US20040019132A1 - Bone graft substitutes - Google Patents

Bone graft substitutes Download PDF

Info

Publication number
US20040019132A1
US20040019132A1 US10/621,633 US62163303A US2004019132A1 US 20040019132 A1 US20040019132 A1 US 20040019132A1 US 62163303 A US62163303 A US 62163303A US 2004019132 A1 US2004019132 A1 US 2004019132A1
Authority
US
United States
Prior art keywords
punch
bone
moveable
lower punch
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/621,633
Inventor
Marc Long
Michael Cooper
Keith Kinnane
Trevor Allen
Jeffrey Schryver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/621,633 priority Critical patent/US20040019132A1/en
Publication of US20040019132A1 publication Critical patent/US20040019132A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4644Preparation of bone graft, bone plugs or bone dowels, e.g. grinding or milling bone material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30303Three-dimensional shapes polypod-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00185Ceramics or ceramic-like structures based on metal oxides
    • A61F2310/00203Ceramics or ceramic-like structures based on metal oxides containing alumina or aluminium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00329Glasses, e.g. bioglass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention is directed to compositions and methods for making bone graft substitutes. More specifically, the present invention is directed to manufacturing a bone graft substitute (BGS) by powder compaction.
  • BGS bone graft substitute
  • Bone graft is used to fill spaces in bone tissue that are the result of trauma, disease degeneration or other loss of tissue.
  • Clinicians perform bone graft procedures for a variety of reasons, often to fill a bone void created by a loss of bone or compaction of cancellous bone.
  • the clinician also must rely on the bone graft material to provide some mechanical support, as in the case of subchondral bone replacement or compaction grafting around total joint replacement devices.
  • clinicians pack the material into the defect to create a stable platform to support the surrounding tissue and hardware.
  • the source of the graft material is either the patient (autograft), which is clinically preferable, or a donor (allograft).
  • autograft has the potential drawback of increased pain and morbidity associated with a second surgical procedure, in addition to having a limited supply of the bone.
  • autograft and, to a lesser extent, in allograft there are biological factors such as proteins or cells that are present that can assist in the fracture healing process.
  • Xenografts and bone graft substitutes are other options.
  • synthetically derived substitute material has advantages over human derived bone graft and naturally derived substitutes, including: 1) more control over product consistency; 2) less risk for infection and disease; 3) no morbidity or pain caused by harvesting of the patient's own bone for graft; and 4) availability of the substitute in many different volumes (that is, it is not limited by harvest site of the patient).
  • BGS materials that have been used commercially exhibit various levels of bioactivity and various rates of dissolution.
  • BGS products are currently available in several forms: powder, gel, slurry/putty, tablet, chips, morsels, and pellet, in addition to shaped products (sticks, sheets, and blocks). In many instances, the form of BGS products is dictated by the material from which they are made.
  • Synthetic materials such as calcium sulfates or calcium phosphates have been processed into several shapes (tablets, beads, pellets, sticks, sheets, and blocks) and may contain additives such as antibiotics (e.g., Osteoset®-T (Wright Medical Technology; Arlington, Tenn.)) or bioactive agents (e.g., Rhakoss® (Orthovita®; Malvern, Pa.)).
  • Allograft products in which the source of the bone graft material is a donor, are typically available as chips and can be mixed with a gel to form a composite gel or putty.
  • None of the current products and technologies offered for BGS is capable of offering an allograft granule or shape for easy delivery and scaffold structure, in addition to being conformable to the surgical site. Furthermore, none but one (Osteoset®-T) of the current products and technologies offered for BGS is capable of offering an allograft or synthetic granule or shape containing a bioactive agent or agents, such as an antibiotic or bone morphogenetic proteins.
  • Past solutions to produce BGS products have included gel, putty, paste, formable strips, blocks, granules, chips, pellets, tablets, and powder.
  • a skilled artisan recognizes there are multiple references directed to bone graft substitutes, including Medica Data International, Inc., Report #RP-591149, Chapter 3: Applications for Bone Replacement Biomaterials and Biological Bone Growth Factors (2000) and Orthopaedic Network News, Vol. 11, No 4, October 2000, pp. 8-10.
  • DBM products have been produced in chips, granules, gel, or putty forms only.
  • No solid DBM product (as opposed to a putty) which has undergone a shaping process is currently available to the health care provider. It is a disadvantage of the presently available products to have no shape which is interlocking, and the irregularly-shaped chips of presently available products do not compact sufficiently and also fail to generate reproducible results.
  • Other calcium sulfate-based products have been made using a casting or molding process, as opposed to a dry powder compaction process of the present invention. Osteoset®-T pellets are likely to have been tableted because of their simple shape.
  • a more complicated shape that could provide improved interlocking between the granules over the tableting process used in the art requires the use of a more advanced manufacturing process.
  • the manufacturing of JAXTM (Smith+Nephew, Inc.; Memphis, Tenn.) bone void filler requires the use of a powder compaction process to be able to produce the advanced interlocking granule shape.
  • U.S. Pat. Nos. 6,030,636; 5,807,567; and 5,614,206 are directed to calcium sulfate controlled release matrix. They provide forming a pellet prepared by the process comprising mixing powder consisting essentially of alpha-calcium sulfate hemihydrate, a solution comprising water, and, optionally, an additive and a powder consisting essentially of beta-calcium sulfate hemihydrate to form a mixture, and forming the mixture into the pellet. The pellets were formed by pouring a slurry mixture of the desired components into cylindrical molds.
  • U.S. Pat. Nos. 5,569,308 and 5,366,507 regard methods for use in bone tissue regeneration utilizing a conventional graft material/barrier material layered scheme.
  • the barrier material is a paste formed immediately prior to its use by mixing calcium sulfate powder with any biocompatible, sterile liquid, whereas the graft material is also a paste form comprised of a mixture of water and at least autogenous cancellous bone, DFDBA, autogenous cortical bone chips, or hydroxylapatite.
  • U.S. Pat. No. 4,619,655 is directed to Plaster of Paris as a bioresorbable scaffold in implants for bone repair.
  • the inventors provide an animal implant composed of a binder lattice or scaffold of Plaster of Paris and a non-bioresorbable calcium material such as calcium phosphate ceramic particles and, in a specific embodiment, the implant may contain an active medicament bound within the plaster.
  • the implant composition of the invention may be preformed into the desired shape or shapes or it may be made up as a dry mix which can be moistened with water just prior to use to provide a fluid or semisolid, injectable formulation which can be injected into the appropriate body space as required for bone reconstruction.
  • U.S. Pat. No. 4,384,834 is directed to devices for compacting powder into a solid body, comprising a compaction chamber, a moveable support for the powder which extends into the compaction chamber, and means for launching a punch against the powder to form the solid body.
  • the compaction chamber is formed by a block having a conical bore and a conical sleeve having a continuous uncut sidewall moveable within the conical bore to be radially compressed thereby.
  • U.S. Pat. No. 5,449,481 concerns apparatus and methods for producing a powder compact comprising loading a rubber mold having a cavity shaped according to a desired configuration of the powder compact into a recess formed by a die, in addition to a lower punch inserted into the die.
  • the method steps include filling a cavity of the rubber mold with powder, placing an upper punch in contact with an opposing surface of the die, and pressing the rubber mold filled with powder in a space formed by the die, the lower punch and the upper punch.
  • the upper or lower punches are secured.
  • U.S. Pat. No. 5,762,978 is directed to a batching device having a series of die holes which are fed powder or granular material, upper and lower punches for each die hole, wherein the punches have counterfacing respective working heads, in addition to a rotary turret comprising the die holes, and driving means for adjusting distances between the working heads of the punches.
  • the driving means includes a driving cam for at least one of the punches and filling operation cam means.
  • U.S. Pat. No. 6,106,267 regards tooling for a press for making an ingestible compression molded product, such as a tablet, from a granular feedstock material
  • the tooling comprises a die having a cylindrical die cavity and an open end for introducing the feedstock, and first and second punches with end faces which compress the feedstock material and which thereby would form the product whose surfaces conform to the end faces of the punches.
  • the tip portion of the first punch is formed of an elastically deformable material so as to undergo deformation upon compression of the feedstock and which includes a wiping ring for wiping the inner surface of the die cavity upon movement of the punch within the die.
  • U.S. Pat. No. 5,603,880 concerns methods and an apparatus for manufacturing tablets. Plastic polymer film is pressed to form receptacles and filled with a predetermined amount of a powder under a pressurized condition.
  • U.S. Pat. No. 6,177,125 regards methods for manufacturing coated tablets from tablet cores and coating granulate using a press having at least one compression chamber and a feed device for tablet cores, comprising adding a pasty tablet core to the coating granulate to be compressed and compressing the coating granulate and the tablet cores simultaneously in a single pressing step.
  • U.S. Pat. No. 5,654,003 is directed to methods of making a solid comestible by forming deformable particles in size from 150 to 2000 microns wherein the particles are compressible in a die and punch tableting machine by subjecting a feedstock comprising a sugar carrier material, wherein the compressed product possesses a rigid structure and has a hard surface which resists penetration and deformation.
  • U.S. Pat. No. 5,017,122 regards a rotary tablet press for molding tablets through compression of powders and granules having a plurality of dies which rotate around a central axis, multiple upper and lower punches rotatable with the dies, and means for introducing electrically charged lubricant particles onto the tablets.
  • U.S. Pat. No. 5,158,728 is directed to an apparatus for forming a two-layer tablet having a die table comprising multiple die stations, each die having a cylindrical cavity.
  • the upper punch and lower punch has at least one insert sized and positioned on the upper punch means and lower punch means, respectively, to fit within the die cavity on the die on die table.
  • compositions and methods in the art provide no bone graft substitute particles having consistent shapes and whose shapes interrelate in a manner to impart a three-dimensional structure for strength and bone ingrowth.
  • the present invention supplies a long-sought solution in the art by making BGS products or granules, such as demineralized bone matrix, by powder compaction to provide a scaffold structure for ingrowth from the host bone and for the purpose of easy delivery.
  • An object of the present invention is to manufacture a BGS shape by compressing or compacting powder or powders; more specifically, by powder compaction, which is a process used primarily in metal and ceramic powder processing.
  • Another object of the present invention is to use powder compaction to manufacture an allograft (human bone, DBM) bone graft substitute shape.
  • An additional object of the present invention is to utilize powder compaction to produce a synthetic or ceramic (such as calcium sulfate or calcium phosphate) bone graft substitute shape.
  • Another object of the present invention is to use powder compaction to produce an allograft, synthetic or ceramic bone graft substitute shape containing bioactive agents (such as antibiotic, BMPs, acids, angiogenic agents and the like).
  • bioactive agents such as antibiotic, BMPs, acids, angiogenic agents and the like.
  • An additional object of the present invention is to use powder compaction to produce an allograft/synthetic or ceramic composite bone graft substitute shape.
  • Another object of the present invention is to use powder compaction to produce an allograft/synthetic or ceramic composite bone graft substitute shape containing bioactive agents.
  • An additional object of the present invention is to use a processing aid (such as stearic acid, magnesium stearate, calcium stearate) or a mix of two or more of these processing aids to produce a JAXTM shape, tablet, or other shape known in the art.
  • a processing aid such as stearic acid, magnesium stearate, calcium stearate
  • a mix of two or more of these processing aids to produce a JAXTM shape, tablet, or other shape known in the art.
  • An object of the present invention is a method of manufacturing a shaped bone graft substitute comprising the step of compressing a granulated bone material into the shape.
  • the bone material is an allograft material, a ceramic material, a polymer or combinations thereof.
  • the material further comprises a processing aid composition.
  • the processing aid composition is selected from the group consisting of stearic acid, calcium stearate, magnesium stearate, natural polymer, synthetic polymer, sugar and combinations thereof.
  • the natural polymer is starch, gelatin, or combinations thereof.
  • the synthetic polymer is methylcellulose, sodium carboxymethylcellulose, or hydropropylmethylcellulose.
  • the sugar is glucose or glycerol.
  • the allograft bone material is cortical-cancellous bone.
  • the allograft bone material is demineralized bone matrix.
  • the shape is a three-dimensional intricate shape.
  • the shape is selected from the group consisting of a jack, a tablet, a strip, a block, a cube, a chip, a pellet, a pill, a lozenge, a sphere, a ring, and combinations thereof.
  • the shape is a JAXTM particle.
  • the shape is a jack, a JAXTM, or a ring.
  • the ceramic material is selected from the group consisting of hydroxylapatite, calcium sulphate, alumina, silica, calcium carbonate, calcium phosphate, calcium tartarate, bioactive glass, and combinations thereof.
  • the substitute further comprises a biological agent.
  • the biological agent is added to the material prior to the compaction step.
  • the biological agent is added to the bone graft substitute subsequent to the compaction step.
  • the agent is selected from the group consisting of a growth factor, an antibiotic, a strontium salt, a fluoride salt, a magnesium salt, a sodium salt, a bone morphogenetic factor, a chemotherapeutic agent, a pain killer, a bisphosphonate, a bone growth agent, an angiogenic factor, and combinations thereof.
  • the growth factor is selected from the group consisting of platelet derived growth factor (PDGF), transforming growth factor b (TGF-b), insulin-related growth factor-I (IGF-I), insulin-related growth factor-II (IGF-II), fibroblast growth factor (FGF), beta-2-microglobulin (BDGF II), bone morphogenetic protein (BMP), and combinations thereof.
  • the antibiotic is selected from the group consisting of tetracycline hydrochloride, vancomycin, cephalosporins, and aminoglycocides such as tobramycin, gentamicin, and combinations thereof.
  • the factor is selected from the group consisting of proteins of demineralized bone, demineralized bone matrix (DBM), bone protein (BP), bone morphogenetic protein (BMP), osteonectin, osteocalcin, osteogenin, and combinations thereof.
  • the agent is selected from the group consisting of cis-platinum, ifosfamide, methotrexate, doxorubicin hydrochloride, and combinations thereof.
  • the pain killer is selected from the group consisting of lidocaine hydrochloride, bipivacaine hydrochloride, non-steroidal anti-inflammatory drugs such as ketorolac tromethamine, and combinations thereof.
  • the particles of the material are less than about 10 millimeters in diameter. In a further specific embodiment, the particles of the material are less than about 250 ⁇ m in diameter. In another specific embodiment, the particles of the material are in a range of about 50 to 180 microns.
  • a method of manufacturing a bone graft substitute comprising the steps of obtaining a bone material; pulverizing the material to produce a granulated bone material; and subjecting the granulated bone material to a powder compaction process.
  • the powder compaction process utilizes a withdrawal press, wherein the press comprises a stationary lower punch; a moveable die; a moveable upper punch; and a moveable lower punch, wherein the stationary lower punch is contained within the moveable lower punch.
  • the powder compaction process utilizes a withdrawal press, wherein the press comprises a stationary lower punch; a moveable lower punch, wherein the stationary lower punch is contained within the moveable lower punch; a stationary upper punch; a moveable upper punch, wherein the stationary upper punch is contained within the moveable lower punch; and a moveable die.
  • a method of manufacturing a shaped bone graft substitute from granulated bone material comprising the steps of providing a stationary lower punch and a moveable lower punch which is vertically moveable about the stationary lower punch, a moveable die having at least one cavity and positionable generally above the stationary lower punch, and a moveable upper punch; introducing the granulated bone material into the cavity; positioning the moveable die generally above the stationary lower punch; moving the moveable upper punch to pressably contact the powder in opposition to the moveable lower punch and stationary lower punch; and moving the moveable lower punch to pressably contact the powder in opposition to the moveable upper punch, whereby the moving steps form the material into the shaped bone graft substitute.
  • the steps of moving the upper and lower punches effect a substantially uniform distribution of pressure within the material.
  • the punches are configured such that the shape of the bone graft substitute resulting from the moving steps is a shape selected from the group consisting of a JAXTM particle, a jack, a tablet, a strip, a block, a cube, a pellet, a pill, a lozenge, a sphere, and a ring.
  • at least one of the moving steps applies a force to the material in a range of about 0.2 to about 5 tons.
  • at least one of the moving steps applies a force to the material in a range of about 0.2 to about 2 tons.
  • At least one of the moving steps applies a force to the material in a range of about 0.5 to about 1 ton.
  • the moving step of the moveable lower punch to the material is subsequent to the moving step of the moveable upper punch to the material.
  • a method of manufacturing a shaped bone graft substitute from granulated bone material comprising the steps of introducing an amount of the granulated bone material into the cavity; providing a lower punch assembly, an upper punch assembly, and a moveable die positionable generally above the lower punch assembly; positioning the moveable die generally above the lower punch assembly; moving the lower punch assembly in opposition to the moveable upper punch to pressably contact the material; moving the upper punch assembly in opposition to the moveable lower punch to pressably contact the material, whereby the moving steps form the material into the shaped bone graft substitute.
  • the lower punch assembly is comprised of at least one of a stationary lower punch and a moveable lower punch vertically moveable about the stationary lower punch.
  • the upper punch assembly is comprised of at least one of a stationary upper punch and a moveable upper punch vertically moveable about the stationary upper punch.
  • an apparatus for shaping a bone graft substitute from granulated bone material comprising a stationary lower punch having a top surface; a moveable lower punch vertically moveable about the stationary lower punch and having a top surface; a moveable die having at least one cavity and positionable generally above the stationary lower punch; and a moveable upper punch, such that the moveable upper punch moves in opposition to the moveable lower punch to pressably contact the material contained within the cavity, whereupon following pressably contacting the material by the moveable lower punch the top surface height of the lower moveable punch is above the top surface height of the stationary lower punch.
  • a method for manufacturing a bone graft substitute from granulated bone material comprising the steps of providing a first punch assembly having a first contact surface configured to effect a relief profile onto a first surface of the granulated bone material; a second punch assembly having a second contact surface; and a moveable die having at least one cavity; introducing the bone material into the cavity; positioning the moveable die generally in alignment with the first punch assembly; moving at least a portion of the first punch assembly to pressably contact the material in opposition to the second punch assembly to effect the desired relief profile on the first surface thereof; and moving at least a portion of the second punch assembly to pressably contact the material in opposition to the first punch assembly, whereby the moving steps form the material into the shaped bone graft substitute.
  • a method for manufacturing a bone graft substitute from demineralized bone matrix material comprising the steps of providing a first punch assembly having a first contact surface configured to effect a relief profile onto a first surface of the demineralized bone matrix material; a second punch assembly having a second contact surface; and a moveable die having at least one cavity; introducing the demineralized bone matrix material into the cavity; positioning the moveable die generally in alignment with the first punch assembly; moving at least a portion of the first punch assembly to pressably contact the material in opposition to the second punch assembly to effect the desired relief profile on the first surface thereof; and moving at least a portion of the second punch assembly to pressably contact the material in opposition to the first punch assembly, whereby the moving steps form the material into the shaped bone graft substitute.
  • the contact surface area of the first punch assembly is generally equivalent to a contact surface area of the second punch assembly such that the moving steps apply a substantially uniform pressure distribution to the material.
  • the first punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the first punch assembly includes moving the moveable punch to pressably contact the material.
  • the second punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the first punch assembly includes moving the moveable punch to pressably contact the material.
  • an apparatus for manufacturing a bone graft substitute from a granulated bone material comprising a first punch assembly having a first contact surface having a profile configured to effect a relief profile onto a surface of the bone material; a second punch assembly having a second contact surface, the second contact surface positioned in general alignment with the first contact surface; and a moveable die having at least one cavity, the moveable die being positionable generally in between the first and second punch assemblies.
  • FIG. 1 demonstrates a press configuration used to powder compact JAXTM (left) and die and punches (right).
  • FIG. 2 illustrates a schematic highlighting the differences between (a) conventional tableting and (b, c) the powder compaction used in the novel application to make bone graft substitutes.
  • FIG. 3 illustrates powder compaction of a jack shape, wherein (a) is filling of a die cavity, (b) is pressably contacting/compacting the material, and (c) is ejection of the product.
  • FIG. 4 shows powder-compacted JAXTM manufactured with HDBM (batch # ALLOJAX100-b).
  • FIG. 5 depicts scanning electron microscopy (SEM) micrographs of HDBM granules: batch #-a (left), batch #-b (right).
  • FIG. 6 shows powder-compacted tablets made of 100% HDBM, 90% HDBM+10% calcium sulfate, 50% HDBM+50% calcium sulfate and 90% HCC+10% calcium sulfate.
  • a” or “an” may mean one or more.
  • the words “a” or “an” when used in conjunction with the word “comprising”, the words “a” or “an” may mean one or more than one.
  • another may mean at least a second or more.
  • the term “allograft bone material” as used herein is defined as bone tissue that is harvested from another individual of the same species. Allograft tissue may be used in its native state or modified to address the needs of a wide variety of orthopaedic procedures. The vast majority of allograft bone tissue is derived from deceased donors. Bone is about 70% mineral by weight. The remaining 30% is collagen and non collagenous proteins (including bone morphogenic proteins, BMPs). Allograft bone that has been cleaned and prepared for grafting provides a support matrix to conduct bone growth, but is not able to release factors that induce the patient's biology to form bone cells and create new bone tissue. In a preferred embodiment, the allograft is cleaned, sanitized, and inactivated for viral transmission.
  • biological agent as used herein is defined as an entity which is added to the bone graft substitute to effect a therapeutic end, such as facilitation of bone ingrowth, prevention of disease, administration of pain relief chemicals, administration of drugs, and the like.
  • biological agents include antibiotics, growth factors, fibrin, bone morphogenetic factors, bone growth agents, chemotherapeutics, pain killers, bisphosphonates, strontium salt, fluoride salt, magnesium salt, and sodium salt.
  • bone graft substitute as used herein is defined as an entity for filling spaces in a bone tissue.
  • the BGS as used herein is a jack, gel, putty, paste, formable strips, blocks, granules, chips, pellets, tablets, or powder.
  • the BGS is a shaped particle.
  • the shaped particle is a JAXTM particle.
  • the bone graft substitute is not ingested.
  • ceramic as used herein is defined as any non-metallic, non-organic engineering material.
  • An example of such a material is hydroxylapatite, calcium sulphate, alumina, silica, calcium carbonate, calcium phosphate, calcium tartarate, bioactive glass, or combinations thereof.
  • demineralized bone matrix as used herein is defined as a bone material which has been treated for removal of minerals within the bone.
  • demineralization processes known in the art include BioCleanse (Regeneration Technologies, Inc.) or D-MIN (Osteotech, Inc.).
  • the allograft material is subjected to a series of thermal (freezing), irradiation, physical, aseptic, and/or chemical (acid soak) processes known in the art.
  • the latter (acid soak) typically consists of a proprietary permeation treatment to dissolve the minerals contained in the bone. This series of processes combine both demineralization and anti-viral activity.
  • BMPs bone morphogenic proteins
  • DBM Demineralized bone matrix
  • the processes used to produce DBM also have viral inactivating properties, providing an added assurance of safety for DBM products.
  • the term “die” as used herein is defined as a tool for imparting a desired shape or form to a material.
  • it is one of a pair of cutting and/or shaping means that when moved toward each other produces a certain desired form in or impresses a desired device on an object by pressure, this tool being the larger of the pair or the part into which the punch enters.
  • the die is moveable, although in an alternative embodiment the die is stationary.
  • the die has at least one cavity.
  • the shape of the cavity of the die is a JAXTM shape and/or facilitates entry of a punch which has an end configured to impart a JAXTM shape onto a material.
  • the term “granulated bone material” as used herein is defined as a composition comprising particles such as grains, granules, powder, and the like.
  • the particles are preferably comprised of a substance or substances which are amenable for bone growth, bone repair, bone augmentation, and the like.
  • the granulated bone material further comprises a processing aid composition.
  • the mixture is primarily comprised of finely dispersed solid particles.
  • one must view the particles under a microscope to differentiate one particle from another. In a preferred embodiment, it is not a chip.
  • at least the majority of the particles in the mixture are less than about 10 mm in diameter. In a more preferred embodiment, the majority of particles in the mixture are less than about 250 microns in diameter. In a most preferred embodiment, the majority of the particles in the mixture are between about 50 and about 180 microns in diameter.
  • jack as used herein is defined as a small object with six arms used in the game jacks. However, in an alternative embodiment, the jack has five arms.
  • lower punch assembly as used herein is defined as an assembly positioned generally below a die and comprised of at least one of a stationary punch and a moveable punch.
  • the stationary punch is an inner punch and the moveable punch is vertically moveable about the stationary inner lower punch.
  • powder compaction is defined as the process wherein a granuluted bone material, such as a powder, is compressed into a desired shape.
  • the powder is demineralized bone matrix.
  • the powder particles are less than about 10 mm, more preferably less than about 250 ⁇ m, and most preferably between about 50 and 180 microns in diameter.
  • pressably contact is defined as the touching of a material using pressure upon the material.
  • presssably contacting the material results in compaction of the material, such as in compaction of a granulated bone material, for example a powder.
  • processing aid composition is defined as a composition utilized for facilitating compaction of a powder and release of a compacted powdered product from a die.
  • Specific examples include stearic acid, magnesium stearate, calcium stearate, natural polymer, synthetic polymer, sugar and combinations thereof.
  • the natural polymer is starch, gelatin; or combinations thereof.
  • the synthetic polymer is methylcellulose, sodium carboxymethylcellulose, or hydropropylmethylcellulose.
  • the sugar is glucose or glycerol.
  • the term “pulverize” as used herein is defined as grind, granulate, crush, mash, chop up, or pound a starting material into smaller constituents. In a specific embodiment, the starting material is reduced to powder or dust.
  • the term “punch” as used herein is defined as an apparatus in the form of a rod, such as comprised of metal or ceramic, that is sharp-edged and variously shaped at one end for imparting a desired shape or form to a material.
  • the shape imparts a JAXTM shape.
  • the punch is solid or hollow.
  • the term “relief profile” as used herein is defined as a contour on a material having projections and indentations which approximate the contour of the surface which imparts the contour, such as a punch.
  • substantially uniform distribution of pressure is defined as an amount of pressure upon a material which is generally consistent in quantity over the surface of the material.
  • three-dimensional intricate shape as used herein is defined as a shape having projections and/or at least one surface that has a relief profile.
  • upper punch assembly as used herein is defined as an assembly positioned generally above a die and comprised of at least one of a stationary punch and a moveable punch.
  • the stationary punch is an inner punch and the moveable punch is vertically moveable about the stationary inner upper punch.
  • the term “withdrawal press” as used herein is defined as a powder compaction press using withdrawal of the die rather than an upper motion of a lower punch for ejection of the product.
  • a powder compaction process is used to produce a bone graft substitute, such as a JAXTM product comprised of DBM.
  • a processing aid is added to facilitate compaction of the DBM powder arid release of the product from the die.
  • a biological agent may also be added to the powder prior to compaction or coated onto the generated product after compaction.
  • the present invention is an improvement over presently available products and methods by taking, in a specific embodiment, an allograft powder, as opposed to a chip, and manufacturing a shape from the powder, wherein the shape is used for a bone graft substitute.
  • the bone material is ceramic, such as a calcium salt; calcium sulfate, hydroxylapatite, a calcium phosphate; bioactive glass, a vitreous based glass (such as may be used for maxio-cranio applications); calcium carbonate, a calcium based mineral; various calcium phosphates, and calcium-rich minerals, including tricalcium phosphate and orthophosphate; apatite/wollastonite glass ceramic, a calcium silicate often used in bone spacer applications; resorbable polymers such as polysaccharides, polyglycolates, polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone, polypropylene fumarate (all of which can be blended or made to co-polymers to control the desired properties of the product); and composites of resorbable polymers and glass or ceramic fillers.
  • Bioactive glass is a material whose major components are CaO, SiO 2 and P 2 O 5 and
  • the bone graft substitute is manufactured with a biological agent, either within the substitute particle, coated on the surface of the particle, or both.
  • the bone material of the present invention is colored to make it more visible.
  • differently shaped BGS of the present invention are denoted with different colors for better differentiation of the particles.
  • the particles are coated or have contained within them an agent such as green fluorescent protein or blue fluorescent protein to make them fluorescent and therefore more visible.
  • the allograft bone graft substitute embodiment of the present invention prefferably has a granule or shape for easy delivery and scaffold structure.
  • An object of the present invention is providing a BGS which is a shaped particle which may be used as part of a three-dimensional interlocking array of particles.
  • the particles may be utilized with inductive graft in which the graft actively facilitates, either directly or indirectly, bone growth.
  • the particles may be utilized for a conductive graft in which the graft is conducive to bone growth but does not actively or directly facilitate it.
  • the particles will be of an appropriate size such that several individual granules will be used to fill a small void while many can be used to fill larger voids.
  • the three-dimensional structure will allow the granules to fill a volume and, in a specific embodiment, interlock with each other.
  • the particles will be able to interlock with bone.
  • the interlocking will enable the particles to support some mechanical forces while maintaining stability and assist in bone healing.
  • the interlocking feature makes it possible for the particles to resist some shear forces, unlike commercially available products. It will also help to resist migration away from the implant site.
  • the particles will be able to fill odd bone defect shapes and sizes without necessarily needing to carve a larger block to the approximate shape/size.
  • the interlocked particles also provide the ability for the entire implant to behave mechanically more like a single block as compared to current granular products.
  • the shapes would be such that a collection of these particles do not aggregate into a solid, packed volume but instead leave an open, interconnected porosity that is beneficial for bone healing. It is preferred that the shape of the particles and/or the array of the shaped particles allow the engineering or prediction of a specific porosity.
  • the purpose of having shaped particles is three-fold.
  • First, the capability to interlock provides resistance to shear forces and helps to increase the stability when the graft is packed into a defect.
  • the bone material powder may be an allograft material, a synthetic material, a ceramic material, a polymer material, or a combination thereof, it is preferably demineralized bone matrix.
  • the shape is preferably one which will provide strength to the bone graft and allow bone ingrowth from the host bone.
  • a preferred shape is a jack, such as a JAXTM particle.
  • the method of manufacturing the BGS preferably includes compressing, compacting, pressably contacting, packing, squeezing, tamping, or squashing a bone material powder into the desired shape.
  • the method preferably utilizes powder compaction, which a skilled artisan recognizes is a process well known in metal and ceramic powder processing.
  • a processing aid composition is preferably utilized to facilitate compaction of the material and release of the product from the die.
  • the method includes obtaining a bone material, such as from a donor, cadaver, and the like, pulverizing the material to produce a bone material powder, which a skilled artisan recognizes is preferably to a consistency which is conducive to compaction and generation of a product which is substantially non-friable.
  • the particles are preferably substantially homogeneous in size.
  • the powder is then subjected to a powder compaction process.
  • the powder compaction process preferably utilizes a withdrawal press.
  • the withdrawal press may comprise a lower punch assembly, an upper punch assembly, and a moveable die.
  • the lower punch assembly may comprise at least one of a stationary punch and a moveable punch; a skilled artisan recognizes this is referred to as a “dual punch”.
  • the moveable punch preferably is vertically moveable about the stationary punch.
  • an upper punch assembly may comprise at least one of a stationary punch and a moveable punch, wherein the moveable punch preferably is vertically moveable about the stationary punch.
  • the apparatus comprises a dual lower punch and a stationary upper punch.
  • the die is preferably moveable, although it may be stationary, and is generally located, during processing, between the lower and upper punch assemblies. It is preferably in alignment with at least one of a lower and upper punch.
  • the die preferably has at least one cavity, and also preferably is shaped corresponding to the desired generated shape of the particle and to permit the corresponding punches to fit in the cavity.
  • the surfaces of the punches which contact the powder material are preferably configured with a contour or shape that imparts the desired shape onto the powder upon contact with the material.
  • the shape may be a jack, a tablet, a strip, a block, a cube, a pellet, a pill, a lozenge, a sphere, or a ring.
  • the shape of the punches may be that which will impart a jack shape, such as is demonstrated in FIG. 1.
  • the shape is preferably a jack such as a JAXTM particle.
  • one of the punches may impart a jack shape and the other punch may have a generally flat surface, although the resulting product will still result in a jack shape.
  • the moveable die and punch assemblies are provided.
  • the powder is introduced into a cavity in the die and the die is positioned generally in alignment with at least one of the punches.
  • the die is positioned generally above the stationary lower punch.
  • a moveable upper punch pressably contacts the powder in opposition to the moveable lower punch and stationary lower punch.
  • a moveable lower punch moves to pressably contact the powder in opposition to an upper punch.
  • the moving steps occur generally simultaneously, and in other specific embodiments, the moving steps occur in sequence.
  • the steps of moving the upper and lower punches preferably effect a substantially uniform distribution of pressure within the powder. The uniformity of the pressure distribution across the surface of the powder is desirable because it is the best way to ensure the resulting product is structurally sound.
  • the moving steps thus form the powder into the desired shaped BGS.
  • the moving steps preferably apply a force in the range of about 0.2 to about 5 tons, more preferably about 0.2 to about 2 tons, and most preferably about 0.5 to about 1 ton.
  • the force may be greater, and a skilled artisan recognizes that the upper limit is determined by the critical density of the powder.
  • a stationary lower punch has a top surface
  • a moveable lower punch vertically moveable about the stationary lower punch has a top surface
  • a moveable upper punch such that when the moveable upper punch moves in opposition to the moveable lower punch to pressably contact the powder in the die cavity the top surface height of the moveable lower punch is above the top surface height of the stationary lower punch.
  • the contact surface area of the first punch assembly is generally equivalent to a contact surface area of the second punch assembly such that the moving steps apply a substantially uniform pressure distribution to the powder.
  • the first punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the first punch assembly includes moving the moveable punch to pressably contact the powder.
  • the second punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the second punch assembly includes moving the moveable punch to pressably contact the powder.
  • an apparatus for manufacturing a bone graft substitute from a bone material powder comprising a first punch assembly having a first contact surface having a profile configured to effect a relief profile onto a surface of the bone material powder; a second punch assembly having a second contact surface, the second contact surface positioned in general alignment with the first contact surface; and a moveable die having at least one cavity, the moveable die being positionable generally in between the first and second punch assemblies.
  • HDBM Human DBM in powder/chips form was obtained from a bone tissue bank, mechanically ground, and sieved through a #60 mesh. ( ⁇ 250 ⁇ m particle size). Two different batches were processed. Each ground and sieved HDBM was then blended with 2% (in weight) stearic acid, the latter being used as processing aid in the powder compaction process: HDBM (98%) Stearic Acid (2%) ALLOJAX100-a 7.6582 g 0.1562 g ALLOJAX100-b 19.6 g 0.4 g
  • a powder compaction press (withdrawal type) was used to compress the blends. Special tooling had been made to allow uniform distribution of compressive forces during the compaction process. This involved a one-piece upper punch, two lower punches, and a floating die (FIG. 1). A compression force between 0.6 and 0.7 tons was used.
  • the powder compaction, process is unique to produce bone graft substitutes and bone void fillers.
  • Previous BGS products have been produced using a tableting process.
  • Tablet processing consists of a simple pressing action with a lower punch pressing the powder blend against a stationary, or sometimes translating, upper punch through a stationary die.
  • Tableting typically utilize a tableting press.
  • tableting does not allow for a uniform distribution of pressures within the granules and therefore does not allow for the production of intricate shapes, such as a six-arm JAXTM granule.
  • Powder compaction is an advanced, manufacturing process that allows for a uniform distribution of pressures during compaction, therefore allowing for the production of intricate shapes.
  • FIG. 2 illustrates the differences between (a) conventional tableting and (b, c) the powder compaction used in the novel application to make bone graft substitutes.
  • the die is stationary, the top and bottom punches are translating; in (b), a withdrawal press is illustrated, in which the lower punch is stationary, the die and upper punch are translating; in (c), an additional lower outer punch allows for a uniform density distribution for an intricate shape, such as JAXTM.
  • JAXTM JAXTM
  • a dual lower punch is useful in the present invention.
  • a dual upper punch is utilized wherein the upper punch is composed of an inner punch and an outer punch.
  • FIG. 3 illustrates a specific embodiment of the present invention, wherein a jack shape is produced through powder compaction.
  • a die cavity is filled, followed by pressably contacting/compacting the material (b) and ejection of the product (c).
  • Powder compaction was used to shape DBM powder into an intricate shape (six-arm, JAXTM). ALLOJAX100-a compressed poorly; ALLOJAX100-b compressed well and produced a JAXTM product that was not friable between fingers (FIG. 4).
  • batch #-a was composed of mostly acicular, elongated particles, probably mainly cancellous bone tissue
  • batch #-b was composed of mostly granules and some fines, probably mainly cortical bone tissue (FIG. 5).
  • the morphology of batch #-b is recommended for powder compaction. Density measurements confirmed the difference between the batches: batch #-b was denser (2.0684 g/cm 3 ) than batch #-a (1.3372 g/cm 3 ).
  • a biological agent is included in the powder or on the generated shape.
  • examples include antibiotics, growth factors, fibrin, bone morphogenetic factors, bone growth agents, chemotherapeutics, pain killers, bisphosphonates, strontium salt, fluoride salt, magnesium salt, and sodium salt.
  • the present invention allows antibiotics to be included within the composition for a local administration. This reduces the amount of antibiotic required for treatment of or prophalaxis for an infection. Administration of the antibiotic in the BGS would also allow less diffusing of the antibiotic, particularly if the antibiotic is contained within a fibrin matrix.
  • the particles of the present invention may be coated with the antibiotic and/or contained within the particle. Examples of antibiotics are tetracycline hydrochloride, vancomycin, cephalosporins, and aminoglycocides such as tobramycin and gentamicin.
  • Growth factors may be included in the BGS for a local application to encourage bone growth.
  • growth factors which may be included are platelet derived growth factor (PDGF), transforming growth factor b (TGF-b), insulin-related growth factor-I (IGF-I), insulin-related growth factor-II (IGF-II), fibroblast growth factor (FGF), beta-2-microglobulin (BDGF II) and bone morphogenetic protein (BMP).
  • PDGF platelet derived growth factor
  • TGF-b transforming growth factor b
  • IGF-I insulin-related growth factor-I
  • IGF-II insulin-related growth factor-II
  • FGF fibroblast growth factor
  • BMP bone morphogenetic protein
  • the particles of the present invention may be coated with a growth factor and/or contained within the particle or the suspension material.
  • Bone morphogenetic factors may include growth factors whose activity is specific to osseous tissue including proteins of demineralized bone, or DBM (demineralized bone matrix), and in particular the proteins called BP (bone protein) or BMP (bone morphogenetic protein), which actually contains a plurality of constituents such as osteonectin, osteocalcin and osteogenin.
  • the factors may coat the shaped particles of the present invention and/or may be contained within the particles or the suspension material.
  • Bone growth agents may be included within the compositions of the present invention in a specific embodiment.
  • nucleic acid sequences which encode an amino acid sequence, or an amino acid sequence itself may be included in the suspension material of the present invention wherein the amino acid sequence facilitates bone growth or bone healing.
  • leptin is known to inhibit bone formation (Ducy et al., 2000). Any nucleic acid or amino acid sequence which negatively impacts leptin, a leptin ortholog, or a leptin receptor may be included in the composition.
  • antisense leptin nucleic acid may be transferred within the compositions of the invention to the site of a bone deficiency to inhibit leptin amino acid formation, thereby avoiding any inhibitory effects leptin may have on bone regeneration or growth.
  • Another example is a leptin antagonist or leptin receptor antagonist.
  • the nucleic acid sequence may be delivered within a nucleic acid vector wherein the vector is contained within a delivery vehicle.
  • a delivery vehicle is a liposome, a lipid or a cell.
  • the nucleic acid is transferred by carrier-assisted lipofection (Subramanian et al., 1999) to facilitate delivery.
  • a cationic peptide is attached to an M9 amino acid sequence and the cation binds the negatively charged nucleic acid.
  • M9 binds to a nuclear transport protein, such as transportin, and the entire DNA/protein complex can cross a membrane of a cell.
  • An amino acid sequence may be delivered within a delivery vehicle.
  • An example of such a delivery vehicle is a liposome. Delivery of an amino acid sequence may utilize a protein transduction domain, an example being the HIV virus TAT protein (Schwarze et al., 1999).
  • the biological agent of the present invention has high affinity for a fibrin matrix.
  • the particle of the present invention may contain within it or on it a biological agent which would either elute from the particle as it degrades or through diffusion.
  • the biological agent may be a pain killer.
  • a pain killer examples include lidocaine hydrochloride, bipivacaine hydrochloride, and non-steroidal anti-inflammatory drugs such as ketorolac tromethamine.
  • chemotherapeutics such as cis-platinum, ifosfamide, methotrexate and doxorubicin hydrochloride.
  • chemotherapeutics would be suitable for a bone malignancy.
  • Another biological agent which may be included in the BGS of the present invention is a bisphosphonate.
  • bisphosphonates are alendronate, clodronate, etidronate, ibandronate, (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD), dichloromethylene bisphosphonate, aminobisphosphonatezolendronate and pamidronate.
  • the biological agent may be either in purified form, partially purified form, commercially available or in a preferred embodiment are recombinant in form. It is preferred to have the agent free of impurities or contaminants.
  • the composition further includes fibrinogen which, upon cleaving by thrombin, gives fibrin.
  • Factor XIII is also included to crosslink fibrin, giving it more structural integrity.
  • Fibrin is known in the art to cause angiogenesis (growth of blood vessels) and in an embodiment of the present invention acts as an instigator of bone growth. It is preferred to mimic signals which are normally present upon, for instance, breaking of bone to encourage regrowth. It is known that fibrin tends to bind growth factors which facilitate this regrowth.
  • the inclusion of fibrin into the composition is twofold: 1) to encourage bone growth; and 2) to act as a delivery vehicle.
  • the fibrin matrix is produced by reacting three clotting factors—fibrinogen, thrombin, and Factor XIII. These proteins may be manufactured using recombinant techniques to avoid issues associated with pooled-blood products and autologous products. Currently, the proteins are supplied in a frozen state ready for mixing upon thawing. However, lypholization process development allows that the final product will either be refrigerated or stored at room temperature and reconstituted immediately prior to use. In a preferred embodiment, the clotting factors are recombinant in form.
  • Modifications can be made by altering the fibrin component.
  • One expected modification would be to use hyaluronic acid or a collagen gel instead of or in addition to a fibrin component.
  • Other variations may be inclusion of additional clotting factors in the fibrin matrix.
  • Additional examples of clotting factors are known in the art and may be used, but in a specific embodiment they are clotting factors relevant to a bone disorder.
  • the clotting factors may be purified, partially purified, commercially available, or in recombinant form. In a specific embodiment thrombin alone is used with the patient's own blood or bone marrow aspirate to produce a fibrin matrix.
  • a biological agent as described above is contained within the fibrin matrix.
  • the processing aid was stearic acid.
  • the equipment used was a manual hydraulic press, punches used for conventional compression/tableting, and wood blocks for support/guides.
  • Other blends including other allograft (such as human bone or DBM), synthetic or ceramic (such as calcium sulfate or calcium phosphate), or bioactive agents (such as antibiotic, BMPs, acids, and the like), individually or as a mix of two or more of the aforementioned components can potentially be compacted to produce a tablet or a JAXTM shape or other shape.
  • a processing aid, or a blend of two or more processing aids may be used in the compaction

Abstract

The present invention is directed to methods and compositions for manufacturing a bone graft substitute. A powder compaction process is utilized to generate a shaped product comprised of a granulated bone material, such as demineralized bone matrix. In addition, a processing aid is utilized to facilitate compaction of the granulated bone material and for release of the product from the die.

Description

  • The present invention claims priority to U.S. patent application Ser. No. 09/792,681, filed Feb. 23, 2001, which is incorporated by reference herein in its entirety.[0001]
  • FIELD OF THE INVENTION
  • The present invention is directed to compositions and methods for making bone graft substitutes. More specifically, the present invention is directed to manufacturing a bone graft substitute (BGS) by powder compaction. [0002]
  • BACKGROUND OF THE INVENTION
  • Bone graft is used to fill spaces in bone tissue that are the result of trauma, disease degeneration or other loss of tissue. Clinicians perform bone graft procedures for a variety of reasons, often to fill a bone void created by a loss of bone or compaction of cancellous bone. In many instances, the clinician also must rely on the bone graft material to provide some mechanical support, as in the case of subchondral bone replacement or compaction grafting around total joint replacement devices. In these instances, clinicians pack the material into the defect to create a stable platform to support the surrounding tissue and hardware. [0003]
  • There are several options available to the orthopaedic clinician for bone graft material. Most commonly, the source of the graft material is either the patient (autograft), which is clinically preferable, or a donor (allograft). However, autograft has the potential drawback of increased pain and morbidity associated with a second surgical procedure, in addition to having a limited supply of the bone. In autograft and, to a lesser extent, in allograft there are biological factors such as proteins or cells that are present that can assist in the fracture healing process. Xenografts and bone graft substitutes are other options. [0004]
  • Moreover, synthetically derived substitute material has advantages over human derived bone graft and naturally derived substitutes, including: 1) more control over product consistency; 2) less risk for infection and disease; 3) no morbidity or pain caused by harvesting of the patient's own bone for graft; and 4) availability of the substitute in many different volumes (that is, it is not limited by harvest site of the patient). [0005]
  • The BGS materials that have been used commercially exhibit various levels of bioactivity and various rates of dissolution. BGS products are currently available in several forms: powder, gel, slurry/putty, tablet, chips, morsels, and pellet, in addition to shaped products (sticks, sheets, and blocks). In many instances, the form of BGS products is dictated by the material from which they are made. Synthetic materials (such as calcium sulfates or calcium phosphates) have been processed into several shapes (tablets, beads, pellets, sticks, sheets, and blocks) and may contain additives such as antibiotics (e.g., Osteoset®-T (Wright Medical Technology; Arlington, Tenn.)) or bioactive agents (e.g., Rhakoss® (Orthovita®; Malvern, Pa.)). Allograft products, in which the source of the bone graft material is a donor, are typically available as chips and can be mixed with a gel to form a composite gel or putty. None of the current products and technologies offered for BGS is capable of offering an allograft granule or shape for easy delivery and scaffold structure, in addition to being conformable to the surgical site. Furthermore, none but one (Osteoset®-T) of the current products and technologies offered for BGS is capable of offering an allograft or synthetic granule or shape containing a bioactive agent or agents, such as an antibiotic or bone morphogenetic proteins. [0006]
  • Past solutions to produce BGS products have included gel, putty, paste, formable strips, blocks, granules, chips, pellets, tablets, and powder. A skilled artisan recognizes there are multiple references directed to bone graft substitutes, including [0007] Medica Data International, Inc., Report #RP-591149, Chapter 3: Applications for Bone Replacement Biomaterials and Biological Bone Growth Factors (2000) and Orthopaedic Network News, Vol. 11, No 4, October 2000, pp. 8-10.
  • To date, DBM products have been produced in chips, granules, gel, or putty forms only. No solid DBM product (as opposed to a putty) which has undergone a shaping process is currently available to the health care provider. It is a disadvantage of the presently available products to have no shape which is interlocking, and the irregularly-shaped chips of presently available products do not compact sufficiently and also fail to generate reproducible results. Other calcium sulfate-based products have been made using a casting or molding process, as opposed to a dry powder compaction process of the present invention. Osteoset®-T pellets are likely to have been tableted because of their simple shape. A more complicated shape that could provide improved interlocking between the granules over the tableting process used in the art requires the use of a more advanced manufacturing process. The manufacturing of JAX™ (Smith+Nephew, Inc.; Memphis, Tenn.) bone void filler requires the use of a powder compaction process to be able to produce the advanced interlocking granule shape. [0008]
  • U.S. Pat. Nos. 6,030,636; 5,807,567; and 5,614,206 are directed to calcium sulfate controlled release matrix. They provide forming a pellet prepared by the process comprising mixing powder consisting essentially of alpha-calcium sulfate hemihydrate, a solution comprising water, and, optionally, an additive and a powder consisting essentially of beta-calcium sulfate hemihydrate to form a mixture, and forming the mixture into the pellet. The pellets were formed by pouring a slurry mixture of the desired components into cylindrical molds. [0009]
  • U.S. Pat. Nos. 5,569,308 and 5,366,507 regard methods for use in bone tissue regeneration utilizing a conventional graft material/barrier material layered scheme. The barrier material is a paste formed immediately prior to its use by mixing calcium sulfate powder with any biocompatible, sterile liquid, whereas the graft material is also a paste form comprised of a mixture of water and at least autogenous cancellous bone, DFDBA, autogenous cortical bone chips, or hydroxylapatite. [0010]
  • U.S. Pat. No. 4,619,655 is directed to Plaster of Paris as a bioresorbable scaffold in implants for bone repair. The inventors provide an animal implant composed of a binder lattice or scaffold of Plaster of Paris and a non-bioresorbable calcium material such as calcium phosphate ceramic particles and, in a specific embodiment, the implant may contain an active medicament bound within the plaster. The implant composition of the invention may be preformed into the desired shape or shapes or it may be made up as a dry mix which can be moistened with water just prior to use to provide a fluid or semisolid, injectable formulation which can be injected into the appropriate body space as required for bone reconstruction. [0011]
  • U.S. Pat. No. 4,384,834 is directed to devices for compacting powder into a solid body, comprising a compaction chamber, a moveable support for the powder which extends into the compaction chamber, and means for launching a punch against the powder to form the solid body. The compaction chamber is formed by a block having a conical bore and a conical sleeve having a continuous uncut sidewall moveable within the conical bore to be radially compressed thereby. [0012]
  • U.S. Pat. No. 5,449,481 concerns apparatus and methods for producing a powder compact comprising loading a rubber mold having a cavity shaped according to a desired configuration of the powder compact into a recess formed by a die, in addition to a lower punch inserted into the die. The method steps include filling a cavity of the rubber mold with powder, placing an upper punch in contact with an opposing surface of the die, and pressing the rubber mold filled with powder in a space formed by the die, the lower punch and the upper punch. In specific embodiments, the upper or lower punches are secured. [0013]
  • U.S. Pat. No. 5,762,978 is directed to a batching device having a series of die holes which are fed powder or granular material, upper and lower punches for each die hole, wherein the punches have counterfacing respective working heads, in addition to a rotary turret comprising the die holes, and driving means for adjusting distances between the working heads of the punches. The driving means includes a driving cam for at least one of the punches and filling operation cam means. [0014]
  • U.S. Pat. No. 6,106,267 regards tooling for a press for making an ingestible compression molded product, such as a tablet, from a granular feedstock material wherein the tooling comprises a die having a cylindrical die cavity and an open end for introducing the feedstock, and first and second punches with end faces which compress the feedstock material and which thereby would form the product whose surfaces conform to the end faces of the punches. The tip portion of the first punch is formed of an elastically deformable material so as to undergo deformation upon compression of the feedstock and which includes a wiping ring for wiping the inner surface of the die cavity upon movement of the punch within the die. [0015]
  • U.S. Pat. No. 5,603,880 concerns methods and an apparatus for manufacturing tablets. Plastic polymer film is pressed to form receptacles and filled with a predetermined amount of a powder under a pressurized condition. [0016]
  • U.S. Pat. No. 6,177,125 regards methods for manufacturing coated tablets from tablet cores and coating granulate using a press having at least one compression chamber and a feed device for tablet cores, comprising adding a pasty tablet core to the coating granulate to be compressed and compressing the coating granulate and the tablet cores simultaneously in a single pressing step. [0017]
  • U.S. Pat. No. 5,654,003 is directed to methods of making a solid comestible by forming deformable particles in size from 150 to 2000 microns wherein the particles are compressible in a die and punch tableting machine by subjecting a feedstock comprising a sugar carrier material, wherein the compressed product possesses a rigid structure and has a hard surface which resists penetration and deformation. [0018]
  • U.S. Pat. No. 5,017,122 regards a rotary tablet press for molding tablets through compression of powders and granules having a plurality of dies which rotate around a central axis, multiple upper and lower punches rotatable with the dies, and means for introducing electrically charged lubricant particles onto the tablets. [0019]
  • U.S. Pat. No. 5,158,728 is directed to an apparatus for forming a two-layer tablet having a die table comprising multiple die stations, each die having a cylindrical cavity. The upper punch and lower punch has at least one insert sized and positioned on the upper punch means and lower punch means, respectively, to fit within the die cavity on the die on die table. [0020]
  • Thus, presently available compositions and methods in the art provide no bone graft substitute particles having consistent shapes and whose shapes interrelate in a manner to impart a three-dimensional structure for strength and bone ingrowth. The present invention supplies a long-sought solution in the art by making BGS products or granules, such as demineralized bone matrix, by powder compaction to provide a scaffold structure for ingrowth from the host bone and for the purpose of easy delivery. [0021]
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to manufacture a BGS shape by compressing or compacting powder or powders; more specifically, by powder compaction, which is a process used primarily in metal and ceramic powder processing. [0022]
  • Another object of the present invention is to use powder compaction to manufacture an allograft (human bone, DBM) bone graft substitute shape. [0023]
  • An additional object of the present invention is to utilize powder compaction to produce a synthetic or ceramic (such as calcium sulfate or calcium phosphate) bone graft substitute shape. [0024]
  • Another object of the present invention is to use powder compaction to produce an allograft, synthetic or ceramic bone graft substitute shape containing bioactive agents (such as antibiotic, BMPs, acids, angiogenic agents and the like). [0025]
  • An additional object of the present invention is to use powder compaction to produce an allograft/synthetic or ceramic composite bone graft substitute shape. [0026]
  • Another object of the present invention is to use powder compaction to produce an allograft/synthetic or ceramic composite bone graft substitute shape containing bioactive agents. [0027]
  • An additional object of the present invention is to use a processing aid (such as stearic acid, magnesium stearate, calcium stearate) or a mix of two or more of these processing aids to produce a JAX™ shape, tablet, or other shape known in the art. [0028]
  • An object of the present invention is a method of manufacturing a shaped bone graft substitute comprising the step of compressing a granulated bone material into the shape. In a specific embodiment, the bone material is an allograft material, a ceramic material, a polymer or combinations thereof. In another specific embodiment, the material further comprises a processing aid composition. In an additional specific embodiment, the processing aid composition is selected from the group consisting of stearic acid, calcium stearate, magnesium stearate, natural polymer, synthetic polymer, sugar and combinations thereof. In a further specific embodiment, the natural polymer is starch, gelatin, or combinations thereof. In another specific embodiment, the synthetic polymer is methylcellulose, sodium carboxymethylcellulose, or hydropropylmethylcellulose. In a further specific embodiment, the sugar is glucose or glycerol. In an additional specific embodiment, the allograft bone material is cortical-cancellous bone. In another specific embodiment, the allograft bone material is demineralized bone matrix. In a further specific embodiment, the shape is a three-dimensional intricate shape. In another specific embodiment, the shape is selected from the group consisting of a jack, a tablet, a strip, a block, a cube, a chip, a pellet, a pill, a lozenge, a sphere, a ring, and combinations thereof. In another specific embodiment, the shape is a JAX™ particle. In a further specific embodiment, the shape is a jack, a JAX™, or a ring. In another specific embodiment, the ceramic material is selected from the group consisting of hydroxylapatite, calcium sulphate, alumina, silica, calcium carbonate, calcium phosphate, calcium tartarate, bioactive glass, and combinations thereof. In another specific embodiment, the substitute further comprises a biological agent. In an additional specific embodiment, the biological agent is added to the material prior to the compaction step. In another specific embodiment, the biological agent is added to the bone graft substitute subsequent to the compaction step. In another specific embodiment, the agent is selected from the group consisting of a growth factor, an antibiotic, a strontium salt, a fluoride salt, a magnesium salt, a sodium salt, a bone morphogenetic factor, a chemotherapeutic agent, a pain killer, a bisphosphonate, a bone growth agent, an angiogenic factor, and combinations thereof. In an additional specific embodiment, the growth factor is selected from the group consisting of platelet derived growth factor (PDGF), transforming growth factor b (TGF-b), insulin-related growth factor-I (IGF-I), insulin-related growth factor-II (IGF-II), fibroblast growth factor (FGF), beta-2-microglobulin (BDGF II), bone morphogenetic protein (BMP), and combinations thereof. In an additional specific embodiment, the antibiotic is selected from the group consisting of tetracycline hydrochloride, vancomycin, cephalosporins, and aminoglycocides such as tobramycin, gentamicin, and combinations thereof. In another specific embodiment, the factor is selected from the group consisting of proteins of demineralized bone, demineralized bone matrix (DBM), bone protein (BP), bone morphogenetic protein (BMP), osteonectin, osteocalcin, osteogenin, and combinations thereof. In an additional specific embodiment, the agent is selected from the group consisting of cis-platinum, ifosfamide, methotrexate, doxorubicin hydrochloride, and combinations thereof. In a further specific embodiment, the pain killer is selected from the group consisting of lidocaine hydrochloride, bipivacaine hydrochloride, non-steroidal anti-inflammatory drugs such as ketorolac tromethamine, and combinations thereof. In another specific embodiment, the particles of the material are less than about 10 millimeters in diameter. In a further specific embodiment, the particles of the material are less than about 250 μm in diameter. In another specific embodiment, the particles of the material are in a range of about 50 to 180 microns. [0029]
  • In an additional object of the present invention, there is a method of manufacturing a bone graft substitute comprising the steps of obtaining a bone material; pulverizing the material to produce a granulated bone material; and subjecting the granulated bone material to a powder compaction process. In a specific embodiment, the powder compaction process utilizes a withdrawal press, wherein the press comprises a stationary lower punch; a moveable die; a moveable upper punch; and a moveable lower punch, wherein the stationary lower punch is contained within the moveable lower punch. In a specific embodiment, the powder compaction process utilizes a withdrawal press, wherein the press comprises a stationary lower punch; a moveable lower punch, wherein the stationary lower punch is contained within the moveable lower punch; a stationary upper punch; a moveable upper punch, wherein the stationary upper punch is contained within the moveable lower punch; and a moveable die. [0030]
  • In another object of the present invention there is a method of manufacturing a shaped bone graft substitute from granulated bone material, the method comprising the steps of providing a stationary lower punch and a moveable lower punch which is vertically moveable about the stationary lower punch, a moveable die having at least one cavity and positionable generally above the stationary lower punch, and a moveable upper punch; introducing the granulated bone material into the cavity; positioning the moveable die generally above the stationary lower punch; moving the moveable upper punch to pressably contact the powder in opposition to the moveable lower punch and stationary lower punch; and moving the moveable lower punch to pressably contact the powder in opposition to the moveable upper punch, whereby the moving steps form the material into the shaped bone graft substitute. In a specific embodiment, the steps of moving the upper and lower punches effect a substantially uniform distribution of pressure within the material. In another specific embodiment, the punches are configured such that the shape of the bone graft substitute resulting from the moving steps is a shape selected from the group consisting of a JAX™ particle, a jack, a tablet, a strip, a block, a cube, a pellet, a pill, a lozenge, a sphere, and a ring. In a further specific embodiment, at least one of the moving steps applies a force to the material in a range of about 0.2 to about 5 tons. In another specific embodiment, at least one of the moving steps applies a force to the material in a range of about 0.2 to about 2 tons. In an additional specific embodiment, at least one of the moving steps applies a force to the material in a range of about 0.5 to about 1 ton. In another specific embodiment, the moving step of the moveable lower punch to the material is subsequent to the moving step of the moveable upper punch to the material. [0031]
  • In another object of the present invention there is a method of manufacturing a shaped bone graft substitute from granulated bone material, the method comprising the steps of introducing an amount of the granulated bone material into the cavity; providing a lower punch assembly, an upper punch assembly, and a moveable die positionable generally above the lower punch assembly; positioning the moveable die generally above the lower punch assembly; moving the lower punch assembly in opposition to the moveable upper punch to pressably contact the material; moving the upper punch assembly in opposition to the moveable lower punch to pressably contact the material, whereby the moving steps form the material into the shaped bone graft substitute. In a specific embodiment, the lower punch assembly is comprised of at least one of a stationary lower punch and a moveable lower punch vertically moveable about the stationary lower punch. In another specific embodiment, the upper punch assembly is comprised of at least one of a stationary upper punch and a moveable upper punch vertically moveable about the stationary upper punch. [0032]
  • In an additional specific embodiment of the present invention there is an apparatus for shaping a bone graft substitute from granulated bone material, the apparatus comprising a stationary lower punch having a top surface; a moveable lower punch vertically moveable about the stationary lower punch and having a top surface; a moveable die having at least one cavity and positionable generally above the stationary lower punch; and a moveable upper punch, such that the moveable upper punch moves in opposition to the moveable lower punch to pressably contact the material contained within the cavity, whereupon following pressably contacting the material by the moveable lower punch the top surface height of the lower moveable punch is above the top surface height of the stationary lower punch. [0033]
  • In an additional embodiment of the present invention, there is a method for manufacturing a bone graft substitute from granulated bone material, the method comprising the steps of providing a first punch assembly having a first contact surface configured to effect a relief profile onto a first surface of the granulated bone material; a second punch assembly having a second contact surface; and a moveable die having at least one cavity; introducing the bone material into the cavity; positioning the moveable die generally in alignment with the first punch assembly; moving at least a portion of the first punch assembly to pressably contact the material in opposition to the second punch assembly to effect the desired relief profile on the first surface thereof; and moving at least a portion of the second punch assembly to pressably contact the material in opposition to the first punch assembly, whereby the moving steps form the material into the shaped bone graft substitute. [0034]
  • In another object of the present invention, there is a method for manufacturing a bone graft substitute from demineralized bone matrix material, the method comprising the steps of providing a first punch assembly having a first contact surface configured to effect a relief profile onto a first surface of the demineralized bone matrix material; a second punch assembly having a second contact surface; and a moveable die having at least one cavity; introducing the demineralized bone matrix material into the cavity; positioning the moveable die generally in alignment with the first punch assembly; moving at least a portion of the first punch assembly to pressably contact the material in opposition to the second punch assembly to effect the desired relief profile on the first surface thereof; and moving at least a portion of the second punch assembly to pressably contact the material in opposition to the first punch assembly, whereby the moving steps form the material into the shaped bone graft substitute. In a specific embodiment of the present invention, the contact surface area of the first punch assembly is generally equivalent to a contact surface area of the second punch assembly such that the moving steps apply a substantially uniform pressure distribution to the material. In another specific embodiment, the first punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the first punch assembly includes moving the moveable punch to pressably contact the material. In a further specific embodiment, the second punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the first punch assembly includes moving the moveable punch to pressably contact the material. [0035]
  • In an object of the present invention there is an apparatus for manufacturing a bone graft substitute from a granulated bone material, the apparatus comprising a first punch assembly having a first contact surface having a profile configured to effect a relief profile onto a surface of the bone material; a second punch assembly having a second contact surface, the second contact surface positioned in general alignment with the first contact surface; and a moveable die having at least one cavity, the moveable die being positionable generally in between the first and second punch assemblies. [0036]
  • Other and further objects, features and advantages would be apparent and eventually more readily understood by reading the following specification and by reference to the company drawing forming a part thereof, or any examples of the presently preferred embodiments of the invention are given for the purpose of the disclosure.[0037]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 demonstrates a press configuration used to powder compact JAX™ (left) and die and punches (right). [0038]
  • FIG. 2 illustrates a schematic highlighting the differences between (a) conventional tableting and (b, c) the powder compaction used in the novel application to make bone graft substitutes. [0039]
  • FIG. 3 illustrates powder compaction of a jack shape, wherein (a) is filling of a die cavity, (b) is pressably contacting/compacting the material, and (c) is ejection of the product. [0040]
  • FIG. 4 shows powder-compacted JAX™ manufactured with HDBM (batch # ALLOJAX100-b). [0041]
  • FIG. 5 depicts scanning electron microscopy (SEM) micrographs of HDBM granules: batch #-a (left), batch #-b (right). [0042]
  • FIG. 6 shows powder-compacted tablets made of 100% HDBM, 90% HDBM+10% calcium sulfate, 50% HDBM+50% calcium sulfate and 90% HCC+10% calcium sulfate. [0043]
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein the specification, “a” or “an” may mean one or more. As used herein in the claim(s), when used in conjunction with the word “comprising”, the words “a” or “an” may mean one or more than one. As used herein “another” may mean at least a second or more. [0044]
  • The present invention is related in subject to the pending application Ser. No. 09/517,981, filed Mar. 3, 2000, and incorporated by reference herein. [0045]
  • 1. Definitions [0046]
  • The term “allograft bone material” as used herein is defined as bone tissue that is harvested from another individual of the same species. Allograft tissue may be used in its native state or modified to address the needs of a wide variety of orthopaedic procedures. The vast majority of allograft bone tissue is derived from deceased donors. Bone is about 70% mineral by weight. The remaining 30% is collagen and non collagenous proteins (including bone morphogenic proteins, BMPs). Allograft bone that has been cleaned and prepared for grafting provides a support matrix to conduct bone growth, but is not able to release factors that induce the patient's biology to form bone cells and create new bone tissue. In a preferred embodiment, the allograft is cleaned, sanitized, and inactivated for viral transmission. [0047]
  • The term “biological agent” as used herein is defined as an entity which is added to the bone graft substitute to effect a therapeutic end, such as facilitation of bone ingrowth, prevention of disease, administration of pain relief chemicals, administration of drugs, and the like. Examples of biological agents, include antibiotics, growth factors, fibrin, bone morphogenetic factors, bone growth agents, chemotherapeutics, pain killers, bisphosphonates, strontium salt, fluoride salt, magnesium salt, and sodium salt. [0048]
  • The term “bone graft substitute (BGS)” as used herein is defined as an entity for filling spaces in a bone tissue. In specific embodiments, the BGS as used herein is a jack, gel, putty, paste, formable strips, blocks, granules, chips, pellets, tablets, or powder. In a preferred embodiment, the BGS is a shaped particle. In a more preferred embodiment, the shaped particle is a JAX™ particle. In a preferred embodiment, the bone graft substitute is not ingested. [0049]
  • The term “ceramic” as used herein is defined as any non-metallic, non-organic engineering material. An example of such a material is hydroxylapatite, calcium sulphate, alumina, silica, calcium carbonate, calcium phosphate, calcium tartarate, bioactive glass, or combinations thereof. [0050]
  • The term “demineralized bone matrix” as used herein is defined as a bone material which has been treated for removal of minerals within the bone. Examples of demineralization processes known in the art include BioCleanse (Regeneration Technologies, Inc.) or D-MIN (Osteotech, Inc.). In a specific embodiment, the allograft material is subjected to a series of thermal (freezing), irradiation, physical, aseptic, and/or chemical (acid soak) processes known in the art. The latter (acid soak) typically consists of a proprietary permeation treatment to dissolve the minerals contained in the bone. This series of processes combine both demineralization and anti-viral activity. [0051]
  • A skilled artisan recognizes that the actions of bone morphogenic proteins (BMPs) are inactivated by the mineral matrix of the bone. Demineralized bone matrix (DBM) is created from a process that removes the mineral content and allows the bone morphogenic proteins to operate. In addition to removing bone mineral, the processes used to produce DBM also have viral inactivating properties, providing an added assurance of safety for DBM products. [0052]
  • The term “die” as used herein is defined as a tool for imparting a desired shape or form to a material. In a specific embodiment, it is one of a pair of cutting and/or shaping means that when moved toward each other produces a certain desired form in or impresses a desired device on an object by pressure, this tool being the larger of the pair or the part into which the punch enters. In a preferred embodiment, the die is moveable, although in an alternative embodiment the die is stationary. In a preferred embodiment, the die has at least one cavity. In another preferred embodiment, the shape of the cavity of the die is a JAX™ shape and/or facilitates entry of a punch which has an end configured to impart a JAX™ shape onto a material. [0053]
  • The term “granulated bone material” as used herein is defined as a composition comprising particles such as grains, granules, powder, and the like. The particles are preferably comprised of a substance or substances which are amenable for bone growth, bone repair, bone augmentation, and the like. In a specific embodiment, the granulated bone material further comprises a processing aid composition. In a specific embodiment, the mixture is primarily comprised of finely dispersed solid particles. In another specific embodiment, one must view the particles under a microscope to differentiate one particle from another. In a preferred embodiment, it is not a chip. In a specific embodiment, at least the majority of the particles in the mixture are less than about 10 mm in diameter. In a more preferred embodiment, the majority of particles in the mixture are less than about 250 microns in diameter. In a most preferred embodiment, the majority of the particles in the mixture are between about 50 and about 180 microns in diameter. [0054]
  • The term “jack” as used herein is defined as a small object with six arms used in the game jacks. However, in an alternative embodiment, the jack has five arms. [0055]
  • The term “JAX™” as used herein is defined as a bone graft substitute particle which generally has the shape of a toy jack. In a specific embodiment, it is a three-dimensional six-armed star shape. [0056]
  • The term “lower punch assembly” as used herein is defined as an assembly positioned generally below a die and comprised of at least one of a stationary punch and a moveable punch. In a specific embodiment, the stationary punch is an inner punch and the moveable punch is vertically moveable about the stationary inner lower punch. [0057]
  • The term “powder compaction” as used herein is defined as the process wherein a granuluted bone material, such as a powder, is compressed into a desired shape. In a preferred embodiment, the powder is demineralized bone matrix. In another preferred embodiment, the powder particles are less than about 10 mm, more preferably less than about 250 μm, and most preferably between about 50 and 180 microns in diameter. [0058]
  • The term “pressably contact” as used herein is defined as the touching of a material using pressure upon the material. In a specific embodiment, presssably contacting the material results in compaction of the material, such as in compaction of a granulated bone material, for example a powder. [0059]
  • The term “processing aid composition” as used herein is defined as a composition utilized for facilitating compaction of a powder and release of a compacted powdered product from a die. Specific examples include stearic acid, magnesium stearate, calcium stearate, natural polymer, synthetic polymer, sugar and combinations thereof. In a specific embodiment, the natural polymer is starch, gelatin; or combinations thereof. In another specific embodiment, the synthetic polymer is methylcellulose, sodium carboxymethylcellulose, or hydropropylmethylcellulose. In an additional specific embodiment, the sugar is glucose or glycerol. [0060]
  • The term “pulverize” as used herein is defined as grind, granulate, crush, mash, chop up, or pound a starting material into smaller constituents. In a specific embodiment, the starting material is reduced to powder or dust. [0061]
  • The term “punch” as used herein is defined as an apparatus in the form of a rod, such as comprised of metal or ceramic, that is sharp-edged and variously shaped at one end for imparting a desired shape or form to a material. In a preferred embodiment, the shape imparts a JAX™ shape. In specific embodiments, the punch is solid or hollow. [0062]
  • The term “relief profile” as used herein is defined as a contour on a material having projections and indentations which approximate the contour of the surface which imparts the contour, such as a punch. [0063]
  • The term “substantially uniform distribution of pressure” as used herein is defined as an amount of pressure upon a material which is generally consistent in quantity over the surface of the material. [0064]
  • The term “three-dimensional intricate shape” as used herein is defined as a shape having projections and/or at least one surface that has a relief profile. [0065]
  • The term “upper punch assembly” as used herein is defined as an assembly positioned generally above a die and comprised of at least one of a stationary punch and a moveable punch. In a specific embodiment, the stationary punch is an inner punch and the moveable punch is vertically moveable about the stationary inner upper punch. [0066]
  • The term “withdrawal press” as used herein is defined as a powder compaction press using withdrawal of the die rather than an upper motion of a lower punch for ejection of the product. [0067]
  • II. The Present Invention [0068]
  • A powder compaction process is used to produce a bone graft substitute, such as a JAX™ product comprised of DBM. A processing aid is added to facilitate compaction of the DBM powder arid release of the product from the die. A biological agent may also be added to the powder prior to compaction or coated onto the generated product after compaction. The present invention is an improvement over presently available products and methods by taking, in a specific embodiment, an allograft powder, as opposed to a chip, and manufacturing a shape from the powder, wherein the shape is used for a bone graft substitute. [0069]
  • The material from which the BGS is manufactured is a granulated bone material powder, such as an allograft material, a synthetic material, a ceramic material, a polymer, or combinations thereof. The allograft material may be processed, such as subjected to a demineralization process, or it may be unprocessed, in which minerals remain intact. The material in any case is preferably cleaned, sanitized, and inactivated for pathogen transmission, such as a virus. The allograft material may be of cortical-cancellous bone or demineralized bone matrix. [0070]
  • In a specific embodiment of the present invention, the bone material is ceramic, such as a calcium salt; calcium sulfate, hydroxylapatite, a calcium phosphate; bioactive glass, a vitreous based glass (such as may be used for maxio-cranio applications); calcium carbonate, a calcium based mineral; various calcium phosphates, and calcium-rich minerals, including tricalcium phosphate and orthophosphate; apatite/wollastonite glass ceramic, a calcium silicate often used in bone spacer applications; resorbable polymers such as polysaccharides, polyglycolates, polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone, polypropylene fumarate (all of which can be blended or made to co-polymers to control the desired properties of the product); and composites of resorbable polymers and glass or ceramic fillers. Bioactive glass is a material whose major components are CaO, SiO[0071] 2 and P2O5 and whose minor components may be Na2O, MgO, Al2O3, B2O3 and CaF2.
  • In a specific embodiment of the present invention, the bone graft substitute is manufactured with a biological agent, either within the substitute particle, coated on the surface of the particle, or both. [0072]
  • In a specific embodiment, the bone material of the present invention is colored to make it more visible. In another specific embodiment, differently shaped BGS of the present invention are denoted with different colors for better differentiation of the particles. In another specific embodiment, the particles are coated or have contained within them an agent such as green fluorescent protein or blue fluorescent protein to make them fluorescent and therefore more visible. [0073]
  • It is preferable for the allograft bone graft substitute embodiment of the present invention to have a granule or shape for easy delivery and scaffold structure. An object of the present invention is providing a BGS which is a shaped particle which may be used as part of a three-dimensional interlocking array of particles. A skilled artisan is aware that the particles may be utilized with inductive graft in which the graft actively facilitates, either directly or indirectly, bone growth. In addition or alternatively, the particles may be utilized for a conductive graft in which the graft is conducive to bone growth but does not actively or directly facilitate it. [0074]
  • The particles will be of an appropriate size such that several individual granules will be used to fill a small void while many can be used to fill larger voids. The three-dimensional structure will allow the granules to fill a volume and, in a specific embodiment, interlock with each other. In another specific embodiment, the particles will be able to interlock with bone. The interlocking will enable the particles to support some mechanical forces while maintaining stability and assist in bone healing. The interlocking feature makes it possible for the particles to resist some shear forces, unlike commercially available products. It will also help to resist migration away from the implant site. The particles will be able to fill odd bone defect shapes and sizes without necessarily needing to carve a larger block to the approximate shape/size. The interlocked particles also provide the ability for the entire implant to behave mechanically more like a single block as compared to current granular products. The shapes would be such that a collection of these particles do not aggregate into a solid, packed volume but instead leave an open, interconnected porosity that is beneficial for bone healing. It is preferred that the shape of the particles and/or the array of the shaped particles allow the engineering or prediction of a specific porosity. [0075]
  • The purpose of having shaped particles is three-fold. First, the capability to interlock provides resistance to shear forces and helps to increase the stability when the graft is packed into a defect. Second, porosity needs to be maintained when the shaped particles are interlocked. It is known in the art that new bone growth can ingress into pores ranging from 100-400 microns in size. The targeted total porosity will range from 20% to 80%, which means that the array of interlocking shaped particles of the invention will retain open spaces of 20-80% of a specific volume of an array. It is important that a graft material provide adequate porosity to allow ingrowth from the host bone. Alternatively, the material must resorb or degrade away to allow for bone replacement. The preferred embodiment is the combination of both of these properties. Third, the shaped particles provide superior handling of BGS product during transfer into the surgical site. [0076]
  • It is an object of the present invention to provide apparatus and methods to manufacture a bone graft substitute through powder compaction of a bone material powder into a shape. Although the bone material powder may be an allograft material, a synthetic material, a ceramic material, a polymer material, or a combination thereof, it is preferably demineralized bone matrix. The shape is preferably one which will provide strength to the bone graft and allow bone ingrowth from the host bone. A preferred shape is a jack, such as a JAX™ particle. [0077]
  • The method of manufacturing the BGS preferably includes compressing, compacting, pressably contacting, packing, squeezing, tamping, or squashing a bone material powder into the desired shape. The method preferably utilizes powder compaction, which a skilled artisan recognizes is a process well known in metal and ceramic powder processing. A processing aid composition is preferably utilized to facilitate compaction of the material and release of the product from the die. [0078]
  • In one embodiment of the present invention, the method includes obtaining a bone material, such as from a donor, cadaver, and the like, pulverizing the material to produce a bone material powder, which a skilled artisan recognizes is preferably to a consistency which is conducive to compaction and generation of a product which is substantially non-friable. The particles are preferably substantially homogeneous in size. The powder is then subjected to a powder compaction process. [0079]
  • The powder compaction process preferably utilizes a withdrawal press. The withdrawal press may comprise a lower punch assembly, an upper punch assembly, and a moveable die. A skilled artisan also recognizes the press will comprise other parts standard in the art, such as a means to fill a die cavity with the powder, and so on. The lower punch assembly may comprise at least one of a stationary punch and a moveable punch; a skilled artisan recognizes this is referred to as a “dual punch”. The moveable punch preferably is vertically moveable about the stationary punch. Similarly, an upper punch assembly may comprise at least one of a stationary punch and a moveable punch, wherein the moveable punch preferably is vertically moveable about the stationary punch. In a preferred embodiment, the apparatus comprises a dual lower punch and a stationary upper punch. [0080]
  • The die is preferably moveable, although it may be stationary, and is generally located, during processing, between the lower and upper punch assemblies. It is preferably in alignment with at least one of a lower and upper punch. The die preferably has at least one cavity, and also preferably is shaped corresponding to the desired generated shape of the particle and to permit the corresponding punches to fit in the cavity. [0081]
  • The surfaces of the punches which contact the powder material are preferably configured with a contour or shape that imparts the desired shape onto the powder upon contact with the material. The shape may be a jack, a tablet, a strip, a block, a cube, a pellet, a pill, a lozenge, a sphere, or a ring. The shape of the punches may be that which will impart a jack shape, such as is demonstrated in FIG. 1. The shape is preferably a jack such as a JAX™ particle. In one embodiment of the present invention, one of the punches may impart a jack shape and the other punch may have a generally flat surface, although the resulting product will still result in a jack shape. [0082]
  • In the process, the moveable die and punch assemblies are provided. The powder is introduced into a cavity in the die and the die is positioned generally in alignment with at least one of the punches. In a preferred embodiment, the die is positioned generally above the stationary lower punch. In a specific embodiment, a moveable upper punch pressably contacts the powder in opposition to the moveable lower punch and stationary lower punch. A moveable lower punch moves to pressably contact the powder in opposition to an upper punch. In a specific embodiment, the moving steps occur generally simultaneously, and in other specific embodiments, the moving steps occur in sequence. The steps of moving the upper and lower punches preferably effect a substantially uniform distribution of pressure within the powder. The uniformity of the pressure distribution across the surface of the powder is desirable because it is the best way to ensure the resulting product is structurally sound. The moving steps thus form the powder into the desired shaped BGS. [0083]
  • The moving steps preferably apply a force in the range of about 0.2 to about 5 tons, more preferably about 0.2 to about 2 tons, and most preferably about 0.5 to about 1 ton. The force may be greater, and a skilled artisan recognizes that the upper limit is determined by the critical density of the powder. [0084]
  • In one embodiment of the present invention, there are an apparatus and method for manufacturing a bone graft substitute wherein a stationary lower punch has a top surface, a moveable lower punch vertically moveable about the stationary lower punch has a top surface, and a moveable upper punch, such that when the moveable upper punch moves in opposition to the moveable lower punch to pressably contact the powder in the die cavity the top surface height of the moveable lower punch is above the top surface height of the stationary lower punch. [0085]
  • In one embodiment of the present invention, there is a method for manufacturing a bone graft substitute wherein the steps comprise providing a first punch assembly having a first contact surface configured, to effect a relief profile onto a first surface of the bone material powder, preferably a demineralized bone matrix, a second punch assembly having a second contact, surface, and a moveable die having at least one cavity; introducing the powder into the cavity; positioning the moveable die generally in alignment with the first punch assembly; moving at least a portion of the first punch assembly to pressably contact the powder in opposition to the second punch assembly to effect the desired relief profile on the first surface thereof; and moving at least a portion of the second punch assembly to pressably contact the powder in opposition to the first punch assembly, whereby the moving steps form the powder into the shaped bone graft substitute. [0086]
  • The contact surface area of the first punch assembly is generally equivalent to a contact surface area of the second punch assembly such that the moving steps apply a substantially uniform pressure distribution to the powder. In a specific embodiment, the first punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the first punch assembly includes moving the moveable punch to pressably contact the powder. In another specific embodiment, the second punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the second punch assembly includes moving the moveable punch to pressably contact the powder. [0087]
  • In another embodiment of the present invention, there is an apparatus for manufacturing a bone graft substitute from a bone material powder wherein the apparatus comprises a first punch assembly having a first contact surface having a profile configured to effect a relief profile onto a surface of the bone material powder; a second punch assembly having a second contact surface, the second contact surface positioned in general alignment with the first contact surface; and a moveable die having at least one cavity, the moveable die being positionable generally in between the first and second punch assemblies. [0088]
  • EXAMPLES Example 1 Powder Compaction of Demineralized Bone Matrix
  • Human DBM (HDBM) in powder/chips form was obtained from a bone tissue bank, mechanically ground, and sieved through a #60 mesh. (<250 μm particle size). Two different batches were processed. Each ground and sieved HDBM was then blended with 2% (in weight) stearic acid, the latter being used as processing aid in the powder compaction process: [0089]
    HDBM (98%) Stearic Acid (2%)
    ALLOJAX100-a 7.6582 g 0.1562 g
    ALLOJAX100-b  19.6 g   0.4 g
  • A powder compaction press (withdrawal type) was used to compress the blends. Special tooling had been made to allow uniform distribution of compressive forces during the compaction process. This involved a one-piece upper punch, two lower punches, and a floating die (FIG. 1). A compression force between 0.6 and 0.7 tons was used. [0090]
  • The powder compaction, process is unique to produce bone graft substitutes and bone void fillers. Previous BGS products have been produced using a tableting process. Tablet processing consists of a simple pressing action with a lower punch pressing the powder blend against a stationary, or sometimes translating, upper punch through a stationary die. Tableting typically utilize a tableting press. For more complicated shapes, tableting does not allow for a uniform distribution of pressures within the granules and therefore does not allow for the production of intricate shapes, such as a six-arm JAX™ granule. Powder compaction is an advanced, manufacturing process that allows for a uniform distribution of pressures during compaction, therefore allowing for the production of intricate shapes. In addition, specific tooling is required that allows several relative translations between several punches to distribute the compaction pressures. In powder compaction, the upper punch, lower outer punch and die are translating; the lower inner punch is stationary but because of the relative motion of the punches and die, the pressure is evenly distributed within the powder compacted part. Powder compaction requires the use of a withdrawal press. A schematic comparing the tableting to the powder compaction process is shown in FIG. 2. [0091]
  • FIG. 2 illustrates the differences between (a) conventional tableting and (b, c) the powder compaction used in the novel application to make bone graft substitutes. In (a), the die is stationary, the top and bottom punches are translating; in (b), a withdrawal press is illustrated, in which the lower punch is stationary, the die and upper punch are translating; in (c), an additional lower outer punch allows for a uniform density distribution for an intricate shape, such as JAX™. Thus, a skilled artisan recognizes that a dual lower punch is useful in the present invention. In alternative embodiments, a dual upper punch is utilized wherein the upper punch is composed of an inner punch and an outer punch. [0092]
  • FIG. 3 illustrates a specific embodiment of the present invention, wherein a jack shape is produced through powder compaction. In (a), a die cavity is filled, followed by pressably contacting/compacting the material (b) and ejection of the product (c). [0093]
  • Powder compaction was used to shape DBM powder into an intricate shape (six-arm, JAX™). ALLOJAX100-a compressed poorly; ALLOJAX100-b compressed well and produced a JAX™ product that was not friable between fingers (FIG. 4). [0094]
  • Examination of the two blends and two types of HDBM revealed that batch #-a was composed of mostly acicular, elongated particles, probably mainly cancellous bone tissue, while batch #-b was composed of mostly granules and some fines, probably mainly cortical bone tissue (FIG. 5). The morphology of batch #-b is recommended for powder compaction. Density measurements confirmed the difference between the batches: batch #-b was denser (2.0684 g/cm[0095] 3) than batch #-a (1.3372 g/cm3).
  • Example 2 Biological Agents
  • In a preferred embodiment of the present invention, a biological agent is included in the powder or on the generated shape. Examples include antibiotics, growth factors, fibrin, bone morphogenetic factors, bone growth agents, chemotherapeutics, pain killers, bisphosphonates, strontium salt, fluoride salt, magnesium salt, and sodium salt. [0096]
  • In contrast to administering high doses of antibiotic orally to an organism, the present invention allows antibiotics to be included within the composition for a local administration. This reduces the amount of antibiotic required for treatment of or prophalaxis for an infection. Administration of the antibiotic in the BGS would also allow less diffusing of the antibiotic, particularly if the antibiotic is contained within a fibrin matrix. Alternatively, the particles of the present invention may be coated with the antibiotic and/or contained within the particle. Examples of antibiotics are tetracycline hydrochloride, vancomycin, cephalosporins, and aminoglycocides such as tobramycin and gentamicin. [0097]
  • Growth factors may be included in the BGS for a local application to encourage bone growth. Examples of growth factors which may be included are platelet derived growth factor (PDGF), transforming growth factor b (TGF-b), insulin-related growth factor-I (IGF-I), insulin-related growth factor-II (IGF-II), fibroblast growth factor (FGF), beta-2-microglobulin (BDGF II) and bone morphogenetic protein (BMP). The particles of the present invention may be coated with a growth factor and/or contained within the particle or the suspension material. [0098]
  • Bone morphogenetic factors may include growth factors whose activity is specific to osseous tissue including proteins of demineralized bone, or DBM (demineralized bone matrix), and in particular the proteins called BP (bone protein) or BMP (bone morphogenetic protein), which actually contains a plurality of constituents such as osteonectin, osteocalcin and osteogenin. The factors may coat the shaped particles of the present invention and/or may be contained within the particles or the suspension material. [0099]
  • Bone growth agents may be included within the compositions of the present invention in a specific embodiment. For instance, nucleic acid sequences which encode an amino acid sequence, or an amino acid sequence itself may be included in the suspension material of the present invention wherein the amino acid sequence facilitates bone growth or bone healing. As an example, leptin is known to inhibit bone formation (Ducy et al., 2000). Any nucleic acid or amino acid sequence which negatively impacts leptin, a leptin ortholog, or a leptin receptor may be included in the composition. As a specific example, antisense leptin nucleic acid may be transferred within the compositions of the invention to the site of a bone deficiency to inhibit leptin amino acid formation, thereby avoiding any inhibitory effects leptin may have on bone regeneration or growth. Another example is a leptin antagonist or leptin receptor antagonist. [0100]
  • The nucleic acid sequence may be delivered within a nucleic acid vector wherein the vector is contained within a delivery vehicle. An example of such a delivery vehicle is a liposome, a lipid or a cell. In a specific embodiment, the nucleic acid is transferred by carrier-assisted lipofection (Subramanian et al., 1999) to facilitate delivery. In this method, a cationic peptide is attached to an M9 amino acid sequence and the cation binds the negatively charged nucleic acid. Then, M9 binds to a nuclear transport protein, such as transportin, and the entire DNA/protein complex can cross a membrane of a cell. [0101]
  • An amino acid sequence may be delivered within a delivery vehicle. An example of such a delivery vehicle is a liposome. Delivery of an amino acid sequence may utilize a protein transduction domain, an example being the HIV virus TAT protein (Schwarze et al., 1999). [0102]
  • In a preferred embodiment the biological agent of the present invention has high affinity for a fibrin matrix. [0103]
  • In a specific embodiment, the particle of the present invention may contain within it or on it a biological agent which would either elute from the particle as it degrades or through diffusion. [0104]
  • The biological agent may be a pain killer. Examples of such a pain killer are lidocaine hydrochloride, bipivacaine hydrochloride, and non-steroidal anti-inflammatory drugs such as ketorolac tromethamine. [0105]
  • Other biological agents which may be contained on or in the compositions of the present invention are chemotherapeutics such as cis-platinum, ifosfamide, methotrexate and doxorubicin hydrochloride. A skilled artisan is aware which chemotherapeutics would be suitable for a bone malignancy. [0106]
  • Another biological agent which may be included in the BGS of the present invention is a bisphosphonate. Examples of bisphosphonates are alendronate, clodronate, etidronate, ibandronate, (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD), dichloromethylene bisphosphonate, aminobisphosphonatezolendronate and pamidronate. [0107]
  • The biological agent may be either in purified form, partially purified form, commercially available or in a preferred embodiment are recombinant in form. It is preferred to have the agent free of impurities or contaminants. [0108]
  • III. Addition of Fibrinogen to the Composition [0109]
  • It is advantageous to include into the composition of shaped particles any factor or agent which attracts, enhances, or augments bone growth. In a specific embodiment, the composition further includes fibrinogen which, upon cleaving by thrombin, gives fibrin. In a more preferred embodiment, Factor XIII is also included to crosslink fibrin, giving it more structural integrity. [0110]
  • Fibrin is known in the art to cause angiogenesis (growth of blood vessels) and in an embodiment of the present invention acts as an instigator of bone growth. It is preferred to mimic signals which are normally present upon, for instance, breaking of bone to encourage regrowth. It is known that fibrin tends to bind growth factors which facilitate this regrowth. [0111]
  • In an object of the present invention the inclusion of fibrin into the composition is twofold: 1) to encourage bone growth; and 2) to act as a delivery vehicle. [0112]
  • The fibrin matrix is produced by reacting three clotting factors—fibrinogen, thrombin, and Factor XIII. These proteins may be manufactured using recombinant techniques to avoid issues associated with pooled-blood products and autologous products. Currently, the proteins are supplied in a frozen state ready for mixing upon thawing. However, lypholization process development allows that the final product will either be refrigerated or stored at room temperature and reconstituted immediately prior to use. In a preferred embodiment, the clotting factors are recombinant in form. [0113]
  • Only fibrinogen and thrombin are required to produce a fibrin matrix in its simplest form. However, the addition of Factor XIII provides the ability to strengthen the matrix by means of cross linking the fibrin fibrils. Specific mixtures of the three proteins may be provided to generate the appropriate reaction time, degradation rate, and elution rate for the biological agents. [0114]
  • Modifications can be made by altering the fibrin component. One expected modification would be to use hyaluronic acid or a collagen gel instead of or in addition to a fibrin component. Other variations may be inclusion of additional clotting factors in the fibrin matrix. Additional examples of clotting factors are known in the art and may be used, but in a specific embodiment they are clotting factors relevant to a bone disorder. The clotting factors may be purified, partially purified, commercially available, or in recombinant form. In a specific embodiment thrombin alone is used with the patient's own blood or bone marrow aspirate to produce a fibrin matrix. [0115]
  • In a specific embodiment, a biological agent as described above is contained within the fibrin matrix. [0116]
  • Example 3 Alternative Embodiments
  • The following blends were successfully compacted into a tablet (about 6 mm in diameter, typical convex shape; FIG. 6): [0117]
    Human Calcium
    Human DBM Corticocancellous Sulfate Fill Weight Hardness
    (%) Chips (%) (%) (mg) (Kp)
    100 0 100 5.0-6.7
    90 10 120 6.1-7.2
    50 50 120
    0 10 140 2.2-2.4
    80 20 140 1.6-2.2
    50 50 140 1.4-1.7
    90 10 140
    100 0 140-470
  • For all formulations, the processing aid was stearic acid. The equipment used was a manual hydraulic press, punches used for conventional compression/tableting, and wood blocks for support/guides. Other blends including other allograft (such as human bone or DBM), synthetic or ceramic (such as calcium sulfate or calcium phosphate), or bioactive agents (such as antibiotic, BMPs, acids, and the like), individually or as a mix of two or more of the aforementioned components can potentially be compacted to produce a tablet or a JAX™ shape or other shape. A processing aid, or a blend of two or more processing aids (magnesium stearate, calcium stearate, and stearic acid), may be used in the compaction [0118]
  • Example 4 Related Art Embodiments
  • The following table compares the embodiments of the present invention to those in the related art. [0119]
    Comparison to
    Manufacturer/ Present
    Category Product Distributor Invention
    Allograft Tricortical Strips American Red Cross Not processed
    Sulzer Spine-Tech into shape
    Allosource
    National Tissue Bank
    Cancellous chips American Red Cross Not processed
    Allosource into shape
    National Tissue Bank
    Cortical/cancellous American Red Cross Not processed
    chips Sulzer Spine-Tech into shape
    Allosource
    National Tissue Bank
    Small Implants Dowels MD-Series (RTI) Machined from
    bone
    DBM Gel Grafton (Osteotech) Not processed
    Dynagraft (Gensci Regeneration into shape
    Laboratories)
    Putty Grafton (Osteotech) Not processed
    OrthoBlast, Dynagraft (Gensci into shape
    Regeneration Laboratories)
    Allomatrix (Wright Medical
    Technology)
    DBX (Synthes)
    Paste OrthoBlast (Gensci Regeneration Not processed
    Laboratories) into shape
    Osteofil (Medtronic Sofamor Danek)
    DBX (Synthes)
    Regenafil (RTI)
    “Crunch” Grafton (Osteotech) Not processed
    into shape
    Formable strip OpteForm (Exactech)
    Regenaform (RTI) Thermoplastic/
    thermo-formable
    polymer carrier
    Bone Blocks, Pro-Osteon 200, 500 (Interpore) Harvested from
    Substitutes granules/chips marine coral
    (coralline
    hydroxyapatite)
    Granules/chips Pro-Osteon 500R (Interpore) Harvested from
    (calcium carbonate marine coral;
    w/ calcium patented
    phosphate outer process
    layer) (sintering)
    Formable strip Collagraft (Zimmer) Sintered HA
    (bovine collagen mixed
    with w/collagen on
    hydroxyapatite and site
    tricalcium
    phosphate)
    Strip (collagen and Healos (Orquest-non US/Sulzer Sintered HA
    hydroxyapatite Spine-Tech) coated
    matrix) Healos/MP52 (Orquest-non US/ w/collagen;
    Sulzer Spine-Tech) Impregnated
    w/BMP
    Pellets/tablets Osteoset (Wright Medical Technology) Tableted, but
    (calcium sulfate may be molded
    hemihydrate) (proprietary
    information
    Pellets/tablets Osteoset T (Wright Medical Tableted, but
    (calcium sulfate Technology) may be molded
    hemihydrate with (proprietary
    Tobramycin information)
    Sulfate)
    Pellets/tablets Stimulan (Biocomposites/Encore May be molded
    (calcium sulfate) Orthopedics) and/or tableted
    Profusion (BioGeneration, Inc.) (proprietary
    Possibly (Howmedica Osteonics Corp.) information)
    Paste (calcium Alpha-BSM (ETEX-non US) May be sintered
    phosphate) VITOSS Morsels (Orthovita) (proprietary
    information)
    Paste CORTOSS (Orthovita-non US) Polymer matrix
    (bioglass/ceramic)
    Porous Blocks VITOSS (Orthovita) May be sintered
    (calcium (proprietary
    phosphate) information)
    Small Implants RHAKOSS (Orthovita-not Unknown-but
    commercial) not compacted
    (proprietary
    information)
    Gel (fibroblast Ossigel (Orquest) Not processed
    growth factor and into shape
    hyaluronic acid)
    Powder (calcium BonePlast (Interpore) Not processed
    sulfate) mixed Allo . . . (Wright Medical Technology) into shape
    with saline
    intraoperatively
  • REFERENCES
  • All patents and publications mentioned in the specification are indicative of the level of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. [0120]
  • Patents
  • U.S. Pat. No. 4,384,834 issued May 24, 1983. [0121]
  • U.S. Pat. No. 4,619,655 issued Oct. 28, 1986. [0122]
  • U.S. Pat. No. 5,017,122 issued May 21, 1991. [0123]
  • U.S. Pat. No. 5,158,728 issued Oct. 27, 1992. [0124]
  • U.S. Pat. No. 5,366,507 issued Nov. 22, 1994. [0125]
  • U.S. Pat. No. 5,449,481 issued Sep. 12, 1995. [0126]
  • U.S. Pat. No. 5,569,308 issued Oct. 29, 1996. [0127]
  • U.S. Pat. No. 5,603,880 issued Feb. 18, 1997. [0128]
  • U.S. Pat. No. 5,614,206 issued Mar. 25, 1997. [0129]
  • U.S. Pat. No. 5,654,003 issued Aug. 5, 1997. [0130]
  • U.S. Pat. No. 5,762,978 issued Jun. 9, 1998. [0131]
  • U.S. Pat. No. 5,807,567 issued Sep. 15, 1998. [0132]
  • U.S. Pat. No. 6,106,267 issued Aug. 22, 2000. [0133]
  • U.S. Pat. No. 6,030,636 issued Feb. 29, 2001. [0134]
  • U.S. Pat. No. 6,177,125 issued Jan. 23, 2001. [0135]
  • Publications
  • [0136] Medica Data International, Inc., Report #RP-591149, Chapter 3: Applications for Bone Replacement Bioniaterials and Biological Bone Growth Factors (2000).
  • [0137] Orthopaedic Network News, Vol. 11, No 4, October 2000, pp. 8-10.
  • One skilled in the art readily appreciates that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned as well as those inherent therein. Particles, compositions, treatments, methods, kits, procedures and techniques described herein are presently representative of the preferred embodiments and are intended to be exemplary and are not intended as limitations of the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention or defined by the scope of the pending claims. [0138]

Claims (57)

We claim:
1. A method of manufacturing a shaped bone graft substitute comprising the step of:
compressing a granulated bone material into said shape.
2. The method of claim 1, wherein said bone material is an allograft material, a ceramic material, a polymer or combinations thereof.
3. The method of claim 1, wherein said material further comprises a processing aid composition.
4. The method of claim 3, wherein said processing aid composition is selected from the group consisting of stearic acid, calcium stearate, magnesium stearate, natural polymer, synthetic polymer, sugar and combinations thereof.
5. The method of claim 4, wherein said natural polymer is starch, gelatin, or combinations thereof.
6. The method of claim 4, wherein said synthetic polymer is methylcellulose, sodium carboxymethylcellulose, or hydropropylmethylcellulose.
7. The method of claim 4, wherein said sugar is glucose or glycerol.
8. The method of claim 2, wherein said allograft bone material is cortical-cancellous bone.
9. The method of claim 2, wherein said allograft bone material is demineralized bone matrix.
10. The method of claim 1, wherein said shape is a three-dimensional intricate shape.
11. The method of claim 1, wherein said shape is selected from the group consisting of a jack, a tablet, a strip, a block, a cube, a chip, a pellet, a pill, a lozenge, a sphere, a ring, and combinations thereof.
12. The method of claim 10, wherein said shape is a JAX™ particle.
13. The method of claim 10, wherein said shape is a jack, a JAX™, or a ring.
14. The method of claim 2, wherein said ceramic material is selected from the group consisting of hydroxyhapatite, calcium sulphate, alumina, silica, calcium carbonate, calcium phosphate, calcium tartarate, bioactive glass, and combinations thereof.
15. The method of claim 1, wherein said substitute further comprises a biological agent.
16. The method of claim 15, wherein said biological agent is added to said material prior to said compaction step.
17. The method of claim 15, wherein said biological agent is added to said bone graft substitute subsequent to said compaction step.
18. The biological agent of claim 15, wherein said agent is selected from the group consisting of a growth factor, an antibiotic, a strontium salt, a fluoride salt, a magnesium salt, a sodium salt, a bone morphogenetic factor, a chemotherapeutic agent, a pain killer, a bisphosphonate, a bone growth agent, an angiogenic factor, and combinations thereof.
19. The growth factor of claim 18 wherein said growth factor is selected from the group consisting of platelet derived growth factor (PDGF), transforming growth factor b (TGF-b), insulin-related growth factor-I (IGF-I), insulin-related growth factor-II (IGF-II), fibroblast growth factor (FGF), beta-2-microglobulin (BDGF III), bone morphogenetic protein (BMP), and combinations thereof.
20. The antibiotic of claim 18, wherein said antibiotic is selected from the group consisting of tetracycline hydrochloride, vancomycin, cephalosporins, and aminoglycocides such as tobramycin, gentamicin, and combinations thereof.
21. The bone morphogenetic factor of claim 18, wherein said factor is selected from the group consisting of proteins of demineralized bone, demineralized bone matrix (DBM), bone protein (BP), bone morphogenetic protein (BMP), osteonectin, osteocalcin, osteogenin, and combinations thereof.
22. The chemotherapeutic agent of claim 18, wherein said agent is selected from the group consisting of cis-platinum, ifosfamide, methotrexate, doxorubicin hydrochloride, and combinations thereof.
23. The pain killer of claim 18, wherein said pain killer is selected from the group consisting of lidocaine hydrochloride, bipivacaine hydrochloride, non-steroidal anti-inflammatory drugs such as ketorolac tromethamine, and combinations thereof.
24. The method of claim 1, wherein particles of said material are less than about 10 millimeters in diameter.
25. The method of claim 1, wherein particles of said material are less than about 250 μm in diameter.
26. The method of claim 1, wherein particles of said material are in a range of about 50 to 180 microns.
27. A method of manufacturing a bone graft substitute comprising the steps of:
obtaining a bone material;
pulverizing said material to produce a granulated bone material; and
subjecting said granulated bone material to a powder compaction process.
28. The method of claim 27, wherein said powder compaction process utilizes a withdrawal press, wherein said press comprises:
a stationary lower punch;
a moveable die;
a moveable upper punch; and
a moveable lower punch, wherein said stationary lower punch is contained within said moveable lower punch.
29. The method of claim 27, wherein said powder compaction process utilizes a withdrawal press, wherein said press comprises:
a stationary lower punch;
a moveable lower punch, wherein said stationary lower punch is contained within said moveable lower punch;
a stationary upper punch;
a moveable upper punch, wherein said stationary upper punch is contained within said moveable lower punch; and
a moveable die.
30. A method of manufacturing a shaped bone graft substitute from granulated bone material, said method comprising the steps of:
providing a stationary lower punch and a moveable lower punch which is vertically moveable about the stationary lower punch, a moveable die having at least one cavity and positionable generally above the stationary lower punch, and a moveable upper punch;
introducing the granulated bone material into the cavity;
positioning the moveable die generally above the stationary lower punch;
moving the moveable upper punch to pressably contact the material in opposition to the moveable lower punch and stationary lower punch; and
moving the moveable lower punch to pressably contact the material in opposition to the moveable upper punch,
whereby said moving steps form the material into the shaped bone graft substitute.
31. The method of claim 30, wherein the steps of moving the upper and lower punches effect a substantially uniform distribution of pressure within said material.
32. The method of claim 30, wherein the punches are configured such that the shape of the bone graft substitute resulting from the moving steps is a shape selected from the group consisting of a JAX™ particle, a jack, a tablet, a strip, a block, a cube, a pellet, a pill, a lozenge, a sphere, and a ring.
33. The method of claim 30, wherein at least one of the moving steps applies a force to the material in a range of about 0.2 to about 5 tons.
34. The method of claim 30, wherein at least one of the moving steps applies a force to the material in a range of about 0.2 to about 2 tons.
35. The method of claim 30, wherein at least one of the moving steps applies a force to the material in a range of about 0.5 to about 1 ton.
36. The method of claim 30, wherein said moving step of the moveable lower punch to the material is subsequent to the moving step of the moveable upper punch to the material.
37. A method of manufacturing a shaped bone graft substitute from granulated bone material, said method comprising the steps of:
introducing an amount of the granulated bone material into the cavity;
providing a lower punch assembly, an upper punch assembly, and a moveable die positionable generally above the lower punch assembly;
positioning the moveable die generally above the lower punch assembly;
moving the lower punch assembly in opposition to the moveable upper punch to pressably contact the material;
moving the upper punch assembly in opposition to the moveable lower punch to pressably contact the material,
whereby said moving steps form the material into the shaped bone graft substitute.
38. The method of claim 37, wherein the lower punch assembly is comprised of at least one of a stationary lower punch and a moveable lower punch vertically moveable about the stationary lower punch.
39. The method of claim 37, wherein the upper punch assembly is comprised of at least one of a stationary upper punch and a moveable upper punch vertically moveable about the stationary upper punch.
40. An apparatus for shaping a bone graft substitute from granulated bone material, said apparatus comprising:
a stationary lower punch having a top surface;
a moveable lower punch vertically moveable about the stationary lower punch and having a top surface;
a moveable die having at least one cavity and positionable generally above the stationary lower punch; and
a moveable upper punch,
such that said moveable upper punch moves in opposition to said moveable lower punch to pressably contact the material contained within the cavity, whereupon following pressably contacting the material by the moveable lower punch the top surface height of the lower moveable punch is above the top surface height of the stationary lower punch.
41. A method for manufacturing a bone graft substitute from granulated bone material, said method comprising the steps of:
providing:
a first punch assembly having a first contact surface configured to effect a relief profile onto a first surface of the granulated bone material;
a second punch assembly having a second contact surface; and
a moveable die having at least one cavity;
introducing the bone material into the cavity;
positioning the moveable die generally in alignment with the first punch assembly;
moving at least a portion of the first punch assembly to pressably contact the material in opposition to the second punch assembly to effect the desired relief profile on the first surface thereof; and
moving at least a portion of the second punch assembly to pressably contact the material in opposition to the first punch assembly,
whereby said moving steps form the material into the shaped bone graft substitute.
42. A method for manufacturing a bone graft substitute from demineralized bone matrix material, said method comprising the steps of:
providing:
a first punch assembly having a first contact surface configured to effect a relief profile onto a first surface of the demineralized bone matrix material;
a second punch assembly having a second contact surface; and
a moveable die having at least one cavity;
introducing the demineralized bone matrix material into the cavity;
positioning the moveable die generally in alignment with the first punch assembly;
moving at least a portion of the first punch assembly to pressably contact the material in opposition to the second punch assembly to effect the desired relief profile on the first surface thereof; and
moving at least a portion of the second punch assembly to pressably contact the material in opposition to the first punch assembly,
whereby said moving steps form the material into the shaped bone graft substitute.
43. The method of claim 41, wherein the contact surface area of the first punch assembly is generally equivalent to a contact surface area of the second punch assembly such that the moving steps apply a substantially uniform pressure distribution to the material.
44. The method of claim 41, wherein the first punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the first punch assembly includes moving the moveable punch to pressably contact the material.
45. The method of claim 41, wherein the second punch assembly includes a stationary punch and a moveable punch, such that the steps of moving the first punch assembly includes moving the moveable punch to pressably contact the material.
46. An apparatus for manufacturing a bone graft substitute from a granulated bone material, said apparatus comprising:
a first punch assembly having a first contact surface having a profile configured to effect a relief profile onto a surface of the bone material;
a second punch assembly having a second contact surface, the second contact surface positioned in general alignment with the first contact surface; and
a moveable die having at least one cavity, the moveable die being positionable generally in between the first and second punch assemblies.
47. As a composition of matter, a bone graft substitute manufactured by the method of claim 1.
48. As a composition of matter, a bone graft substitute manufactured by the method of claim 2.
49. As a composition of matter, a bone graft substitute manufactured by the method of claim 9.
50. As a composition of matter, a bone graft substitute manufactured by the method of claim 12.
51. As a composition of matter, a bone graft substitute manufactured by the method of claim 27.
52. As a composition of matter, a bone graft substitute manufactured by the method of claim 30.
53. As a composition of matter, a bone graft substitute manufactured by the method of claim 37.
54. As a composition of matter, a bone graft substitute manufactured by the method of claim 41.
55. As a composition of matter, a bone graft substitute manufactured by the method of claim 42.
56. As a composition of matter, a bone graft substitute manufactured with the apparatus of claim 40.
57. As a composition of matter, a bone graft substitute manufactured with the apparatus of claim 46.
US10/621,633 2001-02-23 2003-07-17 Bone graft substitutes Abandoned US20040019132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/621,633 US20040019132A1 (en) 2001-02-23 2003-07-17 Bone graft substitutes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/792,681 US6630153B2 (en) 2001-02-23 2001-02-23 Manufacture of bone graft substitutes
US10/621,633 US20040019132A1 (en) 2001-02-23 2003-07-17 Bone graft substitutes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/792,681 Division US6630153B2 (en) 2000-03-03 2001-02-23 Manufacture of bone graft substitutes

Publications (1)

Publication Number Publication Date
US20040019132A1 true US20040019132A1 (en) 2004-01-29

Family

ID=25157715

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/792,681 Expired - Fee Related US6630153B2 (en) 2000-03-03 2001-02-23 Manufacture of bone graft substitutes
US10/621,633 Abandoned US20040019132A1 (en) 2001-02-23 2003-07-17 Bone graft substitutes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/792,681 Expired - Fee Related US6630153B2 (en) 2000-03-03 2001-02-23 Manufacture of bone graft substitutes

Country Status (8)

Country Link
US (2) US6630153B2 (en)
EP (1) EP1377236A1 (en)
JP (1) JP2004524090A (en)
KR (1) KR20030077647A (en)
CN (1) CN1505495A (en)
AU (1) AU2002250061B2 (en)
CA (1) CA2438616A1 (en)
WO (1) WO2002067820A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050027366A1 (en) * 2003-04-30 2005-02-03 Therics, Inc. Bone void filler and method of manufacture
US20050255159A1 (en) * 2004-04-16 2005-11-17 Robert Hyers Porous calcium phosphate networks for synthetic bone material
US20060067971A1 (en) * 2004-09-27 2006-03-30 Story Brooks J Bone void filler
US20060074422A1 (en) * 2004-09-27 2006-04-06 Story Brooks J Suture anchor and void filler combination
EP1820522A1 (en) * 2006-02-20 2007-08-22 Straumann Holding AG Granulate-matrix
US20080300682A1 (en) * 2007-05-31 2008-12-04 Depuy Products, Inc. Sintered Coatings For Implantable Prostheses
US20090227704A1 (en) * 2008-03-05 2009-09-10 Karen Troxel Cohesive and compression resistant demineralized bone carrier matrix
US20090306673A1 (en) * 2006-11-10 2009-12-10 Fondel Finance B.V. Kit and method for fixating a prosthesis or part thereof and/or filling osseous defects
US20100040668A1 (en) * 2006-01-12 2010-02-18 Rutgers, The State University Of New Jersey Biomimetic Hydroxyapatite Composite Materials and Methods for the Preparation Thereof
US20100098673A1 (en) * 2006-08-03 2010-04-22 Ebi, Llc Bone graft composites and methods of treating bone defects
US8287914B2 (en) 2006-01-12 2012-10-16 Rutgers, The State University Of New Jersey Biomimetic hydroxyapatite synthesis
WO2013082295A1 (en) * 2011-11-29 2013-06-06 University Of Medicine And Dentistry Of New Jersey Insulin-mimetics as therapeutic adjuncts for bone regeneration
WO2014074845A1 (en) * 2012-11-08 2014-05-15 The University Of Akron Photoresponsive coumarin based polymers: synthesis and applications
US8936804B2 (en) 2010-01-15 2015-01-20 Rutgers, The State University Of New Jersey Use of vanadium compounds to accelerate bone healing
US9144633B2 (en) 2010-12-10 2015-09-29 Rutgers, The State University Of New Jersey Implantable devices coated with insulin-mimetic vanadium compounds and methods thereof
US9265794B2 (en) 2010-12-10 2016-02-23 Rutgers, The State University Of New Jersey Insulin-mimetics as therapeutic adjuncts for bone regeneration
US9486557B2 (en) 2013-04-19 2016-11-08 Theracell, Inc. Demineralized bone fibers having controlled geometry and shapes and methods thereof
CN106137462A (en) * 2015-05-13 2016-11-23 贺利氏医疗有限公司 Graininess heterogeneity bone alternate material and the method manufacturing free forming porous body
US20190117779A1 (en) * 2011-09-22 2019-04-25 Niconovum Usa, Inc. Nicotine-containing pharmaceutical composition
USD849946S1 (en) 2015-12-30 2019-05-28 Nuvasive, Inc. Interspinous process spacer
WO2021016258A1 (en) * 2019-07-22 2021-01-28 Dale Ryan Ceramic coating with ambient temperature cure

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383519B1 (en) 1999-01-26 2002-05-07 Vita Special Purpose Corporation Inorganic shaped bodies and methods for their production and use
US20030228288A1 (en) 1999-10-15 2003-12-11 Scarborough Nelson L. Volume maintaining osteoinductive/osteoconductive compositions
FI108403B (en) * 2000-02-25 2002-01-31 Yli Urpo Antti Material suitable for tissue reconstruction in an individual
US6630153B2 (en) * 2001-02-23 2003-10-07 Smith & Nephew, Inc. Manufacture of bone graft substitutes
US9387094B2 (en) 2000-07-19 2016-07-12 Warsaw Orthopedic, Inc. Osteoimplant and method of making same
US7323193B2 (en) 2001-12-14 2008-01-29 Osteotech, Inc. Method of making demineralized bone particles
US6855169B2 (en) * 2001-02-28 2005-02-15 Synthes (Usa) Demineralized bone-derived implants
US7163691B2 (en) 2001-10-12 2007-01-16 Osteotech, Inc. Bone graft
ATE319760T1 (en) * 2001-12-21 2006-03-15 Isotis Orthobiologics Inc COMPOSITIONS CONTAINING END-GROUP-CAPED POLYALKYLENE GLYCOLS
US7205337B2 (en) * 2001-12-21 2007-04-17 Isotis Orthobiologics, Inc. End-capped polymers and compositions containing such compounds
US20060204544A1 (en) * 2002-05-20 2006-09-14 Musculoskeletal Transplant Foundation Allograft bone composition having a gelatin binder
JP3927487B2 (en) * 2002-12-02 2007-06-06 株式会社大野興業 Manufacturing method of artificial bone model
US20050010305A1 (en) * 2003-01-28 2005-01-13 Lee Francis Y. Novel bone graft composite
US20040260398A1 (en) * 2003-02-10 2004-12-23 Kelman David C. Resorbable devices
US6993406B1 (en) 2003-04-24 2006-01-31 Sandia Corporation Method for making a bio-compatible scaffold
NZ544050A (en) 2003-06-11 2009-03-31 Osteotech Inc Osteoimplants and methods for their manufacture
GB0317192D0 (en) * 2003-07-19 2003-08-27 Smith & Nephew High strength bioresorbable co-polymers
US20050098915A1 (en) * 2003-11-07 2005-05-12 Smith & Nephew Inc. Manufacture of bone graft substitutes
GB0329654D0 (en) 2003-12-23 2004-01-28 Smith & Nephew Tunable segmented polyacetal
CA2594733A1 (en) * 2005-01-14 2006-07-20 Osteotech, Inc. Expandable osteoimplant
US20060216321A1 (en) * 2005-03-24 2006-09-28 Sdgi Holdings, Inc. Solvent based processing technologies for making tissue/polymer composites
KR100698945B1 (en) * 2005-09-08 2007-03-26 주식회사 피엘케이 테크놀로지 Device for perceiving the direction indication of an automobile and the method thereof
US7435625B2 (en) * 2005-10-24 2008-10-14 Freescale Semiconductor, Inc. Semiconductor device with reduced package cross-talk and loss
WO2007056671A1 (en) 2005-11-02 2007-05-18 Osteotech, Inc. Hemostatic bone graft
US7571999B2 (en) * 2005-11-30 2009-08-11 Xerox Corporation Overcoat compositions, oil-based ink compositions, and processes for ink-jet recording using overcoat and oil-based ink compositions
US7531033B2 (en) * 2005-11-30 2009-05-12 Xerox Corporation Pre-treatment compositions, oil-based ink compositions, and processes for ink-jet recording using pre-treatment compositions and oil-based ink compositions
US8048443B2 (en) 2005-12-16 2011-11-01 Cerapedics, Inc. Pliable medical device and method of use
US8690957B2 (en) 2005-12-21 2014-04-08 Warsaw Orthopedic, Inc. Bone graft composition, method and implant
US10524916B2 (en) 2006-01-11 2020-01-07 Novabone Products, Llc Resorbable macroporous bioactive glass scaffold and method of manufacture
WO2008065738A1 (en) 2006-11-11 2008-06-05 The University Of Tokyo Bone defect filler, release-controlled carrier, and their production methods
CA2679365C (en) 2006-11-30 2016-05-03 Smith & Nephew, Inc. Fiber reinforced composite material
KR100846836B1 (en) * 2007-01-15 2008-07-17 한스바이오메드 주식회사 Composition for promoting bone regeneration and restoration
WO2008095307A1 (en) * 2007-02-07 2008-08-14 Mcgill University Bioceramic implants having bioactive substance
WO2008104964A2 (en) * 2007-02-26 2008-09-04 University Of Limerick A synthetic bone graft
GB2447019A (en) 2007-02-27 2008-09-03 Apatech Ltd Bone-replacement material
JP5416090B2 (en) 2007-04-18 2014-02-12 スミス アンド ネフュー ピーエルシー Expansion molding of shape memory polymer
DE602008006181D1 (en) 2007-04-19 2011-05-26 Smith & Nephew Inc GRAFT FIXATION
US9000066B2 (en) 2007-04-19 2015-04-07 Smith & Nephew, Inc. Multi-modal shape memory polymers
US9138509B2 (en) * 2007-09-14 2015-09-22 Musculoskeletal Transplant Foundation Composition for filling bone defects
US9095569B2 (en) 2008-04-18 2015-08-04 Collplant Ltd. Methods of generating and using procollagen
JP2012506733A (en) 2008-10-24 2012-03-22 ウォーソー・オーソペディック・インコーポレーテッド Compositions and methods for promoting bone formation
KR101139660B1 (en) * 2009-06-15 2012-05-14 한스바이오메드 주식회사 A method for making bone filling material containing dbm
US8673018B2 (en) 2010-02-05 2014-03-18 AMx Tek LLC Methods of using water-soluble inorganic compounds for implants
US8852282B2 (en) 2010-08-27 2014-10-07 Daniel K. Farley Methods and systems for interbody implant and bone graft delivery
US20120065613A1 (en) * 2010-08-27 2012-03-15 Pepper John R Methods and Systems for Interbody Implant and Bone Graft Delivery
US9480576B2 (en) * 2010-08-27 2016-11-01 Thompson Mis Methods and systems for interbody implant and bone graft delivery
US8895291B2 (en) 2010-10-08 2014-11-25 Terumo Bct, Inc. Methods and systems of growing and harvesting cells in a hollow fiber bioreactor system with control conditions
US8551525B2 (en) 2010-12-23 2013-10-08 Biostructures, Llc Bone graft materials and methods
US20140128990A1 (en) * 2011-04-04 2014-05-08 Smith & Nephew, Inc. Bone putty
US20140248372A1 (en) 2011-09-19 2014-09-04 Emory University Bone morphogenetic protein pathway activation, compositions for ossification, and methods related thereto
KR101398406B1 (en) * 2011-09-29 2014-05-28 (주)시지바이오 Bone-repair composition
CN102784412B (en) * 2012-06-05 2014-04-02 西北工业大学 Preparation method of microcrystalline cellulose / hydroxyapatite composite material with controllable mechanical property
US10207027B2 (en) 2012-06-11 2019-02-19 Globus Medical, Inc. Bioactive bone graft substitutes
CN105992816B (en) 2013-11-16 2018-04-17 泰尔茂比司特公司 Cell amplification in bioreactor
FR3016293B1 (en) * 2014-01-10 2019-12-20 Mbp (Mauritius) Ltd METHOD FOR MANUFACTURING OSTEOSYNTHESIS DEVICES, OSTEOSYNTHESIS DEVICES AND IMPLANTS OF HYBRID SEMI-SYNTHETIC MATERIAL OBTAINED BY STRUCTURAL MODIFICATION OF THE COMPONENTS OF A NATURAL MARINE BIOMATERIAL
JP6783143B2 (en) 2014-03-25 2020-11-11 テルモ ビーシーティー、インコーポレーテッド Passive replenishment of medium
WO2016049421A1 (en) 2014-09-26 2016-03-31 Terumo Bct, Inc. Scheduled feed
US10238507B2 (en) 2015-01-12 2019-03-26 Surgentec, Llc Bone graft delivery system and method for using same
DE102015100806A1 (en) * 2015-01-20 2016-07-21 Antonis Alexakis Biocompatible molding
US10610366B2 (en) 2015-01-29 2020-04-07 Theracell, Inc. Demineralized bone fiber composition for use in minimally invasive surgery
US10195305B2 (en) 2015-03-24 2019-02-05 Orthovita, Inc. Bioactive flowable wash-out resistant bone graft material and method for production thereof
EP3297694A1 (en) 2015-05-21 2018-03-28 Musculoskeletal Transplant Foundation Modified demineralized cortical bone fibers
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
CN105196398B (en) * 2015-09-16 2017-12-01 华南理工大学 For the ceramic slurry of air pressure extruded type 3 D-printing and the preparation method of bioceramic scaffold
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US10913930B2 (en) 2016-08-09 2021-02-09 Warsaw Orthopedic, Inc. Tissue processing apparatus and method for infusing bioactive agents into tissue
US10639157B2 (en) 2017-03-14 2020-05-05 Theracell, Inc. Demineralized bone fiber composition for use in minimally invasive surgery
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
EP3656842A1 (en) 2017-03-31 2020-05-27 Terumo BCT, Inc. Cell expansion
US11235086B2 (en) 2018-02-22 2022-02-01 Cerapedics, Inc. Processes for coating inorganic particles with a peptide or protein useful for improving cellular activity related to bone growth
US10687828B2 (en) 2018-04-13 2020-06-23 Surgentec, Llc Bone graft delivery system and method for using same
US11116647B2 (en) 2018-04-13 2021-09-14 Surgentec, Llc Bone graft delivery system and method for using same
CN108553690B (en) * 2018-04-13 2020-08-07 浙江大学 Porous strontium-doped fibroin microsphere and preparation method thereof
MX2021006323A (en) * 2018-12-12 2021-10-13 Right Value Drug Stores Llc Systems and methods for automated pellet pressing and vialing.
AT523123B1 (en) * 2019-11-04 2021-10-15 3D Spine Matrix Biotechnologie Gmbh MANUFACTURING AND USING COMPRESSED COLLAGEN

Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279998A (en) * 1962-06-22 1966-10-18 Smith Kline French Lab Method of preparing sustained release tablets
US3632739A (en) * 1969-12-29 1972-01-04 Sandoz Ag Solid sustained release pharmaceutical preparation
US3979779A (en) * 1974-11-15 1976-09-14 Rosenthal Technik Ag Ceramic implant
US4126599A (en) * 1976-02-26 1978-11-21 Mizusawa Kagaku Kogyo Kabushiki Kaisha Water-resistant shaped structure of gypsum and process for production thereof
US4173610A (en) * 1976-12-24 1979-11-06 Gebr. Knauf Westdeutsche Gipswerke Process for the manufacture of lump calcium sulfate
US4340521A (en) * 1977-02-09 1982-07-20 Rhone-Poulenc Industries Pressure compacting of settable plaster compositions
US4356572A (en) * 1979-07-12 1982-11-02 Etablissement Public Dit: Agence Nationale De Valorisation De La Recherche (Anvar) Biodegradable implant useable as a bone prosthesis
US4440750A (en) * 1982-02-12 1984-04-03 Collagen Corporation Osteogenic composition and method
US4447254A (en) * 1980-07-24 1984-05-08 McKenchnie Chemicals Limited Controlled release of trace elements
US4519801A (en) * 1982-07-12 1985-05-28 Alza Corporation Osmotic device with wall comprising cellulose ether and permeability enhancer
US4540439A (en) * 1981-05-06 1985-09-10 Chemische Werke Huls Aktiengesellschaft Process for preparation of gypsum shapes
US4600546A (en) * 1982-06-28 1986-07-15 S+G Implants Gmbh Process for the production of an implant as a bone substitute
US4612053A (en) * 1983-10-06 1986-09-16 American Dental Association Health Foundation Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
US4619655A (en) * 1984-01-26 1986-10-28 University Of North Carolina Plaster of Paris as a bioresorbable scaffold in implants for bone repair
US4678470A (en) * 1985-05-29 1987-07-07 American Hospital Supply Corporation Bone-grafting material
US4713076A (en) * 1984-04-19 1987-12-15 Klaus Draenert Coating composition and anchorage component for surgical implants
US4732762A (en) * 1983-03-07 1988-03-22 Metropolitan Mosquito Control District Timed release pest control composition and means
US4743229A (en) * 1986-09-29 1988-05-10 Collagen Corporation Collagen/mineral mixing device and method
US4770860A (en) * 1985-12-03 1988-09-13 Rolf Ewers Porous hydroxyl apatite material
US4787906A (en) * 1987-03-02 1988-11-29 Haris Andras G Controlled tissue growth and graft containment
US4789663A (en) * 1984-07-06 1988-12-06 Collagen Corporation Methods of bone repair using collagen
US4801458A (en) * 1985-06-24 1989-01-31 Teijin Limited Sustained release pharmaceutical plaster
US4808184A (en) * 1985-05-14 1989-02-28 Laboratorium Fur Experimentelle Chirurgie Forschungsinstitut Method and apparatus for preparing a self-curing two component powder/liquid cement
US4828563A (en) * 1985-06-18 1989-05-09 Dr. Muller-Lierheim Ag Implant
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US4846838A (en) * 1983-07-15 1989-07-11 Tdk Corporation Prosthetic body for bone substitute and a method for the preparation thereof
US4853225A (en) * 1985-12-05 1989-08-01 Merck Patent Gesellschaft Mit Beschrankter Haftung Process for implanting a medicament depot
US4863472A (en) * 1986-09-05 1989-09-05 Biocon Oy Bone graft implant
US4880610A (en) * 1988-04-20 1989-11-14 Norian Corporation In situ calcium phosphate minerals--method and composition
US4900546A (en) * 1987-07-30 1990-02-13 Pfizer Hospital Products Group, Inc. Bone cement for sustained release of substances
US4906449A (en) * 1987-10-13 1990-03-06 Toto Ltd. Method for hydrating hemihydrate gypsum
US4917702A (en) * 1984-09-10 1990-04-17 Hans Scheicher Bone replacement material on the basis of carbonate and alkali containing calciumphosphate apatites
US4960426A (en) * 1987-08-26 1990-10-02 Denatal Kagaku Kabushiki Kaisha Osteofillers of hydroxy apatite
US4973503A (en) * 1985-06-26 1990-11-27 Kimberly-Clark Corporation Mixed fiber tow or tube and method of making
US5015256A (en) * 1987-03-30 1991-05-14 Ab Idea Method and means for fixing a joint prosthesis
US5016702A (en) * 1989-08-28 1991-05-21 Eska Medical Lubeck Medizintechnik Gmbh & Co. Method of producing open-celled metal structures
US5042560A (en) * 1989-05-26 1991-08-27 Eska Medical Lubeck Medizintechnik Gmbh & Co. Method of producing open-celled metal structures
US5047031A (en) * 1988-04-20 1991-09-10 Norian Corporation In situ calcium phosphate minerals method
US5067965A (en) * 1990-03-20 1991-11-26 Bioplasty, Inc. Bio-osmotic gel for implant prostheses
US5073373A (en) * 1989-09-21 1991-12-17 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
US5082597A (en) * 1988-09-26 1992-01-21 Toshiba Ceramics Co., Ltd. Sintered silicon carbide composite
US5085861A (en) * 1987-03-12 1992-02-04 The Beth Israel Hospital Association Bioerodable implant composition comprising crosslinked biodegradable polyesters
US5096858A (en) * 1989-09-19 1992-03-17 The University Of British Columbia In situ production of silicon carbide reinforced ceramic composites
US5098871A (en) * 1990-12-13 1992-03-24 Aluminum Company Of America Aluminum borate ceramic matrix composite
US5108964A (en) * 1989-02-15 1992-04-28 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US5108963A (en) * 1989-02-01 1992-04-28 Industrial Technology Research Institute Silicon carbide whisker reinforced alumina ceramic composites
US5120681A (en) * 1991-05-23 1992-06-09 W. R. Grace & Co.-Conn. Ceramic composites containing spinel, silicon carbide, and boron carbide
US5125971A (en) * 1989-06-30 1992-06-30 Tdk Corporation Living hard tissue replacement, its preparation
US5132178A (en) * 1987-05-08 1992-07-21 Corning Incorporated Ceramic matrix composites exhibiting high interlaminar shear strength
US5141510A (en) * 1988-05-27 1992-08-25 Shigehide Takagi Structure of artificial bone material for use in implantation
US5147403A (en) * 1989-03-15 1992-09-15 United States Gypsum Company Prosthesis implantation method
US5147402A (en) * 1990-12-05 1992-09-15 Sulzer Brothers Limited Implant for ingrowth of osseous tissue
US5149368A (en) * 1991-01-10 1992-09-22 Liu Sung Tsuen Resorbable bioactive calcium phosphate cement
US5153057A (en) * 1989-02-15 1992-10-06 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers within a metal matrix
US5158934A (en) * 1989-09-01 1992-10-27 Genentech, Inc. Method of inducing bone growth using TGF-β
US5171366A (en) * 1989-10-12 1992-12-15 Georgia-Pacific Corporation Gypsum building product
US5178201A (en) * 1991-03-05 1993-01-12 Eska Medical Gmbh & Co. Method for producing an implant with an open-celled metal structure
US5211664A (en) * 1992-01-14 1993-05-18 Forschungsinstitut, Davos Laboratorium Fur Experimentelle Chirugie Shell structure for bone replacement
US5258028A (en) * 1988-12-12 1993-11-02 Ersek Robert A Textured micro implants
US5262166A (en) * 1991-04-17 1993-11-16 Lty Medical Inc Resorbable bioactive phosphate containing cements
US5281265A (en) * 1992-02-03 1994-01-25 Liu Sung Tsuen Resorbable surgical cements
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5290558A (en) * 1989-09-21 1994-03-01 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
US5320677A (en) * 1988-11-18 1994-06-14 United States Gypsum Company Composite material and method of producing
US5336263A (en) * 1992-04-06 1994-08-09 Robert A. Ersek Treatment of urological and gastric fluid reflux disorders by injection of mmicro particles
US5366507A (en) * 1992-03-06 1994-11-22 Sottosanti John S Method for use in bone tissue regeneration
US5385887A (en) * 1993-09-10 1995-01-31 Genetics Institute, Inc. Formulations for delivery of osteogenic proteins
US5433750A (en) * 1992-03-14 1995-07-18 Eska Medical Gmbh & Co. Bone replacement with different regions of porosities
US5433751A (en) * 1992-04-03 1995-07-18 Inoteb Bone prosthesis material containing calcium carbonate particles dispersed in a bioresorbable polymer matrix
US5433777A (en) * 1992-10-13 1995-07-18 Ushers, Inc. Aggregates and materials employing same
US5437850A (en) * 1991-03-25 1995-08-01 Sulzer-Escher Wyss Gmbh Method for calcining moist gypsum
US5455100A (en) * 1991-01-30 1995-10-03 Interpore International Porous articles and methods for producing same
US5458970A (en) * 1991-10-29 1995-10-17 Honda Giken Kogyo Kabushiki Kaisha Shaped-articles made of fibers for use in producing fiber-reinforced composite members
US5462722A (en) * 1991-04-17 1995-10-31 Liu; Sung-Tsuen Calcium phosphate calcium sulfate composite implant material
US5563124A (en) * 1991-04-22 1996-10-08 Intermedics Orthopedics/ Denver, Inc. Osteogenic product and process
US5614206A (en) * 1995-03-07 1997-03-25 Wright Medical Technology, Inc. Controlled dissolution pellet containing calcium sulfate
US5618549A (en) * 1993-05-13 1997-04-08 Inoteb Use of particles of a biocompatible and bioabsorbable calcium salt as active ingredient in the preparation of a medicinal product intended for the local treatment of bone demineralization diseases
US5626861A (en) * 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
US5674802A (en) * 1992-10-13 1997-10-07 Ushers, Inc. Shares for catalyst carrier elements, and catalyst apparatuses employing same
US5676700A (en) * 1994-10-25 1997-10-14 Osteonics Corp. Interlocking structural elements and method for bone repair, augmentation and replacement
US5711957A (en) * 1993-05-13 1998-01-27 Inoteb Use of a porous calcium carbonate based material as support of a growth factor in the preparation of a bioabsorbable implant
US5756127A (en) * 1996-10-29 1998-05-26 Wright Medical Technology, Inc. Implantable bioresorbable string of calcium sulfate beads
US5919493A (en) * 1992-10-13 1999-07-06 Ushers, Inc. Apparatus for producing shaped articles
US5981828A (en) * 1996-03-11 1999-11-09 Board Of Trustees Of The University Of Arkansas Composite allograft, press, and methods
US6180606B1 (en) * 1994-09-28 2001-01-30 Gensci Orthobiologics, Inc. Compositions with enhanced osteogenic potential, methods for making the same and uses thereof
US6183515B1 (en) * 1994-08-08 2001-02-06 Board Of Regents, The University Of Texas System Artificial bone implants
US6187046B1 (en) * 1997-03-14 2001-02-13 Asahi Kogaku Kogyo Kabushiki Kaisha Prosthetic bone material and process for the production of the same
US6296667B1 (en) * 1997-10-01 2001-10-02 Phillips-Origen Ceramic Technology, Llc Bone substitutes
US6630153B2 (en) * 2001-02-23 2003-10-07 Smith & Nephew, Inc. Manufacture of bone graft substitutes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1339083C (en) * 1987-11-13 1997-07-29 Steven R. Jefferies Bone repair material and delayed drug delivery system
US5329846A (en) * 1991-08-12 1994-07-19 Bonutti Peter M Tissue press and system
GB9202248D0 (en) * 1992-02-03 1992-03-18 Howmedica Prosthesis for attachement without bone cement and method of attaching
DE69325924T2 (en) * 1993-11-24 2000-02-17 Stackpole Ltd OFFSET MULTI-PIECE PRESS
US6171610B1 (en) * 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
GB0318209D0 (en) * 2003-08-04 2003-09-03 Great Lakes Chemical Europ Production of disubstituted hydroquinones

Patent Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279998A (en) * 1962-06-22 1966-10-18 Smith Kline French Lab Method of preparing sustained release tablets
US3632739A (en) * 1969-12-29 1972-01-04 Sandoz Ag Solid sustained release pharmaceutical preparation
US3979779A (en) * 1974-11-15 1976-09-14 Rosenthal Technik Ag Ceramic implant
US4126599A (en) * 1976-02-26 1978-11-21 Mizusawa Kagaku Kogyo Kabushiki Kaisha Water-resistant shaped structure of gypsum and process for production thereof
US4173610A (en) * 1976-12-24 1979-11-06 Gebr. Knauf Westdeutsche Gipswerke Process for the manufacture of lump calcium sulfate
US4340521A (en) * 1977-02-09 1982-07-20 Rhone-Poulenc Industries Pressure compacting of settable plaster compositions
US4356572A (en) * 1979-07-12 1982-11-02 Etablissement Public Dit: Agence Nationale De Valorisation De La Recherche (Anvar) Biodegradable implant useable as a bone prosthesis
US4447254A (en) * 1980-07-24 1984-05-08 McKenchnie Chemicals Limited Controlled release of trace elements
US4540439A (en) * 1981-05-06 1985-09-10 Chemische Werke Huls Aktiengesellschaft Process for preparation of gypsum shapes
US4440750A (en) * 1982-02-12 1984-04-03 Collagen Corporation Osteogenic composition and method
US4600546A (en) * 1982-06-28 1986-07-15 S+G Implants Gmbh Process for the production of an implant as a bone substitute
US4519801A (en) * 1982-07-12 1985-05-28 Alza Corporation Osmotic device with wall comprising cellulose ether and permeability enhancer
US4732762A (en) * 1983-03-07 1988-03-22 Metropolitan Mosquito Control District Timed release pest control composition and means
US4846838A (en) * 1983-07-15 1989-07-11 Tdk Corporation Prosthetic body for bone substitute and a method for the preparation thereof
US4612053A (en) * 1983-10-06 1986-09-16 American Dental Association Health Foundation Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
US4619655A (en) * 1984-01-26 1986-10-28 University Of North Carolina Plaster of Paris as a bioresorbable scaffold in implants for bone repair
US4713076A (en) * 1984-04-19 1987-12-15 Klaus Draenert Coating composition and anchorage component for surgical implants
US4789663A (en) * 1984-07-06 1988-12-06 Collagen Corporation Methods of bone repair using collagen
US4917702A (en) * 1984-09-10 1990-04-17 Hans Scheicher Bone replacement material on the basis of carbonate and alkali containing calciumphosphate apatites
US4808184A (en) * 1985-05-14 1989-02-28 Laboratorium Fur Experimentelle Chirurgie Forschungsinstitut Method and apparatus for preparing a self-curing two component powder/liquid cement
US4678470A (en) * 1985-05-29 1987-07-07 American Hospital Supply Corporation Bone-grafting material
US4828563A (en) * 1985-06-18 1989-05-09 Dr. Muller-Lierheim Ag Implant
US4801458A (en) * 1985-06-24 1989-01-31 Teijin Limited Sustained release pharmaceutical plaster
US4973503A (en) * 1985-06-26 1990-11-27 Kimberly-Clark Corporation Mixed fiber tow or tube and method of making
US4770860A (en) * 1985-12-03 1988-09-13 Rolf Ewers Porous hydroxyl apatite material
US4853225A (en) * 1985-12-05 1989-08-01 Merck Patent Gesellschaft Mit Beschrankter Haftung Process for implanting a medicament depot
US4863472A (en) * 1986-09-05 1989-09-05 Biocon Oy Bone graft implant
US4743229A (en) * 1986-09-29 1988-05-10 Collagen Corporation Collagen/mineral mixing device and method
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US4787906A (en) * 1987-03-02 1988-11-29 Haris Andras G Controlled tissue growth and graft containment
US5085861A (en) * 1987-03-12 1992-02-04 The Beth Israel Hospital Association Bioerodable implant composition comprising crosslinked biodegradable polyesters
US5015256A (en) * 1987-03-30 1991-05-14 Ab Idea Method and means for fixing a joint prosthesis
US5132178A (en) * 1987-05-08 1992-07-21 Corning Incorporated Ceramic matrix composites exhibiting high interlaminar shear strength
US4900546A (en) * 1987-07-30 1990-02-13 Pfizer Hospital Products Group, Inc. Bone cement for sustained release of substances
US4960426A (en) * 1987-08-26 1990-10-02 Denatal Kagaku Kabushiki Kaisha Osteofillers of hydroxy apatite
US4906449A (en) * 1987-10-13 1990-03-06 Toto Ltd. Method for hydrating hemihydrate gypsum
US5047031A (en) * 1988-04-20 1991-09-10 Norian Corporation In situ calcium phosphate minerals method
US4880610A (en) * 1988-04-20 1989-11-14 Norian Corporation In situ calcium phosphate minerals--method and composition
US5141510A (en) * 1988-05-27 1992-08-25 Shigehide Takagi Structure of artificial bone material for use in implantation
US5082597A (en) * 1988-09-26 1992-01-21 Toshiba Ceramics Co., Ltd. Sintered silicon carbide composite
US5320677A (en) * 1988-11-18 1994-06-14 United States Gypsum Company Composite material and method of producing
US5571182A (en) * 1988-12-12 1996-11-05 Ersek; Robert A. Textured micro implants
US5258028A (en) * 1988-12-12 1993-11-02 Ersek Robert A Textured micro implants
US5108963A (en) * 1989-02-01 1992-04-28 Industrial Technology Research Institute Silicon carbide whisker reinforced alumina ceramic composites
US5153057A (en) * 1989-02-15 1992-10-06 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers within a metal matrix
US5108964A (en) * 1989-02-15 1992-04-28 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US5147403A (en) * 1989-03-15 1992-09-15 United States Gypsum Company Prosthesis implantation method
US5042560A (en) * 1989-05-26 1991-08-27 Eska Medical Lubeck Medizintechnik Gmbh & Co. Method of producing open-celled metal structures
US5125971A (en) * 1989-06-30 1992-06-30 Tdk Corporation Living hard tissue replacement, its preparation
US5016702A (en) * 1989-08-28 1991-05-21 Eska Medical Lubeck Medizintechnik Gmbh & Co. Method of producing open-celled metal structures
US5158934A (en) * 1989-09-01 1992-10-27 Genentech, Inc. Method of inducing bone growth using TGF-β
US5096858A (en) * 1989-09-19 1992-03-17 The University Of British Columbia In situ production of silicon carbide reinforced ceramic composites
US5073373A (en) * 1989-09-21 1991-12-17 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
US5290558A (en) * 1989-09-21 1994-03-01 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
US5484601A (en) * 1989-09-21 1996-01-16 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
US5171366A (en) * 1989-10-12 1992-12-15 Georgia-Pacific Corporation Gypsum building product
US5067965A (en) * 1990-03-20 1991-11-26 Bioplasty, Inc. Bio-osmotic gel for implant prostheses
US5147402A (en) * 1990-12-05 1992-09-15 Sulzer Brothers Limited Implant for ingrowth of osseous tissue
US5098871A (en) * 1990-12-13 1992-03-24 Aluminum Company Of America Aluminum borate ceramic matrix composite
US5149368A (en) * 1991-01-10 1992-09-22 Liu Sung Tsuen Resorbable bioactive calcium phosphate cement
US5455100A (en) * 1991-01-30 1995-10-03 Interpore International Porous articles and methods for producing same
US5178201A (en) * 1991-03-05 1993-01-12 Eska Medical Gmbh & Co. Method for producing an implant with an open-celled metal structure
US5437850A (en) * 1991-03-25 1995-08-01 Sulzer-Escher Wyss Gmbh Method for calcining moist gypsum
US5262166A (en) * 1991-04-17 1993-11-16 Lty Medical Inc Resorbable bioactive phosphate containing cements
US5462722A (en) * 1991-04-17 1995-10-31 Liu; Sung-Tsuen Calcium phosphate calcium sulfate composite implant material
US5563124A (en) * 1991-04-22 1996-10-08 Intermedics Orthopedics/ Denver, Inc. Osteogenic product and process
US5120681A (en) * 1991-05-23 1992-06-09 W. R. Grace & Co.-Conn. Ceramic composites containing spinel, silicon carbide, and boron carbide
US5458970A (en) * 1991-10-29 1995-10-17 Honda Giken Kogyo Kabushiki Kaisha Shaped-articles made of fibers for use in producing fiber-reinforced composite members
US5211664A (en) * 1992-01-14 1993-05-18 Forschungsinstitut, Davos Laboratorium Fur Experimentelle Chirugie Shell structure for bone replacement
US5281265A (en) * 1992-02-03 1994-01-25 Liu Sung Tsuen Resorbable surgical cements
US5366507A (en) * 1992-03-06 1994-11-22 Sottosanti John S Method for use in bone tissue regeneration
US5569308A (en) * 1992-03-06 1996-10-29 Sottosanti; John S. Methods for use in bone tissue regeneration
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5433750A (en) * 1992-03-14 1995-07-18 Eska Medical Gmbh & Co. Bone replacement with different regions of porosities
US5433751A (en) * 1992-04-03 1995-07-18 Inoteb Bone prosthesis material containing calcium carbonate particles dispersed in a bioresorbable polymer matrix
US5336263A (en) * 1992-04-06 1994-08-09 Robert A. Ersek Treatment of urological and gastric fluid reflux disorders by injection of mmicro particles
US5919493A (en) * 1992-10-13 1999-07-06 Ushers, Inc. Apparatus for producing shaped articles
US5433777A (en) * 1992-10-13 1995-07-18 Ushers, Inc. Aggregates and materials employing same
US5674802A (en) * 1992-10-13 1997-10-07 Ushers, Inc. Shares for catalyst carrier elements, and catalyst apparatuses employing same
US5618549A (en) * 1993-05-13 1997-04-08 Inoteb Use of particles of a biocompatible and bioabsorbable calcium salt as active ingredient in the preparation of a medicinal product intended for the local treatment of bone demineralization diseases
US5711957A (en) * 1993-05-13 1998-01-27 Inoteb Use of a porous calcium carbonate based material as support of a growth factor in the preparation of a bioabsorbable implant
US5385887A (en) * 1993-09-10 1995-01-31 Genetics Institute, Inc. Formulations for delivery of osteogenic proteins
US5626861A (en) * 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
US6183515B1 (en) * 1994-08-08 2001-02-06 Board Of Regents, The University Of Texas System Artificial bone implants
US6180606B1 (en) * 1994-09-28 2001-01-30 Gensci Orthobiologics, Inc. Compositions with enhanced osteogenic potential, methods for making the same and uses thereof
US5676700A (en) * 1994-10-25 1997-10-14 Osteonics Corp. Interlocking structural elements and method for bone repair, augmentation and replacement
US5807567A (en) * 1995-03-07 1998-09-15 Wright Medical Technology, Incorporated Calcium sulfate controlled release matrix
US6030636A (en) * 1995-03-07 2000-02-29 Wright Medical Technology Incorporated Calcium sulfate controlled release matrix
US5614206A (en) * 1995-03-07 1997-03-25 Wright Medical Technology, Inc. Controlled dissolution pellet containing calcium sulfate
US5981828A (en) * 1996-03-11 1999-11-09 Board Of Trustees Of The University Of Arkansas Composite allograft, press, and methods
US5756127A (en) * 1996-10-29 1998-05-26 Wright Medical Technology, Inc. Implantable bioresorbable string of calcium sulfate beads
US6187046B1 (en) * 1997-03-14 2001-02-13 Asahi Kogaku Kogyo Kabushiki Kaisha Prosthetic bone material and process for the production of the same
US6296667B1 (en) * 1997-10-01 2001-10-02 Phillips-Origen Ceramic Technology, Llc Bone substitutes
US6630153B2 (en) * 2001-02-23 2003-10-07 Smith & Nephew, Inc. Manufacture of bone graft substitutes

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050027366A1 (en) * 2003-04-30 2005-02-03 Therics, Inc. Bone void filler and method of manufacture
US7857860B2 (en) 2003-04-30 2010-12-28 Therics, Llc Bone void filler and method of manufacture
US20050255159A1 (en) * 2004-04-16 2005-11-17 Robert Hyers Porous calcium phosphate networks for synthetic bone material
US7758896B2 (en) 2004-04-16 2010-07-20 University Of Massachusetts Porous calcium phosphate networks for synthetic bone material
US20060067971A1 (en) * 2004-09-27 2006-03-30 Story Brooks J Bone void filler
US20060074422A1 (en) * 2004-09-27 2006-04-06 Story Brooks J Suture anchor and void filler combination
US8287914B2 (en) 2006-01-12 2012-10-16 Rutgers, The State University Of New Jersey Biomimetic hydroxyapatite synthesis
US20100040668A1 (en) * 2006-01-12 2010-02-18 Rutgers, The State University Of New Jersey Biomimetic Hydroxyapatite Composite Materials and Methods for the Preparation Thereof
EP1820522A1 (en) * 2006-02-20 2007-08-22 Straumann Holding AG Granulate-matrix
US20100098673A1 (en) * 2006-08-03 2010-04-22 Ebi, Llc Bone graft composites and methods of treating bone defects
US20090306673A1 (en) * 2006-11-10 2009-12-10 Fondel Finance B.V. Kit and method for fixating a prosthesis or part thereof and/or filling osseous defects
US8361161B2 (en) * 2006-11-10 2013-01-29 Fondel Finance B.V. Kit and method for fixating a prosthesis or part thereof and/or filling osseous defects
US8066770B2 (en) * 2007-05-31 2011-11-29 Depuy Products, Inc. Sintered coatings for implantable prostheses
US20080300682A1 (en) * 2007-05-31 2008-12-04 Depuy Products, Inc. Sintered Coatings For Implantable Prostheses
US8293813B2 (en) * 2008-03-05 2012-10-23 Biomet Manufacturing Corporation Cohesive and compression resistant demineralized bone carrier matrix
US20090227704A1 (en) * 2008-03-05 2009-09-10 Karen Troxel Cohesive and compression resistant demineralized bone carrier matrix
US8936804B2 (en) 2010-01-15 2015-01-20 Rutgers, The State University Of New Jersey Use of vanadium compounds to accelerate bone healing
US9730946B2 (en) 2010-01-15 2017-08-15 Rutgers, The State University Of New Jersey Use of vanadium compounds to accelerate bone healing
US9144633B2 (en) 2010-12-10 2015-09-29 Rutgers, The State University Of New Jersey Implantable devices coated with insulin-mimetic vanadium compounds and methods thereof
US9265794B2 (en) 2010-12-10 2016-02-23 Rutgers, The State University Of New Jersey Insulin-mimetics as therapeutic adjuncts for bone regeneration
US9999636B2 (en) 2010-12-10 2018-06-19 Rutgers, The State University Of New Jersey Insulin-mimetics as therapeutic adjuncts for bone regeneration
US20190117779A1 (en) * 2011-09-22 2019-04-25 Niconovum Usa, Inc. Nicotine-containing pharmaceutical composition
WO2013082295A1 (en) * 2011-11-29 2013-06-06 University Of Medicine And Dentistry Of New Jersey Insulin-mimetics as therapeutic adjuncts for bone regeneration
US9663614B2 (en) 2012-11-08 2017-05-30 The University Of Akron Photoresponsive coumarin based polymers: synthesis and applications
WO2014074845A1 (en) * 2012-11-08 2014-05-15 The University Of Akron Photoresponsive coumarin based polymers: synthesis and applications
US9572912B2 (en) 2013-04-19 2017-02-21 Theracell, Inc. Demineralized bone fibers having controlled geometry and shapes and methods thereof
US9486557B2 (en) 2013-04-19 2016-11-08 Theracell, Inc. Demineralized bone fibers having controlled geometry and shapes and methods thereof
CN106137462A (en) * 2015-05-13 2016-11-23 贺利氏医疗有限公司 Graininess heterogeneity bone alternate material and the method manufacturing free forming porous body
USD849946S1 (en) 2015-12-30 2019-05-28 Nuvasive, Inc. Interspinous process spacer
WO2021016258A1 (en) * 2019-07-22 2021-01-28 Dale Ryan Ceramic coating with ambient temperature cure

Also Published As

Publication number Publication date
JP2004524090A (en) 2004-08-12
WO2002067820A1 (en) 2002-09-06
KR20030077647A (en) 2003-10-01
US20020160032A1 (en) 2002-10-31
EP1377236A1 (en) 2004-01-07
CN1505495A (en) 2004-06-16
CA2438616A1 (en) 2002-09-06
AU2002250061B2 (en) 2006-06-29
US6630153B2 (en) 2003-10-07

Similar Documents

Publication Publication Date Title
US6630153B2 (en) Manufacture of bone graft substitutes
AU2002250061A1 (en) Manufacture of bone graft substitutes
US20050098915A1 (en) Manufacture of bone graft substitutes
US20030055511A1 (en) Shaped particle comprised of bone material and method of making the particle
US10751185B2 (en) Treatment of skeletal voids with implantable substrate hydrated with bone marrow concentrate
JP4260891B2 (en) Bioceramic composition
EP1933892B1 (en) Composite bone graft substitute cement and articles produced therefrom
AU2006242649B2 (en) Synthetic loadbearing collagen-mineral composites for spinal implants
CA2809606C (en) Compositions and methods for treating bone defects
US8778378B2 (en) Bioactive antibacterial bone graft materials
KR100951199B1 (en) Machinable preformed calcium phosphate bone substitute material implants
JP2003525696A (en) Shaped particles and compositions for bone defects and methods of making the particles
US20060204544A1 (en) Allograft bone composition having a gelatin binder
CN1090746A (en) The empty proshesis that contains the promote osteogenesis implant
CN114401697A (en) Demineralized bone matrix fibers, methods of making and using same
JP2004097259A (en) Artificial bone unit with projections for forming stable structure/bone reproducing space in self-organizing manner, and its use
CN114364418A (en) Hydratable bone material and method of use
US10183095B2 (en) Treatment of skeletal voids with implantable substrate hydrated with bone marrow concentrate
Koo et al. Treatment of bone defects in rabbit tibiae using CaO-SiO2-P2O5-B2O3 bioactive ceramics: radiological, biomechanical, and histological evaluation
US20120259425A1 (en) Precision Shaped Compressed Demineralized Cancellous Bone Product and Method to Make Same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION