage system 19 .
  • the clients 13 While the data is being migrated, the clients 13 are allowed to access the data either directly from the replacement host storage system 25 or through the passing of a request to the original host storage system 19 . At some point, when most of the data has been copied over, the replacement host storage system 25 is processing a majority of the requests from the clients 13 .
  • FIGS. 4 and 5 illustrate in greater detail the operation of the method and system, in particular, in flow chart 101 and 121 showing how one process operates on client requests.
  • Client requests can come in in different network protocols as illustrated by blocks 103 , 105 , 107 and 109 .
  • the data migration module 39 intercepts the requests at step 111 .
  • the data migration module 39 retrieves information stored about the file/directory in the data migration module database at step 113 , and a query is made at step 115 about whether the necessary data has already been copied and is available locally at the replacement host storage system 25 . If the answer is yes, the request is forwarded to the local file system 41 at step 117 .
  • step 117 a determination is made about the remote system information at original host storage system 19 from information about the file, and information about the remote system stored in the data migration module 39 database. Once this is done, a request for information is sent to the original host storage system 19 and replacement host storage system 25 awaits a response and proceeds to circle 119 in FIG. 5, where the second part of the process is illustrated.
  • a query is made at step 123 about whether the object or data sought to be copied is a file or a directory. If it is a file, it proceeds to step 125 and the data read is then stored in the replacement host storage system 25 file system 41 , and the process then returns to circle 129 to step 117 which then forwards the request to the local file system 41 to be acted on.
  • step 131 files and subdirectories are created locally based on information returned from the original host storage system 19 .
  • step 133 new records are established in the database of the data migration module 39 for all newly created files and directories.
  • the original host storage system 19 information is then inherited from the directory.
  • step 135 the data migration information is updated for the directory to indicate that it has been fully copied and passed then to circle 129 (B) to return to step 117 in FIG. 4.
  • FIGS. 6 and 7 illustrate a second process in two flow charts 151 and 171 during which background block copying is being conducted in the absence of client requests.
  • a determination is made if another file or directory which may need migration exists. If the answer is yes, at step 157 the next file or directory to be retrieved is determined and the system continues to step 159 where a request is made of the data migration module 39 to retrieve the file or directory.
  • the data migration module 39 retrieves the information from its database about the file or directory.
  • a determination is made about whether the file or directory data already is stored locally. If the answer is yes, then at step 163 no further action is required and the process returns back to step 153 .
  • the same inquiry as before is made. In this case, if the answer is no, at step 155 it is determined that the data migration is complete and data migration is terminated.
  • the replacement host storage system 25 data migration module 39 determines remote system information from information about the file and information about the remote system's, i.e., original host storage system 19 , stored in the data migration module 39 database. The request for information is then sent to the original host storage system 19 , the replacement host storage system 25 awaits a response and then proceeds to circle C identified as 169 in both FIGS. 6 and 7.
  • step 172 a determination is made about whether the object is a file or directory. If it is a file, it proceeds to step 173 corresponding to step 125 of FIG. 5 and the data read is stored in the local file system 41 . The process then proceeds to step 175 corresponding to step 127 of FIG. 5 in which the data migration information for the file is updated to mark that more data has been stored into the file, and the method then proceeds to step 177 identified as circle D and continuing as before in FIG. 6.
  • step 172 If at step 172 it is determined that the object is a directory, like step 131 of FIG. 5, at step 174 files and subdirectories are created locally, based on information returned from the original host storage system 119 .
  • step 176 as in the case with step 133 of FIG. 5, new records are established in the data migration module 39 database for all newly created files and directories.
  • the original host storage system information is inherited from the directory.
  • step 178 the data migration information for the directory is updated at the replacement host storage system 25 to indicate that it has been fully copied, in a manner similar to step 135 of FIG. 5.
  • FIG. 8 illustrates two directory trees.
  • Directory tree 201 illustrates the tree for the original host storage system 19 and tree 203 illustrates the tree for the replacement host storage system.
  • the root directory 205 includes directories 207 and 215 designated as Fon and Bar. Those directories include files 209 - 223 .
  • directory 201 illustrates the pathname where you start at the root and go all the way down. For example, a path would be /Bar/5 /6, /Bar, or /Bar/5/7. It becomes desirable to port that path to the replacement host storage system 25 .
  • tree 203 it is possible that originally somebody did an operation which caused root directory Fon and Bar to be brought over and renamed.
  • this method and system for maintaining the pathname through the use of pointers can be implemented during data migration while connected to a network as previously discussed, it can also be implemented in a stand-alone environment where there is no connection to a network and data is just being migrated from one system to another. It is also important to appreciate that depending on the protocol employed, this aspect of the invention may not need to be implemented. For example, if the protocol is NFS, it is not required because NFS does not refer to files by file names. In this regard, it is noted that NFS stands for Network File System which is one of the core files sharing protocols. It associates a unique identifier with a file or directory and thus when directory Bar was moved over to Bas, that unique identifier was maintained with it.
  • CIFS which refers to Common Internet File System
  • SMB Server Message Block
  • FIG. 9 illustrates a flow chart 301 illustrating how the pathname on the original host storage system 19 can be maintained.
  • the pathname is set to empty for a particular file or data and the current object is set to the file or directory whose name is to be determined.
  • Extra attributes stored in the data migration module 39 database are looked up at step 305 , and at step 307 the query is made as to whether the object is marked as existing on the original host storage system 19 . If the answer is no, at step 309 it is determined that the pathname is already complete and the system returns to normal operation.
  • step 311 a query is made at step 311 as to whether the current object has the original host storage system 19 path attribute. If the answer is yes, the original host storage system 19 path attribute is then prepended as an attribute value to the pathname at step 313 , and the pathname is then complete.
  • step 315 the name of the current object in the local or replacement host storage system 25 file system 41 is determined and prepended to the pathname, and the parent directory of the object is also determined, for example, such as Bas at 235 in FIG. 8.
  • step 317 the current object to the parent directory is set as determined at step 315 , and the process returns back to step 305 .
  • linking is shown between two files, it is not limited to two and any number of hard links may be preserved.
  • a hard link 437 must be created for different named files such as 431 and 435 even though the directory tree has changed so as to maintain the same link to the data as was done in the original host storage system 19 .
  • I-node In a more specific aspect, in a typical UNIX file system, there is a unique identifier for a file, which is a called an I-node.
  • the I-node is the true identifier for a file. Inside a directory the file name is actually a name and an I-node number. It is important to appreciate that while this is being discussed in the context of a UNIX operating system, similar type implementations are done in other operating systems. Thus it becomes important to identify which files are linked, and to create those links in the new or replacement host storage system 25 .
  • flow diagram 501 further shows how the links are determined and created. More specifically, at step 503 the attributes of a remote file residing on the original host storage system 19 are retrieved. At step 505 it is determined if the link count of the file is greater than one, and if the answer is no, normal processing occurs at 507 , in which the file is then created in the new or replacement host storage system 25 .
  • the file id and file system id is determined from the retrieved attributes in the database of the data migration module 39 .
  • Operation can be made cumbersome if, when there are multiple client requests assigned to different threads, if a thread being processed pends, due for example, to background operations. The remaining threads cannot then be processed efficiently.
  • a client request can include a search for data, for example, to an original host storage system 19 connected or quite simply a write to a file which may be a lengthy operation such as requiring extending the file, creating information about the file on the disk, storing the information back to the disk, and other things which require multiple inputs and outputs in the back-end system.
  • the thread currently being implemented has to wait while those inputs and outputs are being processed. In the meantime, other threads are incapable of being processed.
  • FIG. 12 shows two threads 601 and 603 .
  • the first thread at a step 605 reads a response from the network.
  • the request is matched, and at step 609 the thread is marked to notify the thread next in line, i.e, T 2 , if it pends or blocks.
  • the response handling is performed, and the designation of notifying the second thread, T 2 , if the thread blocks, is removed at step 613 .
  • step 615 an inquiry is made as to whether the thread blocked the processing response, i.e., pended, and if the answer is yes, it returns to the back of the queue at step 617 . If the answer is no, it returns to continue being processed at step 605 .

Abstract

Data is migrated from an original host storage system to another replacement host storage system. An original host storage system is connected to the replacement host storage system. Data migration occurs and original pathnames to the data are maintained.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is related to co-pending application Ser. No. (Attorney Docket No. 40921/264452) entitled “Method and System for Migrating Data,” and co-pending application Ser. No. (Attorney Docket No. 40921/264452B) entitled “Method and System for Migrating Data While Maintaining Hard Links,” both concurrently filed herewith.[0001]
  • FIELD OF THE INVENTION
  • The invention relates to a method and system for migrating data from original host storage systems to replacement host storage systems, and simultaneously maintaining the same pathnames. [0002]
  • BACKGROUND OF THE INVENTION
  • Current data storage on a network is oftentimes arranged in what is known as a Network Attached System (NAS) in which a plurality of clients, for example, user terminals such as user computers, are connected to a network to a server or storage system which either has storage arrays built into the storage system, or are somehow connected to cabinets containing storage arrays. Examples of such servers might be a server such as is available from Sun Microsystems connected to a cabinet composed of a storage array such as those available under the names Symmetric or Clariion available from EMC Corporation. [0003]
  • An alternative to such a server/storage combination would be a combined unit which includes storage array and front end host intelligence as a single package such as is available from EMC Corporation under the identifier IP4700. For the sake of consistency, all of these types of systems will interchangeably be hereafter referred to as a “host storage system.” Such a system combines block storage and file protocols in one. Examples of network protocols employed are those which are readily known to those of ordinary skill in the art as NFS, CIFS (SMB), FTP, etc. [0004]
  • In such networks, a number of clients are connected on the network and actively access files, read them, write to them, create them, delete them, and perform other operations on the files in storage. [0005]
  • As previously discussed, the clients might be personal computers or stand-alone terminals, or other like systems having intelligence in order to operate on the client side of the protocols. The network can be a Ethernet-type network and can have switches. Similarly, it could be a fibre channel-type environment, i.e., anything that runs the network protocol on a fibre channel environment, i.e., IP (Internet Protocol) over fibre, is another environment alternative of how Network Attached Storage is implemented. [0006]
  • It is often the case that it is desirable to replace existing host storage systems for a number of reasons. For example, a system may become out of date and the network users may want to upgrade the system. A problem with replacing such a system is that it is undesirable to disrupt client access to the data. If the system desired to be replaced is disconnected from the network, then data, files and directories transferred from that system to the new system disconnected from the network, then client access is interrupted. Furthermore, the means of copying the data to the new system may not accurately preserve all file and filesystem attributes. For example, Windows/CIFS based tools will frequently not preserve file hard link attributes, while Unix/NFS based tools will typically not preserve ACL (Access Control List) attributes. [0007]
  • Currently, one way the data migration is done by taking the original host storage system off line. The data on the host storage system is moved to tape, and then copied onto the replacement host storage system. Alternatively, the replacement system can be connected directly to the network and the data could be copied over the network, but access to the data, files and directories is disabled for periods of up to several days. In addition, if the data migration fails in the middle of the operation, the migration has to restarted. [0008]
  • An alternative way of doing migration is to allow the clients to continue to access the original host storage system while copying to the replacement host storage system occurs. The problem with such a migration is that a copy is kept on the original system while trying to bring over all of the data. After the migration is completed, the two host systems have to be taken off the network for a final sweep to verify that all the data has been copied, which results in the system having to be taken off line. [0009]
  • These and other problems associated with migrating data, files and directories from one host storage system to another host storage system are avoided in accordance with the methods and systems described herein. [0010]
  • SUMMARY OF THE INVENTION
  • In accordance with one aspect, a method of migrating data from at least one original host storage system to a replacement host storage system on a network is described. A replacement host storage system is connected to a network and an original host storage system. The original host storage system is then connected to the replacement host storage system and data is migrated from the original host storage system to the replacement host storage system. If a request is received from a client on the network concerning data stored in either the replacement host storage system or the original host storage system, it is determined if the data requested has been migrated from the original host storage system to the replacement host storage system. If the data has been migrated, the replacement host storage system acts on the client request. If the data has not been migrated, a search is conducted for the data on the original host storage system, and the data is copied to the replacement host storage system acting on the client request. [0011]
  • In one respect, the original host storage system may be disconnected from the network. Alternatively, it may remain connected, but its identity changed. In all cases the replacement host storage system assumes the identity of or impersonates the original host storage system. [0012]
  • To accomplish this operation, a database is built at the replacement host storage system which is indicative of what data has been migrated from the original host storage system. If the data has been migrated, the replacement host storage system file system then acts on the request. If the data has not been migrated, the original host storage system information about the file is determined and a request is sent to the original host storage system for access to the data. [0013]
  • The data migration database is stored in a persistent fashion, so any failures during movement of data in the migration process do not necessitate restarting the operation from start. Instead, data migration can be restarted from the point of failure. [0014]
  • In another aspect, a replacement host storage system is provided for migrating data from an original host storage system on a network to the replacement host storage system. The replacement host storage system includes a network protocol module for processing client requests when the replacement host storage system is connected to a network. Means for connecting the replacement host storage system, such as a port, adapters, etc., for connection to appropriate cabling, serves to allow the replacement host storage system to be directly connected to the original host storage system which may or may not be disconnected from the network. If not disconnected, the original host storage system's identity is changed and the replacement host storage system is configured to impersonate the original host storage system. Data is to be copied from the original host storage system to the replacement host storage system through such a connection. [0015]
  • A file system module is included for arranging and managing data on the replacement host storage system. A data migration module serves to migrate data from the original host storage system to the replacement host storage system when connected. The data migration module includes a data migration database for containing records of what data has been migrated to the replacement host storage system and where it resides. The data migration module is further configured for acting on a client request from a network relative to data, when the replacement host storage system is connected to the network, and connected to the original host storage system which has been disconnected from the network. The data migration module operates by determining from the database that the data is available from the replacement host storage system, and if so, having the file system module act on the data in response to the request. Alternatively, if the data migration module determines from the database that the data is not available from the replacement host storage system, it finds the data on the original host storage system, migrates it, and has the file system module act on the data in response to the request. [0016]
  • While this is occurring, it is possible that multiple work-items can be pending on a queue, waiting for processing. The replacement host storage system is programmed for handling the multiple work-items such that both in accordance with the method and how the system is programmed, the work-items are processed in the most time and resource efficient manner possible. A thread processing a work item will, when it is finished with the work-item, continue processing the next work item, unless the thread had blocked, in which case a notification was performed by the thread which caused the scheduling of a new thread to process the remaining work-items, and the original thread returns to the thread pool for further work. [0017]
  • In a yet still further aspect independent of whether migration occurs while connection to the network or between an original host storage system and a replacement host storage system disconnected from the network, there is also disclosed a method and system for preserving the pathnames to data that has been migrated such that when the replacement host storage system is accessed for data previously residing on the original host storage system, it can be accessed in the same manner as before. As before, the two systems are connected, the Access Control List is retrieved from the original host storage system for data, directories and files on the original host storage system file system which is to be migrated to the replacement host storage system. The data migration module database and method of migration provide for storing information about what data has been migrated to the replacement host storage system and where it resides. The data migration module is further configured and the method operates by storing on the replacement host storage system the original locations of the directories and files on the original host storage system for directories and files which were the subject of move or rename requests on the replacement host storage system. In this manner, the previous full pathname for accessing the data is preserved without disruption. This can be done in a fully networked environment, with connected clients performing unrestricted operations on the replacement host storage system, or as a separate stand-alone process in which neither of the two host storage systems are connected to a network, and only to each other. [0018]
  • In a yet still further aspect, it is desirable to preserve hard links between files associated with the same data. To achieve this, the attributes of a remote file having data to be migrated are retrieved from the original host storage system. From these attributes, if it is determined the file is linked to only one file, the file is created in the replacement host storage system and the data migrated. If it is determined the data in the file is linked to more than one file, the file id and file system id is then determined from the attributes retrieved from the original storage system. A search is conducted for the file id and file system id in the database. If the file id and file system id are found in the database, the replacement host storage system identifier for the file is retrieved and a hard link is created to the file associated with the file system identifier retrieved. If the file id and file system id are not found on the database, the file is created in the replacement host storage system, and the data associated therewith is migrated to the replacement host storage system. An identifier for the file, which uniquely identifies the file on the replacement system, is then stored in the database in a manner in which it is keyed by the file id and file system id, which uniquely identify the file on the original host storage system, as retrieved from the file attributes.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Having thus briefly described the invention, the same will become better understood from the appended drawings, wherein: [0020]
  • FIG. 1 is a block diagram of an existing network having Network Attached Storage System connected of the type on which the systems and methods described herein may be implemented; [0021]
  • FIG. 2 is a block diagram illustrating the physical implementation of one system and method described herein for migrating data from one or more original host storage systems on a network; [0022]
  • FIG. 3 is a more detailed block diagram of a replacement host storage system connected to an original host storage system for migrating data from the original host storage system to the replacement host storage system; [0023]
  • FIGS. 4 and 5 are flow diagrams illustrating the method of migrating data from at least one original host storage system to a replacement host storage system while the replacement host storage system is connected to a network, and during which access to the data by clients is maintained; [0024]
  • FIGS. 6 and 7 are flow diagrams illustrating how background migration of data is maintained in accordance with the method described herein simultaneous to acting on client requests as illustrated in FIGS. 4 and 5; [0025]
  • FIG. 8 is a schematic illustration showing directory trees for files on an original host storage system and on a replacement host storage system is created so as to maintain the original full pathname to data in a file on a replacement host storage system, as was maintained on an original host storage system; [0026]
  • FIG. 9 is a flow diagram illustrating how the original pathname is maintained for a file containing data migrated to a replacement host storage system; [0027]
  • FIG. 10 illustrates directory trees on an original host storage system and on a replacement host storage system for data migrated from the original host storage system to a replacement host storage system, and further illustrating how hard links can be created to maintain hard links between files which previously were related to the same data on the original host storage system; [0028]
  • FIG. 11 is a flow diagram illustrating the method of maintaining hard links between files relating to the same data as migration from an original host storage system to a replacement host storage system is conducted; and [0029]
  • FIG. 12 illustrates how requests from clients to act on data can be efficiently processed in a multi-thread environment when a first thread acting on a request pends. [0030]
  • DETAILED DISCUSSION OF THE INVENTION
  • FIG. 1 illustrates a [0031] network environment 11 employing Network Attached Storage Systems on which the method and system described herein may be implemented. The network environment 11 includes network connections 15 with a plurality of clients 13 connected to the network and through a separate connection 17 from the network to a Network Attached Storage System, i.e., host storage system 19 optionally made up of a server with attached data storage 21. As previously discussed, the network 15 may be an Ethernet network or it can also be a fibre channel. The host storage system 19 optionally includes a storage device or system 21 with one or more disks on the back-end which actually stores data in a file system format, with the host storage system 19 running protocols, i.e., network protocols for file sharing such as NFS, CIFS, or FTP as will be readily apparent to those of ordinary skill in the art.
  • Alternatively, the [0032] host storage system 19 might be made up of a single unit having onboard intelligence combining block storage and file protocol in one.
  • Thus, for example, the host storage system might be made up of a [0033] server 19 such as those available from Sun Microsystems with a back-end cabinet unit 21 such as those available under the names Symmetrix or Clariion from EMC Corporation. Alternatively, the storage system might be a stand-alone system which combines block storage and file protocols into one, such as is available from EMC Corporation under the name IP4700. Clients 13 might be personal computers or stand-alone terminals with some intelligence onboard in order to execute commands on the client side of the protocols and to process data.
  • FIG. 2 illustrates how the method and system in accordance with the invention would be implemented in a [0034] network environment 11. A replacement host storage system 25 is connected directly through a connection 23 to the network 15. The connection 17 for the original host storage system 19 is severed, and the original host storage system 19 is connected directly to the replacement host storage system 25 through connection 27.
  • Alternatively, [0035] connection 18 may be maintained and the identity of the original host storage system 19 changed. In both cases, the replacement host storage system 25 is configured to impersonate the original host storage system 19. Optionally, it is also possible to connect multiple original host storage systems such as illustrated in dashed lines by original host storage system 31 through optional connection 35 to replacement host storage system 25. Thus, while data migration can occur from one original host storage system 19 to a replacement host storage system 25, it is possible in the case of a replacement host storage system having increased capacity such as one like that available from EMC Corporation under the name IP4700, which has multiple enhanced file systems running therein, it is possible to have up to ten original host storage systems per file system, and a total of up to one hundred original host storage systems 19 connected to the replacement host storage system 25 for conducting data migration, with connection 29 to the network 15 severed or maintained, as optionally desired, and previously described. The limits set forth are arbitrary for the IP4700, and may vary in implementation or with type of system used.
  • Thus, in implementing the method and system described herein, the replacement [0036] host storage system 25 impersonates the original host storage system 19. The replacement host storage system 25 includes a network protocol module 37 capable of handling the various protocols employed on the network 15. It also includes a data migration module 39 which is operative to migrate data, files and directories from the original host storage system 19, as well as having its own or multiple file systems 41 on which the data, files and directories from the original host storage system 19 are stored and managed. The data migration module 39 will also include a database populated with a table and other information as described hereinafter.
  • When the relationship is first established between the original [0037] host storage system 19 and the replacement host storage system 25, the table in the database is populated with a small record which indicates that there is no information about the original host storage system 19, and that all information will have to be obtained remotely. The information is associated with additional information in the form of what is known as a “tree id”, which represents another set of records which indicates how to retrieve information from the original host storage system.
  • In the record is also stored the IP address of the original [0038] host storage system 19 so that the replacement host storage system 25 can communicate with the original host storage system 19.
  • Thus, as the method is implemented, all of the data on original [0039] host storage system 19 is eventually brought over to replacement host storage system 25 and at that point, the original host storage system 19 can be disconnected from the replacement host storage system 25.
  • While the data is being migrated, the [0040] clients 13 are allowed to access the data either directly from the replacement host storage system 25 or through the passing of a request to the original host storage system 19. At some point, when most of the data has been copied over, the replacement host storage system 25 is processing a majority of the requests from the clients 13. Thus, in accordance with the method and system described herein, there are two separate processes. One process is acting on client requests while a separate process is doing block-by-block copying and there is cross-intelligence between the processes where one process is now told by the other that it is not necessary to copy data. More specifically, when a process first attempts to copy a file, it checks the state inside the table in the database for the data migration module 39, and if the directory has already been copied, the process then does not make the copy.
  • FIGS. 4 and 5 illustrate in greater detail the operation of the method and system, in particular, in [0041] flow chart 101 and 121 showing how one process operates on client requests. Client requests can come in in different network protocols as illustrated by blocks 103, 105, 107 and 109. In operation, the data migration module 39 intercepts the requests at step 111. The data migration module 39 then retrieves information stored about the file/directory in the data migration module database at step 113, and a query is made at step 115 about whether the necessary data has already been copied and is available locally at the replacement host storage system 25. If the answer is yes, the request is forwarded to the local file system 41 at step 117. If the answer is no, at step 117 a determination is made about the remote system information at original host storage system 19 from information about the file, and information about the remote system stored in the data migration module 39 database. Once this is done, a request for information is sent to the original host storage system 19 and replacement host storage system 25 awaits a response and proceeds to circle 119 in FIG. 5, where the second part of the process is illustrated.
  • From [0042] 119, a query is made at step 123 about whether the object or data sought to be copied is a file or a directory. If it is a file, it proceeds to step 125 and the data read is then stored in the replacement host storage system 25 file system 41, and the process then returns to circle 129 to step 117 which then forwards the request to the local file system 41 to be acted on.
  • If at [0043] step 123 it is determined that the object is a directory, at step 131 files and subdirectories are created locally based on information returned from the original host storage system 19. At step 133 new records are established in the database of the data migration module 39 for all newly created files and directories. The original host storage system 19 information is then inherited from the directory. Thereafter the process proceeds to step 135 where the data migration information is updated for the directory to indicate that it has been fully copied and passed then to circle 129 (B) to return to step 117 in FIG. 4.
  • FIGS. 6 and 7 illustrate a second process in two [0044] flow charts 151 and 171 during which background block copying is being conducted in the absence of client requests. At step 153 a determination is made if another file or directory which may need migration exists. If the answer is yes, at step 157 the next file or directory to be retrieved is determined and the system continues to step 159 where a request is made of the data migration module 39 to retrieve the file or directory. The data migration module 39 retrieves the information from its database about the file or directory. At step 161 a determination is made about whether the file or directory data already is stored locally. If the answer is yes, then at step 163 no further action is required and the process returns back to step 153. At step 153 the same inquiry as before is made. In this case, if the answer is no, at step 155 it is determined that the data migration is complete and data migration is terminated.
  • Returning to step [0045] 161, if it is determined that the file or directory data is not already stored locally, at step 167, the replacement host storage system 25 data migration module 39 determines remote system information from information about the file and information about the remote system's, i.e., original host storage system 19, stored in the data migration module 39 database. The request for information is then sent to the original host storage system 19, the replacement host storage system 25 awaits a response and then proceeds to circle C identified as 169 in both FIGS. 6 and 7.
  • It is appropriate to note that the process as now illustrated in FIG. 7 is the same as FIG. 5. Thus, at [0046] step 172, a determination is made about whether the object is a file or directory. If it is a file, it proceeds to step 173 corresponding to step 125 of FIG. 5 and the data read is stored in the local file system 41. The process then proceeds to step 175 corresponding to step 127 of FIG. 5 in which the data migration information for the file is updated to mark that more data has been stored into the file, and the method then proceeds to step 177 identified as circle D and continuing as before in FIG. 6.
  • If at [0047] step 172 it is determined that the object is a directory, like step 131 of FIG. 5, at step 174 files and subdirectories are created locally, based on information returned from the original host storage system 119. At step 176, as in the case with step 133 of FIG. 5, new records are established in the data migration module 39 database for all newly created files and directories. The original host storage system information is inherited from the directory. At step 178, the data migration information for the directory is updated at the replacement host storage system 25 to indicate that it has been fully copied, in a manner similar to step 135 of FIG. 5.
  • Referring now to FIG. 8 when migrating data from one system to another, in order to retrieve certain information from an original [0048] host storage system 19, it is necessary to use the full pathname of a file or directory on the original host storage system 19. However, this is difficult to determine sometimes because files or directories may have been moved. In the case of the relationship between an original host storage system 19 and a replacement host storage system 25, a file or directory move will affect the file system on the replacement host storage system 25. Given that there is no easy way to determine from looking at the file system 41 in the replacement host storage system 25 what a corresponding file name, or corresponding full pathname to a file would be on the original host storage system 19, not knowing this can complicate the data migration. Thus, in accordance with a further aspect of the methods and systems, there is presented a way to store additional information concerning files or directories which are moved on the system to allow an original pathname to be determined and used to retrieve information.
  • FIG. 8 illustrates two directory trees. [0049] Directory tree 201 illustrates the tree for the original host storage system 19 and tree 203 illustrates the tree for the replacement host storage system. On the original host storage system 19 the root directory 205 includes directories 207 and 215 designated as Fon and Bar. Those directories include files 209-223. Thus, directory 201 illustrates the pathname where you start at the root and go all the way down. For example, a path would be /Bar/5 /6, /Bar, or /Bar/5/7. It becomes desirable to port that path to the replacement host storage system 25. Referring now to tree 203, it is possible that originally somebody did an operation which caused root directory Fon and Bar to be brought over and renamed. Those two entries are created locally on the replacement host storage system 25 as 227 and 235, with /Fon being renamed /Foo and /Bar being renamed /Foo/Bas. The challenge is for the system is to remember that directory /Foo/Bas identified as 235 is really the same as /Bar 215 on the original host storage system 19. This occurs before all of the data has been migrated. It is important to appreciate that it is undesirable to duplicate all of the information from the original host storage system 19 and in accordance with the system and method, what is created are pointers back to the full pathname at the original host storage system 19.
  • It is important to appreciate that while this method and system for maintaining the pathname through the use of pointers can be implemented during data migration while connected to a network as previously discussed, it can also be implemented in a stand-alone environment where there is no connection to a network and data is just being migrated from one system to another. It is also important to appreciate that depending on the protocol employed, this aspect of the invention may not need to be implemented. For example, if the protocol is NFS, it is not required because NFS does not refer to files by file names. In this regard, it is noted that NFS stands for Network File System which is one of the core files sharing protocols. It associates a unique identifier with a file or directory and thus when directory Bar was moved over to Bas, that unique identifier was maintained with it. On the other hand, in CIFS, which refers to Common Internet File System, a Microsoft Corporation file sharing standard, otherwise sometimes referred to as SMB, i.e., Server Message Block, it becomes important to implement the system and method with such a protocol because CIFS does not implement a unique identifier. [0050]
  • Having thus generally described this aspect of the systems and methods, FIG. 9 illustrates a [0051] flow chart 301 illustrating how the pathname on the original host storage system 19 can be maintained.
  • At [0052] step 303 the pathname is set to empty for a particular file or data and the current object is set to the file or directory whose name is to be determined. Extra attributes stored in the data migration module 39 database are looked up at step 305, and at step 307 the query is made as to whether the object is marked as existing on the original host storage system 19. If the answer is no, at step 309 it is determined that the pathname is already complete and the system returns to normal operation.
  • If the answer is yes, a query is made at [0053] step 311 as to whether the current object has the original host storage system 19 path attribute. If the answer is yes, the original host storage system 19 path attribute is then prepended as an attribute value to the pathname at step 313, and the pathname is then complete.
  • If the answer is no, at [0054] step 315 the name of the current object in the local or replacement host storage system 25 file system 41 is determined and prepended to the pathname, and the parent directory of the object is also determined, for example, such as Bas at 235 in FIG. 8. At step 317 the current object to the parent directory is set as determined at step 315, and the process returns back to step 305.
  • In a yet still further aspect, when migrating data it also becomes desirable to maintain what are known as “hard links” between files associated with the same data. This is further illustrated in FIG. 10 where [0055] directory tree 401 illustrates the pathname in the original host storage system 19 and tree 423 illustrates the pathname in the replacement host storage system 25. Again a root directory 403 is provided with additional directories 405 and 413, and files 407-421. As may be appreciated, there is often the case that two files 411 and 415 refer to the same data. These files are linked together as are files 407 and 419. This type of linking can be done, for example, in an operating system environment such an UNIX, but other operating systems also support such linking. Further, while linking is shown between two files, it is not limited to two and any number of hard links may be preserved. Thus, when data is migrated, as illustrated in tree 423 for the replacement host storage system 25, a hard link 437 must be created for different named files such as 431 and 435 even though the directory tree has changed so as to maintain the same link to the data as was done in the original host storage system 19.
  • In a more specific aspect, in a typical UNIX file system, there is a unique identifier for a file, which is a called an I-node. The I-node is the true identifier for a file. Inside a directory the file name is actually a name and an I-node number. It is important to appreciate that while this is being discussed in the context of a UNIX operating system, similar type implementations are done in other operating systems. Thus it becomes important to identify which files are linked, and to create those links in the new or replacement [0056] host storage system 25.
  • This is further illustrated in greater clarity in FIG. 11 where flow diagram [0057] 501 further shows how the links are determined and created. More specifically, at step 503 the attributes of a remote file residing on the original host storage system 19 are retrieved. At step 505 it is determined if the link count of the file is greater than one, and if the answer is no, normal processing occurs at 507, in which the file is then created in the new or replacement host storage system 25.
  • If the answer is yes, at [0058] step 509 the file id and file system id is determined from the retrieved attributes in the database of the data migration module 39. At step 511 it is determined whether the file id and file system id is found in the database of the replacement host storage system 25. If the answer is yes, then at step 515 the local file system identifier for the file is retrieved from the data migration module 39 database and at step 517 a hard link to the file associated with the file system identifier retrieved is created. If at step 511 the answer is no, then at step 513 the file is created in the replacement host storage system 25 and the identifier retrieved from file system 41. The retrieved identifier for the file is stored in the database of the data migration module 39 keyed by the file id and file system id retrieved from the file attributes.
  • In another aspect of the systems and methods described herein, it is possible that there may be multiple client requests for acting on data or files in either an environment such as a network connection where data migration is occurring between an original [0059] host storage system 19 and a replacement host storage system 25, or simply in simple network operation where migration has already occurred and only the replacement host storage system 25 is connected.
  • Operation can be made cumbersome if, when there are multiple client requests assigned to different threads, if a thread being processed pends, due for example, to background operations. The remaining threads cannot then be processed efficiently. A client request can include a search for data, for example, to an original [0060] host storage system 19 connected or quite simply a write to a file which may be a lengthy operation such as requiring extending the file, creating information about the file on the disk, storing the information back to the disk, and other things which require multiple inputs and outputs in the back-end system. The thread currently being implemented has to wait while those inputs and outputs are being processed. In the meantime, other threads are incapable of being processed.
  • Thus, in accordance with this aspect, if a thread pends, it relinquishes the process and allows a thread next in the queue to be processed with the thread relinquishing the process returning to the back of the queue. [0061]
  • This operation is illustrated in greater detail in FIG. 12 which shows two [0062] threads 601 and 603. The first thread at a step 605 reads a response from the network. At step 607, the request is matched, and at step 609 the thread is marked to notify the thread next in line, i.e, T2, if it pends or blocks. At step 611 the response handling is performed, and the designation of notifying the second thread, T2, if the thread blocks, is removed at step 613.
  • At [0063] step 615 an inquiry is made as to whether the thread blocked the processing response, i.e., pended, and if the answer is yes, it returns to the back of the queue at step 617. If the answer is no, it returns to continue being processed at step 605.
  • Referring to the process at [0064] 603 for the second thread, it becomes the thread, T1, which is being processed at 619 if notified by step 621 that the thread originally being processed had blocked or pended.
  • Having thus generally described the invention, the same will become better understood from the appended claims, in which it is set forth in a non-limiting manner. [0065]

Claims (10)

What is claimed is:
1. A method of migrating data from at least one original host storage system to a replacement host storage system, comprising:
connecting a replacement host storage system to an original host storage system;
retrieving, through the replacement host storage system, the Access Control Lists for directories and files on the original host storage system file system to be migrated to the replacement host storage system;
migrating directories, files and data from the original host storage system to the replacement host storage system; and
for directories and files that are moved or renamed on the replacement host storage system, storing on the replacement host storage system the original location of said directories and files on the original host storage system.
2. The method of claim 1, further comprising:
building a database at the replacement host storage system indicative of what data has been migrated from the original host storage system.
3. The method of claim 2, further comprising:
determining if the data to be migrated is a file or a directory;
if the data is a file, storing the data in the replacement host storage system file system, and updating data migration information in the database of the replacement host storage system to indicate more data has been migrated and stored; and
if the data is a directory, creating files and subdirectories in the replacement host storage system based on information returned from the original host storage system, creating new records in the database in the replacement host storage system for all newly created files and directories based on information from the original host storage system, and updating information in the replacement host storage system database to indicate that the data has been fully copied.
4. The method of claim 1, wherein said at least one original host storage system comprises multiple host storage systems.
5. The method of claim 1, further comprising:
determining whether additional files or directories data to be migrated exist on the original host storage system; and
if there are no additional files or directory data existing which require migration, terminating data migration.
6. The method of claim 3, further comprising:
(a) determining whether additional files or directories data to be migrated exist on the original host storage system;
(b) if additional files or directories data exist, determining which file or directory data is next to be retrieved;
(c) retrieving the information about the file or directory from the database;
(d) determining whether the file or directory data is already stored locally;
(e) if the file or directory data is already stored on the replacement host storage system, returning to step (a); and
(f) if the file or directory data is not already stored on the replacement host storage system, migrating the data from the original host storage system to the replacement host storage system
(g) if there are no additional files or directory data existing which require migration, terminating data migration.
7. A replacement host storage system for migrating data from an original host storage system to the replacement host storage system, the replacement host storage system, comprising:
means for connecting the replacement host storage system directly to an original host storage system from which data is to be copied onto the replacement host storage system;
a file system module for arranging and managing data on the replacement host storage system; and
a data migration module for retrieving the Access Control List for data, directories and files on the original host storage file system to be migrated to the replacement host storage system, and for migrating data from an original host storage system to the replacement host storage system, said data migration module further comprising a data migration database for storing information about what data has been migrated to the replacement host storage system and where it resides, and said data migration module being further configured for storing on the replacement host storage system the original location of the directories and files on the original host storage system for directories and files moved to the replacement host storage system.
8. The system of claim 7, wherein said replacement host storage system is adapted for simultaneous connection to multiple original host storage systems for migration of data therefrom.
9. The system of claim 7, wherein said data migration module is configured for, after each migration of file or directory migrated, determining if additional file or directory data to be migrated exists on the original host storage system; and if no such files exist, terminating data migration.
10. The system of claim 9, wherein the data migration module is configured for:
(a) in the event it determines additional file or directory data to be migrated exists, determining which file or directory data is to be retrieved;
(b) retrieving the information about the file or directory from the database;
(c) determining whether the file or directory data is already stored locally in the replacement host storage system;
(d) returning to step (a) if the file or directory data is already stored on the replacement host storage system, otherwise migrating the file or directory data to the replacement host storage system; and
(e) terminating data migration if there is no additional file or directory data which require migration.
US10/105,492 2002-03-25 2002-03-25 Method and system for migrating data while maintaining access to data with use of the same pathname Expired - Lifetime US6952699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/105,492 US6952699B2 (en) 2002-03-25 2002-03-25 Method and system for migrating data while maintaining access to data with use of the same pathname

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/105,492 US6952699B2 (en) 2002-03-25 2002-03-25 Method and system for migrating data while maintaining access to data with use of the same pathname

Publications (2)

Publication Number Publication Date
US20030182288A1 true US20030182288A1 (en) 2003-09-25
US6952699B2 US6952699B2 (en) 2005-10-04

Family

ID=28040821

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/105,492 Expired - Lifetime US6952699B2 (en) 2002-03-25 2002-03-25 Method and system for migrating data while maintaining access to data with use of the same pathname

Country Status (1)

Country Link
US (1) US6952699B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040193760A1 (en) * 2003-03-27 2004-09-30 Hitachi, Ltd. Storage device
US20050256898A1 (en) * 2004-05-07 2005-11-17 Etsutaro Akagawa Computer system including file sharing device and a migration method
US20050267982A1 (en) * 2003-03-13 2005-12-01 Hitachi, Ltd. Method for accessing distributed file system
US20070061293A1 (en) * 2005-09-09 2007-03-15 Sap Ag Method and apparatus to support mass changes to business objects in an integrated computer system
US20070124273A1 (en) * 2002-05-23 2007-05-31 Tadashi Numanoi Storage device management method, system and program
US7469260B2 (en) 2003-03-19 2008-12-23 Hitachi, Ltd. File storage service system, file management device, file management method, ID denotative NAS server and file reading method
US8751878B1 (en) * 2010-03-30 2014-06-10 Emc Corporation Automatic failover during online data migration
EP3152663A4 (en) * 2014-06-04 2018-01-17 Pure Storage, Inc. Transparent array migration

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8423573B2 (en) * 2004-11-12 2013-04-16 International Business Machines Corporation Filesystem backup using directorywise hardlinking for a computer filesystem
US7509359B1 (en) * 2004-12-15 2009-03-24 Unisys Corporation Memory bypass in accessing large data objects in a relational database management system
US8943019B1 (en) * 2011-04-13 2015-01-27 Symantec Corporation Lookup optimization during online file system migration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266679B1 (en) * 1999-10-12 2001-07-24 Amd. Inc. Method and apparatus for hierarchical storage of data for efficient archiving and retrieval of data
US6473767B1 (en) * 1999-12-21 2002-10-29 International Business Machines Corporation File system for a computer and method of synchronizing sets of files

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442601B1 (en) 1999-03-25 2002-08-27 International Business Machines Corporation System, method and program for migrating files retrieved from over a network to secondary storage
US6745241B1 (en) 1999-03-31 2004-06-01 International Business Machines Corporation Method and system for dynamic addition and removal of multiple network names on a single server
US7546305B2 (en) 2001-04-13 2009-06-09 Oracle International Corporation File archival

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266679B1 (en) * 1999-10-12 2001-07-24 Amd. Inc. Method and apparatus for hierarchical storage of data for efficient archiving and retrieval of data
US6473767B1 (en) * 1999-12-21 2002-10-29 International Business Machines Corporation File system for a computer and method of synchronizing sets of files

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070124273A1 (en) * 2002-05-23 2007-05-31 Tadashi Numanoi Storage device management method, system and program
US7631002B2 (en) 2002-05-23 2009-12-08 Hitachi, Ltd. Storage device management method, system and program
US7246105B2 (en) 2002-05-23 2007-07-17 Hitachi, Ltd. Storage device management method, system and program
US7548959B2 (en) 2003-03-13 2009-06-16 Hitachi, Ltd. Method for accessing distributed file system
US20090228496A1 (en) * 2003-03-13 2009-09-10 Hitachi, Ltd. Method for accessing distributed file system
US7143146B2 (en) 2003-03-13 2006-11-28 Hitachi, Ltd. Method for accessing distributed file system
US20060259611A1 (en) * 2003-03-13 2006-11-16 Hitachi, Ltd. Method for accessing distributed file system
US20050267982A1 (en) * 2003-03-13 2005-12-01 Hitachi, Ltd. Method for accessing distributed file system
US7363352B2 (en) 2003-03-13 2008-04-22 Hitachi, Ltd. Method for accessing distributed file system
US7284041B2 (en) 2003-03-13 2007-10-16 Hitachi, Ltd. Method for accessing distributed file system
US7469260B2 (en) 2003-03-19 2008-12-23 Hitachi, Ltd. File storage service system, file management device, file management method, ID denotative NAS server and file reading method
US20090089298A1 (en) * 2003-03-19 2009-04-02 Hitachi, Ltd. File Storage Service System, File Management Device, File Management Method, ID Denotative NAS Server and File Reading Method
US8700573B2 (en) 2003-03-19 2014-04-15 Hitachi, Ltd. File storage service system, file management device, file management method, ID denotative NAS server and file reading method
US8190573B2 (en) 2003-03-19 2012-05-29 Hitachi, Ltd. File storage service system, file management device, file management method, ID denotative NAS server and file reading method
US7330950B2 (en) 2003-03-27 2008-02-12 Hitachi, Ltd. Storage device
US7356660B2 (en) 2003-03-27 2008-04-08 Hitachi, Ltd. Storage device
US8230194B2 (en) 2003-03-27 2012-07-24 Hitachi, Ltd. Storage device
US20040193760A1 (en) * 2003-03-27 2004-09-30 Hitachi, Ltd. Storage device
US20050119994A1 (en) * 2003-03-27 2005-06-02 Hitachi, Ltd. Storage device
US7925851B2 (en) 2003-03-27 2011-04-12 Hitachi, Ltd. Storage device
US20050256898A1 (en) * 2004-05-07 2005-11-17 Etsutaro Akagawa Computer system including file sharing device and a migration method
US20070061293A1 (en) * 2005-09-09 2007-03-15 Sap Ag Method and apparatus to support mass changes to business objects in an integrated computer system
US7860841B2 (en) * 2005-09-09 2010-12-28 Sap Ag Method and apparatus to support mass changes to business objects in an integrated computer system
US8751878B1 (en) * 2010-03-30 2014-06-10 Emc Corporation Automatic failover during online data migration
EP3152663A4 (en) * 2014-06-04 2018-01-17 Pure Storage, Inc. Transparent array migration

Also Published As

Publication number Publication date
US6952699B2 (en) 2005-10-04

Similar Documents

Publication Publication Date Title
US6922761B2 (en) Method and system for migrating data
US7080102B2 (en) Method and system for migrating data while maintaining hard links
US9646038B2 (en) Distributed indexing system for data storage
JP4416821B2 (en) A distributed file system that maintains a fileset namespace accessible to clients over the network
US20180018099A1 (en) Systems and methods for performing storage operations using network attached storage
US5857203A (en) Method and apparatus for dividing, mapping and storing large digital objects in a client/server library system
US7418464B2 (en) Method, system, and program for storing data for retrieval and transfer
US8560569B2 (en) Method and apparatus for performing bulk file system attribute retrieval
US7783608B2 (en) Method and apparatus for NAS/CAS integrated storage system
US9183213B2 (en) Indirection objects in a cloud storage system
TWI359362B (en) Apparatus, system, and method for presenting a map
US8661054B2 (en) File management method and system
EP1902394B1 (en) Moving data from file on storage volume to alternate location to free space
US20150261801A1 (en) Method for handling large object files in an object storage system
US20050216788A1 (en) Fast backup storage and fast recovery of data (FBSRD)
US20070038697A1 (en) Multi-protocol namespace server
JP2002007187A (en) System for transferring related data object in distributed data storage environment and method for the same
JPH1049423A (en) Virtual file system access subsystem
US20050278383A1 (en) Method and apparatus for keeping a file system client in a read-only name space of the file system
JP2008515120A (en) Storage policy monitoring for storage networks
US6952699B2 (en) Method and system for migrating data while maintaining access to data with use of the same pathname
CN111209259A (en) NAS distributed file system and data processing method
WO2020190436A1 (en) Timestamp consistency for synchronous replication
US8332351B2 (en) Method and system for preserving files with multiple links during shadow migration
US8516023B1 (en) Context based file system

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMC CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:O'CONNELL, MARK;ZHENG, ZHILING;REEL/FRAME:012724/0155;SIGNING DATES FROM 20020321 TO 20020322

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040136/0001

Effective date: 20160907

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040134/0001

Effective date: 20160907

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040134/0001

Effective date: 20160907

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040136/0001

Effective date: 20160907

AS Assignment

Owner name: EMC IP HOLDING COMPANY LLC, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EMC CORPORATION;REEL/FRAME:040203/0001

Effective date: 20160906

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., T

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES, INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:049452/0223

Effective date: 20190320

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES, INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:049452/0223

Effective date: 20190320

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:053546/0001

Effective date: 20200409

AS Assignment

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: MOZY, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: MAGINATICS LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: FORCE10 NETWORKS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: EMC IP HOLDING COMPANY LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: EMC CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL SYSTEMS CORPORATION, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL MARKETING L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL INTERNATIONAL, L.L.C., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: CREDANT TECHNOLOGIES, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: AVENTAIL LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: ASAP SOFTWARE EXPRESS, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

AS Assignment

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL INTERNATIONAL L.L.C., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

AS Assignment

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL INTERNATIONAL L.L.C., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329