US20040020099A1 - Method and apparatus to provide precision aiming assistance to a shooter - Google Patents

Method and apparatus to provide precision aiming assistance to a shooter Download PDF

Info

Publication number
US20040020099A1
US20040020099A1 US10/365,022 US36502203A US2004020099A1 US 20040020099 A1 US20040020099 A1 US 20040020099A1 US 36502203 A US36502203 A US 36502203A US 2004020099 A1 US2004020099 A1 US 2004020099A1
Authority
US
United States
Prior art keywords
windage
aiming system
wind
variable
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/365,022
Inventor
John Osborn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/805,608 external-priority patent/US20020129535A1/en
Application filed by Individual filed Critical Individual
Priority to US10/365,022 priority Critical patent/US20040020099A1/en
Publication of US20040020099A1 publication Critical patent/US20040020099A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/38Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/46Sighting devices for particular applications
    • F41G1/473Sighting devices for particular applications for lead-indicating or range-finding, e.g. for use with rifles or shotguns

Definitions

  • the present invention generally is related to shooting, and particularly is related to providing aiming assistance for precision shooting at extended distances.
  • the nominal aiming point of a rifle-mounted aiming scope generally is the intersection of its reticle lines, which lines often are referred to as the “crosshairs.” These crosshairs represent the nominal impact point of the bullet, assuming the scope has been “zeroed in” for the rifle to which it is attached. However, as might be guessed, the bullet's actual point of impact varies as a function of many variables, with wind and ambient pressure/temperature prominent among those variables.
  • Wind in particular represents a difficult-to-account for variable that can dramatically alter a bullet's point of impact. Indeed, the need to properly account for wind increases significantly as the target ranges increases.
  • an expert shooter might use his or her knowledge and past experience to “estimate” the expected wind-induced leftward or rightward deflection of a bullet to be fired and make the corresponding aiming point compensation by shifting the scope's crosshairs either left or right of the desired impact point. Such an adjustment commonly is referred to as “windage hold-off.”
  • the present invention comprises an apparatus and methods to provide precision aiming assistance to a shooter. More particularly, an exemplary aiming system configured according to the present invention provides selective aiming assistance to the shooter based on obtaining a valid windage variable that is compensated for at least one of ambient temperature and ambient pressure. Because computation of a “hold-off” value by the aiming system is based on the availability of a valid windage variable, the precision aiming assistance it provides is available only to users in possession of the required windage compensation table, or in possession of one or more authorization values that enable access to the required windage compensation table by the aiming system.
  • the aiming system remains in a “standby” mode if a valid windage variable is not available, wherein no aiming assistance is provided to a user of the aiming system. If a valid windage variable is available (assuming any other parameters required for computation of the hold-off value also are available), the aiming system transitions to an “active” mode, wherein the system provides aiming assistance to the user.
  • active mode the aiming system obtains or otherwise receives a valid windage variable from a windage table that is based on ballistic coefficients that are compensated for at least one of an ambient temperature and an ambient pressure, and computes the hold-off value based on a defined set of parameters that includes at least the valid windage variable.
  • the aiming system 10 might, in some embodiments, transition to active mode, i.e., compute a hold-off value based on the user entering an invalid windage variable; however, such computation would result in the user being provided an incorrect hold-off value, and thus the “precision” aiming assistance of the aiming system 10 effectively is denied to shooters not in possession of a printed windage table 16 , or not authorized to access an electronically stored version of that table.
  • an exemplary defined set of parameters needed to compute the hold-off value includes a wind speed, a target range, and a valid windage variable.
  • the exemplary set of parameters may include one or more additional values such as ambient pressure and/or temperature, muzzle velocity, bullet weight, as needed for indexing into the windage compensation table to obtain the correct windage variable.
  • the aiming system comprises: a wind-reading scope to determine a wind speed; a windage compensation table to provide a windage variable, wherein the windage table is based on ballistic coefficients compensated for at least one of an ambient temperature and an ambient pressure; and a processing module to compute the hold-off value based on at least the wind speed and the windage variable.
  • an exemplary processing module comprises: an interface circuit to receive the windage variable; and a processor circuit programmed to compute the hold-off value for use with the wind-reading scope based on, in an exemplary embodiment, the target range, the wind speed, and the windage variable.
  • the processor circuit may use one or more additional parameters if it is required to obtain the windage variable based on indexing into an electronically stored copy of the windage compensation table.
  • the aiming system includes one or more parameter sensors for determining one or more of the defined set of parameters used in computing the hold-off value, such as temperature and/or pressure sensors, target ranging sensors, etc.
  • parameter sensors for determining one or more of the defined set of parameters used in computing the hold-off value, such as temperature and/or pressure sensors, target ranging sensors, etc.
  • such information is entered into the aiming system by a user, such as by inputting numeric data into a keypad included in the aiming system.
  • the interface circuit enabling receipt of the windage variable by the processor circuit, the details of which vary as needed.
  • the interface circuit includes a user interface, such as a keypad and optional display. With that arrangement, the user enters the windage variable via the keypad based on obtaining it from a printed windage compensation table.
  • the aiming system might store the windage compensation table as an electronic look-up table maintained in a memory circuit that it accesses responsive to receiving an authorization value input by the user via the keypad.
  • the aiming system further includes a security module that is communicatively coupled to the processing module.
  • a security module that is communicatively coupled to the processing module.
  • Such coupling is, in an exemplary embodiment, based on wireless signaling between the security module and processing module.
  • an exemplary interface circuit comprises a receiver circuit to receive wireless signals from the security module and to transfer data contained therein to the processor circuit.
  • the security module transmits an authorization value to the processing module that enables computation of the hold-off value, i.e., the security module enables the processing module to transition to active mode operation.
  • an exemplary security module sends an authorization value to the processing module that enables the processing module to enter active mode.
  • the authorization value comprises a valid windage variable and, as such, an exemplary security module comprises memory and logic circuits to store the windage compensation table and obtain the windage variable therefrom, and a transmitter circuit to transmit the windage variable to the processing module.
  • the windage compensation table is stored in the processing module and the security module transmits an authorization code as the authorization value, which code enables the processing module to access the locally stored windage compensation table.
  • the security module functions essentially as a passive transponder that provides a short-range enabling signal to the processing module, such that the processing module will not function, or at least will not transition to active mode operation unless the security module is nearby.
  • the security module itself may include a user interface for inputting authorization information and/or other parameters related to the computation of the hold-off value.
  • the present invention generally provides a precision aiming system that provides its aiming point assistance to users on a selective basis. That is, the precision aiming assistance provided by the present invention is available only where access to a valid windage variable has been enabled, directly or indirectly, by the user. Therefore, where the user does not possess the required windage compensation table from which valid windage variables are obtained, or does not possess access authorization to such information, the aiming system of the present invention does not provide aiming assistance to the user, or at least does not provide its highest level of precision aiming assistance to the user.
  • FIG. 1 is a diagram of an exemplary aiming system according to the present invention.
  • FIG. 2 is a diagram of an exemplary field-of-view display for a wind-reading scope of an exemplary aiming system.
  • FIG. 3 is a cutaway diagram of an exemplary display arrangement for the wind-reading scope.
  • FIG. 4 is a diagram of an exemplary functional arrangement for a processing module of an exemplary aiming system.
  • FIG. 5 is a diagram of exemplary details of the processing module.
  • FIG. 6 is a diagram of additional exemplary details of the processing module.
  • FIG. 7 is a diagram of exemplary details for the aiming system, including a security module.
  • FIG. 8 is a diagram of exemplary operating logic for the aiming system.
  • FIG. 1 illustrates a rifle 8 and an exemplary aiming system 10 that may be used to provide aiming assistance to a shooter.
  • the exemplary aiming system 10 comprises a processing module 12 , a wind-reading scope 14 , and a windage compensation table 16 .
  • the wind-reading scope 14 as shown serves as the aiming/targeting scope of the rifle 8
  • the present invention contemplates other arrangements, such as where the wind-reading scope 14 is a “spotting scope,” for example, such as might be used by the non-shooting person in a two-person sniper team.
  • the processing module 12 includes a user interface comprising a display 18 and keypad 20 , and optionally includes control inputs 22 A and 22 B, which, in some embodiments, may be used to aid or control determination of wind-speed by the wind-reading scope 14 .
  • An exemplary embodiment of wind-reading scope 14 optionally includes control inputs 22 A and 22 B, which may be conveniently positioned on a mounting portion 24 of the scope 14 , and further includes an elongated housing 26 containing sighting optics and a display 28 positioned in a viewing end of the scope 14 .
  • FIG. 2 depicts an exemplary arrangement of elements for display 28 as viewed through the scope's field of view.
  • a reticle 30 comprises crossing horizontal and vertical aiming lines, the intersection of which represents a “nominal” aiming point that is, absent any aiming compensation information, positioned at the desired point of bullet impact on the target image as viewed through the scope 14 .
  • the reticle 30 may be subdivided along regular intervals to assist with aiming point adjustment based on vertical and horizontal hold-off values. Such subdivisions may be based on minor/major tick marks, which may have a regular spacing determined in mils so that the tick marks may be used for determining target hold-off in mils.
  • Display 28 further includes additional display elements 32 that may be used to display wind speed and hold-off value information, both in mils and/or MOA format.
  • display elements 36 indicate whether hold-information represents Minutes-of-Angle (MOA) or polar mils (MILS), both of which are common units for expressing angular hold-off values for aiming point adjustment.
  • Display elements 38 A and 38 B may be used to indicate whether the computed hold-off is leftward or rightward oriented, while display element 40 may be used to display a wind speed value. Displaying wind speed value may be particularly useful where the user is expected to enter the wind speed into processing module 12 as a parameter input for hold-off computation.
  • a user of the aiming system 10 which in the depicted embodiment may be the shooter, matches the speed and direction of laterally translating indicia 34 , e.g., Liquid Crystal Display (LCD) or Light Emitting Diode (LED) elements, visible on display 28 to actual downrange wind conditions as observed through the field of view.
  • Such observations may be based on the user matching the speed and direction of the translating indicia 34 to the lateral movement of an observed heat mirage along some downrange point relative to the intended target.
  • Such matching operations may be based on the user controlling control inputs 22 A and 22 B, which set the direction and translation speed.
  • control inputs 22 A and 22 B are located at processing module 12 .
  • translation control signals pass from module 12 to scope 14 to control indicia translation.
  • the control inputs 22 A and 22 B are located at scope 14 , then the indicia control signals may be locally generated at scope 14 .
  • wind speed may be determined at module 12 or at scope 14 , in which case, in an exemplary embodiment, scope 14 provides a wind speed value to module 12 for use in hold-off computations.
  • indicia 34 may be spaced apart according to the reticle tick mark spacing such that final aiming hold-off assistance is provided to the user by illuminating the individual element within the set of indicia 34 that most closely corresponds to the calculated left or right hold-off adjusted aiming point.
  • FIG. 3 illustrates exemplary details for display 28 , wherein a display controller 50 controls a display circuit 52 (which may include separate or combined LCD and/or LED elements for display elements 32 and indicia 34 ), and wherein display circuit 52 is supported by a transparent member 54 , which may comprise a portion of the scope's optical system.
  • a display controller 50 controls a display circuit 52 (which may include separate or combined LCD and/or LED elements for display elements 32 and indicia 34 ), and wherein display circuit 52 is supported by a transparent member 54 , which may comprise a portion of the scope's optical system.
  • a user of the scope 14 is presented with a scope image comprising a field of view for viewing an image of the downrange target and one or more overlaid display elements, including indicia 34 .
  • Display controller 50 may be a dedicated control circuit, or may be a general purpose logic circuit programmed to control display circuit 52 and, optionally, to interface with processing module 12 via interface conductors 56 , which may be externally connected to processing module 12 using strain relief 58 and cable 60 .
  • interface conductors 56 which may be externally connected to processing module 12 using strain relief 58 and cable 60 .
  • a wireless interface may be used to communicatively couple circuit elements in scope 14 with circuit elements in processing module 12 .
  • economic and packaging advantages may be derived from implementing display 28 using chip-on-glass manufacturing techniques, and that those techniques or other advanced manufacturing processes would allow implementation of the processing module 12 as part of scope 14 , and that such integration is contemplated within the present invention.
  • aiming system 10 provides precision aiming assistance to a shooter based on its determination of expected wind effect on the round (bullet) to be fired from the rifle 8 .
  • the aiming system 10 bases its computation of aiming hold-off, i.e., a lateral aiming point adjustment relative to the intended target to compensate for downrange crosswind, on a windage variable that is itself compensated for environmental effects, such ambient temperature and pressure.
  • aiming hold-off i.e., a lateral aiming point adjustment relative to the intended target to compensate for downrange crosswind
  • a windage variable that is itself compensated for environmental effects, such ambient temperature and pressure.
  • Use of the windage variable enables the aiming system 10 to determine extremely precise hold-off values, thereby enabling deadly accuracy at extended shooting ranges.
  • x equals the computed lateral displacement, which may be expressed in terms of aiming hold-off
  • wind speed is in miles-per-hour
  • range is in yards to the intended target
  • A is a wind drift factor for a particular ballistic coefficient value, that is determined using a set distance and set atmospheric conditions and is invariant with respect to actual temperature and pressure conditions.
  • the drift compensation factor “A” in this example 10 was derived by dividing the reference drift of the projectile, for example, a 173 grain boat-tail full metal jacket match bullet, in minutes of angle into the actual range in meters with the last zero of the range dropped.
  • the drift factor is not compensated in any way for changes in atmospheric pressure or temperature. This failure to compensate for environmental conditions results in a “built in” aiming hold-off error that arises whenever the actual atmospheric conditions differ from those conditions used to obtain the fixed reference drift value.
  • the reference conditions are approximately 60 degrees Fahrenheit and 29.53′′ of barometric pressure.
  • a further shortcoming of the above hold-off value computation is that the predicted wind drift is generated in minutes of angle but most aiming scopes are based on mils, which requires a conversion factor of 3.44. Thus, the shooter is required to take the extra step of converting the MOA-based hold-off value to a mils-based hold-off value that can be used with the aiming reticle of the scope.
  • the windage compensation table 16 is implemented as a plurality of windage variable values that are derived from ballistic coefficients compensated for temperature and/or pressure effects. That is, rather than the same ballistic coefficient being used irrespective of actual temperature and pressure, the present invention contemplates the use of ballistic coefficients that reflect pressure and/or temperature changes.
  • obtaining the correct windage variable in a particular shooting scenario comprises indexing into table 16 based on temperature and/or pressure and muzzle velocity to obtain the appropriate compensated ballistic coefficient, and then indexing into the tabulated windage variables based on the actual target range and the previously obtained compensated ballistic coefficient.
  • the windage compensation table 16 may be implemented as a set of printed “cards,” which may be laminated for durability.
  • the tabulated data embodied in the windage compensation table consists of matrix data (e.g., row/column data) that allows the user to locate a compensated ballistic coefficient using the current outside temperature and barometric pressure. By reading down from the current temperature and across from the current barometric pressure, the user obtains the corrected ballistic coefficient. The user then uses the compensated ballistic coefficient to index into a windage variable section of the windage compensation table 16 to obtain the appropriate windage variable. That indexing may be based on, for example, reading down from the ballistic coefficient and across from the muzzle velocity. That is, the windage variables may be arranged in row/column form by increasing (or decreasing) ballistic coefficient and increasing (or decreasing) muzzle velocity.
  • the compensated ballistic coefficient portion of the windage compensation table might have the following structure and data: TABLE 1 Exemplary Compensated Drag Coefficients for Nominal Drag Coefficient of 0.66 Barometric Temperature (degrees F) Pressure ⁇ 30 ⁇ 20 ⁇ 10 0 10 20 30 40 19 0.850 0.869 0.889 0.909 0.929 0.949 0.968 0.988 19.5 0.828 0.847 0.866 0.886 0.905 0.924 0.944 0.963 20 0.807 0.826 0.845 0.864 0.882 0.901 0.920 0.939 20.5 0.788 0.806 0.824 0.843 0.861 0.879 0.898 0.916 21 0.769 0.787 0.805 0.822 0.840 0.858 0.876 0.894 21.5 0.751 0.768 0.786 0.803 0.821 0.838 0.856 0.873 22 0.734 0.751 0.768 0.785
  • the windage compensation table 16 may contain tabulated compensation and windage variable data for a variety of bullet weights/nominal coefficients and muzzle velocities, and that such organization complements both printed and electronically stored embodiments of windage compensation table 16 .
  • the user after obtaining the correct windage variable from the windage compensation table 16 , the user then enters it into the processing module 12 of the aiming system 10 .
  • the user after entering the windage variable into the processing module, the user need only to enter the range to the target and adjust the speed of the wind-reading scope's translating indicia 34 to match that of the downrange mirage or moving target.
  • the processing module 12 determines the wind speed based on the translation rate of the indicia 34 , and uses that value, the target range, and the windage variable to compute the hold-off value.
  • the hold-off value may be provided to the user in mils, thus saving a conversion step and providing the shooter with a hold-off value that corresponds to the mils-based reticle markings appearing within the field of view of wind-reading scope 14 .
  • y equals the windage variable as obtained from the windage table 16
  • the wind speed is obtained by or from the wind-reading scope 14 , as was explained in the parent application and further detailed later herein. While the above details illustrate an exemplary windage table organization, those skilled in the art will recognize that other organizational schemes may be used for the data stored in the windage compensation table 16 , and that different indexing logic may be needed accordingly.
  • the windage compensation table 16 may be embodied in a variety of formats.
  • the windage compensation table may be embodied in one or more printed tables, as described in above and as shown in FIG. 1. If so, only a user in possession of the printed (or electronically stored) windage compensation table 16 can enter a valid windage variable into processing module 12 and, therefore, the precision aiming assistance provided by aiming system 10 is denied to would-be users not in possession of the windage compensation table 16 .
  • FIG. 4 illustrates a general functional arrangement for the circuits comprising processing module 12 , although those skilled in the art will appreciate that this exemplary arrangement may be varied as needed or desired without departing from the underlying functionality.
  • processing module 12 comprises a processor circuit 70 to compute the hold-off value, an interface circuit 72 to receive or otherwise access the windage variable and thus enable computation of the hold-off value, and a scope interface 74 , the functionality of which varies in dependence upon whether the scope 14 determines wind speed on its own, or whether the processing module determines wind speed based on the control inputs 18 . That is, in at least one embodiment, the processing module 12 determines the wind-speed based on its knowledge of the translation rate of the indicia 34 . Thus, where the user sights through the scope 14 and adjusts the indicia translation rate to match that of, say, a downrange wind mirage, the processing module 12 can thus infer the downrange crosswind speed. In other embodiments where the scope 14 is not communicatively coupled to the processing module 12 , the scope interface 74 may be omitted.
  • FIG. 5 depicts exemplary details for processing module 12 , wherein processor circuit 70 comprises a logic circuit 80 and program memory 82 , and an optional memory circuit 84 stores windage compensation table 16 as an electronically stored look-up table accessed through interface circuit 72 configured as a memory interface circuit.
  • interface circuit 72 comprises a user interface 86 that comprises a keypad interface 88 and a keypad 90 , and a display interface 92 with an associated display 94 .
  • an exemplary scope interface 74 comprises a processor interface 96 , a data scope interface circuit 98 , and a control circuit 100 that is associated with the wind-matching control input 18 A and 18 B.
  • the supporting program memory 82 generally includes computer instructions for implementing the present invention.
  • the logic circuit 80 might comprise a microprocessor, such as the 8-bit M68HC05 or 16-bit M68HC12 microprocessors from MOTOROLA, or the 16-bit MCS296 series of microprocessors from INTEL.
  • the particular microprocessor chosen simply represents a design choice based on costs and needs, and it should be understood that wide variation is possible in this regard.
  • the processing module 12 and/or the electronics of scope 14 may be implemented using custom integrated circuits, such as one or more custom Application Specific Integrated Circuits (ASICS), Complex Programmable Logic Devices (CPLDs), and or Field Programmable Gate Arrays (FPGAs).
  • ASICS Application Specific Integrated Circuits
  • CPLDs Complex Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • logic circuit 80 might be implemented as an integrated microprocessor. Such microprocessors typically are termed “microcontrollers” and it should be understood that the term microprocessor as used herein encompasses such highly integrated microcontrollers.
  • logic circuit 80 might comprise an integrated microprocessor having its own memory, its own interface and control circuitry (digital I/O, analog-to-digital conversion and digital-to-analog conversion, Pulse Width Modulators (PWMs), timer/control circuits, etc.).
  • PWMs Pulse Width Modulators
  • a microprocessor-based timing control circuit in combination with digital bit I/O or memory mapped I/O represents an exemplary approach to controlling the translation rate of indicia 34 .
  • program memory 82 may comprise an integrated portion of logic circuit 80 and, if the interface circuit 72 is implemented as a memory interface circuit for accessing the windage compensation table 16 stored in memory circuit 84 , it too may be integrated into logic circuit 80 . Indeed, memory circuit 84 might be integrated into logic circuit 80 . In an exemplary embodiment, whether integrated or not, memory circuit 84 comprises non-volatile, erasable memory, such as FLASH or EEPROM memory that can be loaded with windage compensation table 16 .
  • processing module 12 is integrated within the wind-reading scope 14
  • the microprocessor selected for logic circuit 80 may integrate display controller 50 , and thus would provide both computation of the hold-off value as well as wind-speed determination and control of display 28 .
  • the range of such implementation variations may be integrated.
  • the interface circuit 72 preferably includes the user interface 86 detailed above to support such data entry. It should be noted that the user might input other values via user interface 86 for use by processing module 12 . For example, where the user enters the windage variable as data input to keypad 90 , he or she might also enter a target range and, if the processing module 12 does not obtain wind speed from the wind-reading scope 14 , the user might also key in a wind speed value.
  • processor circuit 70 determines a precision hold-off value for the user according to, for example, Equation (2) as presented earlier herein.
  • processing module 12 may be programmed to operate in a standby mode until it receives all in a defined set of parameters needed for computation of the hold-off value, and further programmed to transition to operation in an active mode, wherein it computes the hold-off value, responsive to receiving all of the required parameters.
  • the precision aiming assistance provided by the aiming system 10 is denied unless the user provides the processing module with the required windage variable or otherwise enables it to access such information.
  • the processing module 12 whether or not integrated into scope 14 , might be outfitted with one or more parameter sensors, such as shown in FIG. 6. With this arrangement, the processing module 12 obtains one or more of the parameters required for computation of the hold-off value without need for direct data input by the user or from another source.
  • the processor circuit 70 might be communicatively coupled to one or all of an ambient pressure sensor 102 , a temperature sensor 104 , and a ranging sensor 106 .
  • FIG. 7 illustrates another exemplary embodiment of aiming system 10 , wherein the aiming system 10 further includes a security module 110 .
  • the security module 110 provides the processing module an authorization value in the form of an authorization code. Receipt of a valid code by the processing module 12 enables it to access memory circuit 84 and thereby obtain the correct windage variable from its locally stored copy of windage compensation table 16 .
  • the authorization value sent from the security module 110 to the processing module 12 is the windage variable, although it may be in an encoded form.
  • the security module 110 includes a locally stored copy of the windage compensation table 16 .
  • an exemplary embodiment of the security module 110 comprises a logic circuit 112 , e.g., a microprocessor circuit, a user interface 114 , a memory circuit 116 , and a transmitter circuit 118 .
  • the user still might be required to enter an authorization code into the security module 110 to thereby enable access to the stored windage compensation table 16 and subsequent transmission of the windage variable to the processing module 12 .
  • the user may be required to enter other parameters as needed, such as pressure, temperature, muzzle velocity, target range, etc., such that the logic circuit 112 is able to properly index into the stored windage compensation table 16 and obtain the correct windage variable.
  • Transmit circuit 118 may be designed for wired or wireless coupling to processing module 12 .
  • transmission is wireless and may be optical, but transmit circuit 118 is preferably implemented as a short-range radio frequency transmitter for transmitting data to the processing module 12 .
  • security module 110 simply functions as a “black box” that must be nearby to processing module 12 to enable computation of the windage variable. That is, in one embodiment of aiming system 10 , the processing module 12 would not compute the hold-off value, or at least would not make it available for use, unless it received the require enabling signal(s) from the security module 110 .
  • the security module 110 can be varied as needed or desired.
  • the security module 110 might include one or more parameter sensors, e.g., pressure, temperature, range, etc., such that it automatically determines one or more of the parameters needed to either index into the windage compensation table 16 , and/or to compute Equation (2) above.
  • the aiming system 10 operates as a selectively enabled aiming system that provides security features in the sense that it remains in a standby mode until all required parameters are available.
  • the windage variable As one of the primary parameters required for computation of the windage hold-off value is the windage variable, aiming assistance is not provided unless a valid windage variable is available.
  • FIG. 8 thus provides an exemplary illustration of operating logic for aiming system 10 that is consistent with its secure operation.
  • processing begins with receipt of a parameter required for computation of the hold-off value (Step 200 ). If the received parameters is not the last one needed (Step 202 ), the processing module 12 remains in standby mode awaiting the receipt of all required parameters (Steps 204 and 202 ).
  • processing module 12 If all needed parameters are received or otherwise available in processing module 12 , processing continues with optional decoding and validation of the windage variable or, more generally, an authorization value (Steps 206 and 210 ). For example, where the processing module 12 receives an authorization value from the security module 110 as an electromagnetic signal, the processing module 10 may decode the received value, such as by performing a CRC or cryptographic check, and/or validate the received value, such as by performing a bounds check or other “sanity” check on the value.
  • processing continues with the processing module 12 transitioning into active mode (Step 212 ).
  • active mode the processing module 12 computes the hold-off value, preferably by using the windage variable, the wind speed, and the target range (Step 214 ), and then displays or otherwise makes the hold-off value available to the user (Step 216 ).
  • Making the hold-off value available to the user may comprise displaying a numeric value, such as a MOA or a mils hold-off value and left/right direction on display 18 , and/or, if processing module 12 is communicatively coupled to wind-reading scope 14 , transferring the hold-off information to scope 14 for viewing on display 28 .
  • the hold-information may be transferred to the scope as data or as corresponding control signal information. For example, the data might be converted into a display driver control signal.
  • the windage compensation table that enables computation of the hold-off value provided by the aiming system 10 may be stored in the form of printed tables for manual input into the processing module 12 (or security module 110 ), or may be stored electronically in look up table form (again in the processing module 12 or in the security module 110 ).
  • the present invention is not limited by the foregoing discussion and its accompanying drawings, but rather is limited only by the following claims and the reasonable equivalents thereof.

Abstract

An aiming system provides precision aiming assistance to a user based on the availability of a windage variable that is used in the computation of a windage hold-off. In an exemplary embodiment, the aiming system comprises a processing module, a wind-reading scope, and a windage compensation table comprising tabulated windage variables. In one or more other embodiments, the aiming system further comprises a security module, which may be used to store the windage compensation table in electronic form, store an authorization code, or otherwise serve as an enabling device for operation of the aiming system. Regardless, unless a valid windage variable as obtained from the windage compensation table is made available to the processing module, the aiming system does not compute a precision hold-off. If the windage variable is available, along with any other needed parameter, such as target range and wind speed, the processing module computes the hold-off value.

Description

    RELATED APPLICATIONS
  • The present invention claims priority under 35 U.S.C. § 120 from the co-pending U.S. application entitled “PASSIVE WIND READING SCOPE,” filed on Mar. 13, 2001, and assigned Ser. No. 09/805,608, and which is incorporated in its entirety herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • The present invention generally is related to shooting, and particularly is related to providing aiming assistance for precision shooting at extended distances. [0002]
  • Recreational shooting at customary target distances as compared to precision shooting at extended ranges, e.g., ranges approaching or exceeding one-thousand yards, is like comparing a casual round of weekend golf to match play at a professional golf tournament. In other words, there essentially is no comparison between the skill set required for recreational shooting and the skill set required for successful, long-range shooting. Indeed, the knowledge, skill, and equipment required for the reliable engagement of targets at extended ranges are possessed by few shooters. Such shooters primarily are members of select military units or special-purpose law enforcement agencies, although a limited number of them may be private individuals engaged in specialized recreational shooting. [0003]
  • Regardless, the cumulative effects of environmental and systemic influences on bullet trajectory become so multiplied over extended shooting distances that reliable target engagement requires the shooter to understand and compensate for such influences. Oftentimes, such compensation manifests itself as an “aiming point adjustment,” wherein the shooter's aiming point is adjusted left or right, and/or up or down from the nominal aiming point of the weapon as compensation for the expected bullet trajectory in consideration of the aforementioned influences. [0004]
  • For example, the nominal aiming point of a rifle-mounted aiming scope generally is the intersection of its reticle lines, which lines often are referred to as the “crosshairs.” These crosshairs represent the nominal impact point of the bullet, assuming the scope has been “zeroed in” for the rifle to which it is attached. However, as might be guessed, the bullet's actual point of impact varies as a function of many variables, with wind and ambient pressure/temperature prominent among those variables. [0005]
  • Wind in particular represents a difficult-to-account for variable that can dramatically alter a bullet's point of impact. Indeed, the need to properly account for wind increases significantly as the target ranges increases. In compensating for wind, an expert shooter might use his or her knowledge and past experience to “estimate” the expected wind-induced leftward or rightward deflection of a bullet to be fired and make the corresponding aiming point compensation by shifting the scope's crosshairs either left or right of the desired impact point. Such an adjustment commonly is referred to as “windage hold-off.”[0006]
  • At extreme shooting distances or with significant crosswind, such hold-off may amount to several feet of sideways aiming point compensation. Of course, the “trick” comes in accurately reading the downrange wind speed, and then in understanding how that value of wind speed will affect the bullet's flight. [0007]
  • Existing compensation methods typically generate windage-based aiming point compensation values based on simplified relation between target range and estimated wind speed. More particularly, the conventional art does not consider the changes in wind effects resulting in changing ambient temperature and atmospheric pressure. In other words, the conventional approach to windage hold-off estimation would predict the same wind effect for the same target range and wind speed regardless of even dramatic differences in temperature and/or pressure. [0008]
  • One could obtain potentially dramatic gains in long-range accuracy by incorporating such environmental parameters into windage calculations. However, one potential downside of such gains in accuracy is that a larger number of shooters become capable of highly accurate, long-range shooting. In other words, improving windage compensation would make a larger population of shooters capable of deadly accurate long-range shooting. To avoid such indiscriminate empowerment of shooters, some of whom might use the very same accuracy improvements against the intended beneficiaries of the improved windage compensation, an ideal aiming system would be structured such that its operation, or at least its improved accuracy, would be denied to unauthorized users. [0009]
  • SUMMARY OF THE INVENTION
  • The present invention comprises an apparatus and methods to provide precision aiming assistance to a shooter. More particularly, an exemplary aiming system configured according to the present invention provides selective aiming assistance to the shooter based on obtaining a valid windage variable that is compensated for at least one of ambient temperature and ambient pressure. Because computation of a “hold-off” value by the aiming system is based on the availability of a valid windage variable, the precision aiming assistance it provides is available only to users in possession of the required windage compensation table, or in possession of one or more authorization values that enable access to the required windage compensation table by the aiming system. [0010]
  • For example, in an exemplary embodiment, the aiming system remains in a “standby” mode if a valid windage variable is not available, wherein no aiming assistance is provided to a user of the aiming system. If a valid windage variable is available (assuming any other parameters required for computation of the hold-off value also are available), the aiming system transitions to an “active” mode, wherein the system provides aiming assistance to the user. Thus, in active mode, the aiming system obtains or otherwise receives a valid windage variable from a windage table that is based on ballistic coefficients that are compensated for at least one of an ambient temperature and an ambient pressure, and computes the hold-off value based on a defined set of parameters that includes at least the valid windage variable. Note that the aiming [0011] system 10 might, in some embodiments, transition to active mode, i.e., compute a hold-off value based on the user entering an invalid windage variable; however, such computation would result in the user being provided an incorrect hold-off value, and thus the “precision” aiming assistance of the aiming system 10 effectively is denied to shooters not in possession of a printed windage table 16, or not authorized to access an electronically stored version of that table.
  • In any case, if the aiming system receives the windage variable, such as by receiving data input from a user having access to a printed or electronically stored copy of the windage compensation table, an exemplary defined set of parameters needed to compute the hold-off value includes a wind speed, a target range, and a valid windage variable. Where the aiming system includes a locally stored copy of the windage compensation table, the exemplary set of parameters may include one or more additional values such as ambient pressure and/or temperature, muzzle velocity, bullet weight, as needed for indexing into the windage compensation table to obtain the correct windage variable. [0012]
  • Thus, in an exemplary embodiment, the aiming system comprises: a wind-reading scope to determine a wind speed; a windage compensation table to provide a windage variable, wherein the windage table is based on ballistic coefficients compensated for at least one of an ambient temperature and an ambient pressure; and a processing module to compute the hold-off value based on at least the wind speed and the windage variable. [0013]
  • In turn, an exemplary processing module comprises: an interface circuit to receive the windage variable; and a processor circuit programmed to compute the hold-off value for use with the wind-reading scope based on, in an exemplary embodiment, the target range, the wind speed, and the windage variable. As noted, the processor circuit may use one or more additional parameters if it is required to obtain the windage variable based on indexing into an electronically stored copy of the windage compensation table. [0014]
  • With regard to such parameters, in at least one embodiment, the aiming system includes one or more parameter sensors for determining one or more of the defined set of parameters used in computing the hold-off value, such as temperature and/or pressure sensors, target ranging sensors, etc. However, in other embodiments, such information is entered into the aiming system by a user, such as by inputting numeric data into a keypad included in the aiming system. [0015]
  • Additional exemplary variations arise with regard to implementation of the interface circuit enabling receipt of the windage variable by the processor circuit, the details of which vary as needed. For example, in one exemplary embodiment, the interface circuit includes a user interface, such as a keypad and optional display. With that arrangement, the user enters the windage variable via the keypad based on obtaining it from a printed windage compensation table. Alternatively, the aiming system might store the windage compensation table as an electronic look-up table maintained in a memory circuit that it accesses responsive to receiving an authorization value input by the user via the keypad. [0016]
  • In still other embodiments, the aiming system further includes a security module that is communicatively coupled to the processing module. Such coupling is, in an exemplary embodiment, based on wireless signaling between the security module and processing module. Thus, in this embodiment, an exemplary interface circuit comprises a receiver circuit to receive wireless signals from the security module and to transfer data contained therein to the processor circuit. Thus, the security module transmits an authorization value to the processing module that enables computation of the hold-off value, i.e., the security module enables the processing module to transition to active mode operation. [0017]
  • As such, an exemplary security module sends an authorization value to the processing module that enables the processing module to enter active mode. In one embodiment the authorization value comprises a valid windage variable and, as such, an exemplary security module comprises memory and logic circuits to store the windage compensation table and obtain the windage variable therefrom, and a transmitter circuit to transmit the windage variable to the processing module. [0018]
  • Alternatively, the windage compensation table is stored in the processing module and the security module transmits an authorization code as the authorization value, which code enables the processing module to access the locally stored windage compensation table. In still other embodiments, the security module functions essentially as a passive transponder that provides a short-range enabling signal to the processing module, such that the processing module will not function, or at least will not transition to active mode operation unless the security module is nearby. Note, too, that in all such embodiments, the security module itself may include a user interface for inputting authorization information and/or other parameters related to the computation of the hold-off value. [0019]
  • Of course, additional features and advantages of the present invention will be apparent to those skilled in the art upon reading the following detailed description and viewing the accompanying figures. However, such information represents exemplary embodiments of the invention and it should be understood that the present invention generally provides a precision aiming system that provides its aiming point assistance to users on a selective basis. That is, the precision aiming assistance provided by the present invention is available only where access to a valid windage variable has been enabled, directly or indirectly, by the user. Therefore, where the user does not possess the required windage compensation table from which valid windage variables are obtained, or does not possess access authorization to such information, the aiming system of the present invention does not provide aiming assistance to the user, or at least does not provide its highest level of precision aiming assistance to the user.[0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of an exemplary aiming system according to the present invention. [0021]
  • FIG. 2 is a diagram of an exemplary field-of-view display for a wind-reading scope of an exemplary aiming system. [0022]
  • FIG. 3 is a cutaway diagram of an exemplary display arrangement for the wind-reading scope. [0023]
  • FIG. 4 is a diagram of an exemplary functional arrangement for a processing module of an exemplary aiming system. [0024]
  • FIG. 5 is a diagram of exemplary details of the processing module. [0025]
  • FIG. 6 is a diagram of additional exemplary details of the processing module. [0026]
  • FIG. 7 is a diagram of exemplary details for the aiming system, including a security module. [0027]
  • FIG. 8 is a diagram of exemplary operating logic for the aiming system. [0028]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 illustrates a [0029] rifle 8 and an exemplary aiming system 10 that may be used to provide aiming assistance to a shooter. The exemplary aiming system 10 comprises a processing module 12, a wind-reading scope 14, and a windage compensation table 16. It should be understood that while the wind-reading scope 14 as shown serves as the aiming/targeting scope of the rifle 8, the present invention contemplates other arrangements, such as where the wind-reading scope 14 is a “spotting scope,” for example, such as might be used by the non-shooting person in a two-person sniper team.
  • In the exemplary embodiment illustrated, the [0030] processing module 12 includes a user interface comprising a display 18 and keypad 20, and optionally includes control inputs 22A and 22B, which, in some embodiments, may be used to aid or control determination of wind-speed by the wind-reading scope 14. An exemplary embodiment of wind-reading scope 14 optionally includes control inputs 22A and 22B, which may be conveniently positioned on a mounting portion 24 of the scope 14, and further includes an elongated housing 26 containing sighting optics and a display 28 positioned in a viewing end of the scope 14.
  • FIG. 2 depicts an exemplary arrangement of elements for [0031] display 28 as viewed through the scope's field of view. A reticle 30 comprises crossing horizontal and vertical aiming lines, the intersection of which represents a “nominal” aiming point that is, absent any aiming compensation information, positioned at the desired point of bullet impact on the target image as viewed through the scope 14. The reticle 30 may be subdivided along regular intervals to assist with aiming point adjustment based on vertical and horizontal hold-off values. Such subdivisions may be based on minor/major tick marks, which may have a regular spacing determined in mils so that the tick marks may be used for determining target hold-off in mils.
  • [0032] Display 28 further includes additional display elements 32 that may be used to display wind speed and hold-off value information, both in mils and/or MOA format. In an exemplary embodiment, display elements 36 indicate whether hold-information represents Minutes-of-Angle (MOA) or polar mils (MILS), both of which are common units for expressing angular hold-off values for aiming point adjustment. Display elements 38A and 38B may be used to indicate whether the computed hold-off is leftward or rightward oriented, while display element 40 may be used to display a wind speed value. Displaying wind speed value may be particularly useful where the user is expected to enter the wind speed into processing module 12 as a parameter input for hold-off computation.
  • In exemplary operation, a user of the aiming [0033] system 10, which in the depicted embodiment may be the shooter, matches the speed and direction of laterally translating indicia 34, e.g., Liquid Crystal Display (LCD) or Light Emitting Diode (LED) elements, visible on display 28 to actual downrange wind conditions as observed through the field of view. Such observations may be based on the user matching the speed and direction of the translating indicia 34 to the lateral movement of an observed heat mirage along some downrange point relative to the intended target. Such matching operations may be based on the user controlling control inputs 22A and 22B, which set the direction and translation speed.
  • Thus, where the [0034] control inputs 22A and 22B are located at processing module 12, translation control signals pass from module 12 to scope 14 to control indicia translation. If the control inputs 22A and 22B are located at scope 14, then the indicia control signals may be locally generated at scope 14. In either case, wind speed may be determined at module 12 or at scope 14, in which case, in an exemplary embodiment, scope 14 provides a wind speed value to module 12 for use in hold-off computations. Note that in at least one embodiment, indicia 34 may be spaced apart according to the reticle tick mark spacing such that final aiming hold-off assistance is provided to the user by illuminating the individual element within the set of indicia 34 that most closely corresponds to the calculated left or right hold-off adjusted aiming point.
  • FIG. 3 illustrates exemplary details for [0035] display 28, wherein a display controller 50 controls a display circuit 52 (which may include separate or combined LCD and/or LED elements for display elements 32 and indicia 34), and wherein display circuit 52 is supported by a transparent member 54, which may comprise a portion of the scope's optical system. Thus, a user of the scope 14 is presented with a scope image comprising a field of view for viewing an image of the downrange target and one or more overlaid display elements, including indicia 34.
  • [0036] Display controller 50 may be a dedicated control circuit, or may be a general purpose logic circuit programmed to control display circuit 52 and, optionally, to interface with processing module 12 via interface conductors 56, which may be externally connected to processing module 12 using strain relief 58 and cable 60. Of course, such details may be altered as needed or desired. For example, a wireless interface may be used to communicatively couple circuit elements in scope 14 with circuit elements in processing module 12. Also, it should be noted that economic and packaging advantages may be derived from implementing display 28 using chip-on-glass manufacturing techniques, and that those techniques or other advanced manufacturing processes would allow implementation of the processing module 12 as part of scope 14, and that such integration is contemplated within the present invention.
  • Regardless, aiming [0037] system 10 provides precision aiming assistance to a shooter based on its determination of expected wind effect on the round (bullet) to be fired from the rifle 8. Unlike conventional ballistic computers, the aiming system 10 bases its computation of aiming hold-off, i.e., a lateral aiming point adjustment relative to the intended target to compensate for downrange crosswind, on a windage variable that is itself compensated for environmental effects, such ambient temperature and pressure. Use of the windage variable enables the aiming system 10 to determine extremely precise hold-off values, thereby enabling deadly accuracy at extended shooting ranges.
  • In contrast, conventional ballistic processing bases wind effect computations on fixed windage factors, which may be expressed as, [0038] x = Wind speed × Range A , ( 1 )
    Figure US20040020099A1-20040205-M00001
  • where x equals the computed lateral displacement, which may be expressed in terms of aiming hold-off, wind speed is in miles-per-hour, range is in yards to the intended target, and A is a wind drift factor for a particular ballistic coefficient value, that is determined using a set distance and set atmospheric conditions and is invariant with respect to actual temperature and pressure conditions. Thus, for the same target range and crosswind speed values, wind drift estimation uses the same constant “A” and thus predicts the same wind drift effect even where the ambient temperature and/or ambient pressure vary significantly between two different shooting scenarios. [0039]
  • More particularly, with conventional shooting techniques, long range competition or target shooters use the advertised ballistic coefficient of a given bullet, enter this information into a ballistic program and record the predicted wind drift for a given distance and given cross-wind speed. This value might be thought of as a “reference drift” value. Such a shooter would, once positioned at the shooting distance, then use a spotting scope to estimate wind speed by eye. The actual shooting distance and estimated wind speed allow the shooter to cross-reference the wind chart to obtain an expected drift for his or her estimated distance and wind speed. However, this expected drift is based on the reference drift value irrespective of changes in atmospheric conditions, i.e., changes in pressure and temperature, which affect air density and thus alter the bullet's drift characteristics. [0040]
  • Because such techniques do not compensate for changes in temperature and barometric pressure, if the actual shooting conditions are not reasonably close to the laboratory conditions existent when the ballistic coefficient for the shooter's bullet was established, the bullet's actual drift characteristics may deviate significantly from the predicted drift characteristics. Thus, using the conventional reference drift value to estimate or otherwise predict the bullet's actual drift under actual shooting conditions can induce significant errors. [0041]
  • As an example of conventional drift compensation, assume that the shooter's bullet, as based on its advertised ballistic coefficient, has a reference drift value of 10 MOA at 1000 meters, then, for an actual target range of 700 meters and an actual crosswind speed of 5 miles per hour, Equation (1) yields (5×7)/10=3.5, which indicates a 3.5 MOA adjustment to compensate for crosswind. The drift compensation factor “A” in this example 10, and was derived by dividing the reference drift of the projectile, for example, a 173 grain boat-tail full metal jacket match bullet, in minutes of angle into the actual range in meters with the last zero of the range dropped. As another example, assume that, for a given bullet, its reference drift value is 8 MOA at 1000 meters. Thus, the calculated drift compensation factor would be 100/8=12.5, which might be rounded down to 12 or up to 13 for ease of use. [0042]
  • However, as before, the drift factor is not compensated in any way for changes in atmospheric pressure or temperature. This failure to compensate for environmental conditions results in a “built in” aiming hold-off error that arises whenever the actual atmospheric conditions differ from those conditions used to obtain the fixed reference drift value. Typically, the reference conditions are approximately 60 degrees Fahrenheit and 29.53″ of barometric pressure. [0043]
  • A further shortcoming of the above hold-off value computation is that the predicted wind drift is generated in minutes of angle but most aiming scopes are based on mils, which requires a conversion factor of 3.44. Thus, the shooter is required to take the extra step of converting the MOA-based hold-off value to a mils-based hold-off value that can be used with the aiming reticle of the scope. [0044]
  • According to the present invention, the windage compensation table [0045] 16 is implemented as a plurality of windage variable values that are derived from ballistic coefficients compensated for temperature and/or pressure effects. That is, rather than the same ballistic coefficient being used irrespective of actual temperature and pressure, the present invention contemplates the use of ballistic coefficients that reflect pressure and/or temperature changes. Thus, in an exemplary embodiment, obtaining the correct windage variable in a particular shooting scenario comprises indexing into table 16 based on temperature and/or pressure and muzzle velocity to obtain the appropriate compensated ballistic coefficient, and then indexing into the tabulated windage variables based on the actual target range and the previously obtained compensated ballistic coefficient.
  • The windage compensation table [0046] 16 may be implemented as a set of printed “cards,” which may be laminated for durability. In an exemplary embodiment, the tabulated data embodied in the windage compensation table consists of matrix data (e.g., row/column data) that allows the user to locate a compensated ballistic coefficient using the current outside temperature and barometric pressure. By reading down from the current temperature and across from the current barometric pressure, the user obtains the corrected ballistic coefficient. The user then uses the compensated ballistic coefficient to index into a windage variable section of the windage compensation table 16 to obtain the appropriate windage variable. That indexing may be based on, for example, reading down from the ballistic coefficient and across from the muzzle velocity. That is, the windage variables may be arranged in row/column form by increasing (or decreasing) ballistic coefficient and increasing (or decreasing) muzzle velocity.
  • An example, for a 700 grain, .50 caliber full metal jacket bullet, the compensated ballistic coefficient portion of the windage compensation table might have the following structure and data: [0047]
    TABLE 1
    Exemplary Compensated Drag Coefficients for Nominal Drag
    Coefficient of 0.66
    Barometric Temperature (degrees F)
    Pressure −30 −20 −10 0 10 20 30 40
    19 0.850 0.869 0.889 0.909 0.929 0.949 0.968 0.988
    19.5 0.828 0.847 0.866 0.886 0.905 0.924 0.944 0.963
    20 0.807 0.826 0.845 0.864 0.882 0.901 0.920 0.939
    20.5 0.788 0.806 0.824 0.843 0.861 0.879 0.898 0.916
    21 0.769 0.787 0.805 0.822 0.840 0.858 0.876 0.894
    21.5 0.751 0.768 0.786 0.803 0.821 0.838 0.856 0.873
    22 0.734 0.751 0.768 0.785 0.802 0.819 0.836 0.853
    22.5 0.718 0.734 0.751 0.768 0.784 0.801 0.818 0.834
    23 0.702 0.718 0.735 0.751 0.767 0.784 0.800 0.816
    23.5 0.687 0.703 0.719 0.735 0.751 0.767 0.783 0.799
    24 0.673 0.688 0.704 0.720 0.735 0.751 0.767 0.782
    24.5 0.659 0.674 0.690 0.705 0.720 0.736 0.751 0.766
    25 0.646 0.661 0.676 0.691 0.706 0.721 0.736 0.751
    25.5 0.633 0.648 0.663 0.677 0.692 0.707 0.722 0.736
    26 0.621 0.635 0.650 0.664 0.679 0.693 0.708 0.722
    26.5 0.609 0.623 0.638 0.652 0.666 0.680 0.694 0.709
    27 0.598 0.612 0.626 0.640 0.654 0.668 0.681 0.695
    27.5 0.587 0.601 0.614 0.628 0.642 0.655 0.669 0.683
    28 0.577 0.590 0.603 0.617 0.630 0.644 0.657 0.671
    28.5 0.566 0.580 0.593 0.606 0.619 0.632 0.646 0.659
    29 0.557 0.570 0.583 0.596 0.609 0.622 0.634 0.647
    29.5 0.547 0.560 0.573 0.585 0.598 0.611 0.624 0.636
    30 0.538 0.551 0.563 0.576 0.588 0.601 0.613 0.626
    30.5 0.529 0.542 0.554 0.566 0.579 0.591 0.603 0.616
    31 0.521 0.533 0.545 0.557 0.569 0.581 0.594 0.606
    31.5 0.513 0.524 0.536 0.548 0.560 0.572 0.584 0.596
    32 0.504 0.516 0.528 0.540 0.551 0.563 0.575 0.587
  • From the above table, one obtains the appropriately compensated ballistic coefficient and then uses that coefficient and the target range to index into the next portion of the windage compensation table [0048] 16, represented as Table 2, below:
    TABLE 2
    Exemplary Windage Variables for 2800 ft/s Muzzle Velocity
    Target Compensated Ballistic Coefficients
    Range 0.53 0.55 0.57 0.59 0.61 0.63 0.65 0.67 0.69 0.71 . . . 1.07
    500 14 15 17 17 17 17 18 20 20 20 . . . 31
    600 13 15 16 16 17 17 18 18 20 20 . . . 31
    700 13 14 16 16 16 17 18 18 18 20 . . . 30
    800 13 13 15 15 16 16 18 18 18 20 . . . 30
    900 13 13 14 14 15 15 16 17 18 18 . . . 30
    1000 12 13 13 14 14 15 15 17 17 18 . . . 29
    1100 12 12 13 14 14 15 15 16 17 17 . . . 29
    1200 11 12 13 13 13 14 15 16 16 17 . . . 29
    1300 11 11 12 12 13 14 14 15 15 16 . . . 28
    1400 11 11 12 12 13 13 14 15 15 16 . . . 2
    1500 10 11 12 12 13 13 14 14 15 16 . . . 27
    1600 10 11 11 12 12 13 13 14 15 15 . . . 26
    1700 10 11 11 12 12 13 13 14 14 15 . . . 26
    1800 10 11 11 11 12 12 13 13 14 14 . . . 25
    1900 10 10 11 11 12 12 13 13 14 14 . . . 25
    2000 10 10 11 11 12 12 13 13 13 14 . . . 24
  • From Table 2, one thus obtains the correct windage variable. Notably, those skilled the art will observe that, for a given bullet and given “nominal” ballistic coefficient, the windage variable as provided by the windage compensation table [0049] 16 changes as a function of temperature and/or pressure and thus incorporates a “built-in” correction for changes in predicted bullet drift. With such compensation, the aiming system 10 provides extremely precise windage hold-off values to the shooter. Those skilled in the art will further appreciate that the windage compensation table 16 may contain tabulated compensation and windage variable data for a variety of bullet weights/nominal coefficients and muzzle velocities, and that such organization complements both printed and electronically stored embodiments of windage compensation table 16.
  • In any case, after obtaining the correct windage variable from the windage compensation table [0050] 16, the user then enters it into the processing module 12 of the aiming system 10. In an exemplary embodiment, after entering the windage variable into the processing module, the user need only to enter the range to the target and adjust the speed of the wind-reading scope's translating indicia 34 to match that of the downrange mirage or moving target. The processing module 12 then determines the wind speed based on the translation rate of the indicia 34, and uses that value, the target range, and the windage variable to compute the hold-off value. As noted, the hold-off value may be provided to the user in mils, thus saving a conversion step and providing the shooter with a hold-off value that corresponds to the mils-based reticle markings appearing within the field of view of wind-reading scope 14.
  • Thus, exemplary hold-off value computation performed by aiming [0051] system 10 in accordance with the present invention may be expressed as, x = Wind speed × Range y , ( 2 )
    Figure US20040020099A1-20040205-M00002
  • where y equals the windage variable as obtained from the windage table [0052] 16, and where, in exemplary embodiments, the wind speed is obtained by or from the wind-reading scope 14, as was explained in the parent application and further detailed later herein. While the above details illustrate an exemplary windage table organization, those skilled in the art will recognize that other organizational schemes may be used for the data stored in the windage compensation table 16, and that different indexing logic may be needed accordingly.
  • Further, the windage compensation table [0053] 16 may be embodied in a variety of formats. For example, the windage compensation table may be embodied in one or more printed tables, as described in above and as shown in FIG. 1. If so, only a user in possession of the printed (or electronically stored) windage compensation table 16 can enter a valid windage variable into processing module 12 and, therefore, the precision aiming assistance provided by aiming system 10 is denied to would-be users not in possession of the windage compensation table 16.
  • As noted above, with the printed embodiment of windage table [0054] 16, a user would manually index into the tabulated windage variables to obtain the correct windage variable for his or her particular set of shooting parameters. With a valid windage variable thus obtained, the user enters the windage variable directly or indirectly into processing module 12, such as by keypad data entry, for computation of the proper windage hold-off value. Of course, such entry of the windage variable represents one of several exemplary scenarios for obtaining the windage variable at the processing module 12. FIG. 4 illustrates a general functional arrangement for the circuits comprising processing module 12, although those skilled in the art will appreciate that this exemplary arrangement may be varied as needed or desired without departing from the underlying functionality.
  • Here, [0055] processing module 12 comprises a processor circuit 70 to compute the hold-off value, an interface circuit 72 to receive or otherwise access the windage variable and thus enable computation of the hold-off value, and a scope interface 74, the functionality of which varies in dependence upon whether the scope 14 determines wind speed on its own, or whether the processing module determines wind speed based on the control inputs 18. That is, in at least one embodiment, the processing module 12 determines the wind-speed based on its knowledge of the translation rate of the indicia 34. Thus, where the user sights through the scope 14 and adjusts the indicia translation rate to match that of, say, a downrange wind mirage, the processing module 12 can thus infer the downrange crosswind speed. In other embodiments where the scope 14 is not communicatively coupled to the processing module 12, the scope interface 74 may be omitted.
  • FIG. 5 depicts exemplary details for processing [0056] module 12, wherein processor circuit 70 comprises a logic circuit 80 and program memory 82, and an optional memory circuit 84 stores windage compensation table 16 as an electronically stored look-up table accessed through interface circuit 72 configured as a memory interface circuit. Alternatively, interface circuit 72 comprises a user interface 86 that comprises a keypad interface 88 and a keypad 90, and a display interface 92 with an associated display 94. Further, an exemplary scope interface 74 comprises a processor interface 96, a data scope interface circuit 98, and a control circuit 100 that is associated with the wind-matching control input 18A and 18B.
  • The supporting [0057] program memory 82 generally includes computer instructions for implementing the present invention. With this arrangement, the logic circuit 80 might comprise a microprocessor, such as the 8-bit M68HC05 or 16-bit M68HC12 microprocessors from MOTOROLA, or the 16-bit MCS296 series of microprocessors from INTEL. Of course, the particular microprocessor chosen simply represents a design choice based on costs and needs, and it should be understood that wide variation is possible in this regard. Indeed, the processing module 12 and/or the electronics of scope 14 may be implemented using custom integrated circuits, such as one or more custom Application Specific Integrated Circuits (ASICS), Complex Programmable Logic Devices (CPLDs), and or Field Programmable Gate Arrays (FPGAs).
  • Moreover, it should be understood that many microprocessors intended for “embedded systems” use are available with a high level of support circuit integration, and that [0058] logic circuit 80 might be implemented as an integrated microprocessor. Such microprocessors typically are termed “microcontrollers” and it should be understood that the term microprocessor as used herein encompasses such highly integrated microcontrollers. Thus, logic circuit 80 might comprise an integrated microprocessor having its own memory, its own interface and control circuitry (digital I/O, analog-to-digital conversion and digital-to-analog conversion, Pulse Width Modulators (PWMs), timer/control circuits, etc.). In particular, a microprocessor-based timing control circuit in combination with digital bit I/O or memory mapped I/O represents an exemplary approach to controlling the translation rate of indicia 34.
  • Further, [0059] program memory 82 may comprise an integrated portion of logic circuit 80 and, if the interface circuit 72 is implemented as a memory interface circuit for accessing the windage compensation table 16 stored in memory circuit 84, it too may be integrated into logic circuit 80. Indeed, memory circuit 84 might be integrated into logic circuit 80. In an exemplary embodiment, whether integrated or not, memory circuit 84 comprises non-volatile, erasable memory, such as FLASH or EEPROM memory that can be loaded with windage compensation table 16.
  • Further, in embodiments where [0060] processing module 12 is integrated within the wind-reading scope 14, the microprocessor selected for logic circuit 80 may integrate display controller 50, and thus would provide both computation of the hold-off value as well as wind-speed determination and control of display 28. Those skilled in the art will appreciate the range of such implementation variations.
  • Regardless, where the [0061] processing module 12 receives the windage variable as data input by the user, the interface circuit 72 preferably includes the user interface 86 detailed above to support such data entry. It should be noted that the user might input other values via user interface 86 for use by processing module 12. For example, where the user enters the windage variable as data input to keypad 90, he or she might also enter a target range and, if the processing module 12 does not obtain wind speed from the wind-reading scope 14, the user might also key in a wind speed value.
  • In any case, with the defined set of parameters entered into [0062] processing module 12, or otherwise obtained by it, processor circuit 70 determines a precision hold-off value for the user according to, for example, Equation (2) as presented earlier herein. In that sense, then, processing module 12 may be programmed to operate in a standby mode until it receives all in a defined set of parameters needed for computation of the hold-off value, and further programmed to transition to operation in an active mode, wherein it computes the hold-off value, responsive to receiving all of the required parameters. As such, the precision aiming assistance provided by the aiming system 10 is denied unless the user provides the processing module with the required windage variable or otherwise enables it to access such information.
  • In other variations, the [0063] processing module 12, whether or not integrated into scope 14, might be outfitted with one or more parameter sensors, such as shown in FIG. 6. With this arrangement, the processing module 12 obtains one or more of the parameters required for computation of the hold-off value without need for direct data input by the user or from another source. For example, the processor circuit 70 might be communicatively coupled to one or all of an ambient pressure sensor 102, a temperature sensor 104, and a ranging sensor 106.
  • FIG. 7 illustrates another exemplary embodiment of aiming [0064] system 10, wherein the aiming system 10 further includes a security module 110. In one embodiment, the security module 110 provides the processing module an authorization value in the form of an authorization code. Receipt of a valid code by the processing module 12 enables it to access memory circuit 84 and thereby obtain the correct windage variable from its locally stored copy of windage compensation table 16. In another embodiment, the authorization value sent from the security module 110 to the processing module 12 is the windage variable, although it may be in an encoded form.
  • With that latter embodiment, the [0065] security module 110 includes a locally stored copy of the windage compensation table 16. Thus, an exemplary embodiment of the security module 110 comprises a logic circuit 112, e.g., a microprocessor circuit, a user interface 114, a memory circuit 116, and a transmitter circuit 118.
  • With this arrangement, the user still might be required to enter an authorization code into the [0066] security module 110 to thereby enable access to the stored windage compensation table 16 and subsequent transmission of the windage variable to the processing module 12. Further, the user may be required to enter other parameters as needed, such as pressure, temperature, muzzle velocity, target range, etc., such that the logic circuit 112 is able to properly index into the stored windage compensation table 16 and obtain the correct windage variable.
  • Transmit [0067] circuit 118 may be designed for wired or wireless coupling to processing module 12. In an exemplary embodiment, transmission is wireless and may be optical, but transmit circuit 118 is preferably implemented as a short-range radio frequency transmitter for transmitting data to the processing module 12.
  • As such, one embodiment of [0068] security module 110 simply functions as a “black box” that must be nearby to processing module 12 to enable computation of the windage variable. That is, in one embodiment of aiming system 10, the processing module 12 would not compute the hold-off value, or at least would not make it available for use, unless it received the require enabling signal(s) from the security module 110.
  • It would not be necessary for these enabling signals to convey the windage variable, as that value might be entered by the user or contained in the [0069] processing module 12. Rather, such enabling signals would serve as an additional level of security by preventing use of the aiming system to a user that had somehow obtained access to the windage variable but lacked the correct security module 110. As such, individual security modules 110 could be “keyed” to particular aiming systems 10, such that the security module 110 for a particular aiming system 10 would enable only that aiming system 10. In this manner, a sniper could be issued a specific security module 110 and only the aiming system 10 assigned to that sniper would be activated by his or her security module 110.
  • Regardless, it should be understood that the [0070] security module 110 can be varied as needed or desired. For example, the security module 110 might include one or more parameter sensors, e.g., pressure, temperature, range, etc., such that it automatically determines one or more of the parameters needed to either index into the windage compensation table 16, and/or to compute Equation (2) above.
  • Thus, in one or more of the exemplary embodiments described above, the aiming [0071] system 10 operates as a selectively enabled aiming system that provides security features in the sense that it remains in a standby mode until all required parameters are available. As one of the primary parameters required for computation of the windage hold-off value is the windage variable, aiming assistance is not provided unless a valid windage variable is available. FIG. 8 thus provides an exemplary illustration of operating logic for aiming system 10 that is consistent with its secure operation.
  • Assuming that aiming [0072] system 10 is “on” and in standby mode (a default mode in one exemplary embodiment), processing begins with receipt of a parameter required for computation of the hold-off value (Step 200). If the received parameters is not the last one needed (Step 202), the processing module 12 remains in standby mode awaiting the receipt of all required parameters (Steps 204 and 202).
  • If all needed parameters are received or otherwise available in [0073] processing module 12, processing continues with optional decoding and validation of the windage variable or, more generally, an authorization value (Steps 206 and 210). For example, where the processing module 12 receives an authorization value from the security module 110 as an electromagnetic signal, the processing module 10 may decode the received value, such as by performing a CRC or cryptographic check, and/or validate the received value, such as by performing a bounds check or other “sanity” check on the value.
  • After completing or otherwise skipping such procedures, processing continues with the [0074] processing module 12 transitioning into active mode (Step 212). In active mode, the processing module 12 computes the hold-off value, preferably by using the windage variable, the wind speed, and the target range (Step 214), and then displays or otherwise makes the hold-off value available to the user (Step 216). Making the hold-off value available to the user may comprise displaying a numeric value, such as a MOA or a mils hold-off value and left/right direction on display 18, and/or, if processing module 12 is communicatively coupled to wind-reading scope 14, transferring the hold-off information to scope 14 for viewing on display 28. Note that, depending on the interface details, the hold-information may be transferred to the scope as data or as corresponding control signal information. For example, the data might be converted into a display driver control signal.
  • However, those skilled in the art will appreciate that such signal details are not germane to the broader inventive concepts of the present invention. Indeed, the present invention generally provides precision aiming assistance on a selective basis. The windage compensation table that enables computation of the hold-off value provided by the aiming [0075] system 10 may be stored in the form of printed tables for manual input into the processing module 12 (or security module 110), or may be stored electronically in look up table form (again in the processing module 12 or in the security module 110). As such, the present invention is not limited by the foregoing discussion and its accompanying drawings, but rather is limited only by the following claims and the reasonable equivalents thereof.

Claims (54)

What is claimed is:
1. An aiming system to provide aiming assistance to a shooter comprising:
a wind-reading scope to determine a wind speed;
a windage compensation table to provide a windage variable, wherein the windage table is based on ballistic coefficients compensated for at least one of an ambient temperature and an ambient pressure; and
a processing module comprising:
an interface circuit to receive the windage variable; and
a processor circuit programmed to compute a hold-off value for the wind-reading scope based on at least the wind speed and the windage variable.
2. The aiming system of claim 1, wherein the processor circuit does not enter an active mode, in which the processor computes the hold-off value, unless the windage variable is received, and otherwise remains in a standby mode, wherein the hold-off value is not computed.
3. The aiming system of claim 2, wherein the processor circuit standby and active modes comprise a security feature whereby the aiming system denies aiming point assistance to a user of the aiming system unless a windage variable is received by the processor circuit.
4. The aiming system of claim 1, wherein the windage compensation table comprises one or more printed tables, and wherein the interface circuit includes a user interface to receive the windage variable as data input by a user of the shooting system having access to the one or more printed tables.
5. The aiming system of claim 4, wherein the user interface comprises a keypad to receive the windage variable as keypad inputs from the user.
6. The aiming system of claim 5, wherein the processor circuit computes the hold-off value further based on one or more additional parameters, including a target range, and wherein the processor circuit is programmed to at least the target range as additional keypad inputs from the user.
7. The aiming system of claim 1, wherein the processor circuit is programmed to compute the hold-off value based on a defined set of parameters including the wind speed, the windage variable and a target range.
8. The aiming system of claim 7, wherein the processor circuit is programmed to operate in a standby mode until all of the parameters in the defined set of parameters are received, and then, responsive to receiving a last one of the defined parameters, to transition to an active mode in which the processor circuit computes the hold-off value.
9. The aiming system of claim 1, further comprising a security module communicatively coupled to the processing module to authorize computation of the hold-off value.
10. The aiming system of claim 9, wherein the security module comprises:
a transmitter circuit to transmit an authorizing value to the processing module, wherein the authorizing value enables computation of the hold-off value by the processor circuit; and
a logic circuit to provide the authorizing value to the transmitter circuit.
11. The aiming system of claim 10, wherein the processing module further comprises a receiver circuit communicatively coupled to the processor circuit to receive the authorizing value from the security module.
12. The aiming system of claim 11, wherein the authorizing value comprises the windage variable, and wherein the logic circuit within the security module includes a memory circuit to store the windage compensation table.
13. The aiming system of claim 11, wherein the authorizing value comprises an authorization code, and further wherein the processing module includes a memory circuit to store the windage compensation table, and wherein the processor circuit is programmed to access the memory circuit responsive to receiving a valid authorization code.
14. The aiming system of claim 1, wherein the interface circuit comprises a memory interface circuit associated with the processor circuit, and wherein the processing module further comprises:
a memory circuit to store the windage compensation table; and
a user interface to receive an authorization code from a user of the aiming system;
said processor circuit programmed to obtain the windage variable from the memory circuit responsive to receiving a valid authorization code from the user.
15. The aiming system of claim 14, wherein the processor circuit is programmed to obtain the windage variable from the stored windage compensation table by indexing into the table based on at least one or more defined parameters, including a target range, a muzzle velocity, an ambient temperature, and an ambient pressure.
16. The aiming system of claim 1, wherein the processor circuit is programmed to compute the hold-off value based on a defined set of parameters including the windage variable, the wind speed, and a target range.
17. The aiming system of claim 16, wherein the defined set of parameters further includes a muzzle velocity, and at least one of an ambient temperature and ambient pressure.
18. The aiming system of claim 17, wherein the interface circuit comprises a user interface to receive at least one of the parameters in the defined set of parameters as data input by a user of the aiming system.
19. The aiming system of claim 18, further comprising one or more parameter sensors to determine one or more of the parameters in the defined set of parameters, such that one or more parameters are received as data input by the user via the user interface, and one or more parameters are determined by the one or more parameter sensors.
20. The aiming system of claim 1, wherein the processor circuit receives an encoded windage variable, and wherein the processor circuit is programmed to decode the encoded windage variable to use in computing the hold-off value.
21. The aiming system of claim 1, further comprising a scope interface circuit communicatively coupling the processing module and the wind-reading scope.
22. The aiming system of claim 21, wherein the processing module determines the wind-speed by controlling a wind-reading function of the wind-reading scope.
23. The aiming system of claim 21, wherein the processing module receives the wind speed as determined by the wind-reading scope.
24. The aiming system of claim 21, wherein the processing module provides the wind-reading scope with the hold-off value or with a control signal corresponding to the hold-off value.
25. The aiming system of claim 24, wherein the wind-reading scope displays an indicia corresponding to the hold-off value or control signal received from the processing module within a field of view provided by the wind-reading scope.
26. The aiming system of claim 1, wherein the wind-reading scope displays wind-matching indicia having an adjustable translation speed and an adjustable translation direction relative to a field of view provided by the wind-reading scope, and wherein the wind-matching indicia are responsive to one or more adjustment controls included as part of the aiming system, thereby allowing a user to determine wind speed by matching the translation speed and direction of the wind-matching indicia to actual wind conditions as observed through the field of view.
27. The aiming system of claim 26, wherein the wind-reading scope includes a data interface communicatively coupled to the processing module.
28. The aiming system of claim 27, wherein the adjustment controls comprise part of the processing module, and wherein the processing module controls the wind-matching indicia responsive to user operation of the adjustment controls.
29. The aiming system of claim 27, wherein the adjustment controls comprise part of the wind-reading scope.
30. The aiming system of claim 27, wherein the wind-reading scope determines the wind-speed based on the translation speed of the wind-matching indicia and transfers a corresponding wind speed value to the processing module.
31. The aiming system of claim 1, wherein the processing module computes the hold-off value in mils.
32. The aiming system of claim 31, wherein the wind-reading scope displays the computed hold-off value as a mils-based offset indicator.
33. An aiming system to provide aiming assistance to a shooter comprising:
a processing module to compute a hold-off value to assist aiming by a shooter based on a defined set of parameters, including at least a windage variable and a wind speed;
said processing module operating in a standby mode if less than all of the defined parameters are available for computing the hold-off value, and operating in an active mode if all of the defined parameters are available, including a valid windage variable, and wherein the processing modules computes the hold-off value in the active mode; and
a windage compensation table to provide a valid windage variable and thereby enable computation of the hold-off value, and wherein the windage table is based on ballistic coefficients compensated for at least one of an ambient temperature and an ambient pressure.
34. The aiming system of claim 33, further comprising a wind-reading scope to obtain the wind speed.
35. The aiming system of claim 34, wherein the wind-reading scope is communicatively coupled to the processing module, and wherein the wind-reading scope provides the wind speed under control of the processing module.
36. The aiming system of claim 33, wherein the windage compensation table comprises one or more printed tables and wherein the processing module includes a keypad for entry of the windage variable.
37. The aiming system of claim 33, wherein the aiming system further comprises a security module for transmitting an authorizing value to the processing module, and wherein the processing module further comprises a receiver circuit to receive the authorizing value.
38. The aiming system of claim 37, wherein the processing module receives the windage variable as the authorizing value.
39. The aiming system of claim 37, wherein the processing module receives an authorization code as the authorizing value, and wherein the processing module does not compute the hold-off value unless a valid authorization code is received from the security module.
40. A method of providing aiming assistance to a shooter comprising:
operating an aiming system in a standby mode if a valid windage variable is not available, and wherein no aiming assistance is provided to a user of the aiming system in standby mode;
operating the aiming system in active mode if a valid windage variable is available, and wherein a hold-off value is provided to the user as aiming assistance in the active mode; and
in active mode:
obtaining a valid windage variable from a windage table that is based on ballistic coefficients that are compensated for at least one of an ambient temperature and an ambient pressure; and
computing the hold-off value based on a defined set of parameters that includes the valid windage variable.
41. The method of claim 40, wherein the windage table comprises one or more printed tables, and wherein obtaining a valid windage variable comprises receiving the valid windage variable as data input by a user of the aiming system.
42. The method of claim 40, wherein the windage compensation table comprises a look-up table stored in a memory circuit, and wherein obtaining a valid windage variable is based on accessing the stored look-up table.
43. The method of claim 42, wherein the aiming system includes a processing module that includes the memory circuit, and wherein obtaining a valid windage variable comprises the processing module accessing the stored look-up table responsive to receiving an authorization code.
44. The method of claim 43, wherein receiving an authorization code comprises receiving data input from a user of the aiming system.
45. The method of claim 43, wherein the aiming system further comprises a security module communicatively coupled to the processing module, and wherein receiving an authorization code comprises receiving the authorization code from the security module.
46. The method of claim 45, wherein receiving the authorization code from the security module comprises receiving a wireless signal from the security module.
47. The method of claim 42, wherein the aiming system includes a processing module to compute the hold-off value, and a security module that includes the memory circuit to store the look-up table, and wherein obtaining a valid windage variable comprises accessing the stored look-up table to obtain the windage variable and transferring the windage variable from the security module to the processing module.
48. The method of claim 47, further comprising accessing the stored look-up table at the security module responsive to receiving an authorization code input by a user of the security module.
49. The method of claim 40, wherein operating an aiming system in a standby mode it a valid windage variable is not available comprises remaining in standby mode until all of the defined set of parameters are available, including the windage variable.
50. The method of claim 49, wherein operating the aiming system in active mode if a valid windage variable is available comprises transitioning from standby mode to active mode and computing the hold-off value responsive to all of the defined parameters, including the windage variable, becoming available.
51. The method of claim 49, wherein the defined parameters include a wind speed, a target range, the windage variable, and at least one of an ambient temperature and an ambient pressure.
52. The method of claim 51, further comprising obtaining the wind speed from a wind-reading scope.
53. The method of claim 52, wherein obtaining the wind speed from a wind-reading scope comprises matching a speed and a direction of translating indicia displayed within a field of view of the wind-reading scope to actual wind conditions as observed through the wind-reading scope.
54. The method of claim 53, further comprising providing the hold-off value or a control signal corresponding to the hold-off value to the wind-reading scope to provide aiming assistance within the field of view of the wind-reading scope.
US10/365,022 2001-03-13 2003-02-12 Method and apparatus to provide precision aiming assistance to a shooter Abandoned US20040020099A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/365,022 US20040020099A1 (en) 2001-03-13 2003-02-12 Method and apparatus to provide precision aiming assistance to a shooter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/805,608 US20020129535A1 (en) 2001-03-13 2001-03-13 Passive wind reading scope
US10/365,022 US20040020099A1 (en) 2001-03-13 2003-02-12 Method and apparatus to provide precision aiming assistance to a shooter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/805,608 Continuation-In-Part US20020129535A1 (en) 2001-03-13 2001-03-13 Passive wind reading scope

Publications (1)

Publication Number Publication Date
US20040020099A1 true US20040020099A1 (en) 2004-02-05

Family

ID=46298989

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/365,022 Abandoned US20040020099A1 (en) 2001-03-13 2003-02-12 Method and apparatus to provide precision aiming assistance to a shooter

Country Status (1)

Country Link
US (1) US20040020099A1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040055588A1 (en) * 1999-03-18 2004-03-25 Npf Limited Paintball guns
US20050229468A1 (en) * 2003-11-04 2005-10-20 Leupold & Stevens, Inc. Ballistic reticle for projectile weapon aiming systems and method of aiming
US20050257414A1 (en) * 2004-11-10 2005-11-24 Leupold & Stevens, Inc. Tactical ranging reticle for a projectile weapon aiming device
US20050268520A1 (en) * 2004-05-18 2005-12-08 Calculations Made Simple Method and means for adjusting the scope of a firearm
US20050268521A1 (en) * 2004-06-07 2005-12-08 Raytheon Company Electronic sight for firearm, and method of operating same
US20060010760A1 (en) * 2004-06-14 2006-01-19 Perkins William C Telescopic sight and method for automatically compensating for bullet trajectory deviations
US20070137090A1 (en) * 2005-12-19 2007-06-21 Paul Conescu Weapon sight
US20070137088A1 (en) * 2005-11-01 2007-06-21 Leupold & Stevens, Inc. Ballistic ranging methods and systems for inclined shooting
US20070137091A1 (en) * 2005-12-21 2007-06-21 John Cross Handheld rangefinder operable to determine hold over ballistic information
US20070207067A1 (en) * 2006-02-23 2007-09-06 Zarembinski Thomas P Portable sports equipment scent dispersion apparatus
US7292262B2 (en) 2003-07-21 2007-11-06 Raytheon Company Electronic firearm sight, and method of operating same
US7350329B1 (en) * 2002-05-18 2008-04-01 John Curtis Bell Scope adjustment method and apparatus
US20080098640A1 (en) * 2003-11-12 2008-05-01 Sammut Dennis J Apparatus And Method For Calculating Aiming Point Information
US7535553B2 (en) 2004-10-13 2009-05-19 Bushnell Inc. Method, device, and computer program for determining range to a target
US20090266892A1 (en) * 2004-11-30 2009-10-29 Windauer Bernard T Optical Sighting System
US7624528B1 (en) 2002-05-18 2009-12-01 John Curtis Bell Scope adjustment method and apparatus
US20110030264A1 (en) * 2006-08-14 2011-02-10 Aaron Davidson Ballistics systems and methods
US8051597B1 (en) * 2007-06-14 2011-11-08 Cubic Corporation Scout sniper observation scope
US20110297744A1 (en) * 2010-06-03 2011-12-08 John Felix Schneider Auto adjusting ranging device
US8081298B1 (en) 2008-07-24 2011-12-20 Bushnell, Inc. Handheld rangefinder operable to determine hold-over ballistic information
US8172139B1 (en) 2010-11-22 2012-05-08 Bitterroot Advance Ballistics Research, LLC Ballistic ranging methods and systems for inclined shooting
US20120137567A1 (en) * 1997-12-08 2012-06-07 Horus Vision Llc Apparatus and method for aiming point calculation
US8336776B2 (en) 2010-06-30 2012-12-25 Trijicon, Inc. Aiming system for weapon
US8353454B2 (en) 2009-05-15 2013-01-15 Horus Vision, Llc Apparatus and method for calculating aiming point information
US8468930B1 (en) * 2002-05-18 2013-06-25 John Curtis Bell Scope adjustment method and apparatus
US20140028856A1 (en) * 2011-03-28 2014-01-30 Smart Shooter Ltd. Firearm, aiming system therefor, method of operating the firearm and method of reducing the probability of missing a target
US8701330B2 (en) 2011-01-01 2014-04-22 G. David Tubb Ballistic effect compensating reticle and aim compensation method
US20140166751A1 (en) * 2011-01-19 2014-06-19 Horus Vision Llc Apparatus and method for calculating aiming point information
US8893423B2 (en) 2011-05-27 2014-11-25 G. David Tubb Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition
US8959824B2 (en) 2012-01-10 2015-02-24 Horus Vision, Llc Apparatus and method for calculating aiming point information
US9121672B2 (en) 2011-01-01 2015-09-01 G. David Tubb Ballistic effect compensating reticle and aim compensation method with sloped mil and MOA wind dot lines
US20150247704A1 (en) * 2012-04-12 2015-09-03 Philippe Levilly Remotely operated target-processing system
US9310165B2 (en) 2002-05-18 2016-04-12 John Curtis Bell Projectile sighting and launching control system
US20170299334A1 (en) * 2014-03-04 2017-10-19 Sheltered Wings, Inc. D/B/A Vortex Optics System and Method for Producing a Dope Chart
CN107923726A (en) * 2015-06-26 2018-04-17 夏尔特银斯公司D.B.A.涡流光学 System and method for making DOPE charts
US20180224242A1 (en) * 2017-02-09 2018-08-09 Lightforce USA, Inc., d/b/a/ Nightforce Optics Reticle disc with fiber illuminated aiming dot
US10063782B2 (en) 2013-06-18 2018-08-28 Motorola Solutions, Inc. Method and apparatus for displaying an image from a camera
US10161717B2 (en) 2006-08-14 2018-12-25 Huskemaw Optics, Llc Long range archery scope
US10254082B2 (en) 2013-01-11 2019-04-09 Hvrt Corp. Apparatus and method for calculating aiming point information
US20190145734A1 (en) * 2017-11-10 2019-05-16 Sheltered Wings, Inc. D/B/A Vortex Optics Apparatus and Method for Calculating Aiming Point Information
US20190390938A1 (en) * 2013-07-30 2019-12-26 Gunwerks, Llc Riflescope with feedback display and related methods
CN111479116A (en) * 2019-01-23 2020-07-31 上海天荷电子信息有限公司 Data compression method and device for equal bit precision prediction, mapping and segmented coding
US10823532B2 (en) 2018-09-04 2020-11-03 Hvrt Corp. Reticles, methods of use and manufacture
US11480411B2 (en) 2011-01-01 2022-10-25 G. David Tubb Range-finding and compensating scope with ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions
USD991391S1 (en) 2020-01-08 2023-07-04 Sun Optics USA, LLC Reticle for an optical aiming device
USD991390S1 (en) 2020-01-08 2023-07-04 Sun Optics USA, LLC Reticle for an optical aiming device
USD999331S1 (en) 2020-01-08 2023-09-19 Sun Optics USA, LLC Reticle for an optical aiming device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948587A (en) * 1974-01-28 1976-04-06 Rubbert Paul E Reticle and telescopic gunsight system
US4404890A (en) * 1978-11-02 1983-09-20 Barr & Stroud Limited Fire control system
US4561204A (en) * 1983-07-06 1985-12-31 Binion W Sidney Reticle display for small arms
US4695161A (en) * 1984-08-06 1987-09-22 Axia Incorporated Automatic ranging gun sight
US5088815A (en) * 1989-06-26 1992-02-18 Centre National De La Recherche Scientifique Laser device for measuring wind speeds at medium altitudes by using a doppler effect
US5267010A (en) * 1989-10-17 1993-11-30 Kremer Richard M Laser radar device
US5469250A (en) * 1993-05-17 1995-11-21 Rockwell International Corporation Passive optical wind profilometer
US5686690A (en) * 1992-12-02 1997-11-11 Computing Devices Canada Ltd. Weapon aiming system
US6085629A (en) * 1997-04-18 2000-07-11 Rheinmetall W & M Gmbh Weapon system
US6363647B2 (en) * 1996-07-23 2002-04-02 Colt's Manufacturing Company, Inc. Firearm with safety system having a communications package
US6516699B2 (en) * 1997-12-08 2003-02-11 Horus Vision, Llc Apparatus and method for calculating aiming point information for rifle scopes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948587A (en) * 1974-01-28 1976-04-06 Rubbert Paul E Reticle and telescopic gunsight system
US4404890A (en) * 1978-11-02 1983-09-20 Barr & Stroud Limited Fire control system
US4561204A (en) * 1983-07-06 1985-12-31 Binion W Sidney Reticle display for small arms
US4695161A (en) * 1984-08-06 1987-09-22 Axia Incorporated Automatic ranging gun sight
US5088815A (en) * 1989-06-26 1992-02-18 Centre National De La Recherche Scientifique Laser device for measuring wind speeds at medium altitudes by using a doppler effect
US5267010A (en) * 1989-10-17 1993-11-30 Kremer Richard M Laser radar device
US5686690A (en) * 1992-12-02 1997-11-11 Computing Devices Canada Ltd. Weapon aiming system
US5469250A (en) * 1993-05-17 1995-11-21 Rockwell International Corporation Passive optical wind profilometer
US6363647B2 (en) * 1996-07-23 2002-04-02 Colt's Manufacturing Company, Inc. Firearm with safety system having a communications package
US6085629A (en) * 1997-04-18 2000-07-11 Rheinmetall W & M Gmbh Weapon system
US6516699B2 (en) * 1997-12-08 2003-02-11 Horus Vision, Llc Apparatus and method for calculating aiming point information for rifle scopes

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335123B2 (en) 1997-12-08 2016-05-10 Horus Vision, Llc Apparatus and method for aiming point calculation
US8656630B2 (en) * 1997-12-08 2014-02-25 Horus Vision Llc Apparatus and method for aiming point calculation
US8707608B2 (en) 1997-12-08 2014-04-29 Horus Vision Llc Apparatus and method for calculating aiming point information
US8966806B2 (en) 1997-12-08 2015-03-03 Horus Vision, Llc Apparatus and method for calculating aiming point information
US9068794B1 (en) 1997-12-08 2015-06-30 Horus Vision, Llc; Apparatus and method for aiming point calculation
US20120137567A1 (en) * 1997-12-08 2012-06-07 Horus Vision Llc Apparatus and method for aiming point calculation
US20050188975A1 (en) * 1999-01-22 2005-09-01 Npf Limited Paintball guns
US6941693B2 (en) * 1999-03-18 2005-09-13 Npf Limited Paintball guns
US20040055588A1 (en) * 1999-03-18 2004-03-25 Npf Limited Paintball guns
US9310165B2 (en) 2002-05-18 2016-04-12 John Curtis Bell Projectile sighting and launching control system
US7350329B1 (en) * 2002-05-18 2008-04-01 John Curtis Bell Scope adjustment method and apparatus
US8468930B1 (en) * 2002-05-18 2013-06-25 John Curtis Bell Scope adjustment method and apparatus
US7703719B1 (en) 2002-05-18 2010-04-27 John Curtis Bell Scope adjustment method and apparatus
US7624528B1 (en) 2002-05-18 2009-12-01 John Curtis Bell Scope adjustment method and apparatus
US7292262B2 (en) 2003-07-21 2007-11-06 Raytheon Company Electronic firearm sight, and method of operating same
US7603804B2 (en) * 2003-11-04 2009-10-20 Leupold & Stevens, Inc. Ballistic reticle for projectile weapon aiming systems and method of aiming
US20090199702A1 (en) * 2003-11-04 2009-08-13 Leupold & Stevens, Inc. Ballistic range compensation for projectile weapon aiming based on ammunition classification
US8286384B2 (en) * 2003-11-04 2012-10-16 Leupold & Stevens, Inc. Ballistic range compensation for projectile weapon aiming based on ammunition classification
US20050229468A1 (en) * 2003-11-04 2005-10-20 Leupold & Stevens, Inc. Ballistic reticle for projectile weapon aiming systems and method of aiming
US9869530B2 (en) 2003-11-12 2018-01-16 Hvrt Corp. Apparatus and method for calculating aiming point information
US9459077B2 (en) 2003-11-12 2016-10-04 Hvrt Corp. Apparatus and method for calculating aiming point information
US10731948B2 (en) 2003-11-12 2020-08-04 Hvrt Corp. Apparatus and method for calculating aiming point information
US10295307B2 (en) 2003-11-12 2019-05-21 Hvrt Corp. Apparatus and method for calculating aiming point information
US20080098640A1 (en) * 2003-11-12 2008-05-01 Sammut Dennis J Apparatus And Method For Calculating Aiming Point Information
US7310904B2 (en) 2004-05-18 2007-12-25 Calculations Made Simple, Llc Method and means for adjusting the scope of a firearm
US20050268520A1 (en) * 2004-05-18 2005-12-08 Calculations Made Simple Method and means for adjusting the scope of a firearm
US7162825B2 (en) 2004-05-18 2007-01-16 Calculations Made Simple Method and means for adjusting the scope of a firearm
US20050268521A1 (en) * 2004-06-07 2005-12-08 Raytheon Company Electronic sight for firearm, and method of operating same
US20060010760A1 (en) * 2004-06-14 2006-01-19 Perkins William C Telescopic sight and method for automatically compensating for bullet trajectory deviations
US7535553B2 (en) 2004-10-13 2009-05-19 Bushnell Inc. Method, device, and computer program for determining range to a target
US20050257414A1 (en) * 2004-11-10 2005-11-24 Leupold & Stevens, Inc. Tactical ranging reticle for a projectile weapon aiming device
US7806331B2 (en) 2004-11-30 2010-10-05 Windauer Bernard T Optical sighting system
US20090266892A1 (en) * 2004-11-30 2009-10-29 Windauer Bernard T Optical Sighting System
US20110162250A1 (en) * 2004-11-30 2011-07-07 Windauer Bernard T Optical sighting system
US8317100B2 (en) 2004-11-30 2012-11-27 Aoss, Llc Optical sighting system
US8033464B2 (en) 2004-11-30 2011-10-11 Windauer Bernard T Optical sighting system
US8959823B2 (en) 2005-11-01 2015-02-24 Leupold & Stevens, Inc. Ranging methods for inclined shooting of projectile weapons
US20070137088A1 (en) * 2005-11-01 2007-06-21 Leupold & Stevens, Inc. Ballistic ranging methods and systems for inclined shooting
US9482489B2 (en) 2005-11-01 2016-11-01 Leupold & Stevens, Inc. Ranging methods for inclined shooting of projectile weapon
US20100282845A1 (en) * 2005-11-01 2010-11-11 Peters Victoria J Rangefinders and aiming methods using projectile grouping
US8046951B2 (en) 2005-11-01 2011-11-01 Leupold & Stevens, Inc. Rangefinders and aiming methods using projectile grouping
WO2007133277A3 (en) * 2005-11-01 2008-11-27 Leupold & Stevens Inc Ballistic ranging methods and systems for inclined shooting
US20090200376A1 (en) * 2005-11-01 2009-08-13 Leupold & Stevens, Inc. Ballistic ranging methods and systems for inclined shooting
US7654029B2 (en) 2005-11-01 2010-02-02 Leupold & Stevens, Inc. Ballistic ranging methods and systems for inclined shooting
US7690145B2 (en) 2005-11-01 2010-04-06 Leupold & Stevens, Inc. Ballistic ranging methods and systems for inclined shooting
US8448372B2 (en) 2005-11-01 2013-05-28 Leupold & Stevens, Inc. Rangefinders for inclined shooting of projectile weapons
US7421816B2 (en) 2005-12-19 2008-09-09 Paul Conescu Weapon sight
US20070137090A1 (en) * 2005-12-19 2007-06-21 Paul Conescu Weapon sight
US20070137091A1 (en) * 2005-12-21 2007-06-21 John Cross Handheld rangefinder operable to determine hold over ballistic information
US7658031B2 (en) * 2005-12-21 2010-02-09 Bushnell, Inc. Handheld rangefinder operable to determine hold over ballistic information
US20070207067A1 (en) * 2006-02-23 2007-09-06 Zarembinski Thomas P Portable sports equipment scent dispersion apparatus
US8365455B2 (en) 2006-08-14 2013-02-05 Huskemaw Optics, Llc Ballistics systems and methods
US9915503B2 (en) 2006-08-14 2018-03-13 Huskemaw Optics, Llc Ballistics systems and methods
US20110030264A1 (en) * 2006-08-14 2011-02-10 Aaron Davidson Ballistics systems and methods
US8001714B2 (en) 2006-08-14 2011-08-23 Aaron Davidson Ballistics systems and methods
US10161717B2 (en) 2006-08-14 2018-12-25 Huskemaw Optics, Llc Long range archery scope
US8051597B1 (en) * 2007-06-14 2011-11-08 Cubic Corporation Scout sniper observation scope
US8081298B1 (en) 2008-07-24 2011-12-20 Bushnell, Inc. Handheld rangefinder operable to determine hold-over ballistic information
US8991702B1 (en) 2009-05-15 2015-03-31 Horus Vision, Llc Apparatus and method for calculating aiming point information
US9574850B2 (en) 2009-05-15 2017-02-21 Hvrt Corp. Apparatus and method for calculating aiming point information
US10948265B2 (en) 2009-05-15 2021-03-16 Hvrt Corp. Apparatus and method for calculating aiming point information
US8353454B2 (en) 2009-05-15 2013-01-15 Horus Vision, Llc Apparatus and method for calculating aiming point information
US10060703B2 (en) 2009-05-15 2018-08-28 Hvrt Corp. Apparatus and method for calculating aiming point information
US9250038B2 (en) 2009-05-15 2016-02-02 Horus Vision, Llc Apparatus and method for calculating aiming point information
US8905307B2 (en) 2009-05-15 2014-12-09 Horus Vision Llc Apparatus and method for calculating aiming point information
US8893971B1 (en) 2009-05-15 2014-11-25 Horus Vision, Llc Apparatus and method for calculating aiming point information
US11421961B2 (en) 2009-05-15 2022-08-23 Hvrt Corp. Apparatus and method for calculating aiming point information
US10502529B2 (en) 2009-05-15 2019-12-10 Hvrt Corp. Apparatus and method for calculating aiming point information
US8408460B2 (en) * 2010-06-03 2013-04-02 United States Of America As Represented By The Secretary Of The Navy Auto adjusting ranging device
US20110297744A1 (en) * 2010-06-03 2011-12-08 John Felix Schneider Auto adjusting ranging device
US8336776B2 (en) 2010-06-30 2012-12-25 Trijicon, Inc. Aiming system for weapon
US9835413B2 (en) 2010-11-22 2017-12-05 Leupold & Stevens, Inc. Ballistic ranging methods and systems for inclined shooting
US8172139B1 (en) 2010-11-22 2012-05-08 Bitterroot Advance Ballistics Research, LLC Ballistic ranging methods and systems for inclined shooting
US8701330B2 (en) 2011-01-01 2014-04-22 G. David Tubb Ballistic effect compensating reticle and aim compensation method
US10180307B2 (en) 2011-01-01 2019-01-15 G. David Tubb Ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions
US10371485B2 (en) 2011-01-01 2019-08-06 G. David Tubb Reticle and ballistic effect compensation method having gyroscopic precession compensated wind dots
US11480411B2 (en) 2011-01-01 2022-10-25 G. David Tubb Range-finding and compensating scope with ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions
US9581415B2 (en) 2011-01-01 2017-02-28 G. David Tubb Ballistic effect compensating reticle and aim compensation method
US9121672B2 (en) 2011-01-01 2015-09-01 G. David Tubb Ballistic effect compensating reticle and aim compensation method with sloped mil and MOA wind dot lines
US9557142B2 (en) 2011-01-01 2017-01-31 G. David Tubb Ballistic effect compensating reticle and aim compensation method with leveling reference and spin-drift compensated wind dots
US20140166751A1 (en) * 2011-01-19 2014-06-19 Horus Vision Llc Apparatus and method for calculating aiming point information
US20140028856A1 (en) * 2011-03-28 2014-01-30 Smart Shooter Ltd. Firearm, aiming system therefor, method of operating the firearm and method of reducing the probability of missing a target
US10097764B2 (en) * 2011-03-28 2018-10-09 Smart Shooter Ltd. Firearm, aiming system therefor, method of operating the firearm and method of reducing the probability of missing a target
US9175927B2 (en) 2011-05-27 2015-11-03 G. David Tubb Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition
US8893423B2 (en) 2011-05-27 2014-11-25 G. David Tubb Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition
US10488153B2 (en) 2012-01-10 2019-11-26 Hvrt Corp. Apparatus and method for calculating aiming point information
US11181342B2 (en) * 2012-01-10 2021-11-23 Hvrt Corp. Apparatus and method for calculating aiming point information
US9612086B2 (en) * 2012-01-10 2017-04-04 Hvrt Corp. Apparatus and method for calculating aiming point information
US11391542B2 (en) 2012-01-10 2022-07-19 Hvrt Corp. Apparatus and method for calculating aiming point information
US9255771B2 (en) 2012-01-10 2016-02-09 Horus Vision Llc Apparatus and method for calculating aiming point information
US10451385B2 (en) 2012-01-10 2019-10-22 Hvrt Corp. Apparatus and method for calculating aiming point information
US8959824B2 (en) 2012-01-10 2015-02-24 Horus Vision, Llc Apparatus and method for calculating aiming point information
US10488154B2 (en) 2012-01-10 2019-11-26 Hvrt Corp. Apparatus and method for calculating aiming point information
US20150247704A1 (en) * 2012-04-12 2015-09-03 Philippe Levilly Remotely operated target-processing system
US9671197B2 (en) * 2012-04-12 2017-06-06 Philippe Levilly Remotely operated target-processing system
US10458753B2 (en) 2013-01-11 2019-10-29 Hvrt Corp. Apparatus and method for calculating aiming point information
US11255640B2 (en) 2013-01-11 2022-02-22 Hvrt Corp. Apparatus and method for calculating aiming point information
US11656060B2 (en) 2013-01-11 2023-05-23 Hvrt Corp. Apparatus and method for calculating aiming point information
US10895434B2 (en) 2013-01-11 2021-01-19 Hvrt Corp. Apparatus and method for calculating aiming point information
US10254082B2 (en) 2013-01-11 2019-04-09 Hvrt Corp. Apparatus and method for calculating aiming point information
US10063782B2 (en) 2013-06-18 2018-08-28 Motorola Solutions, Inc. Method and apparatus for displaying an image from a camera
US11885591B2 (en) 2013-07-30 2024-01-30 Gunwerks, Llc Riflescope with feedback display and related methods
US11125534B2 (en) * 2013-07-30 2021-09-21 Gunwerks, Llc Riflescope with feedback display and related methods
US20190390938A1 (en) * 2013-07-30 2019-12-26 Gunwerks, Llc Riflescope with feedback display and related methods
US10900748B2 (en) * 2014-03-04 2021-01-26 Sheltered Wings, Inc. System and method for producing a DOPE chart
US20170299334A1 (en) * 2014-03-04 2017-10-19 Sheltered Wings, Inc. D/B/A Vortex Optics System and Method for Producing a Dope Chart
CN107923726A (en) * 2015-06-26 2018-04-17 夏尔特银斯公司D.B.A.涡流光学 System and method for making DOPE charts
US20180224242A1 (en) * 2017-02-09 2018-08-09 Lightforce USA, Inc., d/b/a/ Nightforce Optics Reticle disc with fiber illuminated aiming dot
US10823531B2 (en) * 2017-02-09 2020-11-03 Lightforce Usa, Inc. Reticle disc with fiber illuminated aiming dot
US20190145734A1 (en) * 2017-11-10 2019-05-16 Sheltered Wings, Inc. D/B/A Vortex Optics Apparatus and Method for Calculating Aiming Point Information
US10895433B2 (en) 2018-09-04 2021-01-19 Hvrt Corp. Reticles, methods of use and manufacture
US11293720B2 (en) 2018-09-04 2022-04-05 Hvrt Corp. Reticles, methods of use and manufacture
US10823532B2 (en) 2018-09-04 2020-11-03 Hvrt Corp. Reticles, methods of use and manufacture
CN111479116A (en) * 2019-01-23 2020-07-31 上海天荷电子信息有限公司 Data compression method and device for equal bit precision prediction, mapping and segmented coding
USD991391S1 (en) 2020-01-08 2023-07-04 Sun Optics USA, LLC Reticle for an optical aiming device
USD991390S1 (en) 2020-01-08 2023-07-04 Sun Optics USA, LLC Reticle for an optical aiming device
USD999331S1 (en) 2020-01-08 2023-09-19 Sun Optics USA, LLC Reticle for an optical aiming device

Similar Documents

Publication Publication Date Title
US20040020099A1 (en) Method and apparatus to provide precision aiming assistance to a shooter
US9482489B2 (en) Ranging methods for inclined shooting of projectile weapon
US20120217300A1 (en) Ballistic Ranging Methods and Systems For Inclined Shooting
US9062961B2 (en) Systems and methods for calculating ballistic solutions
CN103245254B (en) Optical devices with projection alignment point
US8713843B2 (en) Operator-programmable-trajectory turret knob
US10775134B2 (en) Telescopic sight having fast reticle adjustment
US8201741B2 (en) Trajectory compensating sighting device systems and methods
US8336216B2 (en) Low velocity projectile aiming device
US7806331B2 (en) Optical sighting system
US20060010760A1 (en) Telescopic sight and method for automatically compensating for bullet trajectory deviations
US7325353B2 (en) Multiple nomograph system for solving ranging and ballistic problems in firearms
CN110770529B (en) Targeting system
US20070234626A1 (en) Systems and methods for adjusting a sighting device
EP1748273A1 (en) Telescopic sight and method for automatically compensating for bullet trajectory deviations
CN102057246A (en) Multi-color reticle for ballistic aiming
WO1997037193A1 (en) Ballistic calculator
US9964382B2 (en) Target acquisition device and system thereof
GB2294133A (en) Ballistic calculator
US11280584B2 (en) Ballistic correction device for the sight members of weapons

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION