US20040068013A1 - Compounds and compositions for delivering active agents - Google Patents

Compounds and compositions for delivering active agents Download PDF

Info

Publication number
US20040068013A1
US20040068013A1 US10/677,906 US67790603A US2004068013A1 US 20040068013 A1 US20040068013 A1 US 20040068013A1 US 67790603 A US67790603 A US 67790603A US 2004068013 A1 US2004068013 A1 US 2004068013A1
Authority
US
United States
Prior art keywords
active agent
composition
biologically
amino acid
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/677,906
Inventor
Andrea Leone-Bay
Duncan Paton
Koc-Kan Ho
Frenel DeMorin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emisphere Technologies Inc
Original Assignee
Emisphere Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/051,019 external-priority patent/US5451410A/en
Priority claimed from US08/205,511 external-priority patent/US5792451A/en
Priority claimed from US08/231,622 external-priority patent/US5629020A/en
Priority claimed from PCT/US1994/004560 external-priority patent/WO1994023767A1/en
Priority claimed from US08/335,148 external-priority patent/US5643957A/en
Application filed by Emisphere Technologies Inc filed Critical Emisphere Technologies Inc
Priority to US10/677,906 priority Critical patent/US20040068013A1/en
Publication of US20040068013A1 publication Critical patent/US20040068013A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/23Calcitonins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/25Growth hormone-releasing factor [GH-RF] (Somatoliberin)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/27Growth hormone [GH] (Somatotropin)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/40Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/42Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton with carboxyl groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/48Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/53Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/55Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a carbon atom of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/57Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C233/63Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/81Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/82Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/81Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/82Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/87Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/26Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being saturated and containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/38Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/58Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/64Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/70Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/72Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms
    • C07C235/76Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • C07C235/78Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton the carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/70Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/84Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/22Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/04Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C279/14Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • C07K5/06043Leu-amino acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered

Definitions

  • the present invention relates to compounds for delivering active agents, and particularly biologically active agents such as, for example, bioactive peptides and the like. These compounds are used as carriers to facilitate the delivery of a cargo to a target.
  • the carriers are modified amino acids and are well suited to form non-covalent mixtures with biologically-active agents for oral administration to animals. Methods for the preparation and for the administration of such compositions are also disclosed.
  • Biologically active agents are particularly vulnerable to such barriers.
  • barriers are imposed by the body.
  • physical barriers are the skin and various organ membranes that must be traversed before reaching a target.
  • Chemical barriers include, but are not limited to, pH variations, lipid bi-layers, and degrading enzymes.
  • RNA enzymatic inhibitors e.g., pancreatic trypsin inhibitors, diisopropylfluorophosphate (DFF) and trasylol
  • Liposomes have also been described as drug delivery systems for insulin and heparin. See, for example, U.S. Pat. No. 4,239,754; Patel et al. (1976), FEBS Letters, Vol. 62, pg. 60; and Hashimoto et al. (1979), Endocrinology Japan, Vol. 26, pg. 337.
  • microspheres of artificial polymers of mixed amino acids have been used to deliver pharmaceuticals.
  • proteinoids mixed amino acids
  • U.S. Pat. No. 4,925,673 describes drug-containing proteinoid microsphere carriers as well as methods for their preparation and use. These proteinoid microspheres are useful for the delivery of a number of active agents.
  • Compounds useful in the delivery of active agents are provided. These compounds include
  • compositions comprising at least one biologically active agent and at least one of the compounds above are also provided. Further contemplated by the present invention are dosage unit forms that include these compositions.
  • compositions which comprises mixing at least one active agent with at least one compound as described above, and optionally, a dosing vehicle.
  • these non-toxic compounds are orally administered to animals as part of a delivery system by blending or mixing the compounds with an active agent prior to administration.
  • the specific compounds of the present invention or salts thereof such as, for example, sodium salts, may be used to deliver various active agents through various biological, chemical, and physical barriers. These compounds are particularly suited for delivering active agents which are subject to environmental degradation.
  • the compounds and compositions of the subject invention are particularly useful for delivering or administering biologically-active agents to any animals such as birds; mammals, such as primates and particularly humans; and insects.
  • compositions and the formulation methods of the present invention are cost effective, simple to perform, and amenable to industrial scale up for commercial production.
  • Amino acids, poly amino acids, and peptides, in modified form may be used to deliver active agents including, but not limited to, biologically active agents such as for example, pharmacological and therapeutic agents.
  • An amino acid is any carboxylic acid having at least one free amine group and includes naturally occurring and synthetic amino acids.
  • Poly amino acids are either peptides or two or more amino acids linked by a bond formed by other groups which can be linked, e.g. an ester, anhydride, or an anhydride linkage. Special mention is made of non-naturally occurring poly amino acids and particularly non-naturally occurring hetero poly amino acids, i.e. polymers of mixed amino acids.
  • Peptides are two or more amino acids joined by a peptide bond. Peptides can vary in length from dipeptides with two amino acids to poly peptides with several hundred amino acids. See Chambers Biological Dictionary, editor Peter M. B. Walker, Cambridge, England: Chambers Cambridge, 1989, page 215. Special mention is made of di-peptides, tri-peptides, tetra-peptides, and penta-peptides.
  • modified amino acids, modified poly amino acids, and modified peptides are meant to include amino acids which have been modified or poly amino acids and peptides in which at least one amino acid has been modified by acylating at least one free amine group with an acylating agent which reacts with at least one of the free amine groups present.
  • Ar is a substituted or unsubstituted phenyl or naphthyl
  • R 2 is C 1 to C 24 alkyl, C 1 to C 24 alkenyl, phenyl, naphthyl, (C 1 to C 10 alkyl) phenyl, (C 1 to C 10 alkenyl) phenyl, (C 1 to C 10 alkyl) naphthyl, (C 1 to C 10 alkenyl) naphthyl, phenyl (C 1 to C 10 alkyl), phenyl (C 1 to C 10 alkenyl), naphthyl (C 1 to C 10 alkyl), and naphthyl (C 1 to C 10 alkenyl);
  • R 2 is optionally substituted with C 1 to C 4 alkyl, C 1 to C 4 alkenyl, C 1 to C 4 alkoxy, —OH, —SH and —CO 2 R 4 or any combination thereof;
  • R 4 is hydrogen, C 1 to C 4 alkyl or C 1 to C 4 alkenyl
  • R 2 is optionally interrupted by oxygen, nitrogen, sulfur or any combination thereof.
  • R 3 is hydrogen, C 1 to C 4 alkyl or C 1 to C 4 alkenyl; or
  • R 5 is (i) C 3 -C 10 cycloalkyl, optionally substituted with C 1 -C 7 alkyl, C 2 -C 7 alkenyl, C 1 -C 7 alkoxy, hydroxy, phenyl, phenoxy or —CO 2 R 8 , wherein R 8 is hydrogen, C 1 -C 4 alkyl, or C 2 -C 4 alkenyl; or
  • R 6 is hydrogen, C 1 -C 4 alkyl, or C 2 -C 4 alkenyl
  • R is C 1 -C 24 alkyl, C 2 -C 24 alkenyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkenyl, phenyl, naphthyl, (C 1 -C 10 alkyl) phenyl, (C 2 -C 10 alkenyl) phenyl, (C 1 -C 10 alkyl) naphthyl, (C 2 -C 10 alkenyl) naphthyl, phenyl (C 1 -C 10 alkyl), phenyl (C 2 -C 10 alkenyl), naphthyl (C 1 -C 10 alkyl) or naphthyl (C 2 -C 10 alkenyl);
  • R 7 being optionally substituted with C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 1 -C 4 alkoxy, —OH, —SH, —CO 2 R 9 , C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkenyl, heterocycle having 3-10 ring atoms wherein the hetero atom is one or more of N, O, S or any combination thereof, aryl, (C 1 -C 10 alk)aryl, ar(C 1 -C 10 alkyl), or any combination thereof;
  • R 7 being optionally interrupted by oxygen, nitrogen, sulfur, or any combination thereof.
  • R 9 is hydrogen, C 1 -C 4 alkyl, or C 2 -C 4 alkenyl.
  • Modified amino acids are typically prepared by modifying the amino acids or an ester thereof. Many of these compounds are prepared by acylation with acylating agents having the formula
  • R 10 is the appropriate radical to yield the modification indicated in the final product as would be within the skill of the art based upon the detailed disclosure herein, and Y is a leaving group.
  • Typical leaving groups include, but are not limited to, halogens such as, for example, chlorine, bromine, and iodine. Additionally, the corresponding anhydrides are suitable acylating agents.
  • modified amino acid compounds above may be prepared by reacting the single amino acid with the appropriate acylating agent or an amine modifying agent which reacts with free amino moiety present in the amino acids to form amides.
  • Protecting groups may be used to avoid unwanted side reactions as would be known to those skilled in the art.
  • the amino acid can be dissolved in aqueous alkaline solution of a metal hydroxide, e.g., sodium or potassium hydroxide, and heated at a temperature ranging between about 5° C. and about 70° C., preferably between about 10° C. and about 40° C., for a period ranging between about 1 hour and about 4 hours, preferably about 2.5 hours.
  • a metal hydroxide e.g., sodium or potassium hydroxide
  • the amount of alkali employed per equivalent of NH 2 groups in the amino acid generally ranges between about 1.25 and about 3 mmole, preferably between about 1.5 and about 2.25 mmole per equivalent of NH 2 .
  • the pH of the solution generally ranges between about 8 and about 13, preferably ranging between about 10 and about 12.
  • the reaction is quenched by adjusting the pH of the mixture with a suitable acid, e.g., concentrated hydrochloric acid, until the pH reaches between about 2 and about 3.
  • a suitable acid e.g., concentrated hydrochloric acid
  • the mixture separates on standing at room temperature to form a transparent upper layer and a white or off-white precipitate.
  • the upper layer is discarded, and the modified amino acid is collected from the lower layer by filtration or decantation.
  • the crude modified amino acid is then dissolved in water at a pH ranging between about 9 and about 13, preferably between about 11 and about 13. Insoluble materials are removed by filtration and the filtrate is dried in vacuo.
  • the yield of modified amino acid generally ranges between about 30 and about 60%, and usually about 45%.
  • Further examples include, but are not limited to, human growth hormones; bovine growth hormones; growth releasing hormones; interferons; interleukin-1; insulin; heparin, and particularly low molecular weight heparin; calcitonin; erythropoietin; atrial naturetic factor; antigens; monoclonal antibodies; somatostatin; adrenocorticotropin, gonadotropin releasing hormone; oxytocin; vasopressin; cromolyn sodium (sodium or disodium chromoglycate); vancomycin; desferrioxamine (DFO); anti-microbials, including, but not limited to anti-fungal agents; or any combination thereof.
  • human growth hormones bovine growth hormones
  • growth releasing hormones interferons
  • interleukin-1 insulin
  • insulin heparin, and particularly low molecular weight heparin
  • calcitonin erythropoietin
  • atrial naturetic factor
  • compositions of the present invention may include one or more active agents.
  • compounds I-XLV or poly amino acids or peptides that include at least one of these compounds may be used directly as a drug delivery carrier by simply mixing one or more compound, poly amino acid or peptide with the active ingredient prior to administration.
  • the mixture is optionally heated to a temperature ranging between about 20 and about 50° C., preferably about 40° C., until the modified amino acid(s) dissolve.
  • the final solution contains between from about 1 mg and to about 2000 mg of compound, poly amino acid, or peptide per mL of solution, preferably between about 1 and about 500 mg per mL.
  • concentration of active agent in the final solution varies and is dependent on the required dosage for treatment. When necessary, the exact concentration can be determined by, for example, reverse phase HPLC analysis.
  • a microsphere stabilizing additive may be incorporated into the aqueous acid solution or into the compound or cargo solution prior to the microsphere formation process. With some drugs the presence of such additives promotes the stability and/or dispersibility of the microspheres in solution.
  • the stabilizing additives may be employed at a concentration ranging between about 0.1 and 5% (w/v), preferably about 0.5% (w/v).
  • Suitable, but non-limiting, examples of microsphere stabilizing additives include gum acacia, gelatin, methyl cellulose, polyethylene glycol, and polylysine.
  • the preferred stabilizing additives are gum acacia, gelatin and methyl cellulose.
  • the amount of pharmaceutical agent which may be incorporated by the microsphere is dependent on a number of factors which include the concentration of agent in the solution, as well as the affinity of the cargo for the carrier.
  • the compound, poly amino acid, or peptide microspheres do not alter the physiological and biological properties of the active agent. Furthermore, the encapsulation process does not alter the pharmacological properties of the active agent. Any pharmacological agent can be incorporated within the microspheres.
  • the system is particularly advantageous for delivering chemical or biological agents which otherwise would be destroyed or rendered less effective by conditions encountered within the body of the animal to which it is administered, before the microsphere reaches its target zone (i.e., the area in which the contents of the microsphere are to be released) and for delivering pharmacological agents which are poorly absorbed in the gastro-intestinal tract.
  • the target zones can vary depending upon the drug employed.
  • the particle size of the microsphere plays an important role in determining release of the active agent in the targeted area of the gastro-intestinal tract.
  • the preferred microspheres have diameters between about ⁇ 0.1 microns and about 10 microns, preferably between about 0.5 microns and about 5 microns.
  • the microspheres are sufficiently small to release effectively the active agent at the targeted area within the gastro-intestinal tract such as, for example, between the stomach and the jejunum.
  • Small microspheres can also be administered parenterally by being suspended in an appropriate carrier fluid (e.g., isotonic saline) and injected directly into the circulatory system, intramuscularly or subcutaneously.
  • the mode of administration selected will vary, of course, depending upon the requirement of the active agent being administered. Large amino acid microspheres (>50 microns) tend to be less effective as oral delivery systems.
  • the size of the microspheres formed by contacting compounds, poly amino acids, or peptides with water or an aqueous solution containing active agents can be controlled by manipulating a variety of physical or chemical parameters, such as the pH, osmolarity or ionic strength of the encapsulating solution, size of the ions in solution and by the choice of acid used in the encapsulating process.
  • the administration mixtures are prepared by mixing an aqueous solution of the carrier with an aqueous solution of the active ingredient, just prior to administration.
  • the carrier and the biologically active ingredient can be admixed during the manufacturing process.
  • the solutions may optionally contain additives such as phosphate buffer salts, citric acid, acetic acid, gelatin and gum acacia.
  • Stabilizing additives may be incorporated into the carrier solution. With some drugs, the presence of such additives promotes the stability and dispersibility of the agent in solution.
  • the stabilizing additives may be employed at a concentration ranging between about 0.1 and 5% (W/V), preferably about 0.5% (W/V).
  • Suitable, but non-limiting, examples of stabilizing additives include gum acacia, gelatin, methyl cellulose, polyethylene glycol, and polylysine.
  • the preferred stabilizing additives are gum acacia, gelatin and methyl cellulose.
  • the amount of active agent is an amount effective to accomplish the purpose of the particular active agent.
  • the amount in the composition typically is a pharmacologically or biologically effective amount. However, the amount can be less than a pharmacologically or biologically effective amount when the composition is used in a dosage unit form, such as a capsule, a tablet or a liquid, because the dosage unit form may contain a multiplicity of carrier/biologically active agent compositions or may contain a divided pharmacologically or biologically effective amount.
  • the total effective amounts can then be administered in cumulative units containing, in total, pharmacologically or biologically active amounts of biologically or pharmacologically active agent.
  • the total amount of active agent, and particularly biologically active agent, to be used can be determined by those skilled in the art. However, it has surprisingly been found that with some biologically active agents, the use of the presently disclosed carriers provides extremely efficient delivery. Therefore, lower amounts of biologically active agent than those used in prior dosage unit forms or delivery systems can be administered to the subject, while still achieving the same blood levels and therapeutic effects.
  • the amount of carrier in the present composition is a delivery effective amount and can be determined for any particular carrier or biologically active agent by methods known to those skilled in the art.
  • Dosage unit forms can also include any of excipients; diluents; disintegrants; lubricants; plasticizers; colorants; and dosing vehicles, including, but not limited to water, 1,2-propane diol, ethanol, olive oil, or any combination thereof.
  • Administration of the present compositions or dosage unit forms preferably is oral or by intraduodenal injection.
  • the delivery compositions of the present invention may also include one or more enzyme inhibitors.
  • enzyme inhibitors include, but are not limited to, compounds. such as actinonin or epiactinonin and derivatives thereof. These compounds have the formulas below:
  • R 12 is sulfoxymethyl or carboxyl or a substituted carboxy group selected from carboxamide, hydroxyaminocarbonyl and alkoxycarbonyl groups; and R 13 is hydroxyl, alkoxy, hydroxyamino or sulfoxyamino group.
  • Other enzyme inhibitors include, but are not limited to, aprotinin (Trasylol) and Bowman-Birk inhibitor.
  • the compounds and compositions of the subject invention are useful for administering biologically active agents to any animals such as birds; mammals, such as primates and particularly humans; and insects.
  • the system is particularly advantageous for delivering chemically or biologically active agents which would otherwise be destroyed or rendered less effective by conditions encountered before the active agent its target zone (i.e. the area in which the active agent of the delivery composition are to be released) and within the body of the animal to which they are administered.
  • the compounds and compositions of the present invention are useful in orally administering active agents, especially those which are not ordinarily orally deliverable.
  • N-hydroxysuccinamide (8.86 g, 77.00 mmol, 1.1 equiv.) and dicyclohexylcarbodiimide (15.88 g, 77.00 mmol, 1.1 equiv.) were added to a solution of 3-(4-fluorobenzoyl)propionic acid (13.73 g, 70.00 mmol, 1 equiv.) in dimethylformamide (250 mL).
  • the reaction was stirred at 25° C. under nitrogen for 12 hours.
  • the solution was diluted with water (500 mL) and extracted with chloroform (250 mL). The organic layer was dried and filtered.
  • Glacial acetic acid (5 mL) was added to the filtrate, and this mixture stirred for 1 hour.
  • the resulting chloroform solution was washed with sodium bicarbonate (250 mL) and water (250 mL) and dried over magnesium sulfate. After filtration, 4-(4-aminophenyl)butyric acid (1 2.5 g, 70.00 mmol, 1 equiv.) and triethylamine (16 mL) were added to the filtrate.
  • the resulting mixture was stirred at 25° C. overnight, and it was then acidified with hydrochloric acid (250 mL) and lyophilized to yield XXIV as a white solid. (3.50 g, 14%).
  • N-hydroxysuccinimide (7.72 g, 67.50 mmol, 1.1 equiv.) and dicyclohexylcarbodiimide (13.96 g, 67.50 mmol, 1.1 equiv.) were added to a solution of N-(2-phenylbutyryl)-4-(aminophenyl)butyricacid (20.00 g, 61.40 mmol, 1.0 equiv.) in tetrahydrofuran (400 mL).
  • the reaction was stirred overnight at 25° C.
  • the urea formed was removed by filtration. Glacial acetic acid (5 mL) was added to the filtrate and stirred for 2 hours.
  • Aqueous sodium hydroxide (2M, 200 mL) was added to the oil, and the mixture was heated to 100° C. for 2 h. After being cooled to room termerature, the solution was acidified with hydrochloric acid (2 M) to pH 2.5. The precipitate was filtered, washed with hydrochloric acid (100 mL) and water (100 mL) to give XXXIX as an off white solid (15.2 g, 54%).
  • Dosing compositions were prepared by mixing the modified amino acid compounds and interferon ⁇ 2 as listed in Table 1 below in a Trizma® hydrochloride buffer solution (Tris-Hcl) at a pH of about 7-8. Propylene glycol (0-25%) was added as a solubilizing agent, if necessary.
  • Rats were orally or intraduodenally (ID) administered the dosing compositions, and delivery was evaluated by an ELISA assay for human interferon ⁇ -2b.
  • Dosing compositions were prepared and dosed using the modified amino acid compound carriers and salmon calcintonin as listed in Table 2 below. The concentration of calcitonin in each composition was 2.5 ⁇ g/ml. Each rat was administered 2 ml/kg of dosing composition.
  • a dosing composition was prepared using 400 mg of compound VI with 2.9 ml of 25% aqueous propylene glycol. The resultant solution was stirred, and the pH was adjusted to 7.2 with sodium hydrochloride (1.010). Water was added to bring the total volume to 2.0 ml and a final modified amino acid concentration of 200 mg/ml. Salmon calcitonin (10 mg) was added.
  • Results are illustrated in Table 2 below.
  • compositions were prepared with modified amino acids in a phosphate buffer at a pH of about 7-8 and rhGH as listed in Table 3 below.
  • Rats were administered the compositions by oral gavage, intraduodenal administration (ID), or colonic administration (IC).
  • ID intraduodenal administration
  • IC colonic administration
  • the dosing solution was administered by oral gavage to fasted rats.

Abstract

Modified amino acid compounds useful in the delivery of active agents are provided. Methods of administration and preparation are provided as well.

Description

  • This application is a continuation-in-part of: [0001]
  • (a) Is a continuation-in-part of PCT Application Serial No. PCT/US94/04560, filed Apr. 22, 1994, which is a continuation-in-part of U.S. application Ser. No. 08/051,019, filed Apr. 22, 1993, and of U.S. application Ser. No. 08/205,511, filed on Mar. 2, 1994; and [0002]
  • (b) application Ser. No. 08/231,622, filed Apr. 22, 1994.[0003]
  • FIELD OF THE INVENTION
  • The present invention relates to compounds for delivering active agents, and particularly biologically active agents such as, for example, bioactive peptides and the like. These compounds are used as carriers to facilitate the delivery of a cargo to a target. The carriers are modified amino acids and are well suited to form non-covalent mixtures with biologically-active agents for oral administration to animals. Methods for the preparation and for the administration of such compositions are also disclosed. [0004]
  • BACKGROUND OF THE INVENTION
  • Conventional means for delivering active agents are often severely limited by biological, chemical, and physical barriers. Typically, these barriers are imposed by the environment through which delivery occurs, the environment of the target for delivery, or the target itself. [0005]
  • Biologically active agents are particularly vulnerable to such barriers. For example in the delivery to animals of pharmacological and therapeutic agents, barriers are imposed by the body. Examples of physical barriers are the skin and various organ membranes that must be traversed before reaching a target. Chemical barriers include, but are not limited to, pH variations, lipid bi-layers, and degrading enzymes. [0006]
  • These barriers are of particular significance in the design of oral delivery systems. Oral delivery of many biologically active agents would be the route of choice for administration to animals if not for biological, chemical, and physical barriers such as varying pH in the gastro-intestinal (GI) tract, powerful digestive enzymes, and active agent impermeable gastro-intestinal membranes. Among the numerous agents which are not typically amenable to oral administration are biologically active peptides, such as calcitonin and insulin; polysaccharides, and in particular mucopolysaccharides including, but not limited to, heparin; heparinoids; antibiotics; and other organic substances. These agents are rapidly rendered ineffective or are destroyed in the gastrointestinal tract by acid hydrolysis, enzymes, or the like. [0007]
  • Earlier methods for orally administering vulnerable pharmacological agents have relied on the co-administration of adjuvants (e.g., resorcinols and non-ionic surfactants such as polyoxyethylene oleyl ether and n-hexadecylpolyethylene ether) to increase artificially the permeability of the intestinal walls, as well as the co-administration of enzymatic inhibitors (e.g., pancreatic trypsin inhibitors, diisopropylfluorophosphate (DFF) and trasylol) to inhibit enzymatic degradation. [0008]
  • Liposomes have also been described as drug delivery systems for insulin and heparin. See, for example, U.S. Pat. No. 4,239,754; Patel et al. (1976), [0009] FEBS Letters, Vol. 62, pg. 60; and Hashimoto et al. (1979), Endocrinology Japan, Vol. 26, pg. 337.
  • However, broad spectrum use of such drug delivery systems is precluded because: (1) the systems require toxic amounts of adjuvants or inhibitors; (2) suitable low molecular weight cargos, i.e. active agents, are not available; (3) the systems exhibit poor stability and inadequate shelf life; (4) the systems are difficult to manufacture; (5) the systems fail to protect the active agent (cargo); (6) the systems adversely alter the active agent; or (7) the systems fail to allow or promote absorption of the active agent. [0010]
  • More recently, microspheres of artificial polymers of mixed amino acids (proteinoids) have been used to deliver pharmaceuticals. For example, U.S. Pat. No. 4,925,673 describes drug-containing proteinoid microsphere carriers as well as methods for their preparation and use. These proteinoid microspheres are useful for the delivery of a number of active agents. [0011]
  • There is still a need in the art for simple, inexpensive delivery systems which are easily prepared and which can deliver a broad range of active agents. [0012]
  • SUMMARY OF THE INVENTION
  • Compounds useful in the delivery of active agents are provided. These compounds include [0013]
    Figure US20040068013A1-20040408-C00001
    Figure US20040068013A1-20040408-C00002
    Figure US20040068013A1-20040408-C00003
    Figure US20040068013A1-20040408-C00004
    Figure US20040068013A1-20040408-C00005
    Figure US20040068013A1-20040408-C00006
    Figure US20040068013A1-20040408-C00007
    Figure US20040068013A1-20040408-C00008
  • or salts thereof. [0014]
  • Compositions comprising at least one biologically active agent and at least one of the compounds above are also provided. Further contemplated by the present invention are dosage unit forms that include these compositions. [0015]
  • Also contemplated is a method for preparing these compositions which comprises mixing at least one active agent with at least one compound as described above, and optionally, a dosing vehicle. [0016]
  • In an alternative embodiment, these non-toxic compounds are orally administered to animals as part of a delivery system by blending or mixing the compounds with an active agent prior to administration. [0017]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The specific compounds of the present invention or salts thereof such as, for example, sodium salts, may be used to deliver various active agents through various biological, chemical, and physical barriers. These compounds are particularly suited for delivering active agents which are subject to environmental degradation. The compounds and compositions of the subject invention are particularly useful for delivering or administering biologically-active agents to any animals such as birds; mammals, such as primates and particularly humans; and insects. [0018]
  • Other advantages of the present invention include the use of easy to prepare, inexpensive raw materials. The compositions and the formulation methods of the present invention are cost effective, simple to perform, and amenable to industrial scale up for commercial production. [0019]
  • Amino acids, poly amino acids, and peptides, in modified form, may be used to deliver active agents including, but not limited to, biologically active agents such as for example, pharmacological and therapeutic agents. [0020]
  • An amino acid is any carboxylic acid having at least one free amine group and includes naturally occurring and synthetic amino acids. [0021]
  • Poly amino acids are either peptides or two or more amino acids linked by a bond formed by other groups which can be linked, e.g. an ester, anhydride, or an anhydride linkage. Special mention is made of non-naturally occurring poly amino acids and particularly non-naturally occurring hetero poly amino acids, i.e. polymers of mixed amino acids. [0022]
  • Peptides are two or more amino acids joined by a peptide bond. Peptides can vary in length from dipeptides with two amino acids to poly peptides with several hundred amino acids. See [0023] Chambers Biological Dictionary, editor Peter M. B. Walker, Cambridge, England: Chambers Cambridge, 1989, page 215. Special mention is made of di-peptides, tri-peptides, tetra-peptides, and penta-peptides.
  • The terms modified amino acids, modified poly amino acids, and modified peptides are meant to include amino acids which have been modified or poly amino acids and peptides in which at least one amino acid has been modified by acylating at least one free amine group with an acylating agent which reacts with at least one of the free amine groups present. [0024]
  • Modified Amino Acids
  • Several of the compounds of the present invention are broadly represented by one of formula XLVI or XLVII below: [0025]
  • Ar—Y—(R1)n—OH   XLVI
  • wherein Ar is a substituted or unsubstituted phenyl or naphthyl; [0026]
    Figure US20040068013A1-20040408-C00009
  • has the formula [0027]
    Figure US20040068013A1-20040408-C00010
  • wherein: [0028]
  • R[0029] 2 is C1 to C24 alkyl, C1 to C24 alkenyl, phenyl, naphthyl, (C1 to C10 alkyl) phenyl, (C1 to C10 alkenyl) phenyl, (C1 to C10 alkyl) naphthyl, (C1 to C10 alkenyl) naphthyl, phenyl (C1 to C10 alkyl), phenyl (C1 to C10 alkenyl), naphthyl (C1 to C10 alkyl), and naphthyl (C1 to C10 alkenyl);
  • R[0030] 2 is optionally substituted with C1 to C4 alkyl, C1 to C4 alkenyl, C1 to C4 alkoxy, —OH, —SH and —CO2R4 or any combination thereof;
  • R[0031] 4 is hydrogen, C1 to C4 alkyl or C1 to C4 alkenyl;
  • R[0032] 2 is optionally interrupted by oxygen, nitrogen, sulfur or any combination thereof; and
  • R[0033] 3 is hydrogen, C1 to C4 alkyl or C1 to C4 alkenyl; or
    Figure US20040068013A1-20040408-C00011
  • wherein: R[0034] 5 is (i) C3-C10 cycloalkyl, optionally substituted with C1-C7 alkyl, C2-C7 alkenyl, C1-C7 alkoxy, hydroxy, phenyl, phenoxy or —CO2R8, wherein R8 is hydrogen, C1-C4 alkyl, or C2-C4 alkenyl; or
  • (ii) C[0035] 1-C6 alkyl substituted with C3-C10 cycloalkyl;
  • R[0036] 6 is hydrogen, C1-C4 alkyl, or C2-C4 alkenyl;
  • R is C[0037] 1-C24 alkyl, C2-C24 alkenyl, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, phenyl, naphthyl, (C1-C10 alkyl) phenyl, (C2-C10 alkenyl) phenyl, (C1-C10 alkyl) naphthyl, (C2-C10 alkenyl) naphthyl, phenyl (C1-C10 alkyl), phenyl (C2-C10 alkenyl), naphthyl (C1-C10 alkyl) or naphthyl (C2-C10 alkenyl);
  • R[0038] 7 being optionally substituted with C1-C4 alkyl, C2-C4 alkenyl, C1-C4 alkoxy, —OH, —SH, —CO2R9, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, heterocycle having 3-10 ring atoms wherein the hetero atom is one or more of N, O, S or any combination thereof, aryl, (C1-C10 alk)aryl, ar(C1-C10 alkyl), or any combination thereof;
  • R[0039] 7 being optionally interrupted by oxygen, nitrogen, sulfur, or any combination thereof; and
  • R[0040] 9 is hydrogen, C1-C4 alkyl, or C2-C4 alkenyl.
  • Special mention is made of compounds I-XLV above. [0041]
  • The modified amino acids of compounds I-XLV may be prepared by reacting single amino acids, mixtures of two or more amino acids, amino acid esters, or amino acid amides, with an amine modifying agent which reacts with free amino moieties present in the amino acids to form amides. [0042]
  • Modified amino acids are typically prepared by modifying the amino acids or an ester thereof. Many of these compounds are prepared by acylation with acylating agents having the formula [0043]
    Figure US20040068013A1-20040408-C00012
  • wherein: R[0044] 10 is the appropriate radical to yield the modification indicated in the final product as would be within the skill of the art based upon the detailed disclosure herein, and Y is a leaving group. Typical leaving groups include, but are not limited to, halogens such as, for example, chlorine, bromine, and iodine. Additionally, the corresponding anhydrides are suitable acylating agents.
  • Many of the compounds of the present invention can be readily prepared and modified by methods within the skill of those in the art based upon the present disclosure. For example, the modified amino acid compounds above may be prepared by reacting the single amino acid with the appropriate acylating agent or an amine modifying agent which reacts with free amino moiety present in the amino acids to form amides. Protecting groups may be used to avoid unwanted side reactions as would be known to those skilled in the art. [0045]
  • For example, the amino acid can be dissolved in aqueous alkaline solution of a metal hydroxide, e.g., sodium or potassium hydroxide, and heated at a temperature ranging between about 5° C. and about 70° C., preferably between about 10° C. and about 40° C., for a period ranging between about 1 hour and about 4 hours, preferably about 2.5 hours. The amount of alkali employed per equivalent of NH[0046] 2 groups in the amino acid generally ranges between about 1.25 and about 3 mmole, preferably between about 1.5 and about 2.25 mmole per equivalent of NH2. The pH of the solution generally ranges between about 8 and about 13, preferably ranging between about 10 and about 12.
  • Thereafter, the appropriate amino modifying agent is added to the amino acid solution while stirring. The temperature of the mixture is maintained at a temperature generally ranging between about 5° C. and about 70° C., preferably between about 10° C. and about 40° C., for a period ranging between about 1 and about 4 hours. The amount of amino modifying agent employed in relation to the quantity of amino acid is based on the moles of total free NH[0047] 2 in the amino acid. In general, the amino modifying agent is employed in an amount ranging between about 0.5 and about 2.5 mole equivalents, preferably between about 0.75 and about 1.25 equivalents, per molar equivalent of total NH2 group in the amino acid.
  • The reaction is quenched by adjusting the pH of the mixture with a suitable acid, e.g., concentrated hydrochloric acid, until the pH reaches between about 2 and about 3. The mixture separates on standing at room temperature to form a transparent upper layer and a white or off-white precipitate. The upper layer is discarded, and the modified amino acid is collected from the lower layer by filtration or decantation. The crude modified amino acid is then dissolved in water at a pH ranging between about 9 and about 13, preferably between about 11 and about 13. Insoluble materials are removed by filtration and the filtrate is dried in vacuo. The yield of modified amino acid generally ranges between about 30 and about 60%, and usually about 45%. [0048]
  • If desired, amino acid esters, such as, for example methyl or ethyl esters of amino acid compounds, may be used to prepare the modified amino acids of the invention. The amino acid ester, dissolved in a suitable organic solvent such as dimethylformamide or pyridine, is reacted with the appropriate amino modifying agent at a temperature ranging between about 5° C. and about 70° C., preferably about 25° C., for a period ranging between about 7 and about 24 hours. The amount of amino modifying agent used relative to the amino acid ester is the same as described above for amino acids. [0049]
  • Thereafter, the reaction solvent is removed under negative pressure and the ester functionality is removed by hydrolyzing the modified amino acid ester with a suitable alkaline solution, e.g. 1N sodium hydroxide, at a temperature ranging between about 50° C. and about 80° C., preferably about 70° C., for a period of time sufficient to hydrolyze off the ester group and form the modified amino acid having a free carboxyl group. The hydrolysis mixture is then cooled to room temperature and acidified, e.g. aqueous 25% hydrochloric acid solution, to a pH ranging between about 2 and about 2.5. The modified amino acid precipitates out of solution and is recovered by conventional means such as filtration or decantation. [0050]
  • The modified amino acid may be purified by recrystallization or by fractionation on solid column supports. Suitable recrystallization solvent systems include acetonitrile, methanol and tetrahydrofuran. Fractionation may be performed on a suitable solid column supports such as alumina, using methanol/n-propanol mixtures as the mobile phase; reverse phase column supports using trifluoroacetic acid/acetonitrile mixtures as the mobile phase; and ion exchange chromatography using water as the mobile phase. When anion exchange chromatography is performed, preferably a subsequent 0-500 mM sodium chloride gradient is employed. [0051]
  • Active Agents [0052]
  • Active agents suitable for use in the present invention include biologically active agents, chemically active agents, including, but not limited to, fragrances, as well as other active agents such as, for example, cosmetics. [0053]
  • Biologically active agents include, but are not limited to, pesticides, pharmacological agents, and therapeutic agents. For example, biologically active agents suitable for use in the present invention include, but are not limited to, peptides, and particularly small peptides; hormones, and particularly hormones which by themselves do not or only pass slowly through the gastro-intestinal mucosa and/or are susceptible to chemical cleavage by acids and enzymes in the gastro-intestinal tract; polysaccharides, and particularly mixtures of muco-polysaccharides; carbohydrates; lipids; or any combination thereof. Further examples include, but are not limited to, human growth hormones; bovine growth hormones; growth releasing hormones; interferons; interleukin-1; insulin; heparin, and particularly low molecular weight heparin; calcitonin; erythropoietin; atrial naturetic factor; antigens; monoclonal antibodies; somatostatin; adrenocorticotropin, gonadotropin releasing hormone; oxytocin; vasopressin; cromolyn sodium (sodium or disodium chromoglycate); vancomycin; desferrioxamine (DFO); anti-microbials, including, but not limited to anti-fungal agents; or any combination thereof. [0054]
  • Delivery Systems
  • The compositions of the present invention may include one or more active agents. [0055]
  • In one embodiment, compounds I-XLV or poly amino acids or peptides that include at least one of these compounds may be used directly as a drug delivery carrier by simply mixing one or more compound, poly amino acid or peptide with the active ingredient prior to administration. [0056]
  • In an alternative embodiment, the compounds, poly amino acids, or peptide may be used to form microspheres containing the active agent. These compounds, poly amino acids, or peptides are particularly useful for the oral administration of certain biologically-active agents, e.g., small peptide hormones, which, by themselves, do not pass or only pass slowly through the gastro-intestinal mucosa and/or are susceptible to chemical cleavage by acids and enzymes in the gastrointestinal tract. [0057]
  • If the modified amino acids, poly amino acids, or peptides are to be converted into microspheres, the mixture is optionally heated to a temperature ranging between about 20 and about 50° C., preferably about 40° C., until the modified amino acid(s) dissolve. The final solution contains between from about 1 mg and to about 2000 mg of compound, poly amino acid, or peptide per mL of solution, preferably between about 1 and about 500 mg per mL. The concentration of active agent in the final solution varies and is dependent on the required dosage for treatment. When necessary, the exact concentration can be determined by, for example, reverse phase HPLC analysis. [0058]
  • When the compounds, poly amino acids, or peptides are used to prepare microspheres, another useful procedure is as follows: Compounds, poly amino acids, or peptides are dissolved in deionized water at a concentration ranging between about 75 and about 200 mg/ml, preferably about 100 mg/ml at a temperature between about 25° C. and about 60° C., preferably about 40° C. Particulate matter remaining in the solution may be removed by conventional means such as filtration. [0059]
  • Thereafter, the compound, poly amino acid, or peptide solution, maintained at a temperature of about 40° C., is mixed 1:1 (V/V) with an aqueous acid solution (also at about 40° C.) having an acid concentration ranging between about 0.05 N and about 2 N, preferably about 1.7 N. The resulting mixture is further incubated at 40° C. for a period of time effective for microsphere formation, as observed by light microscopy. In practicing this invention, the preferred order of addition is to add the compound, poly amino acid, or peptide solution to the aqueous acid solution. [0060]
  • Suitable acids for microsphere formation include any acid which does not [0061]
  • (a) adversely effect the modified amino acids, poly amino acids, or peptides e.g., initiate or propagate chemical decomposition; [0062]
  • (b) interfere with microsphere formation; [0063]
  • (c) interfere with microsphere incorporation of the cargo; and [0064]
  • (d) adversely interact with the cargo. [0065]
  • Preferred acids for use in this aspect include acetic acid, citric acid, hydrochloric acid, phosphoric acid, malic acid and maleic acid. [0066]
  • A microsphere stabilizing additive may be incorporated into the aqueous acid solution or into the compound or cargo solution prior to the microsphere formation process. With some drugs the presence of such additives promotes the stability and/or dispersibility of the microspheres in solution. [0067]
  • The stabilizing additives may be employed at a concentration ranging between about 0.1 and 5% (w/v), preferably about 0.5% (w/v). Suitable, but non-limiting, examples of microsphere stabilizing additives include gum acacia, gelatin, methyl cellulose, polyethylene glycol, and polylysine. The preferred stabilizing additives are gum acacia, gelatin and methyl cellulose. [0068]
  • Under the above conditions, the compound molecules, poly amino acids, or peptides form hollow or solid matrix type microspheres wherein the cargo is distributed in a carrier matrix or capsule type microspheres encapsulating liquid or solid cargo. If the compound, poly amino acid, or peptide microspheres are formed in the presence of a soluble material, e.g., a pharmaceutical agent in the aforementioned aqueous acid solution, this material will be encapsulated within the microspheres. In this way, one can encapsulate pharmacologically active materials such as peptides, proteins, and polysaccharides as well as charged organic molecules, e.g., antimicrobial agents, which normally have poor bioavailability by the oral route. The amount of pharmaceutical agent which may be incorporated by the microsphere is dependent on a number of factors which include the concentration of agent in the solution, as well as the affinity of the cargo for the carrier. The compound, poly amino acid, or peptide microspheres do not alter the physiological and biological properties of the active agent. Furthermore, the encapsulation process does not alter the pharmacological properties of the active agent. Any pharmacological agent can be incorporated within the microspheres. The system is particularly advantageous for delivering chemical or biological agents which otherwise would be destroyed or rendered less effective by conditions encountered within the body of the animal to which it is administered, before the microsphere reaches its target zone (i.e., the area in which the contents of the microsphere are to be released) and for delivering pharmacological agents which are poorly absorbed in the gastro-intestinal tract. The target zones can vary depending upon the drug employed. [0069]
  • The particle size of the microsphere plays an important role in determining release of the active agent in the targeted area of the gastro-intestinal tract. The preferred microspheres have diameters between about ≦0.1 microns and about 10 microns, preferably between about 0.5 microns and about 5 microns. The microspheres are sufficiently small to release effectively the active agent at the targeted area within the gastro-intestinal tract such as, for example, between the stomach and the jejunum. Small microspheres can also be administered parenterally by being suspended in an appropriate carrier fluid (e.g., isotonic saline) and injected directly into the circulatory system, intramuscularly or subcutaneously. The mode of administration selected will vary, of course, depending upon the requirement of the active agent being administered. Large amino acid microspheres (>50 microns) tend to be less effective as oral delivery systems. [0070]
  • The size of the microspheres formed by contacting compounds, poly amino acids, or peptides with water or an aqueous solution containing active agents can be controlled by manipulating a variety of physical or chemical parameters, such as the pH, osmolarity or ionic strength of the encapsulating solution, size of the ions in solution and by the choice of acid used in the encapsulating process. [0071]
  • The administration mixtures are prepared by mixing an aqueous solution of the carrier with an aqueous solution of the active ingredient, just prior to administration. Alternatively, the carrier and the biologically active ingredient can be admixed during the manufacturing process. The solutions may optionally contain additives such as phosphate buffer salts, citric acid, acetic acid, gelatin and gum acacia. [0072]
  • Stabilizing additives may be incorporated into the carrier solution. With some drugs, the presence of such additives promotes the stability and dispersibility of the agent in solution. [0073]
  • The stabilizing additives may be employed at a concentration ranging between about 0.1 and 5% (W/V), preferably about 0.5% (W/V). Suitable, but non-limiting, examples of stabilizing additives include gum acacia, gelatin, methyl cellulose, polyethylene glycol, and polylysine. The preferred stabilizing additives are gum acacia, gelatin and methyl cellulose. [0074]
  • The amount of active agent is an amount effective to accomplish the purpose of the particular active agent. The amount in the composition typically is a pharmacologically or biologically effective amount. However, the amount can be less than a pharmacologically or biologically effective amount when the composition is used in a dosage unit form, such as a capsule, a tablet or a liquid, because the dosage unit form may contain a multiplicity of carrier/biologically active agent compositions or may contain a divided pharmacologically or biologically effective amount. The total effective amounts can then be administered in cumulative units containing, in total, pharmacologically or biologically active amounts of biologically or pharmacologically active agent. [0075]
  • The total amount of active agent, and particularly biologically active agent, to be used can be determined by those skilled in the art. However, it has surprisingly been found that with some biologically active agents, the use of the presently disclosed carriers provides extremely efficient delivery. Therefore, lower amounts of biologically active agent than those used in prior dosage unit forms or delivery systems can be administered to the subject, while still achieving the same blood levels and therapeutic effects. [0076]
  • The amount of carrier in the present composition is a delivery effective amount and can be determined for any particular carrier or biologically active agent by methods known to those skilled in the art. [0077]
  • Dosage unit forms can also include any of excipients; diluents; disintegrants; lubricants; plasticizers; colorants; and dosing vehicles, including, but not limited to water, 1,2-propane diol, ethanol, olive oil, or any combination thereof. [0078]
  • Administration of the present compositions or dosage unit forms preferably is oral or by intraduodenal injection. [0079]
  • The delivery compositions of the present invention may also include one or more enzyme inhibitors. Such enzyme inhibitors include, but are not limited to, compounds. such as actinonin or epiactinonin and derivatives thereof. These compounds have the formulas below: [0080]
    Figure US20040068013A1-20040408-C00013
  • Derivatives of these compounds are disclosed in U.S. Pat. No. 5,206,384. Actinonin derivatives have the formula: [0081]
    Figure US20040068013A1-20040408-C00014
  • wherein R[0082] 12 is sulfoxymethyl or carboxyl or a substituted carboxy group selected from carboxamide, hydroxyaminocarbonyl and alkoxycarbonyl groups; and R13 is hydroxyl, alkoxy, hydroxyamino or sulfoxyamino group. Other enzyme inhibitors include, but are not limited to, aprotinin (Trasylol) and Bowman-Birk inhibitor.
  • The compounds and compositions of the subject invention are useful for administering biologically active agents to any animals such as birds; mammals, such as primates and particularly humans; and insects. The system is particularly advantageous for delivering chemically or biologically active agents which would otherwise be destroyed or rendered less effective by conditions encountered before the active agent its target zone (i.e. the area in which the active agent of the delivery composition are to be released) and within the body of the animal to which they are administered. Particularly, the compounds and compositions of the present invention are useful in orally administering active agents, especially those which are not ordinarily orally deliverable. [0083]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following examples illustrate the invention without limitation.[0084]
  • EXAMPLE 1
  • Compound VI was prepared as follows: [0085]
  • Acetylsalicyloyl chloride (47.00 g, 0.24 mol, 1 equiv.) was added portionwise to a mixture of 4-(4-aminophenyl)butyric acid (50.00 g, 0.28 mol, 1.2 equiv.) in aqueous sodium hydroxide (2M, 300 mL). The reaction was stirred at 25° C. for 2 hours, and the resultant solution was acidified with aqueous hydrochloric acid (1 M) to pH 2.1. The resultant precipitate was filtered, and was washed with aqueous hydrochloric acid (1 M, 3×100 mL) and water to give Compound VI as a pale pink solid (31.89 g, 52%). [0086]
  • Properties are listed below. [0087]
  • [0088] 1H NMR (300 MHz, DMSO-d6) δ: 7.74 (1H, dd), 7.38 (2H, d), 7.21 (3H, m), 6.67 (1H, m), 6.57 (1H, m), 2.48 (2H, t), 2.07 (2H, t), 1.71 (2H, m). Anal. Calcd for C17H17NO4: C, 68.20; H, 5.73; N, 4.70. Found: C, 68.22; H, 5.61; N, 4.66.
  • Similar procedures were used to prepare Compounds II, V, X, XIV, XVIII, XXII, XXV, XXVI, XXVII, XXVIII, XXIX, XXX, XXXIII, XXXIV, XXXV, XXXVI, XXXVII, XXXVIII, XL, XLI, XLII, and XLV. [0089]
  • Properties are listed below. [0090]
  • Compound II—[0091] 1H NMR (300 MHz, D2O): δ 7.23(9H, m), 3.62(2H, s), 2.50(2H, t), 2.17(2H, t), 1.73(2H, q)
  • Compound V—Anal. Calcd for C[0092] 17H17NO5: C, 64.74, H, 5.45, N, 4.44 Found: C, 64.11, H, 5.46, N, 4.21. 1H NMR (300 MHz, D2O): δ 7.6 (1H,d), 7.35 (2H,d), 7.15 (2H,m), 6.05 (1H,d), 2.5 (2H,m), 2.1 (2H,t), 1.7 (2H,m)
  • Compound X—Anal. Calcd for C[0093] 23H29NO3: C, 75.16, H, 7.97, N, 3.79 Found: C,74.90, H, 8.19, N, 3.38. 1H NMR (300 MHz, CDCL3): δ 7.35 (2H,d), 7.27 (2H,d), 7.15 (2H,d), 6.95 (2H,d), 3.7 (1H,q), 2.6 (2H,t), 2.5 (2H,d), 2.35 (2H,t), 1.9 (3H,m), 1.6 (3H,d), 0.9 (6H,d)
  • Compound XVIII—[0094] 1H NMR (300 MHz, DMSO-d6): δ 12.1 (1H,s), 10.5 (1H,s), 8.2 (1H,t), 8.0 (2H,m), 7.7 (3H,d), 7.6 (3H,d), 7.2 (2H,t), 3.3 (1H,m), 2.6 (2H,t), 2.2 (2H,t), 1.8 (2H,t)
  • Compound XXII—Anal. Calcd for C[0095] 20H23NO3: C, 73.82, H, 7.12, N, 4.30 Found: C, 73.53, H, 7.07, N, 4.28. 1H NMR (300 MHz, DMSO-d6): δ 12.0 (1H,s), 10.0 (1H,s), 7.6 (2H,m), 7.4 (4H,m), 7.2 (1H,d), 7.0 (2H,q), 3.55 (1H,t), 2.5 (4H,m), 2.2 (2H,q), 2.0 (1H,m), 1.7 (3H,m), 0.9 (3H,t)
  • Compound XXV—Anal. Calcd for C[0096] 18H18NO3F: C, 68.56, H, 5.75, N, 4.44 Found: C, 68.18, H, 5.63, N, 4.20. 1H NMR (300 MH, DMSO-d6): δ 12.1 (1H,s), 10.1 (1H,s), 7.5 (2H,m), 7.35 (2H,m), 7.1 (4H,m), 3.6 (2H,s), 2.5 (2H,t), 2.2 (2H,t), 1.75 (2H,m)
  • Compound XXVI—[0097] 1H NMR (300 MHz, D2O): δ 7.21(2H, d), 7.15(2H, d), 2.51(2H,t), 2.45(1H, m), 2.10(2H, t), 1.9-1.3(14H, m)
  • Compound XXVII—[0098] 1H NMR (300 MHz, DMSO-d6): δ 9.75 (1H,s), 7.5 (2H,d), 7.1 (2H,d), 2.5 (3H,q), 2.05 (3H,t), 1.6 (10H,m), 1.1 (5H,m), 0.8 (3H,t)
  • Compound XXVIII—[0099] 1H NMR (300 MHz, DMSO-d6): δ 9.82(1H, s), 7.49(2H, d), 7.06(2H,d), 2.48(2H, t), 2.32(1H, m), 2.09(2H, t), 1.71(8H, m), 1.29(6H, m)
  • Compound XXIX—[0100] 1H NMR (300 MHz, DMSO-d6): δ 10.0 (1H,s), 7.5 (2H,d), 7.05 (2H,d), 2.5 (3H,m), 2.15 (2H,d), 1.85 (2H,t), 1.65 (8H,m), 1.2 (3H,m), 1.90(2H,q)
  • Compound XXX—[0101] 1H NMR (300 MHz, DMSO-d6): δ 9.85 (1H,d), 7.5 (2H,d), 7.05 (2H,d), 2.45 (3H,m), 1.9 (2H,t), 1.7 (6H,m), 1.4 (4H,m), 0.9 (3H,dd)
  • Compound XXXIII—[0102] 1H NMR (300 MHz, DMSO-d6): δ 11.95(1H, s), 2.2(2H, m), 1.8(2H, m), 1.4(10, br m), 0.83(3H, d) Compound XXXIV—Anal. Calcd for C15H19NO3: C 68.96, H 7.26, N5.36, Found: C 68.75, H 7.24, N 5.30. 1H NMR (300 MHz, D2O): δ 7.71 (2H, d), 7.33(2H, d), 2.06(2H, d), 1.52(6H, m), 1.01 (3H, m), 0.84(2H, m)
  • Compound XXXV—Anal. Calcd for C[0103] 14H10NO3Cl: C, 60.96, H, 3.63, N, 5.08 Found: C, 60.42, H, 3.64, N, 4.94. 1H NMR (300 MHz, DMSO-d6): δ 10.85 (1H,s), 7.95 (2H,d), 7.85 (2H,d), 7.55 (4H,m)
  • Compound XXXVI—Anal. Calcd for C[0104] 16H21NO3: C 69.79, H 7.70, N 5.08, Found: C 69.38, H 7.85, N 4.85. 1H NMR (300 MHz, DMSO-d6): δ 10.0)1H, s), 7.45(2H, d), 7.10(2H, d), 3.18(2H, s), 2.15(2H, d), 1.67(6H, br m), 1.17(3H, m), 0.95(2H, m)
  • Compound XXXVII—[0105] 1H NMR (300 MHz, DMSO-d6): δ 12.25(1H, s), 9.8(1H,s), 7.5(2H, d), 7.15(2H, d), 3.5(2H, s), 2.3(1H, m), 1.8(4H, m), 0.3(6H, m)
  • Compound XXXVIII—Anal. Calcd for C[0106] 17H15NO3: C, 72.58, H, 5.39, N, 4.98 Found: C, 72.34, H, 5.21, N, 4.93. 1H NMR (300 MHz, DMSO-d6): δ 10.2 (1H,s), 7.6 (5H,m), 7.4 (3H,q), 7.2 (2H,d), 6.85 (1H,d), 3.5 (2H,s)
  • Compound XL—[0107] 1H NMR (300 MHz,DMSO-d6): δ 8.6 (1H,m), 7.8 (2H,m), 7.25 (5H,m), 7.1 (2H,dd), 4.25 (2H,d), 3.5 (2H,s)
  • Compound XLI—Anal. Calcd for C[0108] 15H13NO3. 0.27 H2O: C, 70.57, H, 5.14, N, 5.49 Found: C, 69.24, H, 5.48, N, 5.37. 1H NMR (300 MHz, DMSO-d6): δ 10.25 (1H,s), 8.0 (2H,d), 7.7 (2H,d), 7.55 (3H,m), 7.25 (2H,d), 3.5 (2H,s)
  • Compound XLII—[0109] 1H NMR (300 MHz, DMSO-d6): δ 11.89(1H, s), 7.58 (1H,s), 2.95(2H, t), 2.16(3H, m), 1.73(2H, t), 1.40(14H, m), 1.20(2H, t)
  • EXAMPLE 2
  • Compound IX was prepared as follows: [0110]
  • A solution of 4-phenylbutyryl chloride (10.20 g, 56 mmol) in tetrahydrofuran (30 mL) was added dropwise to a mixture of 4-(4-aminophenyl)butyric acid (10.00 g, 56 mmol, 1.0 equiv.), triethylamine (8.50 mL, 62 mmol, 1.1 equiv.) and tetrahydrofuran (100 mL) at 10° C. The reaction was stirred at 10° C. for 1 hour and 25° C. for 3 hours. The solvent was then evaporated, and the residue was dissolved in ethyl acetate (150 mL). After washing the ethyl acetate layer with aqueous hydrochloric acid (1M, 3×100 mL) and water (2×100 mL), the organic layer was dried and evaporated. The resultant residue was recrystallized from acetonitrile-water to give IX as a pale yellow solid (11.69 g, 65%). [0111]
  • Properties are listed below. [0112]
  • [0113] 1H NMR (300 MHz, alkaline D2O) δ: 7.05 (2H, m), 6.94 (4H, m), 6.85 (3H, m), 2.30 (4H, m) 2.01 (4H, m), 1.61 (4H, m). Anal. Calcd for C20H23NO3: C, 73.81; H, 7.13; N, 4.30. Found: C, 73.53; H, 7.13; N, 4.25.
  • Similar procedures were used to prepare compounds XV, XVII, XX, and XXI. [0114]
  • Properties are listed below. [0115]
  • Compound I—[0116] 1H NMR (300 MHz,D2O): δ 7.75 (2H,q), 7.55 (1H,m), 7.45 (2H,m), 7.35 (2H,dd), 7.2 (2H,dd), 2.55 (2H,m), 2.1 (2H,t), 1.75 (2H,m)
  • Compound III—Anal. Calcd for C[0117] 17H16NO3Cl: C, 64.26, H,5.07, N,4.41 Found: C, 63.29, H, 5.12, N, 4.19. 1H NMR (300 MHz, DMSO-d6): δ 12.1 (1H,s), 10.4 (1H,s), 7.7 (2H,d), 7.6 (2H,d), 7.45 (2H,m), 7.2 (2H,q), 2.6 (2H,m), 2.2 (2H,m), 1.8 (2H,m)
  • Compound IV—Anal. Calcd for C[0118] 17H16NO3F: C, 67.76, H, 5.35, N, 4.65 Found: C, 67.15, H, 5.33, N, 4.46. 1H NMR (300 MHz, DMSO-d6): δ 12.05 (1H,s), 10.35 (1H,s), 7.6 (4H,m), 7.3 (2H,q), 7.15 (2H,q), 2.6 (2H,t), 2.2 (2H,t), 1.8 (2H,m)
  • Compound VII—[0119] 1H NMR (300 MHz, D2O): δ 7.12(3H, m), 6.88(2H, s), 6.67(5H, br m), 6.26(1H, d), 2.18(2H, t), 1.96(2H, t), 1.50(2H, q)
  • Compound VIII—[0120] 1H NMR (300 MHz, D2O): δ 6.9 (9H,m), 2.6 (2H,t), 2.3 (4H,t), 2.0 (2H,q), 1.6 (2H,m)
  • EXAMPLE 3
  • Compound XXIV was prepared as follows: [0121]
  • N-hydroxysuccinamide (8.86 g, 77.00 mmol, 1.1 equiv.) and dicyclohexylcarbodiimide (15.88 g, 77.00 mmol, 1.1 equiv.) were added to a solution of 3-(4-fluorobenzoyl)propionic acid (13.73 g, 70.00 mmol, 1 equiv.) in dimethylformamide (250 mL). The reaction was stirred at 25° C. under nitrogen for 12 hours. The solution was diluted with water (500 mL) and extracted with chloroform (250 mL). The organic layer was dried and filtered. Glacial acetic acid (5 mL) was added to the filtrate, and this mixture stirred for 1 hour. The resulting chloroform solution was washed with sodium bicarbonate (250 mL) and water (250 mL) and dried over magnesium sulfate. After filtration, 4-(4-aminophenyl)butyric acid (1 2.5 g, 70.00 mmol, 1 equiv.) and triethylamine (16 mL) were added to the filtrate. The resulting mixture was stirred at 25° C. overnight, and it was then acidified with hydrochloric acid (250 mL) and lyophilized to yield XXIV as a white solid. (3.50 g, 14%). [0122]
  • Properties are listed below. [0123]
  • [0124] 1H NMR (300 MHz, DMSO-d6) δ: 12.05 (H, br s), 9.95 (1H, s), 8.10 (2H, t), 7.50 (2H, d), 7.35 (2H, t), 7.10 (1H, d), 2.70 (2H, t), 2.20 (2H, t), 1.75 (2H, m). Anal. Calcd for C20H20NO4F: C, 67.02; H, 5.62; N, 3.90. Found: C, 67.08; H, 5.60; N, 3.86.
  • Similar procedures were used to prepare compound XLIII and XLIV. Properties are listed below. [0125]
  • Compound XLIII—Anal. Calcd for C[0126] 22H27NO3 0.083 H2O: C, 74.44, H, 7.73, N, 3.95 Found: C, 73.96, H, 7.73, N, 4.26. 1H NMR (300 MHs, DMSO-d6): δ 12.71 (1H,s), 8.2 (1H,q), 7.1 (9H,m), 4.4 (1H,m), 3.6 (1H,m), 3.0 (1H,m), 2.85 (1H,m), 2.4 (1H,q), 1.8 (1H,m), 1.3 (2H,d), 1.15 (1H,d), 0.85 (6H,d)
  • Compound XLIV—Anal. Calcd for C[0127] 22H17NO4F2: C, 66.49, H, 4.32, N, 3.53 Found: C, 66.14, H, 4.29, N, 3.33. 1H NMR (300 MHz, DMSO-d6): δ 8.05 (1H,s), 7.5(2H,m), 7.35 (1H,m), 7.2(7H,m), 7.0 (1H,d), 4.7 (1H,m), 3.2 (1H, dd), 3.05 (1H, m)
  • EXAMPLE 4
  • Compound XXXII was prepared as follows: [0128]
  • 1-oxaspiro(2.5)octane (3.76 g, 33.48 mmol, 1.2 equiv.) and aluminum chloride (0.36 g, 2.70 mmol, 0.1 equiv.) were added to a suspension of 4-(4-aminophenyl)butyric acid (5.00 g, 27.90 mmol, 1 equiv.) in toluene (100 mL). The mixture was refluxed under argon overnight. After being cooled to room temperature, the toluene was filtered, and the residue was washed with ethyl acetate (ca. 100 mL). The combined filtrate was evaporated to yield a brown gum. The gum was dissolved with ethyl acetate (250 mL). It was then washed with water (3×100 mL) and dried. After removal of the solvent, the residue was purified by column chromatography (30% to 70% ethyl acetate/hexanes), and the collected product was recrystallized from ethyl acetate-hexanes to give XXXII as yellow solid (0.8 g, 10%). [0129]
  • Properties are listed below. [0130]
  • [0131] 1H NMR (300 MHz, DMSO-d6) δ: 6.85 (2H, d, J=8.4 Hz), 6.53 (2H, d, J=8.4 Hz), 5.00 (1H, br s), 2.88 (2H, s), 2.39 (2H, t, J=7.2 Hz), 2.15 (2H, t, J=7.4 Hz), 1.69 (2H, m), 1.45 (10H, m). Anal. Calcd for C17H25 NO3: C, 70.07; H, 8.65; N, 4.81. Found: C, 70.20; H, 8.69; N, 4.67.
  • EXAMPLE 5
  • Compound XXXIX was prepared as follows: [0132]
  • N-hydroxysuccinimide (7.72 g, 67.50 mmol, 1.1 equiv.) and dicyclohexylcarbodiimide (13.96 g, 67.50 mmol, 1.1 equiv.) were added to a solution of N-(2-phenylbutyryl)-4-(aminophenyl)butyricacid (20.00 g, 61.40 mmol, 1.0 equiv.) in tetrahydrofuran (400 mL). The reaction was stirred overnight at 25° C. The urea formed was removed by filtration. Glacial acetic acid (5 mL) was added to the filtrate and stirred for 2 hours. The solvent was then evaporated to yield an oil. The oil was redissolved in chloroform (300 mL), and the resultant solution was washed successively with saturated sodium bicarbonate (2×200 mL) and water (200 mL). The combined aqueous layers were extracted with chloroform (100 mL) to give a filtrate (a total volume of 500 mL) containing the Osu ester of N-(2-phenylbutyryl)-4-(4-aminophenyl)butyric acid. [0133]
  • A mixture of phenylglycine O-methylester hydrochloride (12.40 g, 61.40 mmol, 1.0 equiv.) and triethylamine (35 mL) in chloroform (100 mL) was charged to an addition funnel. The mixture was added dropwise to the chloroform solution of the Osu ester prepared above. The reaction was stirred at 25° C. for 24 h. The resulting solution was washed with aqueous hydrochloric acid (2×500 mL) and water (500 mL). The aqueous layer was back extracted with chloroform (50 mL). The combined chloroform layers were dried and evaporated to yield an oil. Aqueous sodium hydroxide (2M, 200 mL) was added to the oil, and the mixture was heated to 100° C. for 2 h. After being cooled to room termerature, the solution was acidified with hydrochloric acid (2 M) to pH 2.5. The precipitate was filtered, washed with hydrochloric acid (100 mL) and water (100 mL) to give XXXIX as an off white solid (15.2 g, 54%). [0134]
  • Properties are listed below. [0135]
  • [0136] 1H NMR (300 MHz, DMSO-d6) δ: 12.70 (1H, br s), 10.00 (1H, s), 8.55 (1H, d), 7.50 (2H, d), 7.33 (10H, m), 7.06 (2H, d), 5.32 (1H, d), 3.54 (1H, m), 2.49 (2H, overlapped with DMSO), 2.16 (2H, m), 2.05 (1H, m), 1.73 (3H, m). 0.83 (3H, t). Anal. Calcd for C28H30N2O 4: C, 73.30; H, 6.61; N, 5.73; Found: C, 72.54; H, 6.60; N, 5.73.
  • EXAMPLE 6 In Vivo Evaluation of Interferon in Rats
  • Dosing compositions were prepared by mixing the modified amino acid compounds and interferon α2 as listed in Table 1 below in a Trizma® hydrochloride buffer solution (Tris-Hcl) at a pH of about 7-8. Propylene glycol (0-25%) was added as a solubilizing agent, if necessary. [0137]
  • Rats were orally or intraduodenally (ID) administered the dosing compositions, and delivery was evaluated by an ELISA assay for human interferon α-2b. [0138]
  • Results are illustrated in Table 1 below. [0139]
    TABLE 1
    Oral Delivery of Interferon
    Carrier Dose Interferon Dose Mean Peak Serum Levels
    Carrier (mg/kg) (μg/kg) of Interferon (ng/mL)
    XXVI 300 1000 6710 +/− 6658
    XXXVII 160 1000 1025 +/− 276 
    XXVII 300 1000 3642 +/− 5895
    XXXIV 400 1000 11341 +/− 8793 
    400 500 565 +/− 515
    XXXIV (ID) 400 100 1775 +/− 1023
    XXIX 600 100 3510 +/− 2171
    I 300 1000 10072 +/− 3790 
    I (ID) 250 50 843 +/− 669
    I 80 250 1369 +/− 1164
    VI 300 1000 8213 +/− 3077
    VI 600 1000 8428 +/− 5001
    VI (ID) 1000 15469 +/− 6712 
    XXXVI 400 1000 43961 +/− 14910
    XIV 800 1000 5518 +/− 2718
    VII 600 1000 5568 +/− 3771
    XXVII 300 1000 41966 +/− 19688
    VIII 300 1000 1753 +/− 1529
    XVIII 300 1000 19809 +/− 26107
    XXX 300 1000 3910 +/− 3221
    XL 300 1000 12661 +/− 10933
    none 0 1000 688 +/− 173
  • EXAMPLE 7 In Vivo Evaluation of Salmon Calcitonin in Rats
  • Dosing compositions were prepared and dosed using the modified amino acid compound carriers and salmon calcintonin as listed in Table 2 below. The concentration of calcitonin in each composition was 2.5 μg/ml. Each rat was administered 2 ml/kg of dosing composition. [0140]
  • Blood samples were collected serially from the tail artery. Serum calcium was determined by testing with a Calcium Keto (Sigma Chemical Co.—St. Louis, Mo.) [0141]
  • Results are illustrated in Table 2 below. [0142]
  • EXAMPLE 8 In Vivo Evaluation of Salmon Concentration in Rats
  • A dosing composition was prepared using 400 mg of compound VI with 2.9 ml of 25% aqueous propylene glycol. The resultant solution was stirred, and the pH was adjusted to 7.2 with sodium hydrochloride (1.010). Water was added to bring the total volume to 2.0 ml and a final modified amino acid concentration of 200 mg/ml. Salmon calcitonin (10 mg) was added. [0143]
  • This composition was dosed as described in Example 7 above. [0144]
  • Results are illustrated in Table 2 below. [0145]
    TABLE 2
    Oral Delivery of Calcitonin
    Carrier Dose Dose Drug Mean Peak Serum Levels
    Carrier (mg/kg) (μg/kg) of Interferon (ng/mL)
    XXVI 10 300 −18 +/− 6
    XXVIII 10 200 −14 +/− 6
    I 10 200 −16 +/− 8
    VII 10 200 −13 +/− 8
    VI 10 200  −29 +/− 14
    30 10 −13 +/− 4
    10 30 −24 +/− 9
  • EXAMPLE 9 In Vivo Evaluation of Recombinant Human Growth Hormone (rhGh) in Rats
  • Dosing compositions were prepared with modified amino acids in a phosphate buffer at a pH of about 7-8 and rhGH as listed in Table 3 below. [0146]
  • Rats were administered the compositions by oral gavage, intraduodenal administration (ID), or colonic administration (IC). [0147]
  • Results are illustrated in Table 3 below. [0148]
    TABLE 3
    Oral Delivery of rhGH
    Carrier Dose Dose Drug Mean Peak Serum Levels
    Carrier (mg/mL) (mg/mL) of rhGH (ng/mL)
    XXVI 500 6 −127 +/− 40 
    XXVII 500 6 −64 +/− 7 
    VI 150 6 −33 +/− 13 
    VI (ID) 200 3 −103 +/− 85 
    VI (IC) 50 1.5 −98 +/− 19 
    II 400 6 55 +/− 36
    XXX 400 6 66 +/− 37
    XLV 400 6 28 +/− 9 
    IV 300 6 42 +/− 29
    XLIII 300 6 63 +/− 45
    X 250 6 37 +/− 12
    XXXII 200 6 44 +/− 36
    none 0 6 <10
  • EXAMPLE 10
  • In Vivo Evaluation of Heparin in Rats [0149]
  • 900 mg of modified amino acid were dissolved in 3 ml of propylene glycol, and 0.299 gram of sodium heparin was dissolved in 3 ml of water. The two solutions were mixed by vortex. Sodium hydrochloride was added to the resultant mixture until a solution was obtained. The pH was then adjusted to 7.4±0.5 with concentrated hydrochloric acid. The final solution was sonicated at 40 C for 30 minutes to yield a dosing solution. [0150]
  • The dosing solution was administered by oral gavage to fasted rats. [0151]
  • Blood samples were collected by cardiac puncture following the administration of ketamine (44 mg/kg). Heparin activity was determined by utilizing the activated partial thromboplastin time (APTT) according to the method of Henry, J. B., [0152] Clinical Diagnosis and Management by Laboratory Methods; Philadelphia, Pa.; WB Saunders (1979). Results are illustrated in Table 4 below.
    TABLE 4
    Oral Delivery of Heparin
    Carrier Mean Peat APTT (sec) # Animals Responding
    XXI 166 +/− 35  5/5
    IX 102 +/− 33  34/35
    VI 96 +/− 29 10/10
    XLI 90 +/− 49 5/5
    XXXV 73 +/− 16 4/4
    VII 52 +/− 24 17/20
    XV 67 +/− 30 4/5
    XX 59 +/− 42 4/4
    VII 58 +/− 28 14/15
    XLII 45 +/− 14 5/5
    XXXIII 44 +/− 28 12/20
    XXVII 44 +/− 15 18/20
    V 42 +/− 16 4/5
    III 41 +/− 18  8/10
    II 41 +/− 24 3/5
    XXXIX 40 +/− 17  5/10
    XIX 37 +/− 11 4/5
    XXII 36 +/− 19  6/11
    XXVIII 35 +/− 9  3/5
    none 20.7 +/− 0.17 100/100
  • EXAMPLE 11
  • Low molecular weight heparin was dosed according to the method of Example 10. [0153]
  • The above mentioned patents, applications, test methods, and publications are hereby incorporated by reference in their entirety. [0154]
  • Many variations of the present invention will suggest themselves to those skilled in the art in light of the above detailed description. All such obvious variations are within the full intended scope of the appended claims. [0155]

Claims (27)

What is claimed is:
1. A compound selected from the group consisting of
Figure US20040068013A1-20040408-C00015
Figure US20040068013A1-20040408-C00016
Figure US20040068013A1-20040408-C00017
Figure US20040068013A1-20040408-C00018
Figure US20040068013A1-20040408-C00019
Figure US20040068013A1-20040408-C00020
Figure US20040068013A1-20040408-C00021
Figure US20040068013A1-20040408-C00022
or salts thereof.
2. A poly amino acid comprising at least one compound selected from the group consisting of
Figure US20040068013A1-20040408-C00023
Figure US20040068013A1-20040408-C00024
Figure US20040068013A1-20040408-C00025
Figure US20040068013A1-20040408-C00026
Figure US20040068013A1-20040408-C00027
Figure US20040068013A1-20040408-C00028
Figure US20040068013A1-20040408-C00029
Figure US20040068013A1-20040408-C00030
or salts thereof.
3. A poly amino acid as defined in claim 2, comprising a peptide.
4. A composition comprising
a. an active agent; and
b. a compound as defined in claim 1.
5. A composition comprising
a. an active agent; and
b. a poly amino acid as defined in claim 2.
6. A composition as defined in claim 5, wherein said poly amino acid comprises a peptide.
7. A composition as defined in claim 4, wherein said active agent comprises a biologically active agent.
8. A composition as defined in claim 7, wherein said biologically-active agent is selected from the group consisting of a peptide, a mucopoly-saccharide, a carbohydrate, a lipid, a pesticide, or any combination thereof.
9. A composition as defined in claim 8, wherein said biologically-active agent is selected from the group consisting of human growth hormone, bovine growth hormone, growth hormone-releasing hormone, an interferon, interleukin-II, insulin, heparin, calcitonin, erythropoietin, atrial naturetic factor, an antigen, a monoclonal antibody, somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin, vasopressin, cromolyn sodium, vancomycin, desferrioxamine (DFO), or any combination thereof.
10. A composition as defined in claim 5, wherein said active agent comprises a biologically active agent.
11. A composition as defined in claim 10, wherein said biologically-active agent is selected from the group consisting of a peptide, a mucopoly-saccharide, a carbohydrate, a lipid, a pesticide, or any combination thereof.
12. A composition as defined in claim 11, wherein said biologically-active agent is selected from the group consisting of human growth hormone, bovine growth hormone, growth hormone-releasing hormone, an interferon, interleukin-II, insulin, heparin, calcitonin, erythropoietin, atrial naturetic factor, an antigen, a monoclonal antibody, somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin, vasopressin, cromolyn sodium, vancomycin, desferrioxamine (DFO), or any combination thereof.
13. A composition as defined in claim 6, wherein said active agent comprises a biologically active agent.
14. A composition as defined in claim 13, wherein said biologically-active agent is selected from the group consisting of a peptide, a mucopoly-saccharide, a carbohydrate, a lipid, a pesticide, or any combination thereof.
15. A composition as defined in claim 14, wherein said biologically-active agent is selected from the group consisting of human growth hormone, bovine growth hormone, growth hormone-releasing hormone, an interferon, interleukin-II, insulin, heparin, calcitonin, erythropoietin, atrial naturetic factor, an antigen, a monoclonal antibody, somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin, vasopressin, cromolyn sodium, vancomycin, desferrioxamine (DFO), or any combination thereof.
16. A dosage unit form comprising
(A) a composition according to claim 4; and
(B) (a) an excipient,
(b) a diluent,
(c) a disintegrant,
(d) a lubricant,
(e) a plasticizer,
(f) a colorant,
(g) a dosing vehicle, or
(h) any combination thereof.
17. A dosage unit form according to claim 16, comprising a tablet, a capsule, or a liquid.
18. A dosage unit form comprising
(A) a composition according to claim 5; and
(B) (a) an excipient,
(b) a diluent,
(c) a disintegrant,
(d) a lubricant,
(e) a plasticizer,
(f) a colorant,
(g) a dosing vehicle, or
(h) any combination thereof.
19. A dosage unit form according to claim 18, comprising a tablet, a capsule, or a liquid.
20. A dosage unit form comprising
(A) a composition according to claim 6; and
(B) (a) an excipient,
(b) a diluent,
(c) a disintegrant,
(d) a lubricant,
(e) a plasticizer,
(f) a colorant,
(g) a dosing vehicle, or
(h) any combination thereof.
21. A dosage unit form according to claim 20, comprising a tablet, a capsule, or a liquid.
22. A method for administering a biologically-active agent to an animal in need of said agent, said method comprising administering orally to said animal a composition as defined in claim 4.
23. A method for administering a biologically-active agent to an animal in need of said agent, said method comprising administering orally to said animal a composition as defined in claim 5.
24. A method for administering a biologically-active agent to an animal in need of said agent, said method comprising administering orally to said animal a composition as defined in claim 6.
25. A method for preparing a composition, said method comprising mixing:
(A) at least one biologically-active agent;
(B) at least one compound as defined in claim 1; and
(C) optionally a dosing vehicle
26. A method for preparing a composition, said method comprising mixing:
(A) at least one biologically-active agent;
(B) at least one poly amino acid as defined in claim 2; and
(C) optionally a dosing vehicle
27. A method for preparing a composition, said method comprising mixing:
(A) at least one biologically-active agent;
(B) at least one peptide as defined in claim 3; and
(C) optionally a dosing vehicle.
US10/677,906 1993-04-22 2003-10-01 Compounds and compositions for delivering active agents Abandoned US20040068013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/677,906 US20040068013A1 (en) 1993-04-22 2003-10-01 Compounds and compositions for delivering active agents

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US08/051,019 US5451410A (en) 1993-04-22 1993-04-22 Modified amino acids for encapsulating active agents
US08/205,511 US5792451A (en) 1994-03-02 1994-03-02 Oral drug delivery compositions and methods
US08/231,622 US5629020A (en) 1994-04-22 1994-04-22 Modified amino acids for drug delivery
PCT/US1994/004560 WO1994023767A1 (en) 1993-04-22 1994-04-22 Oral drug delivery compositions and methods
US08/335,148 US5643957A (en) 1993-04-22 1994-10-25 Compounds and compositions for delivering active agents
US08/795,837 US6100298A (en) 1993-04-22 1997-02-06 Compounds and compositions for delivering active agents
US34697099A 1999-07-02 1999-07-02
US09/730,156 US20010003001A1 (en) 1993-04-22 2000-12-05 Compounds and compositions for delivering active agents
US10/090,012 US6663887B2 (en) 1993-04-22 2002-02-21 Compounds and compositions for delivering active agents
US10/677,906 US20040068013A1 (en) 1993-04-22 2003-10-01 Compounds and compositions for delivering active agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/090,012 Continuation US6663887B2 (en) 1993-04-22 2002-02-21 Compounds and compositions for delivering active agents

Publications (1)

Publication Number Publication Date
US20040068013A1 true US20040068013A1 (en) 2004-04-08

Family

ID=27556629

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/730,156 Abandoned US20010003001A1 (en) 1993-04-22 2000-12-05 Compounds and compositions for delivering active agents
US10/090,012 Expired - Fee Related US6663887B2 (en) 1993-04-22 2002-02-21 Compounds and compositions for delivering active agents
US10/677,906 Abandoned US20040068013A1 (en) 1993-04-22 2003-10-01 Compounds and compositions for delivering active agents

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/730,156 Abandoned US20010003001A1 (en) 1993-04-22 2000-12-05 Compounds and compositions for delivering active agents
US10/090,012 Expired - Fee Related US6663887B2 (en) 1993-04-22 2002-02-21 Compounds and compositions for delivering active agents

Country Status (1)

Country Link
US (3) US20010003001A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112937A1 (en) 2004-05-19 2005-12-01 Emisphere Technologies, Inc. Acyclovir formulations
WO2006072070A2 (en) 2004-12-29 2006-07-06 Emisphere Technologies, Inc. Pharmaceutical formulations of gallium salts
US20070224262A1 (en) * 2004-05-06 2007-09-27 Shingai Majuru Solid Dosage Form of Wetted Heparin
US20100151009A1 (en) * 2006-04-12 2010-06-17 Emisphere Technologies Inc. Formulations for delivering insulin
US20100239658A1 (en) * 2006-06-28 2010-09-23 Emisphere Technologies, Inc. Gallium nitrate formulations
EP2279732A2 (en) 2004-05-14 2011-02-02 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
WO2011017346A2 (en) 2009-08-03 2011-02-10 Emisphere Technologies, Inc. Fast-acting naproxen composition with reduced gastrointestinal effects
US8771712B2 (en) 2006-05-09 2014-07-08 Emisphere Technologies, Inc. Topical administration of acyclovir

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344213B1 (en) * 1996-03-29 2002-02-05 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6221367B1 (en) * 1992-06-15 2001-04-24 Emisphere Technologies, Inc. Active agent transport systems
US6916489B2 (en) * 1992-06-15 2005-07-12 Emisphere Technologies, Inc. Active agent transport systems
US20010003001A1 (en) * 1993-04-22 2001-06-07 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6358504B1 (en) * 1997-02-07 2002-03-19 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
IL140930A0 (en) * 1998-08-07 2002-02-10 Emisphere Tech Inc Compounds and compositions for delivering active agents
US6991798B1 (en) 1998-08-07 2006-01-31 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US7151191B2 (en) * 2000-01-13 2006-12-19 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
MXPA02012855A (en) * 2000-06-29 2004-04-20 Emisphere Tech Inc Compounds and compositions for delivering active agents.
CA2496687A1 (en) * 2002-09-18 2004-04-01 Centre Hospitalier De L'universite De Montreal (Chum) Ghrh analogues
JP2005209106A (en) * 2004-01-26 2005-08-04 Nec Corp Portable communication terminal, received e-mail management method, program and recording medium
US8110547B2 (en) * 2005-01-12 2012-02-07 Emisphere Technologies, Inc. Compositions for buccal delivery of parathyroid hormone
US20070232537A1 (en) * 2005-12-19 2007-10-04 Nastech Pharmaceutical Company Inc. Intranasal pyy formulations with improved transmucosal pharmacokinetics
JP5577094B2 (en) * 2006-08-31 2014-08-20 エミスフェアー・テクノロジーズ・インク Compounds and compositions for delivering active agents
KR101839864B1 (en) 2012-09-21 2018-03-20 인텐시티 쎄라퓨틱스, 인코포레이티드 Method of treating cancer

Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061466A (en) * 1974-10-16 1977-12-06 Ingvar Gosta Holger Sjoholm Biologically active composition and the use thereof
US4147767A (en) * 1975-10-09 1979-04-03 Minnesota Mining And Manufacturing Company Albumin medicament carrier system
US4207341A (en) * 1975-07-19 1980-06-10 Boehringer-Mannheim Gmbh Hypoglycaemically and hypolipidaemically active derivatives of phenylacetic acid
US4221815A (en) * 1975-01-03 1980-09-09 Hoechst Aktiengesellschaft Benzoic acids, their derivatives and process for preparing them
US4238506A (en) * 1975-04-18 1980-12-09 Boehringer Mannheim Gmbh Hypoglycaemically and hypolipidaemically active derivatives of phenyl-alkane-carboxylic acids
US4239754A (en) * 1976-10-23 1980-12-16 Choay, S.A. Liposomes containing heparin and a process for obtaining them
US4442090A (en) * 1980-11-09 1984-04-10 Kyoto Yakuhin Kogyo Kabushiki Kaisha Absorption-promoting compounds, compositions thereof with pharmaceuticals and/or bases for rectal administration and method of use
US4462991A (en) * 1980-03-07 1984-07-31 Interx Research Corp. Method of increasing oral absorption of polar bioactive agents
US4654327A (en) * 1982-04-21 1987-03-31 Research Corp. Quaternary ammonium complexes of heparin
US4656161A (en) * 1983-08-27 1987-04-07 Basf Aktiengesellschaft Increasing the enteral absorbability of heparin or heparinoids
US4692433A (en) * 1983-10-12 1987-09-08 The Regents Of The University Of California Method and composition for regulating serum calcium levels of mammals
US4703042A (en) * 1984-05-21 1987-10-27 Bodor Nicholas S Orally active heparin salts containing multivalent cationic units
US4757066A (en) * 1984-10-15 1988-07-12 Sankyo Company Limited Composition containing a penem or carbapenem antibiotic and the use of the same
US4873087A (en) * 1982-01-14 1989-10-10 Toyo Jozo Company, Ltd. Suppository preparation having excellent absorption property
US4895725A (en) * 1987-08-24 1990-01-23 Clinical Technologies Associates, Inc. Microencapsulation of fish oil
US4900730A (en) * 1981-01-14 1990-02-13 Toyo Jozo Co., Ltd. Preparation which promotes the absorption of peptides
US4925673A (en) * 1986-08-18 1990-05-15 Clinical Technologies Associates, Inc. Delivery systems for pharmacological agents encapsulated with proteinoids
US4976968A (en) * 1989-02-24 1990-12-11 Clinical Technologies Associates, Inc. Anhydrous delivery systems for pharmacological agents
US4983402A (en) * 1989-02-24 1991-01-08 Clinical Technologies Associates, Inc. Orally administerable ANF
US5066487A (en) * 1988-09-14 1991-11-19 Rhone-Poulenc Chimie Antisudoral composition comprising dibasic aluminium salts of acylated amino acids
US5122367A (en) * 1989-03-31 1992-06-16 Massachusetts Institute Of Technology Polyanhydride bioerodible controlled release implants for administration of stabilized growth hormone
US5278148A (en) * 1989-03-28 1994-01-11 Hoffmann-La Roche Inc. Amino acid derivatives useful for treating high blood pressure
US5352461A (en) * 1992-03-11 1994-10-04 Pharmaceutical Discovery Corporation Self assembling diketopiperazine drug delivery system
US5389379A (en) * 1992-02-18 1995-02-14 Akzo N.V. Process for the preparation of biologically active material containing polymeric microcapsules
US5401516A (en) * 1992-12-21 1995-03-28 Emisphere Technologies, Inc. Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof
US5443841A (en) * 1992-06-15 1995-08-22 Emisphere Technologies, Inc. Proteinoid microspheres and methods for preparation and use thereof
US5447728A (en) * 1992-06-15 1995-09-05 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
US5451410A (en) * 1993-04-22 1995-09-19 Emisphere Technologies, Inc. Modified amino acids for encapsulating active agents
US5541155A (en) * 1994-04-22 1996-07-30 Emisphere Technologies, Inc. Acids and acid salts and their use in delivery systems
US5578323A (en) * 1992-06-15 1996-11-26 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
US5629020A (en) * 1994-04-22 1997-05-13 Emisphere Technologies, Inc. Modified amino acids for drug delivery
US5643957A (en) * 1993-04-22 1997-07-01 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5650386A (en) * 1995-03-31 1997-07-22 Emisphere Technologies, Inc. Compositions for oral delivery of active agents
US5665700A (en) * 1990-03-29 1997-09-09 Skua Investments Limited Pharmaceutical formulations
US5667806A (en) * 1995-06-07 1997-09-16 Emisphere Technologies, Inc. Spray drying method and apparatus
US5693338A (en) * 1994-09-29 1997-12-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
US5705529A (en) * 1992-06-30 1998-01-06 Gyogyszerkutato Intezet Kft N-benzoyl amino acid derivatives pharmaceutical compositions containing them and process for preparing same
US5709861A (en) * 1993-04-22 1998-01-20 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US5714167A (en) * 1992-06-15 1998-02-03 Emisphere Technologies, Inc. Active agent transport systems
US5750147A (en) * 1995-06-07 1998-05-12 Emisphere Technologies, Inc. Method of solubilizing and encapsulating itraconazole
US5766633A (en) * 1993-04-22 1998-06-16 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5773647A (en) * 1997-02-07 1998-06-30 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5776888A (en) * 1997-02-07 1998-07-07 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5792451A (en) * 1994-03-02 1998-08-11 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5804688A (en) * 1997-02-07 1998-09-08 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5811127A (en) * 1992-06-15 1998-09-22 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
US5820881A (en) * 1995-04-28 1998-10-13 Emisphere Technologies, Inc. Microspheres of diamide-dicarboxylic acids
US5824345A (en) * 1995-06-07 1998-10-20 Emisphere Technologies, Inc. Fragrances and flavorants
US5863944A (en) * 1997-04-30 1999-01-26 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5866536A (en) * 1995-03-31 1999-02-02 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5876710A (en) * 1997-02-07 1999-03-02 Emisphere Technologies Inc. Compounds and compositions for delivering active agents
US5879681A (en) * 1997-02-07 1999-03-09 Emisphere Technolgies Inc. Compounds and compositions for delivering active agents
US5939381A (en) * 1997-02-07 1999-08-17 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5958457A (en) * 1993-04-22 1999-09-28 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US5962710A (en) * 1997-05-09 1999-10-05 Emisphere Technologies, Inc. Method of preparing salicyloylamino acids
US5965121A (en) * 1995-03-31 1999-10-12 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5990166A (en) * 1997-02-07 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5989539A (en) * 1995-03-31 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6001347A (en) * 1995-03-31 1999-12-14 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6051561A (en) * 1997-02-07 2000-04-18 Emisphere Technologies Inc. Compounds and compositions for delivering active agents
US6051258A (en) * 1995-06-07 2000-04-18 Emisphere Technologies, Inc. Proteinoid emulsions and methods for preparation and use thereof
US6060513A (en) * 1997-02-07 2000-05-09 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6071510A (en) * 1995-03-31 2000-06-06 Emisphere Technologies, Inc. Modified amino acids and compositions comprising the same for delivering active agents
US6084112A (en) * 1995-09-11 2000-07-04 Emisphere Technologies, Inc. Method for preparing ω-aminoalkanoic acid derivatives from cycloalkanones
US6090958A (en) * 1995-03-31 2000-07-18 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6099856A (en) * 1992-06-15 2000-08-08 Emisphere Technologies, Inc. Active agent transport systems
US6663887B2 (en) * 1993-04-22 2003-12-16 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES369853A1 (en) 1969-07-24 1971-07-16 Bama S A Lab Procedure for the obtaining of derivatives of the epsilon-amino-caproico acid. (Machine-translation by Google Translate, not legally binding)
CA1188987A (en) 1981-03-06 1985-06-18 Masataka Morishita Preparation having excellent absorption property
US4689182A (en) 1985-12-20 1987-08-25 Warner-Lambert Company Benzoic acid and benzoic acid ester derivatives having anti-inflammatory and analgesic activity
USRE35862E (en) 1986-08-18 1998-07-28 Emisphere Technologies, Inc. Delivery systems for pharmacological agents encapsulated with proteinoids
GB8705477D0 (en) 1987-03-09 1987-04-15 Carlton Med Prod Drug delivery systems
JPH02239980A (en) 1989-03-15 1990-09-21 Fuji Photo Film Co Ltd Thermal recording material
AU653026B2 (en) 1991-06-07 1994-09-15 Teikoku Seiyaku Kabushiki Kaisha Physiologically active polypeptide-containing pharmaceutical composition

Patent Citations (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061466A (en) * 1974-10-16 1977-12-06 Ingvar Gosta Holger Sjoholm Biologically active composition and the use thereof
US4221815A (en) * 1975-01-03 1980-09-09 Hoechst Aktiengesellschaft Benzoic acids, their derivatives and process for preparing them
US4238506A (en) * 1975-04-18 1980-12-09 Boehringer Mannheim Gmbh Hypoglycaemically and hypolipidaemically active derivatives of phenyl-alkane-carboxylic acids
US4207341A (en) * 1975-07-19 1980-06-10 Boehringer-Mannheim Gmbh Hypoglycaemically and hypolipidaemically active derivatives of phenylacetic acid
US4147767A (en) * 1975-10-09 1979-04-03 Minnesota Mining And Manufacturing Company Albumin medicament carrier system
US4239754A (en) * 1976-10-23 1980-12-16 Choay, S.A. Liposomes containing heparin and a process for obtaining them
US4462991A (en) * 1980-03-07 1984-07-31 Interx Research Corp. Method of increasing oral absorption of polar bioactive agents
US4442090A (en) * 1980-11-09 1984-04-10 Kyoto Yakuhin Kogyo Kabushiki Kaisha Absorption-promoting compounds, compositions thereof with pharmaceuticals and/or bases for rectal administration and method of use
US4900730A (en) * 1981-01-14 1990-02-13 Toyo Jozo Co., Ltd. Preparation which promotes the absorption of peptides
US4873087A (en) * 1982-01-14 1989-10-10 Toyo Jozo Company, Ltd. Suppository preparation having excellent absorption property
US4654327A (en) * 1982-04-21 1987-03-31 Research Corp. Quaternary ammonium complexes of heparin
US4656161A (en) * 1983-08-27 1987-04-07 Basf Aktiengesellschaft Increasing the enteral absorbability of heparin or heparinoids
US4692433A (en) * 1983-10-12 1987-09-08 The Regents Of The University Of California Method and composition for regulating serum calcium levels of mammals
US4703042A (en) * 1984-05-21 1987-10-27 Bodor Nicholas S Orally active heparin salts containing multivalent cationic units
US4757066A (en) * 1984-10-15 1988-07-12 Sankyo Company Limited Composition containing a penem or carbapenem antibiotic and the use of the same
US4925673A (en) * 1986-08-18 1990-05-15 Clinical Technologies Associates, Inc. Delivery systems for pharmacological agents encapsulated with proteinoids
US4895725A (en) * 1987-08-24 1990-01-23 Clinical Technologies Associates, Inc. Microencapsulation of fish oil
US5066487A (en) * 1988-09-14 1991-11-19 Rhone-Poulenc Chimie Antisudoral composition comprising dibasic aluminium salts of acylated amino acids
US4983402A (en) * 1989-02-24 1991-01-08 Clinical Technologies Associates, Inc. Orally administerable ANF
US4976968A (en) * 1989-02-24 1990-12-11 Clinical Technologies Associates, Inc. Anhydrous delivery systems for pharmacological agents
US5278148A (en) * 1989-03-28 1994-01-11 Hoffmann-La Roche Inc. Amino acid derivatives useful for treating high blood pressure
US5122367A (en) * 1989-03-31 1992-06-16 Massachusetts Institute Of Technology Polyanhydride bioerodible controlled release implants for administration of stabilized growth hormone
US5665700A (en) * 1990-03-29 1997-09-09 Skua Investments Limited Pharmaceutical formulations
US5389379A (en) * 1992-02-18 1995-02-14 Akzo N.V. Process for the preparation of biologically active material containing polymeric microcapsules
US5352461A (en) * 1992-03-11 1994-10-04 Pharmaceutical Discovery Corporation Self assembling diketopiperazine drug delivery system
US6099856A (en) * 1992-06-15 2000-08-08 Emisphere Technologies, Inc. Active agent transport systems
US5447728A (en) * 1992-06-15 1995-09-05 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
US6071538A (en) * 1992-06-15 2000-06-06 Emisphere Technologies, Inc. Oral delivery composition comprising supramolecular complex
US5578323A (en) * 1992-06-15 1996-11-26 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
US5601846A (en) * 1992-06-15 1997-02-11 Emisphere Technologies, Inc. Proteinoid microspheres and methods for preparation and use thereof
US5840340A (en) * 1992-06-15 1998-11-24 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
US5811127A (en) * 1992-06-15 1998-09-22 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
US5443841A (en) * 1992-06-15 1995-08-22 Emisphere Technologies, Inc. Proteinoid microspheres and methods for preparation and use thereof
US5714167A (en) * 1992-06-15 1998-02-03 Emisphere Technologies, Inc. Active agent transport systems
US5705529A (en) * 1992-06-30 1998-01-06 Gyogyszerkutato Intezet Kft N-benzoyl amino acid derivatives pharmaceutical compositions containing them and process for preparing same
US5540939A (en) * 1992-12-21 1996-07-30 Emisphere Technologies, Inc. Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof
US5972387A (en) * 1992-12-21 1999-10-26 Emisphere Technologies, Inc. Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof
US5401516A (en) * 1992-12-21 1995-03-28 Emisphere Technologies, Inc. Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof
US5709861A (en) * 1993-04-22 1998-01-20 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US5643957A (en) * 1993-04-22 1997-07-01 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6663887B2 (en) * 1993-04-22 2003-12-16 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5958457A (en) * 1993-04-22 1999-09-28 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US5766633A (en) * 1993-04-22 1998-06-16 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5451410A (en) * 1993-04-22 1995-09-19 Emisphere Technologies, Inc. Modified amino acids for encapsulating active agents
US6100298A (en) * 1993-04-22 2000-08-08 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5955503A (en) * 1993-04-22 1999-09-21 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5792451A (en) * 1994-03-02 1998-08-11 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5541155A (en) * 1994-04-22 1996-07-30 Emisphere Technologies, Inc. Acids and acid salts and their use in delivery systems
US5935601A (en) * 1994-04-22 1999-08-10 Emisphere Technologies, Inc. Modified amino acids for drug delivery
US6180140B1 (en) * 1994-04-22 2001-01-30 Emisphere Technologies, Inc. Modified amino acids for drug delivery
US5629020A (en) * 1994-04-22 1997-05-13 Emisphere Technologies, Inc. Modified amino acids for drug delivery
US5693338A (en) * 1994-09-29 1997-12-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
US5976569A (en) * 1994-09-29 1999-11-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
US5965121A (en) * 1995-03-31 1999-10-12 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5650386A (en) * 1995-03-31 1997-07-22 Emisphere Technologies, Inc. Compositions for oral delivery of active agents
US6071510A (en) * 1995-03-31 2000-06-06 Emisphere Technologies, Inc. Modified amino acids and compositions comprising the same for delivering active agents
US5866536A (en) * 1995-03-31 1999-02-02 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6001347A (en) * 1995-03-31 1999-12-14 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5989539A (en) * 1995-03-31 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6090958A (en) * 1995-03-31 2000-07-18 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5820881A (en) * 1995-04-28 1998-10-13 Emisphere Technologies, Inc. Microspheres of diamide-dicarboxylic acids
US6051258A (en) * 1995-06-07 2000-04-18 Emisphere Technologies, Inc. Proteinoid emulsions and methods for preparation and use thereof
US5667806A (en) * 1995-06-07 1997-09-16 Emisphere Technologies, Inc. Spray drying method and apparatus
US5750147A (en) * 1995-06-07 1998-05-12 Emisphere Technologies, Inc. Method of solubilizing and encapsulating itraconazole
US6100285A (en) * 1995-06-07 2000-08-08 Emisphere Technologies, Inc. Method of solubilizing itraconazole
US5824345A (en) * 1995-06-07 1998-10-20 Emisphere Technologies, Inc. Fragrances and flavorants
US6084112A (en) * 1995-09-11 2000-07-04 Emisphere Technologies, Inc. Method for preparing ω-aminoalkanoic acid derivatives from cycloalkanones
US5776888A (en) * 1997-02-07 1998-07-07 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6060513A (en) * 1997-02-07 2000-05-09 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6051561A (en) * 1997-02-07 2000-04-18 Emisphere Technologies Inc. Compounds and compositions for delivering active agents
US5876710A (en) * 1997-02-07 1999-03-02 Emisphere Technologies Inc. Compounds and compositions for delivering active agents
US5804688A (en) * 1997-02-07 1998-09-08 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5879681A (en) * 1997-02-07 1999-03-09 Emisphere Technolgies Inc. Compounds and compositions for delivering active agents
US5773647A (en) * 1997-02-07 1998-06-30 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5990166A (en) * 1997-02-07 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5939381A (en) * 1997-02-07 1999-08-17 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5863944A (en) * 1997-04-30 1999-01-26 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5962710A (en) * 1997-05-09 1999-10-05 Emisphere Technologies, Inc. Method of preparing salicyloylamino acids

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224262A1 (en) * 2004-05-06 2007-09-27 Shingai Majuru Solid Dosage Form of Wetted Heparin
US8039018B2 (en) 2004-05-06 2011-10-18 Emisphere Technologies, Inc. Solid dosage form of wetted heparin
EP2279732A2 (en) 2004-05-14 2011-02-02 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
WO2005112937A1 (en) 2004-05-19 2005-12-01 Emisphere Technologies, Inc. Acyclovir formulations
WO2006072070A2 (en) 2004-12-29 2006-07-06 Emisphere Technologies, Inc. Pharmaceutical formulations of gallium salts
US20100151009A1 (en) * 2006-04-12 2010-06-17 Emisphere Technologies Inc. Formulations for delivering insulin
US8927015B2 (en) 2006-04-12 2015-01-06 Emisphere Technologies, Inc. Formulations for delivering insulin
US8771712B2 (en) 2006-05-09 2014-07-08 Emisphere Technologies, Inc. Topical administration of acyclovir
US20100239658A1 (en) * 2006-06-28 2010-09-23 Emisphere Technologies, Inc. Gallium nitrate formulations
US9364502B2 (en) 2006-06-28 2016-06-14 Emisphere Technologies, Inc. Gallium nitrate formulations
WO2011017346A2 (en) 2009-08-03 2011-02-10 Emisphere Technologies, Inc. Fast-acting naproxen composition with reduced gastrointestinal effects

Also Published As

Publication number Publication date
US6663887B2 (en) 2003-12-16
US20010003001A1 (en) 2001-06-07
US20020120009A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
US6100298A (en) Compounds and compositions for delivering active agents
US6663887B2 (en) Compounds and compositions for delivering active agents
US5650386A (en) Compositions for oral delivery of active agents
US6071510A (en) Modified amino acids and compositions comprising the same for delivering active agents
US5935601A (en) Modified amino acids for drug delivery
EP1025840B1 (en) Oral drug compositions
EP1093819B1 (en) Compound and composition for delivering active agents
US6461643B2 (en) Oral drug delivery compositions and methods
AU727068B2 (en) Compounds and compositions for delivering active agents
US6699467B2 (en) Compounds and compositions for delivering active agents
US7125910B2 (en) Compounds and compositions for delivering active agents
WO1997036480A1 (en) Compounds and compositions for delivering active agents
EP0817643B1 (en) Compounds and compositions for delivering active agents
MXPA97002899A (en) Compounds and compositions to supply acti agents

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION