US20030215945A1 - Methods and compositions for organ decellularization - Google Patents

Methods and compositions for organ decellularization Download PDF

Info

Publication number
US20030215945A1
US20030215945A1 US10/464,165 US46416503A US2003215945A1 US 20030215945 A1 US20030215945 A1 US 20030215945A1 US 46416503 A US46416503 A US 46416503A US 2003215945 A1 US2003215945 A1 US 2003215945A1
Authority
US
United States
Prior art keywords
organ
decellularized
isolated
cells
triton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/464,165
Inventor
Anthony Atala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Childrens Medical Center Corp
Original Assignee
Childrens Medical Center Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23884532&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030215945(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Childrens Medical Center Corp filed Critical Childrens Medical Center Corp
Priority to US10/464,165 priority Critical patent/US20030215945A1/en
Publication of US20030215945A1 publication Critical patent/US20030215945A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3687Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the use of chemical agents in the treatment, e.g. specific enzymes, detergents, capping agents, crosslinkers, anticalcification agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/26Materials or treatment for tissue regeneration for kidney reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking

Definitions

  • the technical field of this invention relates to methods of decellularizing an isolated organ or part of an organ, by mechanically agitating the isolated organ with a fluid that removes the cellular membrane surrounding the isolated organ, and with a fluid that solubilizes the cytoplasmic and nuclear components of the isolated organ.
  • Tissue transplantation is another way of restoring function by replacing the damaged organ, and has saved the lives of many.
  • Organ rejection is a significant risk associated with transplantation, even with a good histocompatability match.
  • Immunosuppressive drugs such as cyclosporin and FK506 are usually given to the patient to prevent rejection. These immunosuppressive drugs however, have a narrow therapeutic window between adequate immunosuppression and toxicity. Prolonged immunosuppression can weaken the immune system, which can lead to a threat of infection. In some instances, even immunosuppression is not enough to prevent organ rejection.
  • Another major problem of transplantation is the availability of donor organs. In the United States alone there are about 50,000 people on transplant waiting lists, many of whom will die before an organ becomes available.
  • the artificial organs typically are made of living cells fabricated onto a matrix or a scaffold made of natural or manmade material. These artificial organs avoid the problems associated with rejection or destruction of the organ, especially if the subject's own tissue cells are used for reconstruction of the artificial organ. These artificial organs also avoid the problem of not having enough donor organs available because any required number of organs can be reconstructed in vitro.
  • Vacanti et al. have disclosed methods for culturing cells in a three-dimensional polymer-cell scaffold made of a biodegradable polymer. Organ cells are cultured within the polymer-cell scaffold which is implanted into the patient. Implants made of resorbable materials are suggested for use as temporary replacements, rather than a permanent replacement. The object of the temporary replacement is to allow the healing process to replace the resorbed material. Naughton et al. reported a three-dimensional tissue culture system in which stromal cells were laid over a polymer support system (See U.S. Pat. No. 5,863,531).
  • the shaping process may have deleterious effects on the mechanical properties of scaffold, and in many cases produce scaffolds with irregular three-dimensional geometries. Additionally, many shaping techniques have limitations that prevent their use for a wide variety of polymer materials. For example, poly L-lactic acid (PLLA) dissolved in methylene chloride and cast over the mesh of polyglycolic acid (PGA) fibers is suitable for PGA, however, the choice of solvents, and the relative melting temperatures of other polymers restricts the use of this technique for other polymers.
  • Another example includes solvent casting, which is used for a polymer that is soluble in a solvent such as chloroform. The technique uses several salt particles that are dispersed in a PLLA/chloroform solution and cast into a glass container.
  • the salt particles utilized are insoluble in chloroform.
  • the solvent is allowed to evaporate and residual amounts of the solvent are removed by vacuum-drying.
  • the disadvantages of this technique is that it can only be used to produce thin wafers or membranes up to 2 mm in thickness. A three-dimensional scaffold cannot be constructed using this technique.
  • the invention pertains to methods of producing decellularized organs, using an isolated organ or a part of an organ and a series of extractions that removes the cell membrane surrounding the organ, or part of an organ, and the cytoplasmic and nuclear components of the isolated organ, or part of an organ.
  • the invention provides a method for producing a decellularized organ comprising:
  • washing the isolated organ in a washing fluid to remove cellular debris without removing the interstitial structure of the organ until the isolated organ is substantially free of cellular material, to thereby produce a decellularized organ.
  • the method can further comprise equilibrating the decellularized organ in an equilibrating fluid.
  • the equilibrating fluid can be selected from the group consisting of distilled water, physiological buffer and culture medium.
  • the method can further comprise drying the decellularized organ.
  • the dried decellularized organ can be stored at a suitable temperature, or equilibrated in a physiological buffer prior to use.
  • the step of mechanically agitating the isolated organ further comprises placing the isolated organ in a stirring vessel having a paddle which rotates at a speed ranging from about 50 revolutions per minute (rpm) to about 150 rpm.
  • the step of mechanically agitating the isolated organ occurs in a fluid selected from the group consisting of distilled water, physiological buffer and culture medium.
  • the step of treating the isolated organ in the solubilizing fluid also occurs in a stirring vessel.
  • the solubilizing fluid is an alkaline solution having a detergent.
  • the alkaline solution is selected from the group consisting of sulphates, acetates, carbonates, bicarbonates and hydroxides
  • a detergent is selected from the group consisting of Triton X-100, Triton N-101, Triton X-114, Triton X-405, Triton X-705, and Triton DF-16, monolaurate (Tween 20), monopalmitate (Tween 40), monooleate (Tween 80), polyoxethylene-23-lauryl ether (Brij 35), polyoxyethylene ether W-1 (Polyox), sodium cholate, deoxycholates, CHAPS, saponin, n-Decyl ⁇ -D-glucopuranoside, n-heptyl
  • the step of washing the isolated organ also occurs in a stirring vessel.
  • the washing fluid can be selected from the group consisting of distilled water, physiological buffer and culture medium.
  • the invention features a method for producing a decellularized kidney comprising:
  • the method further comprises equilibrating the decellularized kidney in a phosphate buffered solution.
  • the method further comprises drying the decellularized kidney.
  • Embodiments for mechanically agitating a decellularized organ are described above and are reiterated here.
  • the step of washing further comprises rotating the isolated kidney in distilled water in a stirring vessel.
  • the term “decellularized organ” as used herein refers to an organ, or part of an organ from which the entire cellular and tissue content has been removed leaving behind a complex interstitial structure.
  • Organs are composed of various specialized tissues.
  • the specialized tissue structures of an organ are the parenchyma tissue, and they provide the specific function associated with the organ.
  • Most organs also have a framework composed of unspecialized connective tissue which supports the parenchyma tissue.
  • the process of decellularization removes the parenchyma tissue, leaving behind the three-dimensional interstitial structure of connective tissue, primarily composed of collagen.
  • the interstitial structure has the same shape and size as the native organ, providing the supportive framework that allows cells to attach to, and grow on it.
  • Decellularized organs can be rigid, or semi-rigid, having an ability to alter their shapes.
  • Examples of decellularized organs include, but are not limited to the heart, kidney, liver, pancreas, spleen, bladder, ureter and urethra.
  • isolated organ refers to an organ that has been removed from a mammal. Suitable mammals include humans, primates, dogs, cats, mice, rats, cows, horses, pigs, goats and sheep. The term “isolated organ” also includes an organ removed from the subject requiring an artificial reconstructed organ. Suitable organs can be any organ, or part of organ, required for replacement in a subject. Examples include but are not limited to the heart, kidney, liver, pancreas, spleen, bladder, ureter and urethra.
  • the present invention provides methods for decellularizing organs.
  • Decellularization of organs comprises removing the nuclear and cellular components of an isolated organ, or a part of an organ, leaving behind an interstitial structure having the same size and shape of a native organ.
  • An organ, or a part of an organ can be isolated from the subject requiring an artificial reconstructed organ.
  • a diseased organ in a subject can be removed and decellularized, as long as the disease effects the parenchyma tissue of the organ, but does not harm the connective tissue, e.g., tissue necrosis.
  • the diseased organ can be removed from the subject and decellularized as described in Example 1 and in Section II interstitial.
  • the decellularized organ, or a part of the organ can be used as a three-dimensional scaffold to reconstruct an artificial organ.
  • An allogenic artificial organ can be reconstructed using the subject's own decellularized organ as a scaffold and using a population of cells derived from the subject's own tissue. For example, cells populations derived from the subject's skin, liver, pancreas, arteries, veins, umbilical cord, and placental tissues.
  • a xenogenic artificial organ can be reconstructed using the subject's own decellularized organ as a scaffold, and using cell populations derived from a mammalian species that are different from the subject.
  • the different cell populations can be derived from mammals such as primates, dogs, cats, mice, rats, cows, horses, pigs, goats and sheep.
  • An organ, or part of an organ can also be derived from a human cadaver, or from mammalian species that are different from the subject, such as organs from primates, dogs, cats, mice, rats, cows, horses, pigs, goats and sheep. Standard methods for isolation of a target organ are well known to the skilled artisan and can be used to isolate the organ.
  • An isolated organ, or part of an organ can be decellularized by removing the entire cellular material (e.g., nuclear and cytoplasmic components) from the organ, as described in Example 1.
  • the decellularization process comprises a series of sequential extractions.
  • One key feature of this extraction process is that harsh extraction, that may disturb or destroy the complex interstitial structure of the biostructure, be avoided.
  • the first step involves removal of cellular debris and cell membranes surrounding the isolated organ, or part of an organ. This is followed by solubilization of the nuclear and cytoplasmic components of the isolated organ, or part of the organ using a solubilizing fluid, leaving behind a three-dimensional interstitial structure.
  • the organ can be decellularized by removing the cell membrane surrounding the organ using mechanical agitation methods.
  • Mechanical agitation methods must be sufficient to disrupt the cellular membrane.
  • the mechanical agitation methods should not damage or destroy the three-dimensional interstitial structure of the isolated organ.
  • the mechanical agitation method involves using a magnetic stir plate and a paddle, e.g., a magnetic stirrer.
  • the isolated organ, or part of an organ is placed in a container with a suitable volume of fluid and stirred on the magnetic stir plate at a suitable speed.
  • a suitable speed for stirring the isolated organ will depend on the size of the isolated organ. For example. Rotation at about 50 revolutions per minute (rpm) to about 150 rpm. A large organ will require a faster speed, compared with a smaller organ.
  • the volume of fluid in which the isolated organ is placed in will also depend on the size of the isolated organ. Suitable fluids depend on which layer of the organ is being removed and are described in more detail interstitial.
  • the mechanical agitation method involves using a mechanical rotator.
  • the organ, or part of the organ is placed in a sealed container with a suitable volume of fluid.
  • the container is placed on the rotator platform and rotated at 360°. The speed of rotation, and the volume of fluid will depend on the size of the isolated organ.
  • the mechanical agitation method involves using a low profile roller.
  • the organ, or part of the organ is placed in a sealed container with a suitable volume of fluid.
  • the container is placed on the roller platform and rolled at a selected speed in a suitable volume of fluid depending of the size of the organ.
  • mechanical agitation devices can be commercially obtained from, for example, Sigma Co.
  • the agitation can also include placing the isolated organ in a closed container e.g., a self-sealing polyethylene bag, a plastic beaker.
  • the container can be placed in a sonicating waterbath, and exposed to sonication methods that include, but are not limited to, acoustic horns, piezo-electric crystals, or any other method of generating stable sound waves, for example, with sonication probes.
  • the sonication should be conducted at a frequency that selectively removes cell membranes and/or cellular material, without destroying the interstitial structure. Suitable sonication frequencies will depend on the size and the type of the isolated organ being decellularized.
  • Typical sonicaton frequencies are between 40 kHz to 50 kHz. However, a fairly wide range of frequencies from subaudio to ultrasound (between about 7 Hz to 40 MHz, preferably between 7 Hz and 20 MHz) would be expected to give sound-enhanced tissue dissociation. Variations in the type of sonication are also contemplated in the invention and include pulsing versus continuous sonication. Power levels for sonication source is between 10- 4 and about 10 watts/cm 2 (See Biological Effects of Ultrasound: Mechanisms and Clinical Implications, National Council on Radiation Protection and Measurements (NCRP) Report No. 74, NCRP Scientific Committee No. 66: Wesley L. Nyborg, chairman; 1983; NCRP, Bethesda, Md.
  • NCRP National Council on Radiation Protection and Measurements
  • the decellularization method requires the sequential removal of components of the isolated organ, or part of the organ.
  • the first step involves mechanically agitating the isolated organ, or part of the organ, until the cell membrane surrounding the organ is disrupted and a cellular debris around the organ has been removed.
  • This step can involve using a membrane striping fluid that is capable of removing the cellular membranes surrounding the isolated organ, or part of an organ.
  • a membrane striping fluid include, but are not limited to, distilled water, physiological buffer and culture medium.
  • Suitable buffers include, but are not limited to, phosphate buffered saline (PBS), saline, MOPS, HEPES, Hank's Balanced Salt Solution, and the like.
  • Suitable cell culture medium includes, but is not limited to, RPMI 1640, Fisher's, Iscove's, McCoy's, Dulbecco's medium, and the like.
  • the membrane striping fluid fluid should be capable of removing the cellular membrane surrounding the isolated organ, particularly when mechanically agitated.
  • the membrane striping fluid is distilled water.
  • the second step involves removal of cellular material, for example native tissue cells and the nuclear and cytoplasmic components of the organ, or part of an organ.
  • Cellular material can be removed, for example, by mechanical agitation of the isolated organ, or part of an organ in a solubilizing fluid.
  • the solubilizing fluid is an alkaline solution having a detergent.
  • the cellular material of the isolated organ is solubilized without dissolving the interstitial structure of the organ.
  • the cytoplasmic component consisting of the dense cytoplasmic filament networks, intercellular complexes and apical microcellular structures, can be solubilized using an alkaline solution, such as, ammonium hydroxide.
  • alkaline solution consisting of ammonium salts or their derivatives may also be used to solubilize the cytoskeletal components.
  • suitable ammonium solutions include, but are not limited to, ammonium sulphate, ammonium acetate, ammonium bicarbonate, ammonium carbonate and ammonium hydroxide.
  • ammonium hydroxide is used.
  • Other alkaline solutions also include, but are not limited to, sulphates, acetates, hydroxides and carbonates of calcium, lithium, sodium and potassium.
  • concentration of the alkaline solutions may be altered depending on the type of organ being decellularized. For example, for delicate tissues, e.g., blood vessels, the concentration of the detergent should be decreased. Preferred concentrations ranges can be from about 0.006% (w/v) to about 1.6% (w/v). More preferably, about 0.0125% (w/v) to about 0.8% (w/v). More preferably, about, 0.025% (w/v) to about 0.04% (w/v). More preferably about 0.05% (w/v) to about 0.25% (w/v). More preferably, about 0.05% (w/v) to about 0.1% (w/v). Even more preferably, about 0.0125% (w/v) to about 0.1% (w/v).
  • concentration of the alkaline solutions e.g., ammonium hydroxide
  • non-ionic detergents or surfactants can be used in an alkaline solution.
  • non-ionic detergents or surfactants include, but are not limited to, the Triton series, available from Rohm and Haas of Philadelphia, Pa., which includes Triton X-100, Triton N-101, Triton X-114, Triton X-405, Triton X-705, and Triton DF-16, available commercially from many vendors; the Tween series, such as monolaurate (Tween 20), monopalmitate (Tween 40), monooleate (Tween 80), and polyoxethylene-23-lauryl ether (Brij 35), polyoxyethylene ether W-1 (Polyox), and the like, sodium cholate, deoxycholates, CHAPS, saponin, n-Decyl ⁇ -D-glucopuranoside, n-heptyl ⁇ -D-glucopyranoside,
  • the non-ionic surfactant is the Triton series, preferably, Triton X-100.
  • the concentration of the non-ionic detergent may be altered depending on the type of organ being decellularized. For example, for delicate tissues, e.g., blood vessels, the concentration of the detergent should be decreased. Preferred concentrations ranges of the non-ionic detergent can be from about 0.00625% (w/v) to about 2.0% (w/v). More preferably, about 0.125% (w/v) to about 1.0% (w/v). Even more preferably, about 0.25% (w/v) to about 0.5% (w/v).
  • any combination of alkaline solution with any combination of a detergent, at the above concentration ranges can be used depending on the size and type of organ being decellularized. In other embodiments, one or more detergents can be used in an alkaline solution.
  • the next step in the sequential extraction involves removal of the solubilized components by mechanically agitating the isolated organ in a washing fluid. Removal of the cytoplasmic and nuclear components leaves behind a three-dimensional connective tissue interstitial structure having the same shape and size as the native organ.
  • a washing fluid include, but are not limited to, distilled water, physiological buffer and culture medium. Examples of suitable buffers and culture media are described Supra. In a preferred embodiment, the washing fluid is distilled water.
  • the next step of the sequential extraction can involve equilibrating the decellularized organ in an equilibrating fluid.
  • an equilibrating fluid include, but are not limited to, distilled water, physiological buffer and culture medium. Examples of suitable buffers and culture media are described Supra.
  • the decellularized organ can be dried for long term storage. Methods for drying the decellularized organ include freeze-drying or lyophilizing the organ to remove residual fluid. The lyophilized decellularized organ can be stored at a suitable temperature until required for use. Prior to use, the decellularized organ can be equilibrated in suitable physiological buffer or cell culture medium. Examples of suitable buffers and culture media are described Supra.
  • the invention provides a method of reconstructing an artificial organ using a decellularized organ as a scaffold.
  • This decellularized organ supports the maturation, differentiation, and segregation of in vitro cultured cell populations to form components of adult tissues analogous to counterparts found in vivo.
  • the decellularized organ produced by the method of the invention can be used as a three-dimensional scaffold to reconstruct an artificial organ. Either allogenic or xenogenic cell populations can be used to reconstruct the artificial organ. Methods for the isolation and culture of cells used to reconstruct an artificial organ are discussed by Freshney, Culture of Animal Cells. A Manual of Basic Technique, 2d Ed., A. R. Liss, Inc., New York, 1987, Ch. 9, pp. 107-126. Cells may be isolated using techniques known to those skilled in the art.
  • the tissue or organ can be disaggregated mechanically and/or treated with digestive enzymes and/or chelating agents that weaken the connections between neighboring cells making it possible to disperse the tissue into a suspension of individual cells without appreciable cell breakage.
  • Enzymatic dissociation can be accomplished by mincing the tissue and treating the minced tissue with any of a number of digestive enzymes either alone or in combination. These include but are not limited to trypsin, chymotrypsin, collagenase, elastase, and/or hyaluronidase, DNase, pronase, and dispase.
  • Mechanical disruption can also be accomplished by a number of methods including, but not limited to, scraping the surface of the organ, the use of grinders, blenders, sieves, homogenizers, pressure cells, or insonators to name but a few.
  • Preferred cell types include, but are not limited to, kidney cells, urothelial cells, mesenchymal cells, especially smooth or skeletal muscle cells, myocytes (muscle stem cells), fibroblasts, chondrocytes, adipocytes, fibromyoblasts, and ectodermal cells, including dulctile and skin cells, hepatocytes, Islet cells, cells present in the intestine, and other parenchymous cells, osteoblasts and other cells forming bone or cartilage.
  • myocytes muscle stem cells
  • fibroblasts chondrocytes
  • adipocytes fibromyoblasts
  • ectodermal cells including dulctile and skin cells, hepatocytes, Islet cells, cells present in the intestine, and other parenchymous cells, osteoblasts and other cells forming bone or cartilage.
  • Isolated cells can be cultured in vitro to increase the number of cells available for infusion into the three-dimensional scaffold.
  • the use of allogenic cells, and more preferably autologous cells, is preferred to prevent tissue rejection.
  • the subject may be treated with immunosuppressive agents such as, cyclosporin or FK506, to reduce the likelihood of rejection.
  • the invention provides a method in which a decellularized organ is used as a three-dimensional scaffold to reconstruct an artificial organ.
  • a decellularized organ By using a decellularized organ, the connective tissue interstitial structure is retained. This enables perfused cultured cell populations to attach to the three-dimensional scaffold. Retaining a three-dimensional interstitial structure that is the same as an in vivo organ, creates the optimum environment for cell-cell interactions, development and differentiation of cell populations.
  • the decellularized organ can be pre-treated prior to perfusion of cultured endothelial cells in order to enhance the attachment of cultured cell populations to the decellularized organ.
  • the decellularized organ could be treated with, for example, collagens, elastic fibers, reticular fibers, glycoproteins, glycosaminoglycans (e.g., heparan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, keratin sulfate, etc.)
  • Cultured cell populations e.g., endothelial cells
  • a decellularized organ perfused with a cell population is referred to as a “perfused organ”.
  • the perfused organ should be incubated in an appropriate nutrient medium.
  • Many commercially available media such as RPMI 1640, Fisher's, Iscove's, McCoy's, Dulbecco's medium, and the like, may be suitable for use.
  • the culture medium should be changed periodically to remove the used media, depopulate released cells, and add fresh media. During the incubation period, the endothelial cells will grow in the perfused organ to produce an endothelial tissue layer.
  • Additional populations of cultured cells can be perfused onto the endothelial tissue layer.
  • Parenchyma cells perfused onto the endothelial tissue can be incubated to allow the cells to adhere to the endothelial tissue layer.
  • the parenchyma cells can be cultured in vitro in culture medium to allow the cells to grow and develop until the cells resemble a morphology and structure similar to the that of the native tissue. Growth of parenchyma cells on the endothelial tissue layer results in the differentiation of parenchyma cells into the appropriate neomorphic organ structures.
  • the perfused organ can be implanted in vivo without prior in vitro culturing of the parenchyma cells.
  • the parenchyma cells chosen for perfusion will depend upon the organ being reconstructed. For example, reconstruction of a kidney will involve infusing cultured endothelial cells into a decellularized kidney scaffold.
  • the perfused kidney scaffold is cultured until the cells develop into endothelial tissue layer comprising a primitive vascular system.
  • the endothelial tissue can then be perfused with a population of cultured kidney cells and the perfused kidney, cultured in vitro until the kidney cells begin to differentiate to form nephron structures.
  • the following method describes a process for removing the entire cellular content of an organ or tissue without destroying the complex three-dimensional interstitial structure of the organ or tissue.
  • a kidney was surgically removed from a C7 black mouse using standard techniques for tissue removal. The kidney was placed in a flask containing a suitable volume of distilled water to cover the isolated kidney. A magnetic stir plate and magnetic stirrer were used to rotate the isolated kidney in the distilled water at a suitable speed of about 95-150 rpm for 24-48 hours at 4° C. This process removes the cellular debris and cell membrane surrounding the isolated kidney.
  • the distilled water was replaced with a 0.05% ammonium hydroxide solution containing 0.5% Triton X-100.
  • the kidney was rotated in this solution for 72 hours at 4° C. using a magnetic stir plate and magnetic stirrer at a speed of 95-150 rpm.
  • This alkaline solution solubilized the nuclear and cytoplasmic components of the isolated kidney.
  • the detergent Triton X-100 was used to remove the nuclear components of the kidney, while the ammonium hydroxide solution was used to lyse the cell membrane and cytoplasmic proteins of the isolated kidney.
  • the isolated kidney was then washed with distilled water for 24-48 hours at 4° C. using a magnetic stir plate and magnetic stirrer at a speed of 95-150 rpm. After this washing step, removal of cellular components from the isolated was confirmed by histological analysis of a small piece of the kidney. If necessary, the isolated kidney was again treated with the ammonium hydroxide solution containing Triton X-100 until the entire cellular content of the isolated kidney was removed. After removal of the solubilized components, a collagenous three-dimensional framework in the shape of the isolated kidney was produced.
  • This decellularized kidney was equilibrated with 1 ⁇ phosphate buffer solution (PBS) by rotating the decellularized kidney overnight at 4° C. using a magnetic stir plate and magnetic stirrer. After equilibration, the decellularized kidney was lyophilized overnight under vacuum. The lyophilized kidney was sterilized for 72 hours using ethylene oxide gas. After sterilization, the decellularized kidney was either used immediately, or stored at 4° C. or at room temperature until required. Stored organs were equilibrated in the tissue culture medium overnight at 4° C. prior to seeding with cultured cells.
  • PBS phosphate buffer solution

Abstract

The invention is directed to methods for producing a decellularized organ or part of an organ. A decellularized organ is produced using an isolated organ mechanically agitated to remove cellular membranes surrounding the isolated organ without destroying the interstitial structure of the organ. After the cellular membrane is removed, the isolated organ is exposed to a solubilizing fluid that extracts cellular material without dissolving the interstitial structure of the organ. A washing fluid is used to remove the solubilized components, leaving behind a decellularized organ.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/091,665, filed Mar. 5, 2002, which was a continuation of U.S. patent application Ser. No. 09/474,678, filed Dec. 29, 1999, now U.S. Pat. No. 6,376,244, the contents of both prior applications are expressly incorporated by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • The technical field of this invention relates to methods of decellularizing an isolated organ or part of an organ, by mechanically agitating the isolated organ with a fluid that removes the cellular membrane surrounding the isolated organ, and with a fluid that solubilizes the cytoplasmic and nuclear components of the isolated organ. [0002]
  • Techniques for restoring structure and function to damaged organs or tissue are used routinely in the area of reconstructive surgery. For example, artificial materials for replacing limbs and teeth. (See e.g. Paul (1999), [0003] J. Biomech, 32: 381-393; Fletchall, et al., (1992) J. Burn Care Rehabil, 13: 584-586 and Wilson et al., (1970) Artif Limbs, 14: 53-56).
  • Tissue transplantation is another way of restoring function by replacing the damaged organ, and has saved the lives of many. However, problems exist when there is a transfer of biological material form one individual to another. Organ rejection is a significant risk associated with transplantation, even with a good histocompatability match. Immunosuppressive drugs such as cyclosporin and FK506 are usually given to the patient to prevent rejection. These immunosuppressive drugs however, have a narrow therapeutic window between adequate immunosuppression and toxicity. Prolonged immunosuppression can weaken the immune system, which can lead to a threat of infection. In some instances, even immunosuppression is not enough to prevent organ rejection. Another major problem of transplantation, is the availability of donor organs. In the United States alone there are about 50,000 people on transplant waiting lists, many of whom will die before an organ becomes available. [0004]
  • Due to these constraints, investigators are involved in the technology of producing artificial organs in vitro for in vivo transplantation. The artificial organs typically are made of living cells fabricated onto a matrix or a scaffold made of natural or manmade material. These artificial organs avoid the problems associated with rejection or destruction of the organ, especially if the subject's own tissue cells are used for reconstruction of the artificial organ. These artificial organs also avoid the problem of not having enough donor organs available because any required number of organs can be reconstructed in vitro. [0005]
  • Vacanti et al. have disclosed methods for culturing cells in a three-dimensional polymer-cell scaffold made of a biodegradable polymer. Organ cells are cultured within the polymer-cell scaffold which is implanted into the patient. Implants made of resorbable materials are suggested for use as temporary replacements, rather than a permanent replacement. The object of the temporary replacement is to allow the healing process to replace the resorbed material. Naughton et al. reported a three-dimensional tissue culture system in which stromal cells were laid over a polymer support system (See U.S. Pat. No. 5,863,531). [0006]
  • The above methods however, rely on shaping the support scaffold into the desired configuration of the organ. Shaping the matrix scaffold involves one of many procedures, such as solvent casting, compression, moulding, and leaching. These techniques do not always result in a matrix shape scaffold that is the same size as a native in vivo organ requiring replacement. A correct three-dimensional configuration is essential for the reconstructed organ to function properly in vivo. Not only is the shape required to fit into the body cavity, but the shape also creates the necessary microenvironment for the cultured cells to attach, proliferate, differentiate and in some cases, migrate through the matrix scaffold. These critical requirements can be met by the choice of the appropriate material of the scaffold and also be effected by the processing techniques. Optimal cell growth and development arises when the interstitial structure of the microenvironment resembles the interstitial structure of a natural organ. [0007]
  • The shaping process may have deleterious effects on the mechanical properties of scaffold, and in many cases produce scaffolds with irregular three-dimensional geometries. Additionally, many shaping techniques have limitations that prevent their use for a wide variety of polymer materials. For example, poly L-lactic acid (PLLA) dissolved in methylene chloride and cast over the mesh of polyglycolic acid (PGA) fibers is suitable for PGA, however, the choice of solvents, and the relative melting temperatures of other polymers restricts the use of this technique for other polymers. Another example includes solvent casting, which is used for a polymer that is soluble in a solvent such as chloroform. The technique uses several salt particles that are dispersed in a PLLA/chloroform solution and cast into a glass container. The salt particles utilized are insoluble in chloroform. The solvent is allowed to evaporate and residual amounts of the solvent are removed by vacuum-drying. The disadvantages of this technique is that it can only be used to produce thin wafers or membranes up to 2 mm in thickness. A three-dimensional scaffold cannot be constructed using this technique. [0008]
  • Due to the limitations of the shaping techniques, and due to the importance of having a scaffold with the correct three-dimensional shape, a need exists for producing a decellularized organ that has the same three-dimensional interstitial structure, shape and size as the native organ. Reconstruction of an artificial organ using a decellularized organ will produce an artificial organ that functions as well as a native organ, because it retains the same shape, size and interstitial structure which enables the deposited cells to resume a morphology and structure comparable to the native organ. [0009]
  • SUMMARY OF THE INVENTION
  • In general, the invention pertains to methods of producing decellularized organs, using an isolated organ or a part of an organ and a series of extractions that removes the cell membrane surrounding the organ, or part of an organ, and the cytoplasmic and nuclear components of the isolated organ, or part of an organ. [0010]
  • Accordingly, in one aspect, the invention provides a method for producing a decellularized organ comprising: [0011]
  • mechanically agitating an isolated organ to disrupt cell membranes without destroying the interstitial structure of the organ; [0012]
  • treating the isolated organ in a solubilizing fluid at a concentration effective to extract cellular material from the organ without dissolving the interstitial structure of the organ; and [0013]
  • washing the isolated organ in a washing fluid to remove cellular debris without removing the interstitial structure of the organ until the isolated organ is substantially free of cellular material, to thereby produce a decellularized organ. [0014]
  • The method can further comprise equilibrating the decellularized organ in an equilibrating fluid. The equilibrating fluid can be selected from the group consisting of distilled water, physiological buffer and culture medium. The method can further comprise drying the decellularized organ. The dried decellularized organ can be stored at a suitable temperature, or equilibrated in a physiological buffer prior to use. [0015]
  • In one embodiment, the step of mechanically agitating the isolated organ further comprises placing the isolated organ in a stirring vessel having a paddle which rotates at a speed ranging from about 50 revolutions per minute (rpm) to about 150 rpm. [0016]
  • In one embodiment, the step of mechanically agitating the isolated organ occurs in a fluid selected from the group consisting of distilled water, physiological buffer and culture medium. [0017]
  • In one embodiment, the step of treating the isolated organ in the solubilizing fluid also occurs in a stirring vessel. In a preferred embodiment, the solubilizing fluid is an alkaline solution having a detergent. In a more preferred embodiment, the alkaline solution is selected from the group consisting of sulphates, acetates, carbonates, bicarbonates and hydroxides, and a detergent is selected from the group consisting of Triton X-100, Triton N-101, Triton X-114, Triton X-405, Triton X-705, and Triton DF-16, monolaurate (Tween 20), monopalmitate (Tween 40), monooleate (Tween 80), polyoxethylene-23-lauryl ether (Brij 35), polyoxyethylene ether W-1 (Polyox), sodium cholate, deoxycholates, CHAPS, saponin, n-Decyl β-D-glucopuranoside, n-heptyl β-D glucopyranoside, n-Octyl α-D-glucopyranoside and Nonidet P-40. In the most preferred embodiment, the solubilizing solution is an ammonium hydroxide solution having Triton X-100. [0018]
  • In one embodiment, the step of washing the isolated organ also occurs in a stirring vessel. The washing fluid can be selected from the group consisting of distilled water, physiological buffer and culture medium. [0019]
  • In another aspect, the invention features a method for producing a decellularized kidney comprising: [0020]
  • mechanically agitating an isolated kidney in distilled water to disrupt cell membranes without destroying the interstitial structure of the kidney; [0021]
  • treating the isolated kidney in an alkaline solution having a detergent at a concentration effective to extract cellular material without dissolving the interstitial structure of the kidney; [0022]
  • washing the isolated kidney in distilled water to remove cellular debris without removing the interstitial structure of the kidney until the kidney is substantially free of the cellular material, to thereby produce a decellularized kidney. [0023]
  • In a preferred embodiment, the method further comprises equilibrating the decellularized kidney in a phosphate buffered solution. In another embodiment, the method further comprises drying the decellularized kidney. Embodiments for mechanically agitating a decellularized organ are described above and are reiterated here. In another preferred embodiment, the step of washing further comprises rotating the isolated kidney in distilled water in a stirring vessel. [0024]
  • DETAILED DESCRIPTION
  • So that the invention may more readily be understood, certain terms are first defined as follows: [0025]
  • The term “decellularized organ” as used herein refers to an organ, or part of an organ from which the entire cellular and tissue content has been removed leaving behind a complex interstitial structure. Organs are composed of various specialized tissues. The specialized tissue structures of an organ are the parenchyma tissue, and they provide the specific function associated with the organ. Most organs also have a framework composed of unspecialized connective tissue which supports the parenchyma tissue. The process of decellularization removes the parenchyma tissue, leaving behind the three-dimensional interstitial structure of connective tissue, primarily composed of collagen. The interstitial structure has the same shape and size as the native organ, providing the supportive framework that allows cells to attach to, and grow on it. Decellularized organs can be rigid, or semi-rigid, having an ability to alter their shapes. Examples of decellularized organs include, but are not limited to the heart, kidney, liver, pancreas, spleen, bladder, ureter and urethra. [0026]
  • The term “isolated organ” as used herein refers to an organ that has been removed from a mammal. Suitable mammals include humans, primates, dogs, cats, mice, rats, cows, horses, pigs, goats and sheep. The term “isolated organ” also includes an organ removed from the subject requiring an artificial reconstructed organ. Suitable organs can be any organ, or part of organ, required for replacement in a subject. Examples include but are not limited to the heart, kidney, liver, pancreas, spleen, bladder, ureter and urethra. [0027]
  • The present invention provides methods for decellularizing organs. Decellularization of organs comprises removing the nuclear and cellular components of an isolated organ, or a part of an organ, leaving behind an interstitial structure having the same size and shape of a native organ. [0028]
  • Various aspects of the invention are described in further detail in the following subsections: [0029]
  • I Isolation of Natural Organs [0030]
  • An organ, or a part of an organ, can be isolated from the subject requiring an artificial reconstructed organ. For example, a diseased organ in a subject can be removed and decellularized, as long as the disease effects the parenchyma tissue of the organ, but does not harm the connective tissue, e.g., tissue necrosis. The diseased organ can be removed from the subject and decellularized as described in Example 1 and in Section II interstitial. The decellularized organ, or a part of the organ, can be used as a three-dimensional scaffold to reconstruct an artificial organ. An allogenic artificial organ can be reconstructed using the subject's own decellularized organ as a scaffold and using a population of cells derived from the subject's own tissue. For example, cells populations derived from the subject's skin, liver, pancreas, arteries, veins, umbilical cord, and placental tissues. [0031]
  • A xenogenic artificial organ can be reconstructed using the subject's own decellularized organ as a scaffold, and using cell populations derived from a mammalian species that are different from the subject. For example the different cell populations can be derived from mammals such as primates, dogs, cats, mice, rats, cows, horses, pigs, goats and sheep. [0032]
  • An organ, or part of an organ, can also be derived from a human cadaver, or from mammalian species that are different from the subject, such as organs from primates, dogs, cats, mice, rats, cows, horses, pigs, goats and sheep. Standard methods for isolation of a target organ are well known to the skilled artisan and can be used to isolate the organ. [0033]
  • II Decellularization of Organs [0034]
  • An isolated organ, or part of an organ, can be decellularized by removing the entire cellular material (e.g., nuclear and cytoplasmic components) from the organ, as described in Example 1. The decellularization process comprises a series of sequential extractions. One key feature of this extraction process is that harsh extraction, that may disturb or destroy the complex interstitial structure of the biostructure, be avoided. The first step involves removal of cellular debris and cell membranes surrounding the isolated organ, or part of an organ. This is followed by solubilization of the nuclear and cytoplasmic components of the isolated organ, or part of the organ using a solubilizing fluid, leaving behind a three-dimensional interstitial structure. [0035]
  • The organ can be decellularized by removing the cell membrane surrounding the organ using mechanical agitation methods. Mechanical agitation methods must be sufficient to disrupt the cellular membrane. However, the mechanical agitation methods should not damage or destroy the three-dimensional interstitial structure of the isolated organ. [0036]
  • In one embodiment, the mechanical agitation method involves using a magnetic stir plate and a paddle, e.g., a magnetic stirrer. The isolated organ, or part of an organ, is placed in a container with a suitable volume of fluid and stirred on the magnetic stir plate at a suitable speed. A suitable speed for stirring the isolated organ will depend on the size of the isolated organ. For example. Rotation at about 50 revolutions per minute (rpm) to about 150 rpm. A large organ will require a faster speed, compared with a smaller organ. The volume of fluid in which the isolated organ is placed in will also depend on the size of the isolated organ. Suitable fluids depend on which layer of the organ is being removed and are described in more detail interstitial. [0037]
  • In another embodiment, the mechanical agitation method involves using a mechanical rotator. The organ, or part of the organ, is placed in a sealed container with a suitable volume of fluid. The container is placed on the rotator platform and rotated at 360°. The speed of rotation, and the volume of fluid will depend on the size of the isolated organ. [0038]
  • In another embodiment, the mechanical agitation method involves using a low profile roller. The organ, or part of the organ, is placed in a sealed container with a suitable volume of fluid. The container is placed on the roller platform and rolled at a selected speed in a suitable volume of fluid depending of the size of the organ. One skilled in the art will appreciate that these mechanical agitation devices can be commercially obtained from, for example, Sigma Co. [0039]
  • In other embodiments, the agitation can also include placing the isolated organ in a closed container e.g., a self-sealing polyethylene bag, a plastic beaker. The container can be placed in a sonicating waterbath, and exposed to sonication methods that include, but are not limited to, acoustic horns, piezo-electric crystals, or any other method of generating stable sound waves, for example, with sonication probes. The sonication should be conducted at a frequency that selectively removes cell membranes and/or cellular material, without destroying the interstitial structure. Suitable sonication frequencies will depend on the size and the type of the isolated organ being decellularized. Typical sonicaton frequencies are between 40 kHz to 50 kHz. However, a fairly wide range of frequencies from subaudio to ultrasound (between about 7 Hz to 40 MHz, preferably between 7 Hz and 20 MHz) would be expected to give sound-enhanced tissue dissociation. Variations in the type of sonication are also contemplated in the invention and include pulsing versus continuous sonication. Power levels for sonication source is between 10-[0040] 4 and about 10 watts/cm2 (See Biological Effects of Ultrasound: Mechanisms and Clinical Implications, National Council on Radiation Protection and Measurements (NCRP) Report No. 74, NCRP Scientific Committee No. 66: Wesley L. Nyborg, chairman; 1983; NCRP, Bethesda, Md.
  • The decellularization method requires the sequential removal of components of the isolated organ, or part of the organ. The first step involves mechanically agitating the isolated organ, or part of the organ, until the cell membrane surrounding the organ is disrupted and a cellular debris around the organ has been removed. This step can involve using a membrane striping fluid that is capable of removing the cellular membranes surrounding the isolated organ, or part of an organ. Examples of a membrane striping fluid include, but are not limited to, distilled water, physiological buffer and culture medium. Suitable buffers include, but are not limited to, phosphate buffered saline (PBS), saline, MOPS, HEPES, Hank's Balanced Salt Solution, and the like. Suitable cell culture medium includes, but is not limited to, RPMI 1640, Fisher's, Iscove's, McCoy's, Dulbecco's medium, and the like. The membrane striping fluid fluid should be capable of removing the cellular membrane surrounding the isolated organ, particularly when mechanically agitated. In a preferred embodiment, the membrane striping fluid is distilled water. [0041]
  • After the cell membrane has been removed, the second step involves removal of cellular material, for example native tissue cells and the nuclear and cytoplasmic components of the organ, or part of an organ. Cellular material can be removed, for example, by mechanical agitation of the isolated organ, or part of an organ in a solubilizing fluid. The solubilizing fluid is an alkaline solution having a detergent. During this step, the cellular material of the isolated organ is solubilized without dissolving the interstitial structure of the organ. [0042]
  • The cytoplasmic component, consisting of the dense cytoplasmic filament networks, intercellular complexes and apical microcellular structures, can be solubilized using an alkaline solution, such as, ammonium hydroxide. Other alkaline solution consisting of ammonium salts or their derivatives may also be used to solubilize the cytoskeletal components. Examples of other suitable ammonium solutions include, but are not limited to, ammonium sulphate, ammonium acetate, ammonium bicarbonate, ammonium carbonate and ammonium hydroxide. In a preferred embodiment, ammonium hydroxide is used. Other alkaline solutions also include, but are not limited to, sulphates, acetates, hydroxides and carbonates of calcium, lithium, sodium and potassium. [0043]
  • The concentration of the alkaline solutions, e.g., ammonium hydroxide, may be altered depending on the type of organ being decellularized. For example, for delicate tissues, e.g., blood vessels, the concentration of the detergent should be decreased. Preferred concentrations ranges can be from about 0.006% (w/v) to about 1.6% (w/v). More preferably, about 0.0125% (w/v) to about 0.8% (w/v). More preferably, about, 0.025% (w/v) to about 0.04% (w/v). More preferably about 0.05% (w/v) to about 0.25% (w/v). More preferably, about 0.05% (w/v) to about 0.1% (w/v). Even more preferably, about 0.0125% (w/v) to about 0.1% (w/v). [0044]
  • To solubilize the nuclear components, non-ionic detergents or surfactants can be used in an alkaline solution. Examples of non-ionic detergents or surfactants include, but are not limited to, the Triton series, available from Rohm and Haas of Philadelphia, Pa., which includes Triton X-100, Triton N-101, Triton X-114, Triton X-405, Triton X-705, and Triton DF-16, available commercially from many vendors; the Tween series, such as monolaurate (Tween 20), monopalmitate (Tween 40), monooleate (Tween 80), and polyoxethylene-23-lauryl ether (Brij 35), polyoxyethylene ether W-1 (Polyox), and the like, sodium cholate, deoxycholates, CHAPS, saponin, n-Decyl β-D-glucopuranoside, n-heptyl β-D-glucopyranoside, n-Octyl α-D-glucopyranoside and Nonidet P-40. [0045]
  • One skilled in the art will appreciate that a description of compounds belonging to the foregoing classifications, and vendors may be commercially obtained and may be found in “Chemical Classification, Emulsifiers and Detergents”, McCutcheon's, Emulsifiers and Detergents, 1986, North American and International Editions, McCutcheon Division, MC Publishing Co., Glen Rock, N.J., U.S.A. and Judith Neugebauer, A Guide to the Properties and Uses of Detergents in Biology and Biochemistry, Calbiochem, Hoechst Celanese Corp., 1987. In one preferred embodiment, the non-ionic surfactant is the Triton series, preferably, Triton X-100. [0046]
  • The concentration of the non-ionic detergent may be altered depending on the type of organ being decellularized. For example, for delicate tissues, e.g., blood vessels, the concentration of the detergent should be decreased. Preferred concentrations ranges of the non-ionic detergent can be from about 0.00625% (w/v) to about 2.0% (w/v). More preferably, about 0.125% (w/v) to about 1.0% (w/v). Even more preferably, about 0.25% (w/v) to about 0.5% (w/v). The skilled artisan will appreciate that any combination of alkaline solution with any combination of a detergent, at the above concentration ranges, can be used depending on the size and type of organ being decellularized. In other embodiments, one or more detergents can be used in an alkaline solution. [0047]
  • After solubilizing the cytoplasmic and nuclear components of the isolated organ, or part of an organ, the next step in the sequential extraction involves removal of the solubilized components by mechanically agitating the isolated organ in a washing fluid. Removal of the cytoplasmic and nuclear components leaves behind a three-dimensional connective tissue interstitial structure having the same shape and size as the native organ. Examples of a washing fluid include, but are not limited to, distilled water, physiological buffer and culture medium. Examples of suitable buffers and culture media are described Supra. In a preferred embodiment, the washing fluid is distilled water. [0048]
  • After removing the solubilized cytoplasmic and nuclear components, the next step of the sequential extraction can involve equilibrating the decellularized organ in an equilibrating fluid. Examples of an equilibrating fluid include, but are not limited to, distilled water, physiological buffer and culture medium. Examples of suitable buffers and culture media are described Supra. [0049]
  • The decellularized organ can be dried for long term storage. Methods for drying the decellularized organ include freeze-drying or lyophilizing the organ to remove residual fluid. The lyophilized decellularized organ can be stored at a suitable temperature until required for use. Prior to use, the decellularized organ can be equilibrated in suitable physiological buffer or cell culture medium. Examples of suitable buffers and culture media are described Supra. [0050]
  • III Reconstructing Artificial Organs Using a Decellularized Organ. [0051]
  • The invention provides a method of reconstructing an artificial organ using a decellularized organ as a scaffold. This decellularized organ supports the maturation, differentiation, and segregation of in vitro cultured cell populations to form components of adult tissues analogous to counterparts found in vivo. [0052]
  • The decellularized organ produced by the method of the invention can be used as a three-dimensional scaffold to reconstruct an artificial organ. Either allogenic or xenogenic cell populations can be used to reconstruct the artificial organ. Methods for the isolation and culture of cells used to reconstruct an artificial organ are discussed by Freshney, Culture of Animal Cells. A Manual of Basic Technique, 2d Ed., A. R. Liss, Inc., New York, 1987, Ch. 9, pp. 107-126. Cells may be isolated using techniques known to those skilled in the art. For example, the tissue or organ can be disaggregated mechanically and/or treated with digestive enzymes and/or chelating agents that weaken the connections between neighboring cells making it possible to disperse the tissue into a suspension of individual cells without appreciable cell breakage. Enzymatic dissociation can be accomplished by mincing the tissue and treating the minced tissue with any of a number of digestive enzymes either alone or in combination. These include but are not limited to trypsin, chymotrypsin, collagenase, elastase, and/or hyaluronidase, DNase, pronase, and dispase. Mechanical disruption can also be accomplished by a number of methods including, but not limited to, scraping the surface of the organ, the use of grinders, blenders, sieves, homogenizers, pressure cells, or insonators to name but a few. [0053]
  • Preferred cell types include, but are not limited to, kidney cells, urothelial cells, mesenchymal cells, especially smooth or skeletal muscle cells, myocytes (muscle stem cells), fibroblasts, chondrocytes, adipocytes, fibromyoblasts, and ectodermal cells, including dulctile and skin cells, hepatocytes, Islet cells, cells present in the intestine, and other parenchymous cells, osteoblasts and other cells forming bone or cartilage. [0054]
  • Isolated cells can be cultured in vitro to increase the number of cells available for infusion into the three-dimensional scaffold. The use of allogenic cells, and more preferably autologous cells, is preferred to prevent tissue rejection. However, if an immunological response does occur in the subject after implantation of the reconstructed artificial organ, the subject may be treated with immunosuppressive agents such as, cyclosporin or FK506, to reduce the likelihood of rejection. [0055]
  • It is important to recreate, in culture, the cellular microenvironment found in vivo for a particular organ being reconstructed. The invention provides a method in which a decellularized organ is used as a three-dimensional scaffold to reconstruct an artificial organ. By using a decellularized organ, the connective tissue interstitial structure is retained. This enables perfused cultured cell populations to attach to the three-dimensional scaffold. Retaining a three-dimensional interstitial structure that is the same as an in vivo organ, creates the optimum environment for cell-cell interactions, development and differentiation of cell populations. [0056]
  • The decellularized organ can be pre-treated prior to perfusion of cultured endothelial cells in order to enhance the attachment of cultured cell populations to the decellularized organ. For example, the decellularized organ could be treated with, for example, collagens, elastic fibers, reticular fibers, glycoproteins, glycosaminoglycans (e.g., heparan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, keratin sulfate, etc.) [0057]
  • Cultured cell populations, e.g., endothelial cells, can be perfused into the decellularized organ using needles placed in localized positions of the decellularized organ. A decellularized organ perfused with a cell population is referred to as a “perfused organ”. After perfusion of a cell population, e.g., endothelial cells, the perfused organ should be incubated in an appropriate nutrient medium. Many commercially available media such as RPMI 1640, Fisher's, Iscove's, McCoy's, Dulbecco's medium, and the like, may be suitable for use. In addition, the culture medium should be changed periodically to remove the used media, depopulate released cells, and add fresh media. During the incubation period, the endothelial cells will grow in the perfused organ to produce an endothelial tissue layer. [0058]
  • Additional populations of cultured cells, such as parenchymal cells, can be perfused onto the endothelial tissue layer. Parenchyma cells perfused onto the endothelial tissue can be incubated to allow the cells to adhere to the endothelial tissue layer. The parenchyma cells can be cultured in vitro in culture medium to allow the cells to grow and develop until the cells resemble a morphology and structure similar to the that of the native tissue. Growth of parenchyma cells on the endothelial tissue layer results in the differentiation of parenchyma cells into the appropriate neomorphic organ structures. [0059]
  • Alternatively, after perfusing the decellularized organ, the perfused organ can be implanted in vivo without prior in vitro culturing of the parenchyma cells. The parenchyma cells chosen for perfusion will depend upon the organ being reconstructed. For example, reconstruction of a kidney will involve infusing cultured endothelial cells into a decellularized kidney scaffold. The perfused kidney scaffold is cultured until the cells develop into endothelial tissue layer comprising a primitive vascular system. The endothelial tissue can then be perfused with a population of cultured kidney cells and the perfused kidney, cultured in vitro until the kidney cells begin to differentiate to form nephron structures. One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.[0060]
  • EXAMPLES Example 1 Preparation of a Decellularized Kidney
  • The following method describes a process for removing the entire cellular content of an organ or tissue without destroying the complex three-dimensional interstitial structure of the organ or tissue. A kidney, was surgically removed from a C7 black mouse using standard techniques for tissue removal. The kidney was placed in a flask containing a suitable volume of distilled water to cover the isolated kidney. A magnetic stir plate and magnetic stirrer were used to rotate the isolated kidney in the distilled water at a suitable speed of about 95-150 rpm for 24-48 hours at 4° C. This process removes the cellular debris and cell membrane surrounding the isolated kidney. [0061]
  • After this first removal step, the distilled water was replaced with a 0.05% ammonium hydroxide solution containing 0.5% Triton X-100. The kidney was rotated in this solution for 72 hours at 4° C. using a magnetic stir plate and magnetic stirrer at a speed of 95-150 rpm. This alkaline solution solubilized the nuclear and cytoplasmic components of the isolated kidney. The detergent Triton X-100, was used to remove the nuclear components of the kidney, while the ammonium hydroxide solution was used to lyse the cell membrane and cytoplasmic proteins of the isolated kidney. [0062]
  • The isolated kidney was then washed with distilled water for 24-48 hours at 4° C. using a magnetic stir plate and magnetic stirrer at a speed of 95-150 rpm. After this washing step, removal of cellular components from the isolated was confirmed by histological analysis of a small piece of the kidney. If necessary, the isolated kidney was again treated with the ammonium hydroxide solution containing Triton X-100 until the entire cellular content of the isolated kidney was removed. After removal of the solubilized components, a collagenous three-dimensional framework in the shape of the isolated kidney was produced. [0063]
  • This decellularized kidney was equilibrated with 1× phosphate buffer solution (PBS) by rotating the decellularized kidney overnight at 4° C. using a magnetic stir plate and magnetic stirrer. After equilibration, the decellularized kidney was lyophilized overnight under vacuum. The lyophilized kidney was sterilized for 72 hours using ethylene oxide gas. After sterilization, the decellularized kidney was either used immediately, or stored at 4° C. or at room temperature until required. Stored organs were equilibrated in the tissue culture medium overnight at 4° C. prior to seeding with cultured cells. [0064]

Claims (3)

What is claimed is:
1. A solubilizing fluid for tissue decellularization comprising:
an alkaline solution selected from the group consisting of sulphates, acetates, carbonates, bicarbonates, hydroxides, ammonium salts and combinations thereof; and
a non-ionic detergent wherein the concentration of detergent is in the range of about 0.006% (w/v) to 2.0% (w/v).
2. The composition of matter of claim 1, wherein the non-ionic detergent is selected from the group consisting of Triton X-100, Triton N-101, Triton X-114, Triton X-405, Triton X-705, and Triton DF-16, monolaurate (Tween 20), monopalmitate (Tween 40), monooleate (Tween 80), polyoxethylene-23-lauryl ether (Brij 35), polyoxyethylene ether W-1 (Polyox), sodium cholate, deoxycholates, CHAPS, saponin, n-Decyl β-D-glucopuranoside, n-heptyl β-D glucopyranoside, n-Octyl α-D-glucopyranoside, Nonidet P-40, and combinations thereof.
3. The composition of matter of claim 1, wherein the alkaline solution comprises ammonium hydroxide and the detergent comprises Triton X-100.
US10/464,165 1999-12-29 2003-06-18 Methods and compositions for organ decellularization Abandoned US20030215945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/464,165 US20030215945A1 (en) 1999-12-29 2003-06-18 Methods and compositions for organ decellularization

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/474,678 US6376244B1 (en) 1999-12-29 1999-12-29 Methods and compositions for organ decellularization
WOPCT/US00/33782 2000-12-14
PCT/US2000/033782 WO2001049210A1 (en) 1999-12-29 2000-12-14 Methods and compositions for organ decellularization
US10/091,665 US6753181B2 (en) 1999-12-29 2002-03-05 Methods and compositions for organ decellularization
US10/464,165 US20030215945A1 (en) 1999-12-29 2003-06-18 Methods and compositions for organ decellularization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/091,665 Continuation US6753181B2 (en) 1999-12-29 2002-03-05 Methods and compositions for organ decellularization

Publications (1)

Publication Number Publication Date
US20030215945A1 true US20030215945A1 (en) 2003-11-20

Family

ID=23884532

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/474,678 Expired - Lifetime US6376244B1 (en) 1999-12-29 1999-12-29 Methods and compositions for organ decellularization
US10/091,665 Expired - Lifetime US6753181B2 (en) 1999-12-29 2002-03-05 Methods and compositions for organ decellularization
US10/464,165 Abandoned US20030215945A1 (en) 1999-12-29 2003-06-18 Methods and compositions for organ decellularization

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/474,678 Expired - Lifetime US6376244B1 (en) 1999-12-29 1999-12-29 Methods and compositions for organ decellularization
US10/091,665 Expired - Lifetime US6753181B2 (en) 1999-12-29 2002-03-05 Methods and compositions for organ decellularization

Country Status (9)

Country Link
US (3) US6376244B1 (en)
EP (1) EP1244396B2 (en)
JP (1) JP4897176B2 (en)
AT (1) ATE308939T1 (en)
AU (1) AU763730B2 (en)
CA (1) CA2395637C (en)
DE (1) DE60023941D1 (en)
ES (1) ES2250220T5 (en)
WO (1) WO2001049210A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199265A1 (en) * 2005-03-02 2006-09-07 Wolf Michael F Seeding implantable medical devices with cells
US20070059335A1 (en) * 2005-03-02 2007-03-15 Medtronic, Inc. Seeding implantable medical devices with cells
US20070143143A1 (en) * 2005-12-16 2007-06-21 Siemens Medical Solutions Health Services Corporation Patient Discharge Data Processing System
EP1928519A1 (en) * 2005-08-26 2008-06-11 Regents of the University of Minnesota Decellularization and recellularization of organs and tissues
EP2174668A2 (en) 2004-11-14 2010-04-14 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
US20100093066A1 (en) * 2005-08-26 2010-04-15 Regents Of The University Of Minnesota Decellularization and recellularization apparatuses and systems containing the same
WO2011005306A2 (en) * 2009-07-07 2011-01-13 The Board Of Regents Of The University Of Texas System Production of and uses for decellularized lung tissue
US8415318B2 (en) 2001-10-19 2013-04-09 Vascular Biogenics Ltd. Polynucleotide constructs, pharmaceutical compositions and methods for targeted downregulation of angiogenesis and anticancer therapy
US9290738B2 (en) 2012-06-13 2016-03-22 Miromatrix Medical Inc. Methods of decellularizing bone
CN108026509A (en) * 2015-07-30 2018-05-11 Ucl商业有限公司 Method and apparatus for producing decellularization organization bracket
US10233420B2 (en) 2010-09-01 2019-03-19 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US10294450B2 (en) 2015-10-09 2019-05-21 Deka Products Limited Partnership Fluid pumping and bioreactor system
US11278643B2 (en) 2016-09-06 2022-03-22 Mayo Foundation For Medical Education And Research Use of resected liver serum for whole liver-engineering
US11299705B2 (en) 2016-11-07 2022-04-12 Deka Products Limited Partnership System and method for creating tissue
US11452797B2 (en) 2013-03-15 2022-09-27 Miromatrix Medical Inc. Use of perfusion decellularized liver for islet cell recellularization

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69725592T2 (en) 1996-08-23 2004-08-05 Cook Biotech, Inc., West Lafayette METHOD FOR OBTAINING A SUITABLE COLLAGEN-BASED MATRIX FROM SUBMUKOSA TISSUE
AU747166B2 (en) * 1997-10-31 2002-05-09 Children's Medical Center Corporation Bladder reconstruction
US6293970B1 (en) * 1998-06-30 2001-09-25 Lifenet Plasticized bone and soft tissue grafts and methods of making and using same
US7063726B2 (en) * 1998-06-30 2006-06-20 Lifenet Plasticized bone grafts and methods of making and using same
US6734018B2 (en) * 1999-06-07 2004-05-11 Lifenet Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US6743574B1 (en) 2000-09-12 2004-06-01 Lifenet Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US20030217415A1 (en) * 1998-06-30 2003-11-27 Katrina Crouch Plasticized bone grafts and methods of making and using same
US8563232B2 (en) * 2000-09-12 2013-10-22 Lifenet Health Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US20100030340A1 (en) * 1998-06-30 2010-02-04 Wolfinbarger Jr Lloyd Plasticized Grafts and Methods of Making and Using Same
US6214054B1 (en) * 1998-09-21 2001-04-10 Edwards Lifesciences Corporation Method for fixation of biological tissues having mitigated propensity for post-implantation calcification and thrombosis and bioprosthetic devices prepared thereby
US20040167634A1 (en) * 1999-05-26 2004-08-26 Anthony Atala Prosthetic kidney and its use for treating kidney disease
US20040043006A1 (en) * 2002-08-27 2004-03-04 Badylak Stephen F. Tissue regenerative composition
US6576265B1 (en) * 1999-12-22 2003-06-10 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6376244B1 (en) * 1999-12-29 2002-04-23 Children's Medical Center Corporation Methods and compositions for organ decellularization
US20050249816A1 (en) * 1999-12-29 2005-11-10 Wake Forest University Health Services Tissue engineered liver constructs
WO2002014480A2 (en) * 2000-08-16 2002-02-21 Duke University Decellularized tissue engineered constructs and tissues
US20020119437A1 (en) * 2000-09-20 2002-08-29 Grooms Jamie M. Method of preparing and processing transplant tissue
IL139708A0 (en) * 2000-11-15 2002-02-10 Amiel Gilad Process of decellularizing biological matrices and acellular biological matrices useful in tissue engineering
US8039261B2 (en) * 2000-11-17 2011-10-18 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
US20100282634A1 (en) * 2000-11-17 2010-11-11 Dror Harats Promoters Exhibiting Endothelial Cell Specificity and Methods of Using Same for Regulation of Angiogenesis
US20070286845A1 (en) * 2000-11-17 2007-12-13 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
AU2003222427B8 (en) 2000-11-17 2010-04-29 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same
US6838452B2 (en) * 2000-11-24 2005-01-04 Vascular Biogenics Ltd. Methods employing and compositions containing defined oxidized phospholipids for prevention and treatment of atherosclerosis
DE10064948C1 (en) * 2000-12-20 2002-07-11 Auto Tissue Gmbh Process for decellularizing foreign material for the production of bioprostheses and device for carrying out the process
KR101132545B1 (en) 2001-02-14 2012-04-02 안트로제네시스 코포레이션 Post-partum mammalian placenta, its use and placental stem cells therefrom
AU2002320189B2 (en) * 2001-06-28 2007-04-26 Cook Biotech Incorporated Graft prosthesis devices containing renal capsule collagen
DE10138564B4 (en) * 2001-08-06 2007-07-12 Lamm, Peter Wilhelm, Dr. Method of devitalizing natural organs and / or providing extracellular matrices for tissue engineering
EP1317934A1 (en) * 2001-11-08 2003-06-11 Artiss GmbH Process for the preparation of an acellularized tissue matrix and the resulting tissue matrix
BR0214217A (en) * 2001-11-16 2004-09-21 Childrens Medical Center Increased Organ Function
US6878168B2 (en) 2002-01-03 2005-04-12 Edwards Lifesciences Corporation Treatment of bioprosthetic tissues to mitigate post implantation calcification
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US20030187515A1 (en) * 2002-03-26 2003-10-02 Hariri Robert J. Collagen biofabric and methods of preparing and using the collagen biofabric
US20030215935A1 (en) * 2002-05-14 2003-11-20 Coon David James Apparatus and method for isolating living cells from an encapsulated organ tissue sample
JP4469981B2 (en) * 2002-06-28 2010-06-02 独立行政法人産業技術総合研究所 Decellularized tissue
US7402319B2 (en) * 2002-09-27 2008-07-22 Board Of Regents, The University Of Texas System Cell-free tissue replacement for tissue engineering
US8940292B2 (en) 2003-01-28 2015-01-27 Wake Forest University Health Sciences Enhancement of angiogenesis to grafts using cells engineered to produce growth factors
US20040175366A1 (en) * 2003-03-07 2004-09-09 Acell, Inc. Scaffold for cell growth and differentiation
US20040176855A1 (en) * 2003-03-07 2004-09-09 Acell, Inc. Decellularized liver for repair of tissue and treatment of organ deficiency
US7067123B2 (en) 2003-04-29 2006-06-27 Musculoskeletal Transplant Foundation Glue for cartilage repair
US7488348B2 (en) * 2003-05-16 2009-02-10 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7901457B2 (en) 2003-05-16 2011-03-08 Musculoskeletal Transplant Foundation Cartilage allograft plug
EP1644011A1 (en) 2003-06-25 2006-04-12 Stephen F. Badylak Conditioned matrix compositions for tissue restoration
US20050054099A1 (en) * 2003-09-04 2005-03-10 Cedars Sinai Medical Center Matrix derived from whole organ
WO2005032473A2 (en) * 2003-10-02 2005-04-14 Depuy Spine, Inc. Chemical treatment for removing cellular and nuclear material from naturally occurring extracellular matrix-based biomaterials
US7775965B2 (en) * 2004-03-09 2010-08-17 The Board Of Regents Of The University Of Oklahoma Decellularized grafts from umbilical cord vessels and process for preparing and using same
US7837740B2 (en) * 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
US9493735B2 (en) 2005-04-15 2016-11-15 Wake Forest University Health Sciences Bioreactor system and method of enhancing functionality of muscle cultured in vitro
US9788821B2 (en) * 2005-04-29 2017-10-17 Cook Biotech Incorporated Physically modified extracellular matrix materials and uses thereof
DE102005023599A1 (en) * 2005-05-18 2006-11-23 Corlife Gbr (Vertretungsberechtigte Gesellschafter: Prof. Dr. Alex Haverich Bioartificial heart tissue graft and process for its preparation
CN101252957A (en) * 2005-06-30 2008-08-27 人类起源公司 Repair of tympanic membrane using placenta derived collagen biofabric
US7815926B2 (en) 2005-07-11 2010-10-19 Musculoskeletal Transplant Foundation Implant for articular cartilage repair
AU2015224503A1 (en) * 2005-08-26 2015-10-01 Regents Of The University Of Minnesota Decellularization and recellularization of organs and tissues
AU2013224686B2 (en) * 2005-08-26 2015-06-11 Miromatrix Medical Inc. Decellularization and recellularization of organs and tissues
AU2006292224B2 (en) 2005-09-19 2013-08-01 Histogenics Corporation Cell-support matrix and a method for preparation thereof
EP2031968B1 (en) * 2006-04-21 2017-11-22 Wake Forest University Health Sciences Structurally modified acellular tissue engineering scaffolds and methods of production
US20080044848A1 (en) * 2006-06-09 2008-02-21 Heidaran Mohammad A Placental niche and use thereof to culture stem cells
WO2008021391A1 (en) * 2006-08-15 2008-02-21 Anthrogenesis Corporation Umbilical cord biomaterial for medical use
US20080131522A1 (en) * 2006-10-03 2008-06-05 Qing Liu Use of placental biomaterial for ocular surgery
US8071135B2 (en) 2006-10-04 2011-12-06 Anthrogenesis Corporation Placental tissue compositions
CA2665369C (en) 2006-10-06 2023-01-10 Anthrogenesis Corporation Human placental collagen compositions, and methods of making and using the same
EP2077718B2 (en) 2006-10-27 2022-03-09 Edwards Lifesciences Corporation Biological tissue for surgical implantation
GB2443938B (en) * 2006-11-16 2009-11-11 Univ Leeds Preparation of tissue for meniscal implantation
US8435551B2 (en) 2007-03-06 2013-05-07 Musculoskeletal Transplant Foundation Cancellous construct with support ring for repair of osteochondral defects
US8486139B2 (en) 2007-03-09 2013-07-16 National University Corporation Tokyo Medical And Dental University Method of preparing decellularized soft tissue, graft and culture material
SG10201509679XA (en) 2007-05-29 2015-12-30 Christopher B Reid Methods for production and uses of multipotent cell populations
US10590391B2 (en) * 2007-06-08 2020-03-17 Wake Forest University Health Sciences Selective cell therapy for the treatment of renal failure
EP2162529B1 (en) 2007-06-08 2019-03-27 Wake Forest University Health Sciences Selective cell therapy for the treatment of renal failure
US9580688B2 (en) * 2007-06-08 2017-02-28 Wake Forest University Health Sciences Kidney structures and methods of forming the same
US9101691B2 (en) * 2007-06-11 2015-08-11 Edwards Lifesciences Corporation Methods for pre-stressing and capping bioprosthetic tissue
US20090024224A1 (en) 2007-07-16 2009-01-22 Chen Silvia S Implantation of cartilage
JP2009050297A (en) * 2007-08-23 2009-03-12 Tokyo Medical & Dental Univ Decellularization process liquid, preparing procedure of decellularization process tissue, implant, and cultivating member
JP5218955B2 (en) * 2007-10-15 2013-06-26 独立行政法人物質・材料研究機構 Porous scaffold for regeneration and method for producing the same
US8357387B2 (en) * 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
US11051733B2 (en) * 2008-01-18 2021-07-06 Wake Forest University Health Sciences Isolating and purifying cells for therapy
CA2717725A1 (en) 2008-03-05 2009-09-11 Musculoskeletal Transplant Foundation Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
CN102112162B (en) * 2008-06-20 2014-12-24 库克生物科技公司 Composite extracellular matrix materials and medical products formed therefrom
CA2734446C (en) 2008-08-22 2017-06-20 Anthrogenesis Corporation Methods and compositions for treatment of bone defects with placental cell populations
KR101724639B1 (en) 2008-11-04 2017-04-07 리젠메드 (케이만) 엘티디. Cell-scaffold constructs
CN103937737B (en) * 2008-11-12 2023-05-23 因瑞金公司 Isolated kidney cells and uses thereof
US9150318B1 (en) 2009-01-02 2015-10-06 Lifecell Corporation Method for sterilizing an acellular tissue matrix
US8628572B2 (en) 2009-02-26 2014-01-14 Wake Forest University Health Sciences Corneal endothelial scaffolds and methods of use
US8906362B2 (en) 2009-03-23 2014-12-09 Wake Forest University Health Sciences Tissue engineered meniscus scaffolds and methods of use
US8298586B2 (en) 2009-07-22 2012-10-30 Acell Inc Variable density tissue graft composition
US8652500B2 (en) 2009-07-22 2014-02-18 Acell, Inc. Particulate tissue graft with components of differing density and methods of making and using the same
US8507263B2 (en) * 2009-08-07 2013-08-13 Maria Adelaide Asnaghi Rotating bioreactor
JP2011041716A (en) * 2009-08-21 2011-03-03 Cell Remover:Kk Method of processing living tissue
WO2011038023A1 (en) * 2009-09-22 2011-03-31 Colorado State University Research Foundation Methods for processing biological tissues
AU2010304827B2 (en) 2009-10-07 2015-02-12 Kerecis Ehf A scaffold material for wound care and/or other tissue healing applications
JP2011135836A (en) * 2009-12-28 2011-07-14 Cell Remover:Kk Cell culture base material
WO2011109433A2 (en) * 2010-03-01 2011-09-09 Vela Biosystems Llc Tissue for prosthetic implants and grafts, and methods associated therewith
NZ602066A (en) 2010-03-23 2013-09-27 Edwards Lifesciences Corp Methods of conditioning sheet bioprosthetic tissue
TW201138792A (en) 2010-04-08 2011-11-16 Anthrogenesis Corp Treatment of sarcoidosis using placental stem cells
US8883210B1 (en) * 2010-05-14 2014-11-11 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US9352003B1 (en) 2010-05-14 2016-05-31 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US10130736B1 (en) 2010-05-14 2018-11-20 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US8906601B2 (en) 2010-06-17 2014-12-09 Edwardss Lifesciences Corporation Methods for stabilizing a bioprosthetic tissue by chemical modification of antigenic carbohydrates
CN103153384B (en) 2010-06-28 2016-03-09 科利柏心脏瓣膜有限责任公司 For the device of device in the delivery of vascular of chamber
CA3065694A1 (en) 2010-11-10 2012-05-18 Inregen Methods of forming injectable formulations for providing regenerative effects to an organ such as a kidney
US9351829B2 (en) 2010-11-17 2016-05-31 Edwards Lifesciences Corporation Double cross-linkage process to enhance post-implantation bioprosthetic tissue durability
SG191008A1 (en) 2010-12-14 2013-07-31 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
EP2658557A1 (en) 2010-12-31 2013-11-06 Anthrogenesis Corporation Enhancement of placental stem cell potency using modulatory rna molecules
TWI602570B (en) 2011-06-01 2017-10-21 安瑟吉納西斯公司 Treatment of pain using placental stem cells
US20130143323A1 (en) * 2011-06-01 2013-06-06 Geoffrey S. FROST Apparatus and method for decellularizing, recellularizing or treating organs
US20130288973A1 (en) * 2011-12-14 2013-10-31 Edmund Burke Decellularized small particle tissue
WO2013089808A1 (en) * 2011-12-14 2013-06-20 Edmund Burke Decellularized small particle tissue
US9295756B2 (en) 2012-02-01 2016-03-29 Nayacure Therapeutics Ltd. Methods for inducing immune tolerance to organ transplants
PT2782995T (en) 2012-03-16 2017-02-14 Novahep Ab Bioengineered allogeneic blood vessel
EP2841010B1 (en) 2012-04-24 2023-08-23 Harvard Apparatus Regenerative Technology, Inc. Supports for engineered tissue scaffolds
US20140377227A1 (en) * 2012-11-07 2014-12-25 James Bennie Gandy Tissue Transplantation Involving, and Tissues Modified by Decellularization And Recellularization Of Donor Tissues For Minimized Or Obviated Rejection Reactions
EP2916800A4 (en) * 2012-11-07 2016-06-08 James Bennie Gandy Tissue transplantation involving, and tissues modified by decellularization and recellularization of donor tissues for minimized or obviated rejection reactions
US10238771B2 (en) 2012-11-08 2019-03-26 Edwards Lifesciences Corporation Methods for treating bioprosthetic tissue using a nucleophile/electrophile in a catalytic system
WO2014110300A1 (en) 2013-01-09 2014-07-17 Harvard Apparatus Regenerative Technology Synthetic scaffolds
AU2014225458A1 (en) 2013-03-07 2015-07-09 Allosource Consistent calcium content bone allograft systems and methods
WO2014181767A1 (en) 2013-05-07 2014-11-13 国立大学法人 東京医科歯科大学 Method for producing particulate decellularized tissue
US9615922B2 (en) 2013-09-30 2017-04-11 Edwards Lifesciences Corporation Method and apparatus for preparing a contoured biological tissue
US10959839B2 (en) 2013-10-08 2021-03-30 Edwards Lifesciences Corporation Method for directing cellular migration patterns on a biological tissue
KR20180029274A (en) 2014-05-27 2018-03-20 노바헵 아브 Bioengineered allogeneic valve
CN104208751A (en) * 2014-08-19 2014-12-17 温州医科大学 Preparation method for novel kidney acellularized biological scaffold
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
US9238090B1 (en) 2014-12-24 2016-01-19 Fettech, Llc Tissue-based compositions
CN115554474A (en) 2015-02-27 2023-01-03 Adeka株式会社 Decellularized tissue
CA2978401C (en) 2015-03-12 2022-04-12 The Chemo-Sero-Therapeutic Research Institute Anti-adhesion material and substitute biomembrane using decellularized tissue
EP3297694A1 (en) 2015-05-21 2018-03-28 Musculoskeletal Transplant Foundation Modified demineralized cortical bone fibers
EP3471703A4 (en) 2016-06-15 2020-03-18 The General Hospital Corporation Metabolic labeling and molecular enhancement of biological materials using bioorthogonal reactions
US11123372B2 (en) 2016-07-29 2021-09-21 Prokidney Bioactive renal cells for the treatment of chronic kidney disease
WO2018127554A1 (en) 2017-01-06 2018-07-12 Novahep Ab Methods of preparing bioengineered or bioprinted organ or tissue, and uses thereof
US20200222589A1 (en) 2017-05-30 2020-07-16 Adeka Corporation Method for producing decellularized material for transplantation and graft composition consisting of biocompatible material including said material
WO2019051476A1 (en) 2017-09-11 2019-03-14 Incubar, LLC Conduit vascular implant sealing device for reducing endoleak
CN107596446B (en) * 2017-09-16 2020-07-28 温州医科大学 Decellularization kit for maintaining tissue ultrastructure and nutrition microenvironment
CN112805364A (en) 2018-08-03 2021-05-14 威瑞格拉夫特公司 Method for preparing personalized blood vessel
WO2020092205A1 (en) 2018-11-01 2020-05-07 Edwards Lifesciences Corporation Transcatheter pulmonic regenerative valve
US20220088269A1 (en) 2019-01-07 2022-03-24 Miromatrix Medical Inc. Method of dehydration of extracellular matrix and particles formed therefrom
US20230285635A1 (en) 2020-08-06 2023-09-14 Kangstem Biotech Co., Ltd. Method for producing highly functional artificial organs using aptamers

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458678A (en) * 1981-10-26 1984-07-10 Massachusetts Institute Of Technology Cell-seeding procedures involving fibrous lattices
US4520821A (en) * 1982-04-30 1985-06-04 The Regents Of The University Of California Growing of long-term biological tissue correction structures in vivo
US4801299A (en) * 1983-06-10 1989-01-31 University Patents, Inc. Body implants of extracellular matrix and means and methods of making and using such implants
US4963489A (en) * 1987-04-14 1990-10-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
US5032508A (en) * 1988-09-08 1991-07-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
US5160490A (en) * 1986-04-18 1992-11-03 Marrow-Tech Incorporated Three-dimensional cell and tissue culture apparatus
US5192312A (en) * 1991-03-05 1993-03-09 Colorado State University Research Foundation Treated tissue for implantation and methods of treatment and use
US5336616A (en) * 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US5443950A (en) * 1986-04-18 1995-08-22 Advanced Tissue Sciences, Inc. Three-dimensional cell and tissue culture system
US5567612A (en) * 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
US5613982A (en) * 1994-03-14 1997-03-25 Cryolife, Inc. Method of preparing transplant tissue to reduce immunogenicity upon implantation
US5753267A (en) * 1995-02-10 1998-05-19 Purdue Research Foundation Method for enhancing functional properties of submucosal tissue graft constructs
US5759830A (en) * 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
US5762966A (en) * 1995-04-07 1998-06-09 Purdue Research Foundation Tissue graft and method for urinary tract urothelium reconstruction and replacement
US5770193A (en) * 1986-11-20 1998-06-23 Massachusetts Institute Of Technology Children's Medical Center Corporation Preparation of three-dimensional fibrous scaffold for attaching cells to produce vascularized tissue in vivo
US5851833A (en) * 1991-10-24 1998-12-22 Children's Medical Center Corp. Neomorphogenesis of urological structures in vivo from cell culture
US5855620A (en) * 1995-04-19 1999-01-05 St. Jude Medical, Inc. Matrix substrate for a viable body tissue-derived prosthesis and method for making the same
US5855610A (en) * 1995-05-19 1999-01-05 Children's Medical Center Corporation Engineering of strong, pliable tissues
US5863531A (en) * 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5916265A (en) * 1994-03-30 1999-06-29 Hu; Jie Method of producing a biological extracellular matrix for use as a cell seeding scaffold and implant
US5962325A (en) * 1986-04-18 1999-10-05 Advanced Tissue Sciences, Inc. Three-dimensional stromal tissue cultures
US6376244B1 (en) * 1999-12-29 2002-04-23 Children's Medical Center Corporation Methods and compositions for organ decellularization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989867B1 (en) * 1997-06-27 2002-04-24 BADER, Augustinus Biosynthetic transplant and method for the production thereof

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458678A (en) * 1981-10-26 1984-07-10 Massachusetts Institute Of Technology Cell-seeding procedures involving fibrous lattices
US4520821A (en) * 1982-04-30 1985-06-04 The Regents Of The University Of California Growing of long-term biological tissue correction structures in vivo
US4801299A (en) * 1983-06-10 1989-01-31 University Patents, Inc. Body implants of extracellular matrix and means and methods of making and using such implants
US5516680A (en) * 1986-04-18 1996-05-14 Advanced Tissue Sciences, Inc. Formerly Marrow-Tech Three-dimensional kidney cell and tissue culture system
US5160490A (en) * 1986-04-18 1992-11-03 Marrow-Tech Incorporated Three-dimensional cell and tissue culture apparatus
US5962325A (en) * 1986-04-18 1999-10-05 Advanced Tissue Sciences, Inc. Three-dimensional stromal tissue cultures
US5443950A (en) * 1986-04-18 1995-08-22 Advanced Tissue Sciences, Inc. Three-dimensional cell and tissue culture system
US5863531A (en) * 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5858721A (en) * 1986-04-18 1999-01-12 Advanced Tissue Sciences, Inc. Three-dimensional cell and tissue culture system
US5770193A (en) * 1986-11-20 1998-06-23 Massachusetts Institute Of Technology Children's Medical Center Corporation Preparation of three-dimensional fibrous scaffold for attaching cells to produce vascularized tissue in vivo
US5567612A (en) * 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
US5770417A (en) * 1986-11-20 1998-06-23 Massachusetts Institute Of Technology Children's Medical Center Corporation Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
US5759830A (en) * 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
US4963489A (en) * 1987-04-14 1990-10-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
US5032508A (en) * 1988-09-08 1991-07-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
US5336616A (en) * 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US5192312A (en) * 1991-03-05 1993-03-09 Colorado State University Research Foundation Treated tissue for implantation and methods of treatment and use
US5851833A (en) * 1991-10-24 1998-12-22 Children's Medical Center Corp. Neomorphogenesis of urological structures in vivo from cell culture
US5632778A (en) * 1994-03-14 1997-05-27 Cryolife, Inc. Treated tissue for implantation and methods of preparation
US5843182A (en) * 1994-03-14 1998-12-01 Cryolife, Inc. Treated tissue for implantation and methods of preparation
US5613982A (en) * 1994-03-14 1997-03-25 Cryolife, Inc. Method of preparing transplant tissue to reduce immunogenicity upon implantation
US5899936A (en) * 1994-03-14 1999-05-04 Cryolife, Inc. Treated tissue for implantation and methods of preparation
US5916265A (en) * 1994-03-30 1999-06-29 Hu; Jie Method of producing a biological extracellular matrix for use as a cell seeding scaffold and implant
US5866414A (en) * 1995-02-10 1999-02-02 Badylak; Stephen F. Submucosa gel as a growth substrate for cells
US5753267A (en) * 1995-02-10 1998-05-19 Purdue Research Foundation Method for enhancing functional properties of submucosal tissue graft constructs
US5762966A (en) * 1995-04-07 1998-06-09 Purdue Research Foundation Tissue graft and method for urinary tract urothelium reconstruction and replacement
US5855620A (en) * 1995-04-19 1999-01-05 St. Jude Medical, Inc. Matrix substrate for a viable body tissue-derived prosthesis and method for making the same
US5855610A (en) * 1995-05-19 1999-01-05 Children's Medical Center Corporation Engineering of strong, pliable tissues
US6376244B1 (en) * 1999-12-29 2002-04-23 Children's Medical Center Corporation Methods and compositions for organ decellularization

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415318B2 (en) 2001-10-19 2013-04-09 Vascular Biogenics Ltd. Polynucleotide constructs, pharmaceutical compositions and methods for targeted downregulation of angiogenesis and anticancer therapy
EP2174668A2 (en) 2004-11-14 2010-04-14 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
US20060199265A1 (en) * 2005-03-02 2006-09-07 Wolf Michael F Seeding implantable medical devices with cells
US20060210596A1 (en) * 2005-03-02 2006-09-21 Medtronic, Inc. Seeding implantable medical devices with cells
US20070059335A1 (en) * 2005-03-02 2007-03-15 Medtronic, Inc. Seeding implantable medical devices with cells
US7759120B2 (en) 2005-03-02 2010-07-20 Kps Bay Medical, Inc. Seeding implantable medical devices with cells
US7759099B2 (en) 2005-03-02 2010-07-20 Kips Bay Medical, Inc. Seeding implantable medical devices with cells
US20100093066A1 (en) * 2005-08-26 2010-04-15 Regents Of The University Of Minnesota Decellularization and recellularization apparatuses and systems containing the same
US10220056B2 (en) 2005-08-26 2019-03-05 Miromatrix Medical, Inc. Decellularization and recellularization of solid organs
US20090202977A1 (en) * 2005-08-26 2009-08-13 Regents Of The University Of Minnesota Decellularization and recellularization of organs and tissues
EP1928519A4 (en) * 2005-08-26 2009-07-08 Univ Minnesota Decellularization and recellularization of organs and tissues
US10441609B2 (en) 2005-08-26 2019-10-15 Miromatrix Medical Inc. Decellularization and recellularization of solid organs
EP1928519A1 (en) * 2005-08-26 2008-06-11 Regents of the University of Minnesota Decellularization and recellularization of organs and tissues
US8470520B2 (en) 2005-08-26 2013-06-25 Regents Of The University Of Minnesota Decellularization and recellularization of organs and tissues
US20070143143A1 (en) * 2005-12-16 2007-06-21 Siemens Medical Solutions Health Services Corporation Patient Discharge Data Processing System
US20110045045A1 (en) * 2009-07-07 2011-02-24 Joaquin Cortiella Production of and uses for decellularized lung tissue
WO2011005306A2 (en) * 2009-07-07 2011-01-13 The Board Of Regents Of The University Of Texas System Production of and uses for decellularized lung tissue
WO2011005306A3 (en) * 2009-07-07 2011-05-05 The Board Of Regents Of The University Of Texas System Production of and uses for decellularized lung tissue
US10233420B2 (en) 2010-09-01 2019-03-19 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US11414644B2 (en) 2010-09-01 2022-08-16 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US9290738B2 (en) 2012-06-13 2016-03-22 Miromatrix Medical Inc. Methods of decellularizing bone
US11452797B2 (en) 2013-03-15 2022-09-27 Miromatrix Medical Inc. Use of perfusion decellularized liver for islet cell recellularization
CN108026509A (en) * 2015-07-30 2018-05-11 Ucl商业有限公司 Method and apparatus for producing decellularization organization bracket
US10294450B2 (en) 2015-10-09 2019-05-21 Deka Products Limited Partnership Fluid pumping and bioreactor system
US10808218B2 (en) 2015-10-09 2020-10-20 Deka Products Limited Partnership Fluid pumping and bioreactor system
US11278643B2 (en) 2016-09-06 2022-03-22 Mayo Foundation For Medical Education And Research Use of resected liver serum for whole liver-engineering
US11299705B2 (en) 2016-11-07 2022-04-12 Deka Products Limited Partnership System and method for creating tissue
US11939566B2 (en) 2016-11-07 2024-03-26 Deka Products Limited Partnership System and method for creating tissue

Also Published As

Publication number Publication date
JP4897176B2 (en) 2012-03-14
EP1244396B1 (en) 2005-11-09
US6376244B1 (en) 2002-04-23
ES2250220T5 (en) 2009-05-01
AU2095001A (en) 2001-07-16
EP1244396B2 (en) 2009-02-11
DE60023941D1 (en) 2005-12-15
ES2250220T3 (en) 2006-04-16
EP1244396A1 (en) 2002-10-02
CA2395637A1 (en) 2001-07-12
AU763730B2 (en) 2003-07-31
WO2001049210A1 (en) 2001-07-12
CA2395637C (en) 2005-05-24
JP2003518981A (en) 2003-06-17
ATE308939T1 (en) 2005-11-15
US6753181B2 (en) 2004-06-22
US20020102727A1 (en) 2002-08-01

Similar Documents

Publication Publication Date Title
US6376244B1 (en) Methods and compositions for organ decellularization
US20050249816A1 (en) Tissue engineered liver constructs
CA2395698C (en) Reconstructing organs from decellularized biomaterial scaffold
EP2292278B1 (en) Augmentation of organ function
US7763459B2 (en) Chemical treatment for removing cellular and nuclear material from naturally occurring extracellular matrix-based biomaterials
US6428802B1 (en) Preparing artificial organs by forming polylayers of different cell populations on a substrate
Vasanthan et al. Extracellular matrix extraction techniques and applications in biomedical engineering
AU2004202491B2 (en) Reconstructing organs from decellularized biomaterial scaffold
AU2007201136B2 (en) Augmentation of organ function
AU2011202672A1 (en) Augmentation of organ function

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION