Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20040111096 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 10/724,328
Fecha de publicación10 Jun 2004
Fecha de presentación26 Nov 2003
Fecha de prioridad10 May 2001
También publicado comoUS6682558, US20020169456, US20040078072
Número de publicación10724328, 724328, US 2004/0111096 A1, US 2004/111096 A1, US 20040111096 A1, US 20040111096A1, US 2004111096 A1, US 2004111096A1, US-A1-20040111096, US-A1-2004111096, US2004/0111096A1, US2004/111096A1, US20040111096 A1, US20040111096A1, US2004111096 A1, US2004111096A1
InventoresHosheng Tu, Rodolfo Quijano
Cesionario original3F Therapeutics, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Delivery system for a stentless valve bioprosthesis
US 20040111096 A1
Resumen
The current invention discloses a catheter and a method for delivering a stentless bloprosthesis in a body channel, the method comprising percutaneously introducing a catheter into the body channel, wherein the catheter contains said stentless bloprosthesis at a retracted state; and disengaging said stentless bioprosthesis out of a distal opening of the catheter by a pulling mechanism associated with the catheter structure.
Imágenes(8)
Previous page
Next page
Reclamaciones(7)
What is claimed is:
1. A catheter for delivering a longitudinally collapsible prosthesis to an anatomical site in a body channel, the catheter comprising:
a catheter shaft, the catheter shaft having a distal end, a proximal end, and a lumen between the distal end and the proximal end;
a handle attached to the proximal end of the catheter shaft;
an elongated delivery member located inside the lumen, the elongated delivery member having an engaging element at a distal end of the elongated delivery member, wherein the engaging element is adapted for engaging and disengaging a distal portion of the longitudinally collapsible prosthesis;
a delivery mechanism at the handle coupled to the elongated delivery member, the delivery mechanism being adapted for pulling the distal portion of the longitudinally collapsible prosthesis out of the catheter shaft during a deployment stage.
2. The catheter according to claim 1, wherein the engaging element comprises a plurality of releasable sutures.
3. The catheter according to claim 1, wherein the engaging element comprises a plurality of releasably gripping jaws.
4. The catheter according to claim 1, wherein the engaging element comprises a plurality of heat-disengage able wires.
5. The catheter according to claim 1 further comprising a guidewire lumen adapted for inserting a guidewire through said guidewire lumen.
6. The catheter according to claim 1, wherein a therapeutic fluid is introduced into the lumen of the catheter shaft.
7. The catheter according to claim 6, wherein the therapeutic fluid is selected from a group consisting of an anti-inflammatory solution, an anti-virus solution, an antibiotic solution, an angiogenic fluid, heparin solution, an anti-angiogenic fluid, a biocompatible adhesive, and a combination thereof.
Descripción
    RELATED APPLICATIONS
  • [0001]
    This application claims priority to U.S. Utility application Ser. No. 09/853,463, filed May 10, 2001, the entirety of which is hereby incorporated by reference.
  • TECHNICAL INVENTION
  • [0002]
    The present invention generally relates to a tubular prosthesis and methods for delivery into a body channel. More particularly, the present invention relates to an improved delivery system for delivering a stentless bioprosthesis comprising a collapsible elastic valve or a biological graft at a desired anatomical site of the body channel for implantation.
  • BACKGROUND OF THE INVENTION
  • [0003]
    A prosthetic heart valve may be used to replace a diseased natural heart valve in a human patient. Similarly, a prosthetic venous valve may be used to replace a dysfunctional natural venous valve in a patient. Mechanical heart valves typically have a rigid orifice ring and rigid hinged leaflets coated with a blood compatible substance such as pyrolytic carbon. Other configurations, such as ball-and-cage assemblies, have also been used for such mechanical valves. A mechanical heart valve cannot be retracted radially and delivered by a catheter-based delivery system.
  • [0004]
    In contrast to mechanical heart valves, bioprosthetic heart valves comprise valve leaflets formed of biological material. Many bioprosthetic valves include a support structure, or stent, for supporting the leaflets and maintaining the anatomical structure of the valve. Stented bioprosthetic valves generally are prepared by chemically cross-linking a retrieved pig's heart valve, followed by attaching it to a stent. The stent provides structural support to the valve and, with a sewing cuff, facilitates attachment of the valve to the patient by suturing. Gabbay in U.S. Pat. No. 5,935,163 discloses a natural tissue heart valve prosthesis with a substantially flexible annular ring to provide additional support, the entire contents of which are incorporated herein by reference.
  • [0005]
    One of the major functions of stents is to serve as a framework for attachment of the valve and for suturing the valve into place in the human patient. Various stent designs have been implemented in a continuing effort to render valve implantation simpler and more efficient. Inevitably, however, a stent limits interactions with aortic wall dynamics and tends to inhibit natural valve movement. This results in post-operative transvalvular gradients with resultant additional work burden on the heart. In addition, a stent causes a reduction in size of the bioprosthetic valve that can be placed in a particular location, since the stent and sewing cuff occupy space that otherwise would be available for blood flow. Recently biodegradable stents are disclosed, for example, U.S. Pat. No. 5,895,420 to Mirsch II, et al. and U.S. Pat. No. 5,489,297 to Duran, to limit disadvantage of the valve stenting to a shorter time of implantation until it is biodegraded. Both patents are incorporated herein by reference.
  • [0006]
    Some bioprosthetic valve manufacturers have attempted to develop methods and systems to ease the implantation of stented valves, including special catheter-based delivery system. Both of U.S. Pat. No. 5,840,081 and No. 6,168,614 to Andersen et al. disclose a minimally invasive percutaneous delivery system with a balloon catheter. A stented valve prosthesis is contractively mounted within a lumen of the catheter during delivery. At a desired anatomical site, the prosthesis is pushed out of the catheter tip and self expands. Lutter et al. reported an experimental study on percutaneous transluminal replacement of the aortic valve (81st American Association for Thoracic Surgery Program Book pp. 174, May 6-9, 2001, San Diego, Calif.). They concluded that aortic valve stents with a self-expandable metallic stent can be successfully implanted by transluminal catheter technique without the need of opening the chest.
  • [0007]
    Porter in U.S. Pat. No. 5,064,435 discloses a catheter-based apparatus and methods for releasing a self-expandable prosthesis by a conventional pushing mechanism. The above-mentioned approaches are satisfactory for delivering a stented prosthesis having an external rigid support adapted for receiving the pushing force. A self expanding prosthesis often is preferred over a plastically deformed device. Resilient prosthesis can be deployed without dilatation balloons or other stent expanding means. A self-expanding prosthesis can be preselected in accordance with the diameter of the body channel or other anatomic site for fixation. While deployment requires skill in positioning the prosthesis, the added skill of properly dilating the balloon to plastically expand a prosthesis to a selected diameter is not required. Also, the self-expanding prosthesis remains at least slightly compressed after fixation, and thus has a restoring force which facilitates acute fixation.
  • [0008]
    Stentless valves have demonstrated better hemodynamic function than stented valves. This is because a stentless valve is sewn directly into the host tissues, without the need for extraneous structure such as a sewing cuff. Such extraneous structures inevitably compromise hemodynamics. A stentless valve closely resembles a native valve in its appearance and function, and rely upon the patient's tissues to supply the structural support normally provided by a stent. Quintero et al. in U.S. Pat. No. 5,197,979, Nguyen Thien-Nhon in PCT W.O. No. 99/33412, and Vrandecic Peredo in PCT W.O. No. 00/00107 all disclose stentless valve structure and function, the entire contents of which are incorporated herein by reference.
  • [0009]
    The main disadvantage to stentless valves has been in their difficulty of deployment and implantation, particularly in a catheter-based percutaneous route. With recent scientific advancements in robotics, instrumentation and computer technology, a minimally invasive catheter-based delivery system for a stentless bioprosthesis is imminent. There is currently a clinical need for deploying a tubular stentless prosthesis, such as a stentless valve or a vascular graft without a rigid support, into a body channel, preferably by a percutaneous approach. The catheter-based percutaneous delivery system as compared to an open-cavity surgery will greatly reduce the patient's hospital stay and improve recovery.
  • SUMMARY OF THE INVENTION
  • [0010]
    It is an object of the present invention to provide a method for delivering a stentless bioprosthesis in a body channel, the method comprising percutaneously introducing a catheter into the body channel, wherein the catheter contains the radially elastic stentless bloprosthesis at a retracted state; and disengaging said stentless bloprosthesis out of a distal opening of the catheter by a pulling mechanism. In one embodiment, the pulling mechanism further comprises an engaging element coupling to a distal portion of the stentless bioprosthesis. In another embodiment, the method further comprises separating the stentless bioprosthesis from said engaging element.
  • [0011]
    The stentless bioprosthesis of the present invention has the common characteristics of soft, collapsible radially, collapsible longitudinally, and without any rigid support onto or around the bioprosthesis.
  • [0012]
    It is another object of the present invention to provide a catheter for delivering a tubular prosthesis to an anatomical site in a body channel, the catheter comprising an elongated delivery member located inside the lumen of the catheter, the elongated delivery member having an engaging element at the distal end of the elongated delivery member, wherein the engaging element is adapted for engaging and disengaging a distal portion of the tubular prosthesis. In one embodiment, the catheter further comprises a delivery mechanism at the handle that is coupled to the elongated delivery member. The delivery mechanism is adapted for pulling the distal portion of the tubular prosthesis out of the catheter shaft during a deployment or releasing stage. In another embodiment, the engaging element comprises a plurality of releasable sutures, gripping jaws or bio adhesives.
  • [0013]
    It is still another object of the present invention to provide a method for delivering a tubular stentless prosthesis to an anatomical site in a body channel, the method comprising the steps of introducing a catheter into the body channel, wherein the catheter contains the tubular stentless prosthesis at a retracted state; advancing the catheter to the anatomical site; maintaining a distal portion of the tubular stentless prosthesis in place relative to the anatomical site; disengaging the catheter from the tubular stentless prosthesis adapted for self-expanding said prosthesis from the retracted state; and withdrawing said catheter from the body channel.
  • [0014]
    The tubular stentless prosthesis of the present invention generally includes, but not limited to, a vascular graft, a synthetic vascular graft, a biological vascular graft, a cardiac valve, a valved conduit, a venous valve, and other stentless implantable devices. The “tubular stentless prosthesis” is essentially synonymous with the “longitudinally collapsible prosthesis” in the invention.
  • [0015]
    In a further embodiment, the method comprises another step of coupling the prosthesis into tissue of the body channel, wherein the coupling means may include stapling, adhering, stenting, anchoring and the like.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0016]
    Additional objects and features of the present invention will become more apparent and the invention itself will be best understood from the following Detailed Description of Exemplary Embodiments, when read with reference to the accompanying drawings.
  • [0017]
    [0017]FIG. 1 is an overall view of a delivery catheter of the present invention for delivering a tubular stentless prosthesis into a body channel.
  • [0018]
    [0018]FIG. 2 is an enlarged distal portion view of the catheter showing a first stage of the delivery sequences in accordance to the principles of the present invention.
  • [0019]
    [0019]FIG. 2A is a transverse view of the section 1-1 of FIG. 2 showing the relative location of the catheter shaft and the prosthesis inside the shaft.
  • [0020]
    [0020]FIG. 3 is an enlarged distal portion view of the catheter showing a second stage of the delivery sequences in accordance to the principles of the present invention.
  • [0021]
    [0021]FIG. 3A is a transverse view of the section 2-2 of FIG. 3 showing the relative location of the catheter shaft and the prosthesis inside the shaft. FIG. 4 is an enlarged distal portion view of the catheter showing a third stage of the delivery sequences in accordance to the principles of the present invention.
  • [0022]
    [0022]FIG. 5 is an enlarged distal portion view of the catheter showing a fourth stage of the delivery sequences in accordance to the principles of the present invention.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • [0023]
    Referring to FIGS. 1 to 5, what is shown is an embodiment of the device delivery system and methods, comprising a delivery catheter adapted particularly for delivering a tubular stentless prosthesis to an anatomical site in a body channel.
  • [0024]
    [0024]FIG. 1 shows an overall view of a delivery catheter of the present invention for delivering a tubular stentless prosthesis into a body channel. A tubular stentless prosthesis is a prosthesis without a support or stent. Typically such a prosthesis is soft, flexible and very compressible or collapsible either radially or longitudinally. The best handling method is to hold it in its natural position without buckling, compression, or “spaghetti-like” twisting. When such a prosthesis 31 is held horizontally, the best way to move it in an essentially straight manner is to pull the distal section 32 forward rather than push its proximal end 33.
  • [0025]
    The catheter 11 of the present invention comprises a catheter shaft 17, the catheter shaft having a distal end 12, a distal opening 16, a proximal end 13, and a lumen 22 between the distal end 12 and the proximal end 13. The catheter also comprises a distal section 14 that is used to hold the retracted prosthesis 31B during the catheter delivery stage. A fully un-retracted (free from constraint) prosthesis 31 in the present invention is the one prior to being inserted into the lumen 22 or after fully deployed/released from the lumen.
  • [0026]
    The catheter also comprises a handle 15 that is attached to the proximal end 13 of the catheter shaft 17. There is an elongated delivery member 21 located inside said lumen 22 (see FIG. 2), wherein the delivery member can be deployed forward or backward axially. The elongated delivery member has an engaging element 35A, 35B at a distal end 26 of the elongated delivery member 21, wherein the engaging element 35A, 35B is adapted for engaging and disengaging a distal portion 32 of said tubular prosthesis 31B (see FIG. 3). The tubular prosthesis is characterized by its softness and collapsibility radially and/or longitudinally.
  • [0027]
    The engaging element may comprise a plurality of releasable sutures, wherein the sutures may be released from the engaging element by, for example a cutting instrument. The engaging element may also comprise a plurality of releasably gripping jaws, wherein the gripping jaws may be released after the stentless prosthesis is deployed into place. Further, the engaging element may comprise a plurality of heat-disengageable wires, for example the fuse-like safety wires. A moderate heat can be provided through radiofrequency, ultrasound, electromagnetic or the like to disengage the wires from the prosthesis.
  • [0028]
    The catheter further comprises a delivery mechanism 18 at the handle 15, the delivery mechanism 18 is coupled to the elongated delivery member 21, wherein the delivery mechanism 18 is adapted for pulling the distal portion 32 of the tubular prosthesis 31B out of the catheter shaft 17 during a prosthesis releasing stage.
  • [0029]
    The catheter of the present invention may be in the 8 French to 20 French size in diameter. However, the dimension outside this range is also applicable depending on the anatomic site and application. The material for catheters is generally biocompatible and flexible for inserting purposes.
  • [0030]
    The method for delivering a tubular stentless prosthesis 31 to an anatomical site in a body channel may comprise several major steps of (a) introducing a catheter into the body channel, wherein the catheter contains the tubular stentless prosthesis at a retracted state; (b) advancing the catheter to the anatomical site; (c) maintaining a distal portion of said tubular stentless prosthesis in place relative to the anatomical site; (d) disengaging the catheter from the tubular stentless prosthesis adapted for self-expanding said prosthesis from the retracted state; and (c) withdrawing the catheter from the body channel.
  • [0031]
    [0031]FIG. 2 shows an enlarged distal portion 14 of the catheter 11 showing a first stage of the delivery sequences in accordance to the principles of the present invention. A tubular stentless prosthesis 31 can be crimped, compressed, constricted, constrained, contracted, or retracted radially to form a retracted prosthesis 31B so as to snugly fit into a narrow lumen 22 of the catheter shaft 17 at its distal section for delivering to the anatomical site.
  • [0032]
    [0032]FIG. 2A shows a transverse view of the section 1-1 of FIG. 2 showing the relative location of the catheter shaft 17 and the prosthesis 31B inside the shaft. The catheter has an optional guidewire lumen or channel for riding the catheter shaft over a guidewire 23. In one embodiment, the guidewire lumen 24 is provided within the elongated delivery member 21. In another embodiment, the guidewire channel is provided at the distal section of the catheter shaft as a rapid exchange type guidewire system. The guidewire lumen is adapted for introducing a guidewire of about 0.014 inch or smaller.
  • [0033]
    [0033]FIG. 3 shows an enlarged distal portion 14 view of the catheter showing a generally second stage of the delivery sequences in accordance to the principles of the present invention. The distal portion 32 of the prosthesis 31B is pulled out of the distal opening 16 of the catheter shaft 17 by a pulling action from the distal end of the elongated delivery member 21. In one embodiment, the pulling action is accomplished by an engaging element, wherein the engaging element 35A, 35B may have its engaging points 37A, 37B at the distal end 26 of the elongated delivery member 21 and another engaging points 36A, 36B at the distal section 32 of the prosthesis 31B. In a relative sense when the distal section 32 remains fixed relative to an anatomical site, the catheter 11 is viewed as moving backward toward the operator. The distal portion 32 of the prosthesis 31B self-expands radially due to its elastic feature when the constraint is removed.
  • [0034]
    To ensure that the self-expanded prosthesis will stay at a desired anatomic site within the body channel, the method may further comprise a step of coupling the prosthesis into tissue of the body channel whenever feasible. The coupling method may include stapling, adhering by a bio-adhesive, such as Bio-glue™ (from CryoLife, Inc., Kennesaw, Ga., USA). The stapling step may include stapling both the distal portion and the proximal portion of the prosthesis into tissue of the body channel, though more than two stapling points is also applicable.
  • [0035]
    [0035]FIG. 3A shows a transverse view of the section 2-2 of FIG. 3 showing the relative location of the catheter shaft 17 and the prosthesis 31B inside the shaft. In a preferred embodiment, the guidewire lumen 24 is provided within the elongated delivery member 21 of the catheter 11 for riding the catheter shaft over a guidewire 23.
  • [0036]
    [0036]FIG. 4 shows an enlarged distal portion 14 view of the catheter showing a generally third stage of the delivery sequences in accordance to the principles of the present invention. The majority of the prosthesis 31B is pulled out of the distal opening 16 of the catheter shaft 17 by a pulling action from the distal end of the elongated delivery member 21. At this stage, the distal portion 32 and the middle portion 39 of the prosthesis 31B self-expands radially due to its elastic feature when the constraint is removed.
  • [0037]
    [0037]FIG. 5 shows an enlarged distal portion 14 view of the catheter showing a generally fourth stage of the delivery sequences in accordance to the principles of the present invention. The whole prosthesis 31A is pulled out of the distal opening 16 of the catheter shaft 17 by a pulling action from the distal end 26 of the elongated delivery member 21. At this stage, the distal portion 32, the middle portion 39, and the proximal end 33 of the prosthesis 31B self-expands radially to form the unconstrained prosthesis 31A as a result of its elastic feature when the constraint is completely removed.
  • [0038]
    To provide an additional therapeutic therapy to the anatomic site, a therapeutic fluid is introduced into the lumen of the catheter shaft. The therapeutic fluid may be selected from a group consisting of an anti-inflammatory solution, an anti-virus solution, an antibiotic solution, an angiogenic fluid, heparin solution, an anti-sense fluid, an anti angiogenic fluid, a biocompatible adhesive, and a combination thereof. Typically a fluid inlet port is provided at about the handle of the catheter and the fluid can be supplied by a syringe or an infusion pump coupling to the fluid inlet port. The biocompatible adhesive, such as Bio-glue™ (from CryoLife, Inc., Kennesaw, Ga., USA) can be used to adhere the distal section of the longitudinally collapsible prosthesis on to the tissue at the anatomic site.
  • [0039]
    From the foregoing description, it should now be appreciated that a method for delivering a stentless bioprosthesis in a body channel, the method comprising percutaneously introducing a catheter into the body channel, wherein the catheter contains the stentless bioprosthesis at a retracted state; and disengaging said stentless bioprosthesis out of a distal opening of the catheter by a pulling mechanism has been disclosed. While the invention has been described with reference to a specific embodiment, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications and applications may occur to those who are skilled in the art, without departing from the true spirit and scope of the invention, as described by the appended claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US5700269 *13 Nov 199523 Dic 1997Corvita CorporationEndoluminal prosthesis deployment device for use with prostheses of variable length and having retraction ability
US5800521 *14 Nov 19961 Sep 1998Endotex Interventional Systems, Inc.Prosthetic graft and method for aneurysm repair
US6102942 *30 Mar 199815 Ago 2000Endovascular Technologies, Inc.Stent/graft deployment catheter with a stent/graft attachment mechanism
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US727607830 Jun 20042 Oct 2007Edwards Lifesciences PvtParavalvular leak detection, sealing, and prevention
US76703682 Mar 2010Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US76823853 Jul 200623 Mar 2010Boston Scientific CorporationArtificial valve
US768239030 Jul 200223 Mar 2010Medtronic, Inc.Assembly for setting a valve prosthesis in a corporeal duct
US77126062 Feb 200611 May 2010Sadra Medical, Inc.Two-part package for medical implant
US772266615 Abr 200525 May 2010Boston Scientific Scimed, Inc.Valve apparatus, system and method
US77406556 Abr 200622 Jun 2010Medtronic Vascular, Inc.Reinforced surgical conduit for implantation of a stented valve therein
US774838921 Oct 20046 Jul 2010Sadra Medical, Inc.Leaflet engagement elements and methods for use thereof
US77586065 Feb 200420 Jul 2010Medtronic, Inc.Intravascular filter with debris entrapment mechanism
US777605312 Dic 200617 Ago 2010Boston Scientific Scimed, Inc.Implantable valve system
US778062724 Ago 2010Boston Scientific Scimed, Inc.Valve treatment catheter and methods
US778072224 Ago 2010Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US778072313 Jun 200524 Ago 2010Edwards Lifesciences CorporationHeart valve delivery system
US778072516 Jun 200424 Ago 2010Sadra Medical, Inc.Everting heart valve
US778072624 Ago 2010Medtronic, Inc.Assembly for placing a prosthetic valve in a duct in the body
US779903820 Ene 200621 Sep 2010Boston Scientific Scimed, Inc.Translumenal apparatus, system, and method
US78244422 Nov 2010Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a heart valve
US78244432 Feb 20062 Nov 2010Sadra Medical, Inc.Medical implant delivery and deployment tool
US785475521 Dic 2010Boston Scientific Scimed, Inc.Vascular catheter, system, and method
US785476119 Dic 200321 Dic 2010Boston Scientific Scimed, Inc.Methods for venous valve replacement with a catheter
US786727411 Ene 2011Boston Scientific Scimed, Inc.Valve apparatus, system and method
US787143618 Ene 2011Medtronic, Inc.Replacement prosthetic heart valves and methods of implantation
US78789661 Feb 2011Boston Scientific Scimed, Inc.Ventricular assist and support device
US789227622 Feb 2011Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US789228122 Feb 2011Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US791456913 May 200529 Mar 2011Medtronics Corevalve LlcHeart valve prosthesis and methods of manufacture and use
US795118927 Jul 200931 May 2011Boston Scientific Scimed, Inc.Venous valve, system, and method with sinus pocket
US795966614 Jun 2011Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a heart valve
US795967214 Jun 2011Sadra MedicalReplacement valve and anchor
US796785328 Jun 2011Boston Scientific Scimed, Inc.Percutaneous valve, system and method
US79723785 Jul 2011Medtronic, Inc.Stents for prosthetic heart valves
US79887242 Ago 2011Sadra Medical, Inc.Systems and methods for delivering a medical implant
US800282423 Jul 200923 Ago 2011Boston Scientific Scimed, Inc.Cardiac valve, system, and method
US800282614 Oct 200923 Ago 2011Medtronic Corevalve LlcAssembly for placing a prosthetic valve in a duct in the body
US80121986 Sep 2011Boston Scientific Scimed, Inc.Venous valve, system, and method
US801687729 Jun 200913 Sep 2011Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US80481531 Nov 2011Sadra Medical, Inc.Low profile heart valve and delivery system
US80527498 Nov 2011Sadra Medical, Inc.Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US80527508 Nov 2011Medtronic Ventor Technologies LtdValve prosthesis fixation techniques using sandwiching
US80708016 Dic 2011Medtronic, Inc.Method and apparatus for resecting and replacing an aortic valve
US807561513 Dic 2011Medtronic, Inc.Prosthetic cardiac valve formed from pericardium material and methods of making same
US809248710 Ene 2012Medtronic, Inc.Intravascular filter with debris entrapment mechanism
US81099967 Feb 2012Sorin Biomedica Cardio, S.R.L.Minimally-invasive cardiac-valve prosthesis
US812868119 Dic 20036 Mar 2012Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US81332708 Ene 200813 Mar 2012California Institute Of TechnologyIn-situ formation of a valve
US813665910 May 201020 Mar 2012Sadra Medical, Inc.Two-part package for medical implant
US813739414 Ene 201120 Mar 2012Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US813739813 Oct 200820 Mar 2012Medtronic Ventor Technologies LtdProsthetic valve having tapered tip when compressed for delivery
US815785222 Ene 200917 Abr 2012Medtronic, Inc.Delivery systems and methods of implantation for prosthetic heart valves
US815785317 Abr 2012Medtronic, Inc.Delivery systems and methods of implantation for prosthetic heart valves
US81679321 May 2012Edwards Lifesciences CorporationHeart valve delivery system with valve catheter
US818252823 Dic 200322 May 2012Sadra Medical, Inc.Locking heart valve anchor
US822671025 Mar 201124 Jul 2012Medtronic Corevalve, Inc.Heart valve prosthesis and methods of manufacture and use
US823167031 Jul 2012Sadra Medical, Inc.Repositionable heart valve and method
US824127414 Ago 2012Medtronic, Inc.Method for guiding a medical device
US82466789 Mar 200721 Ago 2012Sadra Medicl, Inc.Methods and apparatus for endovascularly replacing a patient's heart valve
US825205228 Ago 2012Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a patient's heart valve
US828758414 Nov 200516 Oct 2012Sadra Medical, Inc.Medical implant deployment tool
US831282520 Nov 2012Medtronic, Inc.Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US831352520 Nov 2012Medtronic Ventor Technologies, Ltd.Valve suturing and implantation procedures
US832886811 Dic 2012Sadra Medical, Inc.Medical devices and delivery systems for delivering medical devices
US834321321 Oct 20041 Ene 2013Sadra Medical, Inc.Leaflet engagement elements and methods for use thereof
US83489958 Ene 2013Medtronic Ventor Technologies, Ltd.Axial-force fixation member for valve
US834899623 Mar 20078 Ene 2013Medtronic Ventor Technologies Ltd.Valve prosthesis implantation techniques
US83489998 Ene 2013California Institute Of TechnologyIn-situ formation of a valve
US838282612 Ago 201026 Feb 2013Edwards Lifesciences CorporationMethod of delivering a prosthetic heart valve
US84146419 Abr 2013Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US84146439 Abr 2013Medtronic Ventor Technologies Ltd.Sinus-engaging valve fixation member
US84309272 Feb 200930 Abr 2013Medtronic, Inc.Multiple orifice implantable heart valve and methods of implantation
US846036511 Jun 2013Boston Scientific Scimed, Inc.Venous valve, system, and method with sinus pocket
US847002322 Jun 201125 Jun 2013Boston Scientific Scimed, Inc.Percutaneous valve, system, and method
US850662013 Nov 200913 Ago 2013Medtronic, Inc.Prosthetic cardiac and venous valves
US851124419 Oct 201220 Ago 2013Medtronic, Inc.Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US851239727 Abr 200920 Ago 2013Sorin Group Italia S.R.L.Prosthetic vascular conduit
US851239928 Dic 200920 Ago 2013Boston Scientific Scimed, Inc.Valve apparatus, system and method
US853537316 Jun 200817 Sep 2013Sorin Group Italia S.R.L.Minimally-invasive cardiac-valve prosthesis
US853966216 Jun 200824 Sep 2013Sorin Group Italia S.R.L.Cardiac-valve prosthesis
US854076830 Dic 201124 Sep 2013Sorin Group Italia S.R.L.Cardiac valve prosthesis
US856267218 Nov 200522 Oct 2013Medtronic, Inc.Apparatus for treatment of cardiac valves and method of its manufacture
US856847210 Sep 200729 Oct 2013Edwards Lifesciences CorporationIntegrated heart valve delivery system
US857996220 Dic 200512 Nov 2013Sadra Medical, Inc.Methods and apparatus for performing valvuloplasty
US85799664 Feb 200412 Nov 2013Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US859157014 Mar 200826 Nov 2013Medtronic, Inc.Prosthetic heart valve for replacing previously implanted heart valve
US860315911 Dic 200910 Dic 2013Medtronic Corevalve, LlcProsthetic valve for transluminal delivery
US860316023 Dic 200310 Dic 2013Sadra Medical, Inc.Method of using a retrievable heart valve anchor with a sheath
US86137657 Jul 201124 Dic 2013Medtronic, Inc.Prosthetic heart valve systems
US86172362 Nov 201131 Dic 2013Sadra Medical, Inc.Medical devices and delivery systems for delivering medical devices
US862307622 Sep 20117 Ene 2014Sadra Medical, Inc.Low profile heart valve and delivery system
US86230775 Dic 20117 Ene 2014Medtronic, Inc.Apparatus for replacing a cardiac valve
US86230788 Jun 20117 Ene 2014Sadra Medical, Inc.Replacement valve and anchor
US862856623 Ene 200914 Ene 2014Medtronic, Inc.Stents for prosthetic heart valves
US862857018 Ago 201114 Ene 2014Medtronic Corevalve LlcAssembly for placing a prosthetic valve in a duct in the body
US865220430 Jul 201018 Feb 2014Medtronic, Inc.Transcatheter valve with torsion spring fixation and related systems and methods
US866873312 Nov 200811 Mar 2014Sadra Medical, Inc.Everting heart valve
US867299724 Abr 201218 Mar 2014Boston Scientific Scimed, Inc.Valve with sinus
US867300020 May 201118 Mar 2014Medtronic, Inc.Stents for prosthetic heart valves
US868507714 Mar 20121 Abr 2014Medtronics, Inc.Delivery systems and methods of implantation for prosthetic heart valves
US868508428 Dic 20121 Abr 2014Sorin Group Italia S.R.L.Prosthetic vascular conduit and assembly method
US869674316 Abr 200915 Abr 2014Medtronic, Inc.Tissue attachment devices and methods for prosthetic heart valves
US872170823 Sep 201113 May 2014Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US872171323 Abr 200213 May 2014Medtronic, Inc.System for implanting a replacement valve
US872171417 Sep 200813 May 2014Medtronic Corevalve LlcDelivery system for deployment of medical devices
US872171727 Ene 201213 May 2014Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US872815520 Sep 201320 May 2014Cephea Valve Technologies, Inc.Disk-based valve apparatus and method for the treatment of valve dysfunction
US874745820 Ago 200710 Jun 2014Medtronic Ventor Technologies Ltd.Stent loading tool and method for use thereof
US87474596 Dic 200710 Jun 2014Medtronic Corevalve LlcSystem and method for transapical delivery of an annulus anchored self-expanding valve
US874746023 Dic 201110 Jun 2014Medtronic Ventor Technologies Ltd.Methods for implanting a valve prothesis
US87713026 Abr 20078 Jul 2014Medtronic, Inc.Method and apparatus for resecting and replacing an aortic valve
US877134531 Oct 20118 Jul 2014Medtronic Ventor Technologies Ltd.Valve prosthesis fixation techniques using sandwiching
US877134625 Jul 20118 Jul 2014Medtronic Ventor Technologies Ltd.Valve prosthetic fixation techniques using sandwiching
US877798023 Dic 201115 Jul 2014Medtronic, Inc.Intravascular filter with debris entrapment mechanism
US878447816 Oct 200722 Jul 2014Medtronic Corevalve, Inc.Transapical delivery system with ventruculo-arterial overlfow bypass
US880177910 May 201112 Ago 2014Medtronic Corevalve, LlcProsthetic valve for transluminal delivery
US88083695 Oct 201019 Ago 2014Mayo Foundation For Medical Education And ResearchMinimally invasive aortic valve replacement
US882807820 Sep 20059 Sep 2014Sadra Medical, Inc.Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US882807926 Jul 20079 Sep 2014Boston Scientific Scimed, Inc.Circulatory valve, system and method
US883456316 Dic 200916 Sep 2014Sorin Group Italia S.R.L.Expandable prosthetic valve having anchoring appendages
US883456411 Mar 201016 Sep 2014Medtronic, Inc.Sinus-engaging valve fixation member
US884066113 May 200923 Sep 2014Sorin Group Italia S.R.L.Atraumatic prosthetic heart valve prosthesis
US884066227 Oct 201123 Sep 2014Sadra Medical, Inc.Repositionable heart valve and method
US884066323 Dic 200323 Sep 2014Sadra Medical, Inc.Repositionable heart valve method
US885861912 May 200614 Oct 2014Medtronic, Inc.System and method for implanting a replacement valve
US885862010 Jun 201114 Oct 2014Sadra Medical Inc.Methods and apparatus for endovascularly replacing a heart valve
US887094831 Ene 201428 Oct 2014Cephea Valve Technologies, Inc.System and method for cardiac valve repair and replacement
US887689423 Mar 20074 Nov 2014Medtronic Ventor Technologies Ltd.Leaflet-sensitive valve fixation member
US887689523 Mar 20074 Nov 2014Medtronic Ventor Technologies Ltd.Valve fixation member having engagement arms
US88768967 Dic 20114 Nov 2014Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US889470322 Jun 201125 Nov 2014Sadra Medical, Inc.Systems and methods for delivering a medical implant
US892049221 Ago 201330 Dic 2014Sorin Group Italia S.R.L.Cardiac valve prosthesis
US893234922 Ago 201113 Ene 2015Boston Scientific Scimed, Inc.Cardiac valve, system, and method
US894001414 Nov 201227 Ene 2015Boston Scientific Scimed, Inc.Bond between components of a medical device
US895124329 Nov 201210 Feb 2015Boston Scientific Scimed, Inc.Medical device handle
US89512809 Jun 201010 Feb 2015Medtronic, Inc.Cardiac valve procedure methods and devices
US895129913 Oct 200910 Feb 2015Sadra Medical, Inc.Medical devices and delivery systems for delivering medical devices
US895640214 Sep 201217 Feb 2015Medtronic, Inc.Apparatus for replacing a cardiac valve
US89615935 Dic 201324 Feb 2015Medtronic, Inc.Prosthetic heart valve systems
US898632928 Oct 201324 Mar 2015Medtronic Corevalve LlcMethods for transluminal delivery of prosthetic valves
US898636117 Oct 200824 Mar 2015Medtronic Corevalve, Inc.Delivery system for deployment of medical devices
US899260826 Jun 200931 Mar 2015Sadra Medical, Inc.Everting heart valve
US899897612 Jul 20127 Abr 2015Boston Scientific Scimed, Inc.Coupling system for medical devices
US899897911 Feb 20147 Abr 2015Medtronic Corevalve LlcTranscatheter heart valves
US899898115 Sep 20097 Abr 2015Medtronic, Inc.Prosthetic heart valve having identifiers for aiding in radiographic positioning
US90052734 Abr 200714 Abr 2015Sadra Medical, Inc.Assessing the location and performance of replacement heart valves
US901152113 Dic 201121 Abr 2015Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a patient's heart valve
US90285426 Sep 201112 May 2015Boston Scientific Scimed, Inc.Venous valve, system, and method
US906085611 Feb 201423 Jun 2015Medtronic Corevalve LlcTranscatheter heart valves
US906085719 Jun 201223 Jun 2015Medtronic Corevalve LlcHeart valve prosthesis and methods of manufacture and use
US906679920 Ene 201130 Jun 2015Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US907878111 Ene 200614 Jul 2015Medtronic, Inc.Sterile cover for compressible stents used in percutaneous device delivery systems
US908942223 Ene 200928 Jul 2015Medtronic, Inc.Markers for prosthetic heart valves
US91319265 Nov 201215 Sep 2015Boston Scientific Scimed, Inc.Direct connect flush system
US91383126 Jun 201422 Sep 2015Medtronic Ventor Technologies Ltd.Valve prostheses
US913831410 Feb 201422 Sep 2015Sorin Group Italia S.R.L.Prosthetic vascular conduit and assembly method
US914935723 Dic 20136 Oct 2015Medtronic CV Luxembourg S.a.r.l.Heart valve assemblies
US914935823 Ene 20096 Oct 2015Medtronic, Inc.Delivery systems for prosthetic heart valves
US916183610 Feb 201220 Oct 2015Sorin Group Italia S.R.L.Sutureless anchoring device for cardiac valve prostheses
US922682624 Feb 20105 Ene 2016Medtronic, Inc.Transcatheter valve structure and methods for valve delivery
US923788614 Abr 200819 Ene 2016Medtronic, Inc.Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof
US924801720 May 20112 Feb 2016Sorin Group Italia S.R.L.Support device for valve prostheses and corresponding kit
US927799131 Dic 20138 Mar 2016Boston Scientific Scimed, Inc.Low profile heart valve and delivery system
US927799314 Dic 20128 Mar 2016Boston Scientific Scimed, Inc.Medical device delivery systems
US928928910 Feb 201222 Mar 2016Sorin Group Italia S.R.L.Sutureless anchoring device for cardiac valve prostheses
US929555028 Mar 201429 Mar 2016Medtronic CV Luxembourg S.a.r.l.Methods for delivering a self-expanding valve
US930183416 Oct 20095 Abr 2016Medtronic Ventor Technologies Ltd.Sinus-engaging valve fixation member
US930184310 Nov 20105 Abr 2016Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US930808523 Sep 201412 Abr 2016Boston Scientific Scimed, Inc.Repositionable heart valve and method
US932059924 Sep 201426 Abr 2016Boston Scientific Scimed, Inc.Methods and apparatus for endovascularly replacing a heart valve
US933132812 Dic 20113 May 2016Medtronic, Inc.Prosthetic cardiac valve from pericardium material and methods of making same
US933310022 Nov 201310 May 2016Medtronic, Inc.Stents for prosthetic heart valves
US933938224 Ene 201417 May 2016Medtronic, Inc.Stents for prosthetic heart valves
US20040127848 *30 Dic 20021 Jul 2004Toby FreymanValve treatment catheter and methods
US20060004442 *30 Jun 20045 Ene 2006Benjamin SpenserParavalvular leak detection, sealing, and prevention
US20070005131 *13 Jun 20054 Ene 2007Taylor David MHeart valve delivery system
US20080065011 *10 Sep 200713 Mar 2008Philippe MarchandIntegrated heart valve delivery system
US20110054596 *12 Ago 20103 Mar 2011Edwards Lifesciences CorporationMethod of Delivering a Prosthetic Heart Valve
US20140031923 *25 Jul 201230 Ene 2014Medtronic Vascular Galway LimitedTrans-Aortic Surgical Syringe-Type Device for Deployment of a Prosthetic Valve
Clasificaciones
Clasificación de EE.UU.606/108, 623/2.11
Clasificación internacionalA61F2/24
Clasificación cooperativaA61F2/2436, A61F2/2475, A61F2/2412
Clasificación europeaA61F2/24H4