US20040081008A1 - Semiconductor memory device with test mode and testing method thereof - Google Patents

Semiconductor memory device with test mode and testing method thereof Download PDF

Info

Publication number
US20040081008A1
US20040081008A1 US10/377,596 US37759603A US2004081008A1 US 20040081008 A1 US20040081008 A1 US 20040081008A1 US 37759603 A US37759603 A US 37759603A US 2004081008 A1 US2004081008 A1 US 2004081008A1
Authority
US
United States
Prior art keywords
signal
data
memory device
signals
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/377,596
Other versions
US6873556B2 (en
Inventor
Hikoshi Hanji
Yasuhiro Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI DENKI KABUSHIKI KAISHA reassignment MITSUBISHI DENKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANJI, HIKOSHI, MATSUI, YASUHIRO
Assigned to RENESAS TECHNOLOGY CORP. reassignment RENESAS TECHNOLOGY CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITSUBISHI DENKI KABUSHIKI KAISHA
Assigned to RENESAS TECHNOLOGY CORP. reassignment RENESAS TECHNOLOGY CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITSUBISHI DENKI KABUSHIKI KAISHA
Publication of US20040081008A1 publication Critical patent/US20040081008A1/en
Application granted granted Critical
Publication of US6873556B2 publication Critical patent/US6873556B2/en
Assigned to RENESAS ELECTRONICS CORPORATION reassignment RENESAS ELECTRONICS CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RENESAS TECHNOLOGY CORP.
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/26Accessing multiple arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger

Definitions

  • the present invention relates to a semiconductor memory device and a testing method thereof. Particularly, the present invention relates to a semiconductor memory device operating in synchronization with a clock signal, having a test mode to test whether each memory cell is proper or not, and a testing method thereof.
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Determination is made that a memory cell is proper when the logic of data read out from that memory cell matches the logic of the data read into that memory cell.
  • a memory cell is determined to be defective when such logics of data do not match.
  • a defective memory cell is replaced with a spare memory cell.
  • Some testing methods conduct writing of external data into a memory cell and reading out data from another memory cell concurrently (for example, refer to Japanese Patent Laying-Open No. 59-175100).
  • An object of the present invention is to provide a semiconductor memory device and a testing method thereof that can readily test whether each memory cell is proper or not.
  • a semiconductor memory device includes a plurality of memory cells, a register sequentially providing one by one N (N is an integer of at least 2) data signals that are written in advance in a test mode testing whether each memory cell is proper or not, a decoder sequentially selecting one by one N memory cells among the plurality of memory cells according to an address signal, a write circuit sequentially writing the N data signals output from the register into the N memory cells selected by the decoder, and a read circuit operating later than the write circuit by M (M is an integer of at least 1 and not more than N-1) clock cycles to sequentially read out a data signal from the N memory cells selected by the decoder.
  • a data signal to be written is output from the register, a data signal for writing does not have to be additionally applied from an external source. Furthermore, since N memory cells are selected in response to one address signal and writing/reading of a data signal with respect to selected memory cells is conducted, the number of address signals to be input can be reduced. Therefore, testing is simplified.
  • a testing method includes the steps of rendering active the semiconductor memory device of the above aspect to set the semiconductor memory device in a test mode, applying an address signal to the decoder, and determining whether each memory cell is proper or not based on the data signal read out by the read circuit.
  • the semiconductor memory device can be tested by applying an address signal and comparing the read out data signal with an expected value.
  • the testing operation can be simplified.
  • FIG. 1 is a block diagram of an entire structure of a synchronous SRAM according to an embodiment of the present invention.
  • FIG. 2 is a circuit block diagram of a structure of the memory block in FIG. 1.
  • FIG. 3 is a circuit diagram of a structure of the memory cell and bit line peripheral circuit in FIG. 2.
  • FIG. 4 is a block diagram of a burst counter in a control circuit 5 of FIG. 1.
  • FIG. 5 is a circuit block diagram of a structure of a transfer circuit in FIG. 1.
  • FIG. 6 is a block diagram of a structure of the portion related to generation of a transfer control signal in FIG. 5.
  • FIG. 7 is a timing chart of an operation of the burst counter and delay circuit in FIG. 6.
  • FIG. 8 is a block diagram to describe the operation of the SRAM of FIGS. 1 - 7 in a test mode.
  • FIG. 9 is a timing chart of an operation in the test mode of FIG. 8.
  • FIG. 10 is a block diagram to describe an operation of the SRAM of FIGS. 1 - 7 in a test mode.
  • FIG. 11 is another block diagram to describe the operation of the SRAM of FIGS. 1 - 7 in a test mode.
  • FIG. 12 is a timing chart of an operation in the test mode described in FIGS. 10 and 11.
  • a synchronous SRAM includes control signal buffers 1 and 2 , an address buffer 3 , a clock buffer 4 , control circuits 5 and 6 , a memory array 7 , an IO buffer 8 , a selector 9 , a register unit 10 , and a transfer circuit 11 .
  • Control signal buffer 1 transmits external control signals /CS, /WE, /OE to control circuit 5 .
  • Control signal buffer 2 transmits external control signals CNT 0 -CNTi (i is an integer of at least 0) to control circuit 6 .
  • Address buffer 3 transmits external address signals A 0 -Aj (j is an integer of at least 0) to control circuit 5 .
  • Clock buffer 4 supplies an external clock signal CLK to the entire SRAM.
  • Control circuit 5 generates various internal signals such as row address signals RA 0 -RAa, column address signals CA 0 -CAb (a and b are integers of at least 0), and transfer control signals PD 1 -PD 4 and PD 1 d -PD 4 d according to signals /CS, /WE, /OE, . . . applied via control signal buffer 1 , address buffer 3 and clock buffer 4 to provide entire control of the SRAM by the generated internal signals.
  • various internal signals such as row address signals RA 0 -RAa, column address signals CA 0 -CAb (a and b are integers of at least 0), and transfer control signals PD 1 -PD 4 and PD 1 d -PD 4 d according to signals /CS, /WE, /OE, . . . applied via control signal buffer 1 , address buffer 3 and clock buffer 4 to provide entire control of the SRAM by the generated internal signals.
  • Control circuit 6 generates test mode signals TMA 1 -TMAc and TMB 1 -TMBc (c is an integer of at least 1) according to signals CNT 0 -CNTi applied via control signal buffer 2 to provide these signals TMA 1 -TMAc and TMB 1 -TMBc to selector 9 and register unit 10 .
  • Memory array 7 is divided into four memory blocks MB 1 -MB 4 .
  • Each of memory blocks MB 1 -MB 4 includes a plurality of memory cells arranged in a plurality of rows and columns. Each memory cells stores one data signal.
  • IO buffer 8 outputs from the semiconductor memory device a read out data signal Q applied from memory array 7 via transfer circuit 11 , and provides to selector 9 an externally applied write data signal D.
  • selector 9 is under control of control circuit 6 through signals TMA 1 -TMAc to apply write data signal D from IO buffer 8 to register unit 10 .
  • selector 9 provides write data signal D from IO buffer 8 to transfer circuit 11 .
  • register unit 10 is under control of control circuit 6 through signals TMB 1 -TMBc to output write data signal D directed to testing to transfer circuit 11 .
  • transfer circuit 11 responds to signals PD 1 -PD 4 from control circuit 5 to select any of the four memory blocks MB 1 -MB 4 of memory array 7 , and provides write data signal D from selector 9 or register unit 10 to the selected memory block.
  • transfer circuit 11 responds to signals PD 1 d -PD 4 d from control circuit 5 to select any of memory blocks MB 1 -MB 4 of memory array 7 , and couples the selected memory block with IO buffer 8 .
  • transfer circuit 11 conducts writing and reading of data signals concurrently. The operation of transfer circuit 11 in a test mode will be described in detail afterwards.
  • FIG. 2 is a circuit block diagram of a structure of memory block MB 1 .
  • memory block MB 1 includes (n+1) ⁇ (m+1) memory cells MC arranged in (n+1) rows and (m+1) columns (each of n and m is an integer of at least 1), word lines WL 0 -WLn provided corresponding to the (n+1) rows, respectively, m+1 pairs of bit lines BL and /BL provided corresponding to (m+1) columns, respectively, (m+1) column select lines CL 0 -CLm provided corresponding to (m+1) columns, respectively, and a pair of data input/output lines IO and /IO.
  • memory cell MC includes P-channel MOS transistors 31 and 32 , and N-channel MOS transistors 33 - 36 .
  • P-channel MOS transistors 31 and 32 are connected between the line of power supply potential VCC and storage nodes N 1 and N 2 , and have their gates connected to storage nodes N 2 and N 1 , respectively.
  • N-channel MOS transistors 33 and 34 are connected between respective storage nodes N 1 and N 2 and the line of ground potential GND, and have their gates connected to storage nodes N 2 and N 1 , respectively.
  • MOS transistors 32 and 34 form a first inverter that applies to storage node N 2 an inverted signal of the signal at storage node N 1 .
  • MOS transistors 31 and 33 form a second inverter that applies to storage node N 1 an inverted signal of the signal at storage node N 2 .
  • the first and second inverters form a latch circuit storing the signals of storage nodes N 1 and N 2 .
  • N-channel MOS transistor 35 is connected between bit line BL and storage node N 1 .
  • N-channel MOS transistor 36 is connected between bit line /BL and storage node N 2 .
  • N-channel MOS transistors 35 and 36 have their gates connected to word line WL.
  • word line WL is pulled up to an H level (logical high), whereby N-channel MOS transistors 35 and 36 conduct. Then, one of bit lines BL and /BL is brought to an H level whereas the other bit line is brought to an L level according to write data signal D, whereby a signal is written into each of storage nodes N 1 and N 2 .
  • a signal of an H level and a signal of an L level are written into storage nodes N 1 and N 2 , respectively.
  • data signal D is at an L level (0)
  • signals of an L level and an H level are written into storage nodes N 1 and N 2 , respectively.
  • N-channel MOS transistors 35 and 36 are rendered nonconductive. The signals of storage nodes N 1 and N 2 are latched by MOS transistors 31 - 34 .
  • bit lines BL and /BL are precharged to an H level, and then word line WL is pulled up to an H level.
  • N-channel MOS transistors 35 and 36 are rendered conductive.
  • One of bit lines BL and /BL is pulled down to an L level according to the storage data of memory cell MC. For example, when storage nodes N 1 and N 2 are at an H level and an L level, respectively, current flows from bit line /BL to the line of ground potential GND via N-channel MOS transistors 36 and 34 , whereby bit line /BL is brought to an L level. The potential of bit line BL is not reduced since N-channel MOS transistor 33 is nonconductive.
  • Word line WL is pulled down to an L level, and the read operation ends.
  • bit line peripheral circuit 12 includes N-channel MOS transistors 37 and 38 and a P-channel MOS transistor 39 corresponding to each bit line pair BL and /BL.
  • N-channel MOS transistors 37 and 38 are diode-connected between the line of power supply potential VCC and one end of bit lines BL and /BL to charge respective bit lines to an H level.
  • P-channel MOS transistor 39 is connected between bit lines BL and /BL, and receives a bit line equalize signal /BLEQ at its gate. In response to signal /BLEQ pulled down to an L level of activation, P-channel MOS transistor 39 conducts, whereby the potentials of bit lines BL and /BL are equalized.
  • column select gate 13 includes transfer gates 14 and 15 and an inverter 16 provided corresponding to bit lines BL and /BL.
  • Transfer gate 14 is connected between the other end of bit line BL and a data input/output line IO.
  • Transfer gate 15 is connected between the other end of bit line /BL and a data input/output line /IO.
  • Column select line CL is directly connected to the N-channel MOS transistor side gate of corresponding transfer gates 14 and 15 , and connected to the P-channel MOS transistor side gate of corresponding transfer gates 14 and 15 via corresponding inverter 16 .
  • Row decoder 20 selects any of (n+1) word lines WL 0 -WLn according to row address signals RA 0 -RAa from control circuit 5 to drive the selected word line WL to an H level of selection.
  • row decoder 20 includes a NAND gate 21 and an inverter 22 provided corresponding to each word line WL.
  • Each word line WL is assigned unique row address signals RA 0 -RAa in advance.
  • NAND gate 21 and inverter 22 receive preassigned row address signals RA 0 -RAa, and pulls up a corresponding word line WL to an H level of selection in response to block select signal BS 1 brought to an H level.
  • Block select signal BS 1 attains an H level of selection when memory block MB 1 is specified by address signals A 0 -Aj.
  • Column decoder 23 selects any of (m+1) column select lines CL 0 -CLm according to address signals CA 0 -CAa from control circuit 5 to pull up the selected column select line CL to an H level of selection.
  • column decoder 23 includes a NAND gate 24 and an inverter 25 provided corresponding to each column select line CL.
  • Each column select line CL is assigned unique column address signals CA 0 -CAb in advance.
  • NAND gate 24 and inverter 25 pull up corresponding column select line CL to an H level of selection in response to input of preassigned column address signals CA 0 -CAb.
  • write driver 26 drives one of data input/output lines IO, /IO to an H level and the other of data input/output lines IO, /IO to an L level according to write data signal D.
  • sense amplifier 27 compares the potentials of data input/output lines IO, / 10 to output a data signal Q of a logic level corresponding to the comparison result.
  • memory block MB 1 shown in FIGS. 2 and 3 will be described hereinafter. It is assumed that memory block MB 1 is selected and block select signal BS 1 is at an H level of selection.
  • word line WL of the row specified by row address signals RA 0 -RAa is pulled up to an H level of selection by row decoder 20 , whereby respective memory cells MC of that row are rendered active.
  • column select line CL of a column specified by column address signals CA 0 -CAb is pulled up to an H level of selection by column decoder 23 , whereby transfer gates 14 and 15 of that column are rendered conductive.
  • One activated memory cell MC is connected to write driver 26 via bit line pair BL and /BL and data input/output line pair IO, /IO.
  • Write driver 26 drives one of data input/output lines IO, /IO to an H level and the other data input/output line to an L level according to write data signal D to write data into memory cell MC.
  • word line WL and column select line CL are pulled down to an L level, data is stored into memory cell MC.
  • column select line CL of the column specified by column address signals CA 0 -CAb is pulled up to an H level of selection. Transfer gates 14 and 15 of that column are rendered conductive, whereby bit lines BL and /BL are connected to sense amplifier 27 via data input/output line pair IO, /IO. Then, bit line equalize signal /BLEQ is brought to an L level of activation, whereby each P-channel MOS transistor 39 conducts. In response, the potentials of bit lines BL and /BL are equalized.
  • bit line equalize signal /BLEQ attains an H level of inactivation and each P-channel MOS transistor 39 is rendered nonconductive
  • word line WL of a row according to row address signals RA 0 -RAa is pulled up to an H level of selection.
  • each memory cell MC of that row is rendered active. Accordingly, current flows from one of bit lines BL and /BL to memory cell MC according to the stored data in memory cell MC.
  • the potential of one of data input/output lines IO, /IO is reduced.
  • Sense amplifier 27 compares the potentials of data input/output lines IO, /IO to output a data signal Q of a logic level corresponding to the comparison result.
  • control circuit 5 includes a burst counter 40 , as shown in FIG. 4.
  • Burst counter 40 latches internal column address signals PCA 0 -PCAb generated based on external address signals A 0 -Aj, and provides the same as the first of column address signals CA 0 -CAb.
  • Burst counter 40 counts the number of pulses of clock signal CLK, and increments (+1) the values of output column address signals CA 0 -CAb. Accordingly, four continuous column address signals CA 0 -CAb are generated, and four column select lines are sequentially selected. Data signals are sequentially written/read out with respect to four memory cells MC.
  • FIG. 5 is a circuit block diagram of a structure of transfer circuit 11 .
  • transfer circuit 11 includes write gates 41 - 44 , read gates 45 - 48 , a buffer 49 , a write data line WDL and a read data line RDL.
  • Buffer 49 applies write data signal D from selector 9 or register unit 10 to write data line WDL.
  • Write gates 41 - 44 are provided between respective write data line WDL and write driver 26 of memory blocks MB 1 -MB 4 , and conduct in response to respective signals PD 1 -PD 4 attaining an H level of activation. When write gates 41 - 44 are rendered conductive, data signal D is applied to write driver 26 of memory blocks MB 1 -MB 4 .
  • Read gates 45 - 48 are provided between sense amplifier 27 of respective memory blocks MB 1 -MB 4 and a read data line RDL, and conduct in response to respective signals PD 1 d -PD 4 d attaining an H level of activation. When read gates 45 - 48 are rendered conductive, read out data signal Q is applied from sense amplifier 27 of respective memory blocks MB 1 -MB 4 to read data line RDL. Read data line RDL is connected to IO buffer 8 .
  • FIG. 6 is a block diagram representing the portion related to generation of transfer control signals PD 1 -PD 4 and PD 1 d -PD 4 d in control circuit 5 .
  • control circuit 5 includes a block select decoder 51 , a delay circuit 52 , and a burst counter 53 .
  • Block select decoder 51 is rendered active when test mode signal TM is at an L level of inactivation, i.e., when in a normal operation mode, to select any of transfer control signals PD 1 -PD 4 according to address signals A 0 and A 1 to pull up the selected signal to an H level of selection at a predetermined timing.
  • Burst counter 53 is rendered active when test mode signal TM is at an H level of activation, i.e., when in a test mode, to bring signals PD 1 -PD 4 to an H level at every 1 ⁇ 2 cycle in synchronization with clock signal CLK, as shown in FIG. 7.
  • Delay circuit 52 delays signals PD 1 -PD 4 by just one cycle to generate signals PD 1 d -PD 4 d.
  • signal PD 1 attains an H level to render write gate 41 conductive, whereby data signal D is written into memory cell MC of memory block MB 1 .
  • signals PD 1 d and PD 2 attain an H level to render read gate 45 conductive, whereby read out data signal Q of memory block MB 1 is applied to read data line RDL.
  • write gate 42 is rendered conductive, whereby data signal D is written into memory cell MC of memory block MB 2 .
  • signals PD 2 d and PD 3 attain an H level to render read gate 46 conductive, whereby read out data signal Q of memory block MB 2 is applied to read data line RDL. Also, write gate 43 is rendered conductive, whereby data signal D is written into memory cell MC of memory block MB 3 .
  • signals PD 3 d and PD 4 attain an H level to render read gate 47 conductive, whereby read out data signal Q of memory block MB 3 is applied to read data line RDL. Also, write gate 44 is rendered conductive, whereby data signal D is written into memory cell MC of memory block MB 4 .
  • signals PD 4 d and PD 1 attain an H level to render read gate 48 conductive.
  • Read out data signal Q of memory block MB 4 is applied to read data line RDL.
  • write gate 41 is rendered conductive, whereby data signal D is written into memory cell MC of memory block MB 1 .
  • the operation of this SRAM in a test mode will be described here.
  • the SRAM has a tester (not shown) connected.
  • the tester writes test data signals D 0 -D 3 of the burst length (4 here) to a desired register (for example, RG 1 ) among a plurality of registers RG 1 -RGc in register unit 10 , as shown in FIGS. 8 and 9.
  • the tester renders active a test mode signal TMA 1 corresponding to register RG 1 among test mode signals TMA 1 -TMAc.
  • Signal TMA 1 rendered active becomes the delay signal of clock signal CLK, and attains an H level at the rising edge of clock signal CLK.
  • the tester pulls down signal /WE to an L level in synchronization with a rising edge (time t 1 ) of clock signal CLK, and inputs the first data signal D 0 . Then, three data signals D 1 -D 3 are sequentially input in synchronization with a rising edge of clock signal CLK. Accordingly, test data signals D 0 -D 3 are written into register RG 1 via IO buffer 8 and selector 9 .
  • the tester has data signals D 0 -D 3 in register RG 1 burst-written into a plurality of memory cells MC in memory array 7 , and has data signals Q 0 -Q 3 read out in a bursting manner from the plurality of memory cells MC where data signals D 0 -D 3 are written.
  • a test mode signal TMB 1 among test mode signals TMB 1 -TMBc corresponding to a desired register RG 1 is rendered active.
  • Signal TMB 1 rendered active becomes a delay signal of clock signal CLK, and attains an H level at the rising edge of clock signal CLK.
  • the tester inputs a start address signal A (0, 0) (address signal specifying memory cell MC located at the 0th row and 0th column in FIG. 2) in synchronization with a rising edge (time t 0 ) of clock signal CLK, and brings signal /WE to an L level.
  • start address signal A (0, 0) address signal specifying memory cell MC located at the 0th row and 0th column in FIG. 2
  • clock signal CLK clock signal
  • write gate 41 corresponding to memory block MB 1 is rendered conductive at cycle 1 .
  • Data signal DO output from register RGJ is written into memory cell MC specified by address signal A (0,0) in memory block MBJ 1 .
  • the write latency is 1 cycle here.
  • burst counter 40 of FIG. 4 At the next rising edge (time t 1 ) of clock signal CLK, burst counter 40 of FIG. 4 generates an address signal A (0,1) (address signal specifying a memory cell MC located at the 0th row and first column in FIG. 2) that is an incremented version of address signal A (0,0).
  • address signal A (0,1) address signal specifying a memory cell MC located at the 0th row and first column in FIG. 2
  • read gate 45 corresponding to memory block MB 1 As shown in FIGS. 6 and 7, read gate 45 corresponding to memory block MB 1 as well as write gate 42 corresponding to memory block MB 2 are rendered conductive at cycle 2 .
  • Data signal Q 0 is read out from memory cell MC that is specified by address signal A (0,0) in memory block MB 1 .
  • data signal D 1 is written into a memory cell MC specified by address signal A (0, 1) in memory block MB 2 .
  • data signal Q 1 is read out from memory cell MC specified by address signal A (0, 1) in memory block MB 2
  • data signal D 2 is written into memory cell MC specified by address signal A (0, 2) in memory block MB 3 .
  • data signal Q 2 is read out from memory cell MC specified by address signal A (0, 2) of memory block MB 3 , and data signal D 3 is written into memory cell MC specified by address signal A (0, 2) in memory block 4 .
  • Determination is made that, when the logic level of a read out data signal Q of memory cell MC matches an expected value (the logic level of data signal D written into that memory cell MC), that memory cell MC is proper. When the logic level of read out data signal Q of memory cell MC does not match the expected value, determination is made that the relevant memory cell is defective. The address signal of that defective memory cell MC is stored in the tester.
  • the defective memory cell MC is replaced with a spare memory cell (not shown). In the case where the defective memory cell MC cannot be replaced with a spare memory cell, that SRAM is discarded.
  • data signals D 0 -D 3 for writing are output from register RG in the present embodiment, it is not necessary to additionally apply a data signal for writing from the tester. Furthermore, since four memory cells MC are selected in response to one of address signals A 0 -Aj and data signal writing/reading is conducted on the selected memory cell MC, the number of address signals A 0 -Aj to the input can be reduced. Therefore, the testing can be simplified.
  • register RG 1 Although only one register RG 1 is employed in the present embodiment, a plurality of registers RG 1 -RGc may be employed instead in which data signals D 0 -D 3 of patterns differing from each other are stored. In this case, registers RG 1 -RGc are appropriately switched. This is advantageous in that a more complicated test pattern can be written into memory array 7 .

Abstract

A synchronous SRAM includes a register sequentially providing data signals of the burst length in a test mode, and a transfer circuit applying data signals output from the register to a memory array for burst-writing, and providing to an external source via an IO buffer a data signal read out in a burst manner later than the burst writing by 1 clock cycle. It is not necessary to additionally apply a data signal for writing. The required number of address signals can be reduced. Thus, testing can be simplified.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a semiconductor memory device and a testing method thereof. Particularly, the present invention relates to a semiconductor memory device operating in synchronization with a clock signal, having a test mode to test whether each memory cell is proper or not, and a testing method thereof. [0002]
  • 2. Description of the Background Art [0003]
  • Semiconductor memory devices such as SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory) are conventionally subjected to testing prior to shipment to determine whether each memory cell is proper or not. This testing includes the steps of writing predetermined data into each of a plurality of memory cells included in the memory array, and reading out data from each memory cell. [0004]
  • Determination is made that a memory cell is proper when the logic of data read out from that memory cell matches the logic of the data read into that memory cell. A memory cell is determined to be defective when such logics of data do not match. A defective memory cell is replaced with a spare memory cell. [0005]
  • Some testing methods conduct writing of external data into a memory cell and reading out data from another memory cell concurrently (for example, refer to Japanese Patent Laying-Open No. 59-175100). [0006]
  • In the conventional testing method, a data signal is written after an address signal and the data signal are applied to the semiconductor memory device from a tester, and a data signal is read out after an address signal is applied to the semiconductor memory device from the tester. There was a disadvantage that the testing operation is complex. [0007]
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a semiconductor memory device and a testing method thereof that can readily test whether each memory cell is proper or not. [0008]
  • According to an aspect of the present invention, a semiconductor memory device includes a plurality of memory cells, a register sequentially providing one by one N (N is an integer of at least 2) data signals that are written in advance in a test mode testing whether each memory cell is proper or not, a decoder sequentially selecting one by one N memory cells among the plurality of memory cells according to an address signal, a write circuit sequentially writing the N data signals output from the register into the N memory cells selected by the decoder, and a read circuit operating later than the write circuit by M (M is an integer of at least 1 and not more than N-1) clock cycles to sequentially read out a data signal from the N memory cells selected by the decoder. Since a data signal to be written is output from the register, a data signal for writing does not have to be additionally applied from an external source. Furthermore, since N memory cells are selected in response to one address signal and writing/reading of a data signal with respect to selected memory cells is conducted, the number of address signals to be input can be reduced. Therefore, testing is simplified. [0009]
  • According to another aspect of the present invention, a testing method includes the steps of rendering active the semiconductor memory device of the above aspect to set the semiconductor memory device in a test mode, applying an address signal to the decoder, and determining whether each memory cell is proper or not based on the data signal read out by the read circuit. The semiconductor memory device can be tested by applying an address signal and comparing the read out data signal with an expected value. Thus, the testing operation can be simplified.[0010]
  • The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings. [0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an entire structure of a synchronous SRAM according to an embodiment of the present invention. [0012]
  • FIG. 2 is a circuit block diagram of a structure of the memory block in FIG. 1. [0013]
  • FIG. 3 is a circuit diagram of a structure of the memory cell and bit line peripheral circuit in FIG. 2. [0014]
  • FIG. 4 is a block diagram of a burst counter in a [0015] control circuit 5 of FIG. 1.
  • FIG. 5 is a circuit block diagram of a structure of a transfer circuit in FIG. 1. [0016]
  • FIG. 6 is a block diagram of a structure of the portion related to generation of a transfer control signal in FIG. 5. [0017]
  • FIG. 7 is a timing chart of an operation of the burst counter and delay circuit in FIG. 6. [0018]
  • FIG. 8 is a block diagram to describe the operation of the SRAM of FIGS. [0019] 1-7 in a test mode.
  • FIG. 9 is a timing chart of an operation in the test mode of FIG. 8. [0020]
  • FIG. 10 is a block diagram to describe an operation of the SRAM of FIGS. [0021] 1-7 in a test mode.
  • FIG. 11 is another block diagram to describe the operation of the SRAM of FIGS. [0022] 1-7 in a test mode.
  • FIG. 12 is a timing chart of an operation in the test mode described in FIGS. 10 and 11.[0023]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 1, a synchronous SRAM according to an embodiment of the present invention includes [0024] control signal buffers 1 and 2, an address buffer 3, a clock buffer 4, control circuits 5 and 6, a memory array 7, an IO buffer 8, a selector 9, a register unit 10, and a transfer circuit 11.
  • [0025] Control signal buffer 1 transmits external control signals /CS, /WE, /OE to control circuit 5. Control signal buffer 2 transmits external control signals CNT0-CNTi (i is an integer of at least 0) to control circuit 6. Address buffer 3 transmits external address signals A0-Aj (j is an integer of at least 0) to control circuit 5. Clock buffer 4 supplies an external clock signal CLK to the entire SRAM.
  • [0026] Control circuit 5 generates various internal signals such as row address signals RA0-RAa, column address signals CA0-CAb (a and b are integers of at least 0), and transfer control signals PD1-PD4 and PD1 d-PD4 d according to signals /CS, /WE, /OE, . . . applied via control signal buffer 1, address buffer 3 and clock buffer 4 to provide entire control of the SRAM by the generated internal signals.
  • [0027] Control circuit 6 generates test mode signals TMA1-TMAc and TMB1-TMBc (c is an integer of at least 1) according to signals CNT0-CNTi applied via control signal buffer 2 to provide these signals TMA1-TMAc and TMB1-TMBc to selector 9 and register unit 10.
  • [0028] Memory array 7 is divided into four memory blocks MB1-MB4. Each of memory blocks MB1-MB4 includes a plurality of memory cells arranged in a plurality of rows and columns. Each memory cells stores one data signal.
  • [0029] IO buffer 8 outputs from the semiconductor memory device a read out data signal Q applied from memory array 7 via transfer circuit 11, and provides to selector 9 an externally applied write data signal D. In a test mode, selector 9 is under control of control circuit 6 through signals TMA1-TMAc to apply write data signal D from IO buffer 8 to register unit 10. In a normal operation mode, selector 9 provides write data signal D from IO buffer 8 to transfer circuit 11.
  • In a test mode, [0030] register unit 10 is under control of control circuit 6 through signals TMB1-TMBc to output write data signal D directed to testing to transfer circuit 11.
  • In a write operation, [0031] transfer circuit 11 responds to signals PD1-PD4 from control circuit 5 to select any of the four memory blocks MB1-MB4 of memory array 7, and provides write data signal D from selector 9 or register unit 10 to the selected memory block. In a read out operation, transfer circuit 11 responds to signals PD1 d-PD4 d from control circuit 5 to select any of memory blocks MB1-MB4 of memory array 7, and couples the selected memory block with IO buffer 8. In a test mode, transfer circuit 11 conducts writing and reading of data signals concurrently. The operation of transfer circuit 11 in a test mode will be described in detail afterwards.
  • FIG. 2 is a circuit block diagram of a structure of memory block MB[0032] 1. Referring to FIG. 2, memory block MB1 includes (n+1)×(m+1) memory cells MC arranged in (n+1) rows and (m+1) columns (each of n and m is an integer of at least 1), word lines WL0-WLn provided corresponding to the (n+1) rows, respectively, m+1 pairs of bit lines BL and /BL provided corresponding to (m+1) columns, respectively, (m+1) column select lines CL0-CLm provided corresponding to (m+1) columns, respectively, and a pair of data input/output lines IO and /IO.
  • Referring to FIG. 3, memory cell MC includes P-[0033] channel MOS transistors 31 and 32, and N-channel MOS transistors 33-36. P- channel MOS transistors 31 and 32 are connected between the line of power supply potential VCC and storage nodes N1 and N2, and have their gates connected to storage nodes N2 and N1, respectively. N- channel MOS transistors 33 and 34 are connected between respective storage nodes N1 and N2 and the line of ground potential GND, and have their gates connected to storage nodes N2 and N1, respectively.
  • [0034] MOS transistors 32 and 34 form a first inverter that applies to storage node N2 an inverted signal of the signal at storage node N1. MOS transistors 31 and 33 form a second inverter that applies to storage node N1 an inverted signal of the signal at storage node N2. The first and second inverters form a latch circuit storing the signals of storage nodes N1 and N2. N-channel MOS transistor 35 is connected between bit line BL and storage node N1. N-channel MOS transistor 36 is connected between bit line /BL and storage node N2. N- channel MOS transistors 35 and 36 have their gates connected to word line WL.
  • In a write operation, word line WL is pulled up to an H level (logical high), whereby N-[0035] channel MOS transistors 35 and 36 conduct. Then, one of bit lines BL and /BL is brought to an H level whereas the other bit line is brought to an L level according to write data signal D, whereby a signal is written into each of storage nodes N1 and N2. For example, when data signal D is at an H level (1), a signal of an H level and a signal of an L level are written into storage nodes N1 and N2, respectively. When data signal D is at an L level (0), signals of an L level and an H level are written into storage nodes N1 and N2, respectively. In response to word line WL being pulled down to an L level, N- channel MOS transistors 35 and 36 are rendered nonconductive. The signals of storage nodes N1 and N2 are latched by MOS transistors 31-34.
  • In a read out operation, bit lines BL and /BL are precharged to an H level, and then word line WL is pulled up to an H level. In response, N-[0036] channel MOS transistors 35 and 36 are rendered conductive. One of bit lines BL and /BL is pulled down to an L level according to the storage data of memory cell MC. For example, when storage nodes N1 and N2 are at an H level and an L level, respectively, current flows from bit line /BL to the line of ground potential GND via N- channel MOS transistors 36 and 34, whereby bit line /BL is brought to an L level. The potential of bit line BL is not reduced since N-channel MOS transistor 33 is nonconductive. By comparing the potentials of bit lines BL and /BL, a data signal can be read out from memory cell MC. Word line WL is pulled down to an L level, and the read operation ends.
  • One end of each bit line pair BL and /BL is connected to bit line [0037] peripheral circuit 12 whereas the other end of each bit line pair is connected to column select gate 13. As shown in FIG. 3, bit line peripheral circuit 12 includes N- channel MOS transistors 37 and 38 and a P-channel MOS transistor 39 corresponding to each bit line pair BL and /BL. N- channel MOS transistors 37 and 38 are diode-connected between the line of power supply potential VCC and one end of bit lines BL and /BL to charge respective bit lines to an H level. P-channel MOS transistor 39 is connected between bit lines BL and /BL, and receives a bit line equalize signal /BLEQ at its gate. In response to signal /BLEQ pulled down to an L level of activation, P-channel MOS transistor 39 conducts, whereby the potentials of bit lines BL and /BL are equalized.
  • As shown in FIG. 2, column [0038] select gate 13 includes transfer gates 14 and 15 and an inverter 16 provided corresponding to bit lines BL and /BL. Transfer gate 14 is connected between the other end of bit line BL and a data input/output line IO. Transfer gate 15 is connected between the other end of bit line /BL and a data input/output line /IO. Column select line CL is directly connected to the N-channel MOS transistor side gate of corresponding transfer gates 14 and 15, and connected to the P-channel MOS transistor side gate of corresponding transfer gates 14 and 15 via corresponding inverter 16. When any column select line CL from (m+1) column select lines CL0-CLn is pulled up to an H level of selection, transfer gates 14 and 15 corresponding to that pulled up column select line CL conduct, whereby bit line pair BL and /BL corresponding to that column select line CL is coupled with data input/output line pair IO, /IO.
  • [0039] Row decoder 20 selects any of (n+1) word lines WL0-WLn according to row address signals RA0-RAa from control circuit 5 to drive the selected word line WL to an H level of selection. Specifically, row decoder 20 includes a NAND gate 21 and an inverter 22 provided corresponding to each word line WL. Each word line WL is assigned unique row address signals RA0-RAa in advance. NAND gate 21 and inverter 22 receive preassigned row address signals RA0-RAa, and pulls up a corresponding word line WL to an H level of selection in response to block select signal BS1 brought to an H level. Block select signal BS1 attains an H level of selection when memory block MB1 is specified by address signals A0-Aj.
  • [0040] Column decoder 23 selects any of (m+1) column select lines CL0-CLm according to address signals CA0-CAa from control circuit 5 to pull up the selected column select line CL to an H level of selection. Specifically, column decoder 23 includes a NAND gate 24 and an inverter 25 provided corresponding to each column select line CL. Each column select line CL is assigned unique column address signals CA0-CAb in advance. NAND gate 24 and inverter 25 pull up corresponding column select line CL to an H level of selection in response to input of preassigned column address signals CA0-CAb.
  • In a write operation, write [0041] driver 26 drives one of data input/output lines IO, /IO to an H level and the other of data input/output lines IO, /IO to an L level according to write data signal D. In a read operation, sense amplifier 27 compares the potentials of data input/output lines IO, /10 to output a data signal Q of a logic level corresponding to the comparison result.
  • The operation of memory block MB[0042] 1 shown in FIGS. 2 and 3 will be described hereinafter. It is assumed that memory block MB1 is selected and block select signal BS1 is at an H level of selection. In a write operation, word line WL of the row specified by row address signals RA0-RAa is pulled up to an H level of selection by row decoder 20, whereby respective memory cells MC of that row are rendered active. Then, column select line CL of a column specified by column address signals CA0-CAb is pulled up to an H level of selection by column decoder 23, whereby transfer gates 14 and 15 of that column are rendered conductive. One activated memory cell MC is connected to write driver 26 via bit line pair BL and /BL and data input/output line pair IO, /IO.
  • Write [0043] driver 26 drives one of data input/output lines IO, /IO to an H level and the other data input/output line to an L level according to write data signal D to write data into memory cell MC. When word line WL and column select line CL are pulled down to an L level, data is stored into memory cell MC.
  • In a reading operation, column select line CL of the column specified by column address signals CA[0044] 0-CAb is pulled up to an H level of selection. Transfer gates 14 and 15 of that column are rendered conductive, whereby bit lines BL and /BL are connected to sense amplifier 27 via data input/output line pair IO, /IO. Then, bit line equalize signal /BLEQ is brought to an L level of activation, whereby each P-channel MOS transistor 39 conducts. In response, the potentials of bit lines BL and /BL are equalized.
  • After bit line equalize signal /BLEQ attains an H level of inactivation and each P-[0045] channel MOS transistor 39 is rendered nonconductive, word line WL of a row according to row address signals RA0-RAa is pulled up to an H level of selection. In response, each memory cell MC of that row is rendered active. Accordingly, current flows from one of bit lines BL and /BL to memory cell MC according to the stored data in memory cell MC. In response, the potential of one of data input/output lines IO, /IO is reduced. Sense amplifier 27 compares the potentials of data input/output lines IO, /IO to output a data signal Q of a logic level corresponding to the comparison result.
  • In a burst operation where data signals are written/read out continuously, a plurality of (for example, 4) column select lines are sequentially brought to an H level for every one clock cycle. The second and subsequent column address signals CA[0046] 0-CAb are generated in control circuit 5. Specifically, control circuit 5 includes a burst counter 40, as shown in FIG. 4. Burst counter 40 latches internal column address signals PCA0-PCAb generated based on external address signals A0-Aj, and provides the same as the first of column address signals CA0-CAb. Burst counter 40 counts the number of pulses of clock signal CLK, and increments (+1) the values of output column address signals CA0-CAb. Accordingly, four continuous column address signals CA0-CAb are generated, and four column select lines are sequentially selected. Data signals are sequentially written/read out with respect to four memory cells MC.
  • FIG. 5 is a circuit block diagram of a structure of [0047] transfer circuit 11. Referring to FIG. 5, transfer circuit 11 includes write gates 41-44, read gates 45-48, a buffer 49, a write data line WDL and a read data line RDL. Buffer 49 applies write data signal D from selector 9 or register unit 10 to write data line WDL. Write gates 41-44 are provided between respective write data line WDL and write driver 26 of memory blocks MB1-MB4, and conduct in response to respective signals PD1-PD4 attaining an H level of activation. When write gates 41-44 are rendered conductive, data signal D is applied to write driver 26 of memory blocks MB1-MB4.
  • Read gates [0048] 45-48 are provided between sense amplifier 27 of respective memory blocks MB1-MB4 and a read data line RDL, and conduct in response to respective signals PD1 d-PD4 d attaining an H level of activation. When read gates 45-48 are rendered conductive, read out data signal Q is applied from sense amplifier 27 of respective memory blocks MB1-MB4 to read data line RDL. Read data line RDL is connected to IO buffer 8.
  • FIG. 6 is a block diagram representing the portion related to generation of transfer control signals PD[0049] 1-PD4 and PD1 d-PD4 d in control circuit 5. Referring to FIG. 6, control circuit 5 includes a block select decoder 51, a delay circuit 52, and a burst counter 53. Block select decoder 51 is rendered active when test mode signal TM is at an L level of inactivation, i.e., when in a normal operation mode, to select any of transfer control signals PD1-PD4 according to address signals A0 and A1 to pull up the selected signal to an H level of selection at a predetermined timing. Burst counter 53 is rendered active when test mode signal TM is at an H level of activation, i.e., when in a test mode, to bring signals PD1-PD4 to an H level at every ½ cycle in synchronization with clock signal CLK, as shown in FIG. 7. Delay circuit 52 delays signals PD1-PD4 by just one cycle to generate signals PD1 d-PD4 d.
  • For example, at [0050] cycle 1, signal PD1 attains an H level to render write gate 41 conductive, whereby data signal D is written into memory cell MC of memory block MB1. At cycle 2, signals PD1 d and PD2 attain an H level to render read gate 45 conductive, whereby read out data signal Q of memory block MB1 is applied to read data line RDL. Also, write gate 42 is rendered conductive, whereby data signal D is written into memory cell MC of memory block MB2.
  • At [0051] cycle 3, signals PD2 d and PD3 attain an H level to render read gate 46 conductive, whereby read out data signal Q of memory block MB2 is applied to read data line RDL. Also, write gate 43 is rendered conductive, whereby data signal D is written into memory cell MC of memory block MB3.
  • At [0052] cycle 4, signals PD3 d and PD4 attain an H level to render read gate 47 conductive, whereby read out data signal Q of memory block MB3 is applied to read data line RDL. Also, write gate 44 is rendered conductive, whereby data signal D is written into memory cell MC of memory block MB4.
  • At [0053] cycle 5, signals PD4 d and PD1 attain an H level to render read gate 48 conductive. Read out data signal Q of memory block MB4 is applied to read data line RDL. Also, write gate 41 is rendered conductive, whereby data signal D is written into memory cell MC of memory block MB1.
  • The operation of this SRAM in a test mode will be described here. The SRAM has a tester (not shown) connected. The tester writes test data signals D[0054] 0-D3 of the burst length (4 here) to a desired register (for example, RG1) among a plurality of registers RG1-RGc in register unit 10, as shown in FIGS. 8 and 9. Specifically, the tester renders active a test mode signal TMA1 corresponding to register RG1 among test mode signals TMA1-TMAc. Signal TMA1 rendered active becomes the delay signal of clock signal CLK, and attains an H level at the rising edge of clock signal CLK. The tester pulls down signal /WE to an L level in synchronization with a rising edge (time t1) of clock signal CLK, and inputs the first data signal D0. Then, three data signals D1-D3 are sequentially input in synchronization with a rising edge of clock signal CLK. Accordingly, test data signals D0-D3 are written into register RG1 via IO buffer 8 and selector 9.
  • Referring to FIGS. [0055] 10-12, the tester has data signals D0-D3 in register RG1 burst-written into a plurality of memory cells MC in memory array 7, and has data signals Q0-Q3 read out in a bursting manner from the plurality of memory cells MC where data signals D0-D3 are written. Specifically, a test mode signal TMB1 among test mode signals TMB1-TMBc corresponding to a desired register RG1 is rendered active. Signal TMB1 rendered active becomes a delay signal of clock signal CLK, and attains an H level at the rising edge of clock signal CLK. Then, the tester inputs a start address signal A (0, 0) (address signal specifying memory cell MC located at the 0th row and 0th column in FIG. 2) in synchronization with a rising edge (time t0) of clock signal CLK, and brings signal /WE to an L level. As shown in FIGS. 6 and 7, write gate 41 corresponding to memory block MB1 is rendered conductive at cycle 1. Data signal DO output from register RGJ is written into memory cell MC specified by address signal A (0,0) in memory block MBJ1. The write latency is 1 cycle here.
  • At the next rising edge (time t[0056] 1) of clock signal CLK, burst counter 40 of FIG. 4 generates an address signal A (0,1) (address signal specifying a memory cell MC located at the 0th row and first column in FIG. 2) that is an incremented version of address signal A (0,0). As shown in FIGS. 6 and 7, read gate 45 corresponding to memory block MB1 as well as write gate 42 corresponding to memory block MB2 are rendered conductive at cycle 2. Data signal Q0 is read out from memory cell MC that is specified by address signal A (0,0) in memory block MB1. Also, data signal D1 is written into a memory cell MC specified by address signal A (0, 1) in memory block MB2.
  • Similarly at [0057] cycle 3, data signal Q1 is read out from memory cell MC specified by address signal A (0, 1) in memory block MB2, and data signal D2 is written into memory cell MC specified by address signal A (0, 2) in memory block MB3.
  • At [0058] cycle 4, data signal Q2 is read out from memory cell MC specified by address signal A (0, 2) of memory block MB3, and data signal D3 is written into memory cell MC specified by address signal A (0, 2) in memory block 4.
  • At [0059] cycle 4, the next start address signal A (1, 0) is input. At cycle 5, data signal Q3 is read out from memory cell MC specified by address signal A (0, 3) of memory block MB4. Also, data signal D0 is written into memory cell MC specified by address signal A (1, 0) in memory block MB1. Thus, in a similar manner, data signal writing/reading is conducted with respect to all the memory cells MC.
  • Determination is made that, when the logic level of a read out data signal Q of memory cell MC matches an expected value (the logic level of data signal D written into that memory cell MC), that memory cell MC is proper. When the logic level of read out data signal Q of memory cell MC does not match the expected value, determination is made that the relevant memory cell is defective. The address signal of that defective memory cell MC is stored in the tester. [0060]
  • The defective memory cell MC is replaced with a spare memory cell (not shown). In the case where the defective memory cell MC cannot be replaced with a spare memory cell, that SRAM is discarded. [0061]
  • Since data signals D[0062] 0-D3 for writing are output from register RG in the present embodiment, it is not necessary to additionally apply a data signal for writing from the tester. Furthermore, since four memory cells MC are selected in response to one of address signals A0-Aj and data signal writing/reading is conducted on the selected memory cell MC, the number of address signals A0-Aj to the input can be reduced. Therefore, the testing can be simplified.
  • Since data signal writing and reading are carried out concurrently in a test mode, the time required for testing can be shortened as compared to the conventional case where a data signal is read out from respective memory cells MC after data signals are written into all respective memory cells MC. [0063]
  • Although only one register RG[0064] 1 is employed in the present embodiment, a plurality of registers RG1-RGc may be employed instead in which data signals D0-D3 of patterns differing from each other are stored. In this case, registers RG1-RGc are appropriately switched. This is advantageous in that a more complicated test pattern can be written into memory array 7.
  • Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims. [0065]

Claims (5)

What is claimed is:
1. A semiconductor memory device operating in synchronization with a clock signal, comprising:
a plurality of memory cells;
a register sequentially providing one by one N (N is an integer of at least 2) data signals written in advance in a test mode testing whether each memory cell is proper or not;
a decoder sequentially selecting one by one N memory cells from said plurality of memory cells according to an address signal;
a write circuit sequentially writing the N data signals output from said register into the N memory cells selected by said decoder; and
a read circuit operating later than said write circuit by M (M is an integer of at least 1 and not more than N-1) clock cycles, and sequentially reading out data signals from the N memory cells selected by said decoder.
2. The semiconductor memory device according to claim 1, wherein said decoder comprises a burst counter sequentially incrementing said address signal in synchronization with said clock signal to further generate N-1 address signals.
3. The semiconductor memory device according to claim 1, wherein said plurality of memory cells are divided into N memory blocks, each including a plurality of memory cells,
wherein said decoder sequentially selects one by one N memory cells from said N memory blocks respectively according to said address signal.
4. The semiconductor memory device according to claim 1, wherein a plurality of registers are provided,
said semiconductor memory device further comprising a select circuit selecting any of said plurality of registers according to a select signal to provide a data signal output from the selected register to said write circuit.
5. A method of testing the semiconductor memory device defined in claim 1, comprising the steps of:
rendering said semiconductor memory device active to set said semiconductor memory device at a test mode;
applying said address signal to said decoder; and
determining whether each memory cell is proper or not based on a data signal read out by said read circuit.
US10/377,596 2002-10-25 2003-03-04 Semiconductor memory device with test mode and testing method thereof Expired - Fee Related US6873556B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002311297A JP4184036B2 (en) 2002-10-25 2002-10-25 Semiconductor memory device and test method thereof
JP2002-311297(P) 2002-10-25

Publications (2)

Publication Number Publication Date
US20040081008A1 true US20040081008A1 (en) 2004-04-29
US6873556B2 US6873556B2 (en) 2005-03-29

Family

ID=32105310

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/377,596 Expired - Fee Related US6873556B2 (en) 2002-10-25 2003-03-04 Semiconductor memory device with test mode and testing method thereof

Country Status (4)

Country Link
US (1) US6873556B2 (en)
JP (1) JP4184036B2 (en)
KR (1) KR100543226B1 (en)
TW (1) TWI223264B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060168498A1 (en) * 2003-06-19 2006-07-27 Advantest Corporation Test apparatus and program for testing a dut

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142442B1 (en) 2004-03-08 2006-11-28 Xilinx, Inc. Segmented dataline scheme in a memory with enhanced full fault coverage memory cell testability
KR100748552B1 (en) * 2004-12-07 2007-08-10 삼성전자주식회사 Analytic Structure For Failure Analysis Of Semiconductor Device And Method Of Failure Analysis Using The Same
KR100640635B1 (en) 2005-02-07 2006-10-31 삼성전자주식회사 Semiconductor memory device with various test data pattern
US20140133253A1 (en) * 2012-11-13 2014-05-15 Taiwan Semiconductor Manufacturing Company, Ltd. System and Method for Memory Testing
KR102174337B1 (en) 2014-04-08 2020-11-04 삼성전자주식회사 Memory System and Electronic device including memory system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483488A (en) * 1993-09-24 1996-01-09 Nec Corporation Semiconductor static random access memory device capable of simultaneously carrying disturb test in a plurality of memory cell blocks
US20040151037A1 (en) * 2001-05-21 2004-08-05 Alexander Benedix Test method for testing a data memory

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175100A (en) 1983-03-24 1984-10-03 Nec Corp Data storing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483488A (en) * 1993-09-24 1996-01-09 Nec Corporation Semiconductor static random access memory device capable of simultaneously carrying disturb test in a plurality of memory cell blocks
US20040151037A1 (en) * 2001-05-21 2004-08-05 Alexander Benedix Test method for testing a data memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060168498A1 (en) * 2003-06-19 2006-07-27 Advantest Corporation Test apparatus and program for testing a dut

Also Published As

Publication number Publication date
US6873556B2 (en) 2005-03-29
KR20040036523A (en) 2004-04-30
JP2004146001A (en) 2004-05-20
KR100543226B1 (en) 2006-01-20
TWI223264B (en) 2004-11-01
TW200406764A (en) 2004-05-01
JP4184036B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
US7466623B2 (en) Pseudo SRAM capable of operating in continuous burst mode and method of controlling burst mode operation thereof
US7441156B2 (en) Semiconductor memory device having advanced test mode
JP4065687B2 (en) Semiconductor memory device
US6061285A (en) Semiconductor memory device capable of executing earlier command operation in test mode
KR100718518B1 (en) Semiconductor memory device
US20030026139A1 (en) Semiconductor module including semiconductor memory device shiftable to test mode as well as semiconductor memory device used therein
KR20080036529A (en) Dram for low power consumption and driving method thereof
KR100301645B1 (en) Semiconductor memory device having selection circuit for arbitrarily setting a word line to selected state at high speed in test mode
US6809975B2 (en) Semiconductor memory device having test mode and memory system using the same
JP3914283B2 (en) Memory cell access method and access circuit for memory device
US20070002657A1 (en) Semiconductor memory device
US6704238B2 (en) Semiconductor memory device including data bus pairs respectively dedicated to data writing and data reading
US6873556B2 (en) Semiconductor memory device with test mode and testing method thereof
US5483488A (en) Semiconductor static random access memory device capable of simultaneously carrying disturb test in a plurality of memory cell blocks
KR100854497B1 (en) semiconductor memory device and method thereof
US6636455B2 (en) Semiconductor memory device that operates in synchronization with a clock signal
US6704229B2 (en) Semiconductor test circuit for testing a semiconductor memory device having a write mask function
JPH04212776A (en) Test circuit of semiconductor memory device
JP2001067866A (en) Synchronous semiconductor storage
KR100272942B1 (en) Semiconductor memory device capable of reading/writing data from/into arbitrary memory cell in i/o compression mode
KR20040014155A (en) Semiconductor memory device having time reduced in testing of memory cell data reading or writing, or testing of sense amplifier performance
JP2004103119A (en) Semiconductor memory device
JP2002237199A (en) Semiconductor memory
KR20010018713A (en) Multi row address disturb test method of a semiconductor memory device
JPH1097787A (en) Semiconductor memory

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANJI, HIKOSHI;MATSUI, YASUHIRO;REEL/FRAME:013841/0561

Effective date: 20030206

AS Assignment

Owner name: RENESAS TECHNOLOGY CORP., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITSUBISHI DENKI KABUSHIKI KAISHA;REEL/FRAME:014502/0289

Effective date: 20030908

AS Assignment

Owner name: RENESAS TECHNOLOGY CORP., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITSUBISHI DENKI KABUSHIKI KAISHA;REEL/FRAME:015185/0122

Effective date: 20030908

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:RENESAS TECHNOLOGY CORP.;REEL/FRAME:024973/0001

Effective date: 20100401

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170329