US20040025892A1 - Process to control pest in stored products - Google Patents

Process to control pest in stored products Download PDF

Info

Publication number
US20040025892A1
US20040025892A1 US10/239,601 US23960103A US2004025892A1 US 20040025892 A1 US20040025892 A1 US 20040025892A1 US 23960103 A US23960103 A US 23960103A US 2004025892 A1 US2004025892 A1 US 2004025892A1
Authority
US
United States
Prior art keywords
goods
pests
shock
products
infestation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/239,601
Inventor
Heinrich Kreyenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8176304&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040025892(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of US20040025892A1 publication Critical patent/US20040025892A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/18Other treatment of leaves, e.g. puffing, crimpling, cleaning
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N3/00Preservation of plants or parts thereof, e.g. inhibiting evaporation, improvement of the appearance of leaves or protection against physical influences such as UV radiation using chemical compositions; Grafting wax
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/005Preserving by heating
    • A23B7/01Preserving by heating by irradiation or electric treatment
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/04Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/22Treatment of tobacco products or tobacco substitutes by application of electric or wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C1/00Elements of cigar manufacture
    • A24C1/38Final treatment of cigars, e.g. sorting

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The underlying invention involves a process to control pests in stored products, and tobacco products in particular, whereby goods that are prone to infestation are intermittently shock-frozen at temperatures below zero, and whereby the minimum duration and minimum temperature of the shock treatment are selected so as to ensure that the stored product pests are killed in all stages of their development. Accordingly, the underlying invention is advantageous in that it enables effective, long-lasting pest control of goods prone to infestation because it kills not only beetles and their larvae, but also the eggs of the any pests, thus preventing the development of the eggs into the larval stage at a later point in time. Also, the invention's process makes it possible to eliminate the use of highly toxic chemicals which can leave residues in the treated goods and thereby constitute a health hazard to the consumers thereof. Because it is no longer necessary to use highly toxic chemicals the process is also very economical, in that it eliminates time-consuming and cost-intensive safety measures.

Description

  • The underlying invention concerns a process to control pests in stored products. The term “stored products” in particular include dry plant products, such as tobacco products, tea, rice, cocoa, spices, medication and dried fruits. [0001]
  • The above indicated goods tend to be prone to being infested by pests, including, for example, the biscuit or drugstore beetle ([0002] Stegobium paniceum) and the cigarette beetle (Lasioderma serricorne). These stored product pests also frequently infest tobacco products, developing both in the fermented tobacco or in the finished product. The larvae eat their way into the products and pupate in the leaf veins. In cigar manufacturing, this poses a problem which gives results in considerable economic damage. Generally speaking, packaging materials offer but little protection against stored product pests, as the larvae themselves force their way through the smallest cracks and infest the packaged goods. In addition to the economic losses incurred when the products become unusable there is also a significant risk of lost customer loyalty following the purchase of pest-infested products.
  • All of these reasons encourage endeavors aimed at pest extermination. To achieve this objective the stored products are customarily treated with fumigants. Fumigants are highly toxic materials such as hydrocyanic acid, phosphoric acid, zinc/calcium/aluminum phosphate, methyl bromide, formaldehyde or ethylene oxide. The product prone to infestation is fumigated with these highly toxic gases, which in particular cause the death of the beetles and larvae. The advantage of these fumigation materials is that because of their high capacity for penetration they not only work on the surface of the goods concerned, but kill pests within the goods as well. The considerable disadvantage of this process is that the treated products retain residue from the fumigation materials, which are not merely limited to their surface and therefore cannot be easily washed away. This residue presents a health hazard for the consumers. This is especially the case with regard to tobacco products, because the toxins in question are absorbed into the body through the mucous membranes of the mouth and into the surface of the lungs as a result of inhalation. What is disturbing about the conventional fumigation processes is that it affects not only unprocessed raw materials but also finished processed goods which are ready for use by consumers. In the case of tobacco products such as cigars, both the fermented tobacco as well as the finished cigars are fumigated. Large quantities of highly toxic gases are used in the final fumigation process in order to ensure that the finished product is free of pests and that the consumers will not receive infested goods. However, this means that residue from highly toxic gases remains in the finished product. [0003]
  • In addition to the risk to the consumers' health, conventional pest control methods include the disadvantage that, besides the beetles themselves, only the already hatched larvae are generally exterminated, while the eggs themselves are frequently not killed by fumigation. The risk is that larvae will hatch in the finished products from the eggs that survived the fumigation process, which in turn will lead to undesirable damages to the goods in the manner described above, as well as the possible loss of customer loyalty. [0004]
  • Another disadvantage of the conventionally used process is that special safety procedures must be used when handling fumigants, particularly when handling phosphoric acid and hydrocyanic acid to avoid any risk to employees. This is because these materials are not only highly toxic, but can also combine to form explosive mixtures. Accordingly, strict safety procedures must be observed when storing and handling fumigants. These procedures, besides the increased risk to employees and required cautionary handling procedures, also cost more. Pursuant to the Toxic Materials Ordinance and its pertinent technical regulations, fumigants of this type, in view of their toxicity, may only be issued to companies which hold a permit for these materials. Moreover, the use of such materials may only be undertaken by experts and/or persons holding certificates of qualification. [0005]
  • Moreover, the fumigation process, in and of itself, is quite expensive. Basically, fumigation involves five steps, which—depending on the size of the object to be fumigated—can take from days to months to implement. Moreover, gas concentration measurements must be taken at the time the fumigants are introduced, during the fumigation monitoring process, during subsequent ventilation and at the time the fumigated goods are released. The objects treated with these chemical substances may only be released when concentration values do not exceed a predetermined threshold. As a result, the exact time periods required for the fumigation process cannot always be scheduled, circumstances, that may, in turn, result in supply delays. Moreover, special-purpose storage areas must be made available for the products until the concentration values have dropped below the permitted threshold. [0006]
  • All in all, conventionally used fumigation processes for pest control for stored products involve vast amounts of time and are extremely expensive; which, in turn, has a negative effect on the productivity of a processing plant. Furthermore, these products present a considerable health hazard for employees and consumers alike. In addition, the damage to the environment which is incurred through the use of highly toxic chemicals—some of which, such as methyl bromide, also damage the ozone layer—presents an enormous disadvantage. [0007]
  • Another process to control pests in stored products, which, due to the nature of the risks it presents may only be used in certain countries, involves the use of gamma radiation to eliminate pests. In this case, the risks to the health for employees and consumers alike are considerable, because, in addition to the increased exposure to radiation, this process can involve the formation of carcinogenic radicals in the products. [0008]
  • In view of all the above stated factors, the objective of the underlying invention is to provide a process for pest control in stored products which would improve on the prior art by providing a means of pest control which would eliminate pests in all stages of their development without making use of substances that are hazardous to health. [0009]
  • The invention achieves this objective by intermittently shock-freezing the goods prone to infestation, at temperatures below zero, selecting the minimum duration and minimum temperature of the shock treatment so as to ensure that any pests in the stored product are killed in all stages of their development. [0010]
  • Using the invention's process eliminates all of the prior known disadvantages to an amazing degree. Accordingly, the present invention makes it possible to dispense with current conventionally used fumigation or gamma radiation treatment methods for the purpose of pest control. In this way, the disadvantages and risks associated with said methods of treatment can be advantageously eradicated. [0011]
  • The invention's use of cold is not only harmless to the end consumers but also to the employees involved in the manufacture of the products concerned. The invention's process means no hazardous residues are left in the products from toxic chemicals. This, in turn, means that the consumers can be certain that they are not ingesting any hazardous materials of this type along with the products concerned. Moreover, this treatment renders the handling of such highly toxic chemicals unnecessary—a fact which in itself presents an advantage with regard to safety in the workplace. Since it is now possible to dispense with the expensive and cumbersome safety precautions needed to store and handle products treated with highly toxic chemicals, the new invention contributes to the cost-effectiveness of the process. Furthermore, a considerably smaller number of work steps is required, thus increasing productivity even further. In addition to the advantageous savings with regard to work steps, it should also be taken into consideration that since product treatment involves only a limited period of time, that the products will no longer need to be stored until the concentration values of toxic substances have dropped below the permitted threshold. This means that the continued use of the products can be planned in the preliminary stages, with no uncertainty parameters with regard to pest control. This is not always possible when conventional fumigation processes are used. [0012]
  • Besides the advantageous cost savings based on the fact that safety precautions are rendered superfluous, and certain storage capacities are no longer required, the invention's process is significantly kinder to the environmental compared to conventional techniques because no chemicals or radiation which constitute a burden on the environment are used. In this context, the possible elimination of the chemicals applying the invention's process is an advantage, not only in light of the generally desirable reduction of the use of chemicals in pest control, but also in terms of the avoiding the burden which these chemicals place on the environment. The elimination of chemicals is also extremely advantageous because it protects consumers against unnecessary health hazards incurred by using toxic chemicals. There are also considerable economic advantages, especially in view of the more and more crucial awareness shown by consumers with regard to substances of this type, and eliminating chemicals which are hazardous to health can provide an advantage in advertising. [0013]
  • In the invention's process, the minimum duration and the minimum temperature of the shock treatment are selected so as to ensure that the stored product pests are killed in all stages of their development. The term “pests” should be understood to include not only the beetles, but also their larvae which cause damage to the stored products by eating into them. The invention kills, not only the pests—that is, the beetles and the larvae—but also their eggs, whereas, the eggs of pests frequently survive using conventional fumigation processes. Thanks to the fact that the eggs are killed, the invention's process ensures that no larvae will hatch from surviving eggs during the transport and/or storage of the goods, and, as a result, the goods will not be damaged by them. This being the case, the invention's process minimizes the risk of economic damage from pests because the goods are kept free of pests for long periods of time by killing pest eggs. This means that higher quality standards can be guaranteed, for the benefit of dealers and customers alike. [0014]
  • Cold treatment can also be advantageously adapted to the various types of pests which infest different kinds of stored products, thereby effectively eliminating numerous kinds of pests. The temperatures used can be adjusted to the different degrees of sensitivity of the individual stored product pests. Accordingly, an extremely wide variety of products which are prone to infestation by stored product pests, and which, in conventional processes, are irradiated or fumigated, may be treated by means by the invention so as to ensure effective and environment-friendly protection against stored product pests. Thanks to the fact that the cytosol in the cells of the respective pests freezes at certain temperatures below zero, it is possible to effectively eliminate the stored product pests in all stages of their development, by forming ice crystals in the cells, which leads to death. In this context, it should be noted that this critical temperature is in the range of a few degrees below zero. Nonetheless, in some cases, somewhat higher temperatures—around the freezing point—are sufficient, especially when a stored product pest is particularly sensitive to cold. The lower the selected shock-freezing temperature, the more quickly the pests will be killed in all stages of their development. The invention proposes that goods which are prone to infestation should be shock-frozen at temperatures of at least −10° C. to −40° C., and preferably −25° C. At these temperature ranges, stored product pests in all stages of their development are killed and eliminated within brief periods of time. Moreover, the use of these temperature ranges is also advantageous because, generally speaking, they correspond to the usual temperatures in cold storage warehouses, meaning that conventional facilities may be used to achieve them. Accordingly, in the simplest case, the goods which are prone to infestation may be stored in a cooling chamber at a sufficiently low temperature and left there long enough to ensure that the pests are killed in all stages of their development. This means that the invention's process will be easy to implement and will not be very expensive or interference-prone, making it exceptionally safe and practicable. The fact that the goods must only be shock-frozen for a relatively brief period of time is advantageous with regard to the duration of the process. [0015]
  • Furthermore, the cold treatment advantageously preserves the moisture content, taste and aroma of the various stored products. Shock-freezing is especially advantageous in cases where the items being treated consist of finished products; but it may also take place, for example, prior to processing. By means of shock-freezing, the finished products are directly cooled and, for example, they can also be transported or stored in this state. Storage in this state, in addition to the fact that it kills pests in all stages of their development, involves the advantage that moisture content—for example, in tobacco products—is kept basically constant, thus preventing the tobacco from drying out. Moreover, transport and/or storage at these temperatures prevents new infestation of the products by pests present in the transport or storage facility. [0016]
  • Based on another advantageous developed process it has been proposed that the duration and temperature of the shock-freezing process should be adapted so as to ensure their suitability for the type of stored product in question and the pests to be eliminated. This makes it possible to adjust temperature and cooling duration based on the specific type of stored product to be treated, thus avoiding damage to the product in question. This means the invention process is very flexible with regard to both the goods prone to infestation and the stored product pests to be eliminated effectively making the invention's process applicable to an extremely broad range of products. [0017]
  • Based on another recommendation, shock-freezing should take place over a period of approx. 24 to 72 hours. Stored product pests are effectively killed during this time span, at temperatures ranging between −10° C. and −40° C., which means the process is generally sufficient for the effective elimination of pests. Nevertheless, stored products can also be kept frozen for longer periods of time, depending on the product type stored—for example, throughout the entire period of transport—in order to avoid new infestation of the goods. [0018]
  • Another advantageous part of invention moreover proposes that goods prone to infestation should be intermittently treated with microwaves, and that the duration of treatment and average strength of the microwaves be adapted to each one another so as to ensure that pests are killed in all stages of their development. Goods prone to infestation may be irradiated with microwaves before and/or after shock-freezing. The use of microwaves to irradiate goods prone to infestation also leads to the effective killing of pests and their eggs. Therefore, this technology can be used as an additional safety measure, in combination with the cold treatment, in order to ensure that stored products are free of pests. [0019]
  • The use of microwaves in support of pest control by means of cold treatment is also advantageous because it eliminates the use of highly toxic substances or gamma radiation. Accordingly, this is also advantageous as a supporting measure because this treatment also eliminates materials which are hazardous to health and could leave residue in the products. [0020]
  • Furthermore, the additional use of microwaves is advantageous in that the treatment need only be implemented for a relatively brief period of time based on their advantageous energy-focusing effect. Microwave treatment breaks down proteins in the pest cells, thus killing pests in all stages of their development. Protracted heating stages, which could damage the stored products in question through the application of high temperatures for long periods of time, can be avoided. Using the invention's process, the products may be warmed evenly without the use of contact heat which could scorch the goods—as, for example, when using a hot plate. Moreover, this has the effect of eliminating the disadvantage, particularly in tobacco production, of drying out the product. Other obvious effects of the treatment—such as scorched spots—are prevented, thus contributing to the attractive appearance of the goods. [0021]
  • Another preferred development is that potentially infested goods are treated with microwaves for only a brief period of time. The preferred duration of microwave application is less than one minute at approximately 200-1200W, with 700W being preferable. In this context, the duration of treatment should also be adjusted to the amount of goods in question. Using microwave treatment for a brief period of time is especially kind to stored products and prevents the quality of the goods from being harmed in any way as the flavor, aroma and appearance of the goods are not affected by the irradiation. In order to ensure the effective irradiation of large-quantity units, the goods can be moved through the effective irradiation area—for example, by means of conveyors. [0022]
  • For tobacco, especially that used in the manufacture of cigars, microwave irradiation treatment over a time interval of 10-15 seconds at approximately 700W has proven to be sufficient for small-quantity units—for example, a cigar box. This brief duration of treatment, consisting of only a few seconds, leads to the effective killing of the eggs and larvae of cigarette beetles, but has no negative effect on the quality of the tobacco products themselves. Furthermore, the brief duration of treatment is advantageous in that effective, long-lasting pest control can be achieved in only a short time in the course of manufacturing the finished product. [0023]
  • All in all, the use of microwaves together with shock-freezing offers the advantage, by means of two mutually complementary measures, of finally and effectively killing any stored product pests, thus ensuring the products are free of pests. [0024]
  • According to another proposal, pest control by shock-freezing may take place either before or during the processing of stored products, or may be applied to the finished products themselves. Moreover, it is also possible, in the case of certain goods or certain pests, to implement microwave treatment as an additional safety-oriented measure to rule out the possibility of pest infestation in the finished product. Accordingly, in the case of tobacco products, it is possible, for example, to use microwaves for irradiation of the fermented tobacco and/or the finished product—such as, for example, a cigar. The treatment of the finished product by means of shock-freezing and/or microwaves is simple to implement and has the advantage of rendering the final fumigation stage which uses large quantities of highly toxic fumigants, unnecessary. Accordingly, the invention's process is well suited for avoiding this final fumigation stage, which means residue from these highly toxic fumigants which can remain in the products, can be avoided. The treatment of the finished products by this invention's process is simple, and existing facilities can be adapted to the process at no great expense, thus allowing the final fumigation stage to be skipped—a fact which presents a significant advantage over conventional processes and is also advantageous for the users of the finished products, which remain chemical-free.[0025]
  • A more detailed description of the underlying invention is found below in the form of detailed examples. An example is given solely for the purpose of a more precise description and is not to be regarded as limiting. The example in question relates to the use of the invention's process to control cigarette beetles in tobacco during the manufacture of cigars. In the example at hand, the finished cigars undergo pest control treatment. [0026]
  • In order to ensure that no pests can contaminate and/or damage the goods, upon the conclusion of their manufacture the cigars are treated in order to prevent pest infestation. Specifically, the cigars are shock-frozen for about 72 hours at approximately −25° C. During this interval, beetles, larvae and eggs of the stored product pests in question—in the present example, the cigarette beetle ([0027] Lasioderma serricorne)—are effectively killed. The cigars can be transported in this state and no additional storage is required for the cooled cigars. At a later stage, the cigars are slowly thawed. Cigars treated in this manner have an aroma which is in no way compromised by the treatment, and furthermore, they contain no residue of chemicals used for pest control—a fact which is an advantage with regard to the health of the user.
  • The invention's process can be used in a wide variety of applications related to pest control. It has proven especially effective with regard to control of the cigarette beetle ([0028] Lasioderma serricorne) which can infest a broad range of stored products including tobacco products, spices, medication and dried fruits. Applying the new process on tobacco has been shown to be very effective; and, the process can also be used for other stored products and compares favorably against other stored product tests. Thanks to the low cost and relatively little effort involved in its use in pest control, the invention saves both time and money, eliminating stored product pests in a manner which is both more effective and environment-friendly than conventional methods; this is an advantage for consumers because the products are not altered in any way, and no hazardous chemical residue remains in the products. In addition, the invention's process takes only a short time and is further characterized by the simplicity of its implementation and not being significantly prone to interference.

Claims (10)

1. Process to control pests in stored products, especially in tobacco products,
wherby
goods which are prone to infestation are intermittently shock-frozen at temperatures below zero, the minimum duration and minimum temperature of the shock treatment are selected so as to ensure that the stored product pests are killed in all stages of their development.
2. Process according to claim 1, whereby stored products are shock-frozen at temperatures of at least −10° C. to −40° C., preferably −25° C.
3. Process according to either of claims 1 or 2, whereby the duration and temperature of the shock-freezing process are adapted to each other so as to ensure their suitability for the type of stored product in question.
4. Process according to one or more of claims 1 to 3, whereby the shock-freezing takes place over a period of up to 72 hours.
5. Process according to one or more of claims 1 to 4, whereby the shock-freezing takes place at the end of the product manufacturing process.
6. Process according to one or more of claims 1 to 5, whereby the goods prone to infestation are intermittently treated with microwaves, whereby the duration of treatment and the average strength of the microwaves are adapted to each other so as to ensure that both the pests themselves and their eggs are killed.
7. Process according to one or more of claims 1 to 5, whereby the goods prone to infestation are irradiated with microwaves before and/or after shock-freezing.
8. Process according to one or more of claims 1 to 7, whereby goods prone to infestation are treated with microwaves for less than one minute at approximately 200-1200W, preferably at 700W, whereby parameters are adjusted to the quantity of goods prone to infestation to be irradiated.
9. Process according to one or more of claims 1 to 8, whereby the microwave frequency used is adjusted to the required depth of penetration of the goods by the microwaves, whereby microwaves are used in a range of 2 to 20 GHz, preferably 2 to 5 GHz.
10. Process according to one or more of claims 1 to 9, whereby the duration of treatment, temperature and average strength of the microwaves are adapted to each other so as to ensure that both the pests themselves and their eggs are killed, but that the stored products themselves are not damaged.
US10/239,601 2001-01-26 2001-12-04 Process to control pest in stored products Abandoned US20040025892A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01101798.5 2001-01-26
EP01101798A EP1226755B1 (en) 2001-01-26 2001-01-26 Method of controlling pests in stored products
PCT/EP2001/014164 WO2002058467A1 (en) 2001-01-26 2001-12-04 Method of controlling pests in stored goods

Publications (1)

Publication Number Publication Date
US20040025892A1 true US20040025892A1 (en) 2004-02-12

Family

ID=8176304

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/239,601 Abandoned US20040025892A1 (en) 2001-01-26 2001-12-04 Process to control pest in stored products

Country Status (7)

Country Link
US (1) US20040025892A1 (en)
EP (1) EP1226755B1 (en)
AT (1) ATE235816T1 (en)
BR (1) BR0109533A (en)
DE (1) DE50100139D1 (en)
ES (1) ES2194798T3 (en)
WO (1) WO2002058467A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060189711A1 (en) * 2005-02-23 2006-08-24 Ng Howard C Silicon-containing polytrimethylene homo- or copolyether composition
US20080194726A1 (en) * 2005-02-23 2008-08-14 Ng Howard C Silicon-containing polytrimethylene homo- or copolyether composition
US20100071258A1 (en) * 2008-09-25 2010-03-25 Christopher Molnar Insect eradication system and method
US20100186285A1 (en) * 2007-07-25 2010-07-29 Robert Schmitt Arrangement for destroying vermin
CN110150713A (en) * 2019-05-05 2019-08-23 贵州中烟工业有限责任公司 A kind of storage cabinet discharging control system
CN110679995A (en) * 2019-11-19 2020-01-14 湖北中烟工业有限责任公司 Cigar tobacco four-stage fermentation method
WO2022136670A1 (en) * 2020-12-24 2022-06-30 Philip Morris Products S.A. Method and system to monitor tobacco material to detect insect infestation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1024153B1 (en) * 2016-03-14 2017-11-23 3Handseurope Bvba METHODS FOR PREVENTION OF MOLDING GROWTH ON TOBACCO

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968591A (en) * 1957-05-08 1961-01-17 Norda Essential Oil And Chemic Control of cigarette beetles with vapor of ddvp
US3409023A (en) * 1965-12-17 1968-11-05 Philip Morris Inc Method of puffing tobacco stems by microwave energy
US3494724A (en) * 1968-03-27 1970-02-10 Gray Ind Inc Method and apparatus for controlling microorganisms and enzymes
US3494723A (en) * 1967-12-05 1970-02-10 Gray Ind Inc Method and apparatus for controlling microorganisms and enzymes
US3578463A (en) * 1967-03-08 1971-05-11 Cryodry Corp Microwave blanching
US3699976A (en) * 1969-01-27 1972-10-24 Japan Monopoly Corp Method for killing tobacco leaf bug inhabitants and their eggs
US3710803A (en) * 1969-10-15 1973-01-16 Research Corp Method for turgor conditioning tobacco
US3820549A (en) * 1972-11-30 1974-06-28 Excel Engineering Apparatus and method for radio frequency sterilization of cigars
US4160336A (en) * 1978-02-09 1979-07-10 Query Grady W Method for treating fireants
US4366644A (en) * 1978-05-05 1983-01-04 Daniel J. Bondy Method and apparatus for termite control
US4370534A (en) * 1979-04-09 1983-01-25 Deryck Brandon Apparatus and method for heating, thawing and/or demoisturizing materials and/or objects
US4416908A (en) * 1980-07-11 1983-11-22 Mcdonnell Douglas Corporation Insect de-infestation method
US4510163A (en) * 1981-08-28 1985-04-09 Nestec S.A. Process for preparing a rehydratable diced frozen food product
US4874000A (en) * 1982-12-30 1989-10-17 Philip Morris Incorporated Method and apparatus for drying and cooling extruded tobacco-containing material
US4922933A (en) * 1987-02-13 1990-05-08 R. J. Reynolds Tobacco Company Tobacco separation or delamination method
US4934385A (en) * 1987-07-11 1990-06-19 Korber Ag Method of and apparatus for treating uncured tobacco
US4989363A (en) * 1987-12-11 1991-02-05 Degesch Gmbh Bulk material treatment and apparatus
US5167243A (en) * 1991-02-28 1992-12-01 Lorillard Tobacco Company Disinfestation system for agricultural products
US5179840A (en) * 1989-10-16 1993-01-19 The Boc Group Plc Cryogenic treatment methods
US5193350A (en) * 1990-04-24 1993-03-16 Ottmar Tallafus Method of sterilizing dried goods
US5306205A (en) * 1991-09-04 1994-04-26 Sudfleisch Gmbh Method for producing mincemeat
US5339564A (en) * 1993-11-16 1994-08-23 Wilson Steve D Method for control and destruction of agricultural pests by coherent electromagnetic excitation
US5349778A (en) * 1992-07-08 1994-09-27 Cheng Chu Vortex tube for exterminating organisms
US5394643A (en) * 1992-03-25 1995-03-07 Proteco Ag Fumigant fluid
US5435096A (en) * 1994-03-01 1995-07-25 Nekomoto; Nelson M. Nematode and arthropod repelling apparatus
US5442876A (en) * 1991-04-09 1995-08-22 Pedersen; Ib O. Method for preventing and combating fungus attack in existing building structures and electrodes for carrying out the method
US5468938A (en) * 1989-09-18 1995-11-21 Roy; Stephen Microwave radiation insert exterminator
US5514389A (en) * 1994-10-13 1996-05-07 Florida Department Of Citrus System and method for pasteurizing citrus juice using microwave energy
US5575106A (en) * 1994-12-02 1996-11-19 Micro Term, Inc. In situ microwave insect eradication device with safety system
US5595775A (en) * 1994-10-11 1997-01-21 Analyst Ltd. Method for preserving fresh fruit and vegetable
US5768907A (en) * 1997-05-05 1998-06-23 Lee; Frank R. Sanitary pest control system
US5803081A (en) * 1996-06-28 1998-09-08 Regent Court Technologies Tobacco and related products
US5827561A (en) * 1994-07-08 1998-10-27 Duve; Manfred Process for producing meat strips or proteinaceous strips
US5858430A (en) * 1997-11-03 1999-01-12 Endico; Felix W. Food preservation and disinfection method utilizing low temperature delayed onset aqueous phase oxidation
US5968401A (en) * 1989-09-18 1999-10-19 Roy; Stephen Microwave radiation insect exterminator
US6058940A (en) * 1997-04-21 2000-05-09 Lane; Kerry Scott Method and system for assay and removal of harmful toxins during processing of tobacco products
US6093432A (en) * 1998-08-13 2000-07-25 University Of Guelph Method and apparatus for electrically treating foodstuffs for preservation
US6192622B1 (en) * 1998-09-15 2001-02-27 Yosri Moh'd Taher Haj-Yousef Mobile device to eradicate red palm weevils and trees stem borers
US6311695B1 (en) * 1996-06-28 2001-11-06 Regent Court Technologies Method of treating tobacco to reduce nitrosamine content, and products produced thereby
US6338348B1 (en) * 1996-06-28 2002-01-15 Regent Court Technologies Method of treating tobacco to reduce nitrosamine content, and products produced thereby
US6647661B2 (en) * 2000-04-04 2003-11-18 Grigor Rangelov Grigorov Method and system for exterminating pests, weeds and pathogens
US6682697B2 (en) * 2002-01-15 2004-01-27 Pure World Botanicals, Inc. Process for sterilization and disinfecting of agriculture and botanic products
US6837001B2 (en) * 2001-07-12 2005-01-04 Mississippi State University Positive directed movement of termites by radio waves as a basis for control procedures
US20050120617A1 (en) * 2003-12-08 2005-06-09 Massagee Andrew E. Fire ant control method and apparatus
US6916445B2 (en) * 2002-11-27 2005-07-12 Steris Inc. System and method for decontaminating articles
US6966144B2 (en) * 2000-12-18 2005-11-22 Cts Technologies Ag Device and use in connection with measure for combating
US20060064924A1 (en) * 2004-09-13 2006-03-30 Lee Frank R Pest control device and method

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968591A (en) * 1957-05-08 1961-01-17 Norda Essential Oil And Chemic Control of cigarette beetles with vapor of ddvp
US3409023A (en) * 1965-12-17 1968-11-05 Philip Morris Inc Method of puffing tobacco stems by microwave energy
US3578463A (en) * 1967-03-08 1971-05-11 Cryodry Corp Microwave blanching
US3494723A (en) * 1967-12-05 1970-02-10 Gray Ind Inc Method and apparatus for controlling microorganisms and enzymes
US3494724A (en) * 1968-03-27 1970-02-10 Gray Ind Inc Method and apparatus for controlling microorganisms and enzymes
US3699976A (en) * 1969-01-27 1972-10-24 Japan Monopoly Corp Method for killing tobacco leaf bug inhabitants and their eggs
US3710803A (en) * 1969-10-15 1973-01-16 Research Corp Method for turgor conditioning tobacco
US3820549A (en) * 1972-11-30 1974-06-28 Excel Engineering Apparatus and method for radio frequency sterilization of cigars
US4160336A (en) * 1978-02-09 1979-07-10 Query Grady W Method for treating fireants
US4366644A (en) * 1978-05-05 1983-01-04 Daniel J. Bondy Method and apparatus for termite control
US4370534A (en) * 1979-04-09 1983-01-25 Deryck Brandon Apparatus and method for heating, thawing and/or demoisturizing materials and/or objects
US4416908A (en) * 1980-07-11 1983-11-22 Mcdonnell Douglas Corporation Insect de-infestation method
US4510163A (en) * 1981-08-28 1985-04-09 Nestec S.A. Process for preparing a rehydratable diced frozen food product
US4874000A (en) * 1982-12-30 1989-10-17 Philip Morris Incorporated Method and apparatus for drying and cooling extruded tobacco-containing material
US4922933A (en) * 1987-02-13 1990-05-08 R. J. Reynolds Tobacco Company Tobacco separation or delamination method
US4934385A (en) * 1987-07-11 1990-06-19 Korber Ag Method of and apparatus for treating uncured tobacco
US4989363A (en) * 1987-12-11 1991-02-05 Degesch Gmbh Bulk material treatment and apparatus
US5968401A (en) * 1989-09-18 1999-10-19 Roy; Stephen Microwave radiation insect exterminator
US5468938A (en) * 1989-09-18 1995-11-21 Roy; Stephen Microwave radiation insert exterminator
US5179840A (en) * 1989-10-16 1993-01-19 The Boc Group Plc Cryogenic treatment methods
US5193350A (en) * 1990-04-24 1993-03-16 Ottmar Tallafus Method of sterilizing dried goods
US5167243A (en) * 1991-02-28 1992-12-01 Lorillard Tobacco Company Disinfestation system for agricultural products
US5442876A (en) * 1991-04-09 1995-08-22 Pedersen; Ib O. Method for preventing and combating fungus attack in existing building structures and electrodes for carrying out the method
US5306205A (en) * 1991-09-04 1994-04-26 Sudfleisch Gmbh Method for producing mincemeat
US5394643A (en) * 1992-03-25 1995-03-07 Proteco Ag Fumigant fluid
US5349778A (en) * 1992-07-08 1994-09-27 Cheng Chu Vortex tube for exterminating organisms
US5339564A (en) * 1993-11-16 1994-08-23 Wilson Steve D Method for control and destruction of agricultural pests by coherent electromagnetic excitation
US5435096A (en) * 1994-03-01 1995-07-25 Nekomoto; Nelson M. Nematode and arthropod repelling apparatus
US5827561A (en) * 1994-07-08 1998-10-27 Duve; Manfred Process for producing meat strips or proteinaceous strips
US5595775A (en) * 1994-10-11 1997-01-21 Analyst Ltd. Method for preserving fresh fruit and vegetable
US5514389B1 (en) * 1994-10-13 1998-06-02 Florida Dept Of Citrus System and method for pasteurizing citrus juice using microwave energy
US5514389A (en) * 1994-10-13 1996-05-07 Florida Department Of Citrus System and method for pasteurizing citrus juice using microwave energy
US5575106A (en) * 1994-12-02 1996-11-19 Micro Term, Inc. In situ microwave insect eradication device with safety system
US6338348B1 (en) * 1996-06-28 2002-01-15 Regent Court Technologies Method of treating tobacco to reduce nitrosamine content, and products produced thereby
US5803081A (en) * 1996-06-28 1998-09-08 Regent Court Technologies Tobacco and related products
US6311695B1 (en) * 1996-06-28 2001-11-06 Regent Court Technologies Method of treating tobacco to reduce nitrosamine content, and products produced thereby
US6058940A (en) * 1997-04-21 2000-05-09 Lane; Kerry Scott Method and system for assay and removal of harmful toxins during processing of tobacco products
US5768907A (en) * 1997-05-05 1998-06-23 Lee; Frank R. Sanitary pest control system
US5858430A (en) * 1997-11-03 1999-01-12 Endico; Felix W. Food preservation and disinfection method utilizing low temperature delayed onset aqueous phase oxidation
US6093432A (en) * 1998-08-13 2000-07-25 University Of Guelph Method and apparatus for electrically treating foodstuffs for preservation
US6192622B1 (en) * 1998-09-15 2001-02-27 Yosri Moh'd Taher Haj-Yousef Mobile device to eradicate red palm weevils and trees stem borers
US6647661B2 (en) * 2000-04-04 2003-11-18 Grigor Rangelov Grigorov Method and system for exterminating pests, weeds and pathogens
US6966144B2 (en) * 2000-12-18 2005-11-22 Cts Technologies Ag Device and use in connection with measure for combating
US6837001B2 (en) * 2001-07-12 2005-01-04 Mississippi State University Positive directed movement of termites by radio waves as a basis for control procedures
US6682697B2 (en) * 2002-01-15 2004-01-27 Pure World Botanicals, Inc. Process for sterilization and disinfecting of agriculture and botanic products
US6916445B2 (en) * 2002-11-27 2005-07-12 Steris Inc. System and method for decontaminating articles
US20050120617A1 (en) * 2003-12-08 2005-06-09 Massagee Andrew E. Fire ant control method and apparatus
US20060064924A1 (en) * 2004-09-13 2006-03-30 Lee Frank R Pest control device and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060189711A1 (en) * 2005-02-23 2006-08-24 Ng Howard C Silicon-containing polytrimethylene homo- or copolyether composition
US20080194726A1 (en) * 2005-02-23 2008-08-14 Ng Howard C Silicon-containing polytrimethylene homo- or copolyether composition
US7629396B2 (en) 2005-02-23 2009-12-08 E.I. Du Pont De Nemours And Company Silicon-containing polytrimethylene homo- for copolyether composition
US7696264B2 (en) 2005-02-23 2010-04-13 E. I. Du Pont De Nemours And Company Silicon-containing polytrimethylene homo- or copolyether composition
US20100186285A1 (en) * 2007-07-25 2010-07-29 Robert Schmitt Arrangement for destroying vermin
US20100071258A1 (en) * 2008-09-25 2010-03-25 Christopher Molnar Insect eradication system and method
US7926222B2 (en) * 2008-09-25 2011-04-19 Molnar Christopher J Insect eradication system and method
CN110150713A (en) * 2019-05-05 2019-08-23 贵州中烟工业有限责任公司 A kind of storage cabinet discharging control system
CN110679995A (en) * 2019-11-19 2020-01-14 湖北中烟工业有限责任公司 Cigar tobacco four-stage fermentation method
WO2022136670A1 (en) * 2020-12-24 2022-06-30 Philip Morris Products S.A. Method and system to monitor tobacco material to detect insect infestation

Also Published As

Publication number Publication date
ES2194798T3 (en) 2003-12-01
ATE235816T1 (en) 2003-04-15
EP1226755A1 (en) 2002-07-31
WO2002058467A1 (en) 2002-08-01
DE50100139D1 (en) 2003-05-08
BR0109533A (en) 2002-12-10
EP1226755B1 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
CA2193611C (en) Method and apparatus for the application of volatile substances conveyed in carrier gas
NO312325B1 (en) Process for the treatment of tobacco to reduce the content of nitrosamine and products thus produced
Pan et al. Review of current technologies for reduction of Salmonella populations on almonds
US20040025892A1 (en) Process to control pest in stored products
Ducom Methyl bromide alternatives
Cao et al. Evaluation of food safety and quality parameters for shelf life extension of pulsed light treated strawberries
KR20230156442A (en) Methods and device for co-treatment of crop protection chemicals with plant growth regulators
TW201733442A (en) Vaporized administration of pesticides
Sen et al. Effects of short-term controlled atmosphere treatment at elevated temperature on dried fig fruit
US20060127545A1 (en) Aseptic production of meat-based foodstuffs
US20090081337A1 (en) Enhanced Easy to Handle Fruits & Produce
EP2915441B1 (en) Pasteurization of packaged tobacco
US20040025893A1 (en) Method of controlling pests in stored goods
US20040265459A1 (en) Potentiation of microbial lethality of gaseous biocidal substances
JPH05130854A (en) Method for retaining quality of agricultural product and food
JP2009000001A (en) Apparatus and method for low-temperature killing of insect, and article to be treated thereby
Ihsanullah et al. Effect of various irradiation doses on some nutrients of Pakistani date
Corrigan et al. Effects of treatment with elevated carbon dioxide levels on the sensory quality of asparagus
US2577453A (en) Method of treating tobacco and treated product
Beever et al. Effect of post-harvest fumigation on quality of asparagus spears
Kostyukovsky et al. Dates fumigation with phosphine
JP2005204572A (en) Insecticidal/ovicidal treatment method for grain flour or dry grain-derived product
JP2000342173A (en) Method for retaining freshness of vegetable or fruit and method for packing vegetable or fruit
Wang et al. Radio frequency post-harvest quarantine and phytosanitary treatments to control insect pest in fruits and nuts
Kik et al. CARVEX-pressurized pest disinfection with CARBO carbon dioxide.

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION