US20040151771A1 - Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth - Google Patents

Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth Download PDF

Info

Publication number
US20040151771A1
US20040151771A1 US10/358,602 US35860203A US2004151771A1 US 20040151771 A1 US20040151771 A1 US 20040151771A1 US 35860203 A US35860203 A US 35860203A US 2004151771 A1 US2004151771 A1 US 2004151771A1
Authority
US
United States
Prior art keywords
agent
dosage form
lozenge
flavoring agent
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/358,602
Inventor
Jerry Gin
Benjamin Ross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bennes Inc
Original Assignee
Bennes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bennes Inc filed Critical Bennes Inc
Priority to US10/358,602 priority Critical patent/US20040151771A1/en
Assigned to BENNES, INC. reassignment BENNES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIN, JERRY B., ROSS, BENJAMIN F.
Priority to ES04708157T priority patent/ES2314371T3/en
Priority to EP08162515A priority patent/EP1987821A3/en
Priority to EP04708157A priority patent/EP1589952B1/en
Priority to CA2515006A priority patent/CA2515006C/en
Priority to DE602004017127T priority patent/DE602004017127D1/en
Priority to AT04708157T priority patent/ATE411008T1/en
Priority to US10/772,781 priority patent/US8236348B2/en
Priority to PCT/US2004/003181 priority patent/WO2004070017A2/en
Publication of US20040151771A1 publication Critical patent/US20040151771A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/36Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds
    • A23G3/364Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
    • A23G3/368Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing vitamins, antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/36Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds
    • A23G3/362Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds containing inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/50Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by shape, structure or physical form, e.g. products with supported structure
    • A23G3/54Composite products, e.g. layered, coated, filled
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • A23L27/72Encapsulation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • A23L33/165Complexes or chelates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • This invention relates generally to sustained release dosage forms, and more particularly relates to dosage forms that provide for sustained release of a flavoring agent over an extended time period.
  • the invention additionally relates to such dosage forms that provide for sustained release of a beneficial agent in addition to a flavoring agent over the extended time period, and to various methods of use, including treatment of halitosis, treatment of the common cold, appetite suppression, and a method of achieving smoking cessation.
  • sustained release systems for providing gradual release of a beneficial pharmaceutical or other agent in the aqueous environment of the human body, specifically the mouth.
  • the difficulty in achieving optimal sustained release systems for extended delivery of a beneficial agent in the mouth is that most such systems, e.g., lozenges, last for only a matter of minutes.
  • halitosis commonly known as bad breath—is often treated with flavored lozenges and gums.
  • Flavored lozenges and gums have also been used to deliver a pharmacologically active agent.
  • nicotine gums for assisting in smoking cessation are known and have been commercially available for some time.
  • flavored lozenges dissolve in several minutes or less, and therefore provide only a very short-term effect.
  • most gums tend to release substantially all of a beneficial agent (e.g., a flavoring agent or a pharmacologically active agent such as nicotine) in well under half an hour.
  • a beneficial agent e.g., a flavoring agent or a pharmacologically active agent such as nicotine
  • Dosage forms for sustained release of beneficial agents in the mouth can be problematic in other respects as well.
  • commercially available zinc lozenges for treating the common cold tend to dissolve or degrade in well under 15 minutes, and, to the best of applicants' knowledge, no zinc lozenge has been disclosed as providing sustained release of zinc for over 40 minutes.
  • effective antiviral pharmacotherapy would involve a far longer time period during which the active agent is released from the lozenge.
  • sustained release is achieved by coating a dosage form such as a tablet or drug-containing core with a layer of a polymeric material that gradually hydrolyzes or erodes to release the beneficial agent within.
  • Sustained release has also been achieved by granulating tablet materials with such a polymeric material.
  • pharmaceutical grade ETHOCEL® brand ethylcellulose available from the Dow Chemical Company (Midland, Mich.) is primarily used in the pharmaceutical industry to coat tablets and capsules, as granulation binders, and as binders in the direct compression of tablets.
  • ETHOCEL® brand ethylcellulose available from the Dow Chemical Company (Midland, Mich.
  • compositions could be varied only slightly to provide significant changes in properties and methods of use, e.g., to provide a non-adhesive lozenge or a relatively tacky dosage form that can adhere to the gum or teeth.
  • a flavored lozenge is provided that is composed of a sustained release wet matrix of ethylcellulose and a flavoring agent selected from essential oils, constituents of essential oils (e.g., terpenes and sesquiterpenes), and mixtures thereof.
  • a flavoring agent selected from essential oils, constituents of essential oils (e.g., terpenes and sesquiterpenes), and mixtures thereof.
  • the matrix gradually releases the flavoring agent over a time period of at least 45 minutes and optimally up to four hours or more.
  • the admixture of ethylcellulose with an essential oil, an individual terpene, or an individual sesquiterpene results in a wet matrix that provides for highly effective sustained release of an agent contained therein.
  • a flavored lozenge is provided that is composed of at least one biocompatible, water-insoluble, hydrophilic polymer and a flavoring agent effective to provide a sustained release wet matrix upon admixture with the polymer(s), wherein the flavoring agent is as described above, i.e., selected from essential oils, constituents of essential oils, and mixtures thereof.
  • a preferred polymer is a polymer of lactic acid, in which case a water-soluble cellulosic polymer is preferably incorporated that provides the desired sustained release properties.
  • the lactic acid polymer is either a poly(lactic acid) homopolymer or a copolymer of lactic acid, e.g., poly(lactide-co-glycolide).
  • the lozenge provides for sustained release of the flavoring agent in the mouth over a time period of at least 45 minutes.
  • At least one beneficial agent may be incorporated into the lozenge in addition to the flavoring agent, and the lozenge provides for sustained release of the beneficial agent as well.
  • the lozenges are not limited with respect to the beneficial agent, except that the agent should be pharmaceutically acceptable and inert with respect to other components of the composition.
  • Exemplary beneficial agents include cold remedies, agents for combating halitosis, local anesthetics and anti-infective agents, diet aids, fluoride-releasing compounds and other agents exhibiting utility in the dental context, and nicotine.
  • Zinc lozenges for instance, are representative of those lozenges of the invention that can be used to treat colds and halitosis.
  • the sustained release wet matrix of the biocompatible, water-insoluble, hydrophilic polymer and the flavoring agent is incorporated into a chewing gum base, such that the dosage form is a chewing gum that provides for sustained release of the flavoring agent.
  • one or more additional beneficial agents may, if desired, be incorporated into the chewing gum as well.
  • the lozenge may be rendered either adhesive or nonadhesive. That is, a lower molecular weight polymer will give rise to a sticky, pliable lozenge that can adhere to the gum, teeth, or dental appliance, while a higher molecular weight hydrophilic polymer will give rise to a soft, rubbery lozenge that is substantially nontacky. Incorporation of an ingestible solvent such as ethanol or ethyl lactate can further increase adhesion.
  • an ingestible solvent such as ethanol or ethyl lactate
  • Methods are also provided for using the presently disclosed dosage forms in the administration of beneficial agents to the mouth of an individual, preferably a human individual.
  • Administration may be local, such that the beneficial agent exhibits its desired effect within the oral cavity.
  • Administration may also be systemic, in which case delivery of the beneficial agent is transmucosal, i.e., the beneficial agent passes through the mucosal lining of the oral cavity and into the bloodstream, such that the beneficial agent then exhibits its desired effect systemically.
  • the method provides for sustained release of a flavoring agent in the mouth, e.g., in the treatment of halitosis.
  • the following methods are provided:
  • a method for treating the common cold by administering to an individual in need of such treatment a flavored dosage form comprising an admixture of ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, an ionizable zinc compound, a sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1;
  • a method for treating a sore throat comprising administering to an individual in need of such treatment a flavored dosage form comprising an admixture of ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, a local anesthetic agent, and a sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1;
  • a method for facilitating weight loss comprising administering to an individual in need of such treatment a flavored dosage form comprising an admixture of ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, a diet aid, and a non-sugar sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1; and
  • a method for assisting an individual in quitting smoking comprising administering to an individual in need of such treatment a flavored dosage form comprising an admixture of ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, nicotine, and a sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1.
  • the lozenges of the invention are not only pleasantly flavored but also comfortable to retain in the mouth for an extended period of time, primarily by virtue of their small size and soft, rubbery consistency. Sustained release of a powerful flavoring agent within the lozenge provides for extremely effective taste-masking, and the lozenges can therefore be used to deliver a host of beneficial agents whose bitter or otherwise unpleasant taste has prevented administration in lozenge form.
  • a flavored dosage form for delivering a beneficial agent to a mucosal surface within the mouth, the dosage form having at least one adhesive surface that serves to adhere the dosage form to the mucosal surface, and comprising ethylcellulose having a solution viscosity in the range of approximately 6 to 15 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, a beneficial agent, and a sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1.
  • the beneficial agent may be, for example, an anti-infective agent, a local anesthetic agent, or a local anti-inflammatory agent.
  • the invention additionally encompasses a method for using the flavored dosage form to release the beneficial agent to the mucosal surface over an extended time period.
  • a polymer includes a single polymer as well as two or more polymers in combination
  • a flavoring agent or “a colorant” encompasses a combination or mixture of different flavoring agents or colorants as well as a single flavoring agent or colorant, and the like.
  • pharmaceutically acceptable is meant a material that is not biologically or otherwise undesirable, i.e., the material may be incorporated into a lozenge of the invention without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the lozenge formulation.
  • biocompatible is used interchangeably with the term “pharmaceutically acceptable.”
  • treating and “treatment” as used herein refer to reduction in severity and/or frequency of symptoms, elimination of symptoms and/or underlying cause, prevention of the occurrence of symptoms and/or their underlying cause, and improvement or remediation of damage.
  • “treating” a patient involves prevention of an adverse physiological condition in a susceptible individual as well as treatment of a clinically symptomatic individual by inhibiting or causing regression of the condition.
  • beneficial agent refers to any chemical compound, complex or composition that exhibits a beneficial effect, e.g., a therapeutic effect in the treatment of an adverse physiological condition.
  • the term also encompasses pharmaceutically acceptable derivatives of those beneficial agents specifically mentioned herein, including, but not limited to, salts, esters, amides, prodrugs, active metabolites, isomers, analogs, and the like.
  • beneficial agent when used, then, or when a particular beneficial agent is specifically identified, it is to be understood that pharmaceutically acceptable, pharmacologically active salts, esters, amides, prodrugs, active metabolites, isomers, analogs, etc. of the beneficial agent are intended as well as the beneficial agent per se.
  • an “effective” amount or a “therapeutically effective amount” of a beneficial agent is meant a nontoxic but sufficient amount of the agent to provide the desired effect.
  • the amount of beneficial agent that is “effective” will vary from subject to subject, depending on the age and general condition of the individual, the particular active agent or agents, and the like. Thus, it is not always possible to specify an exact “effective amount.” However, an appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation
  • hydrophilic and hydrophobic are generally defined in terms of a partition coefficient P, which is the ratio of the equilibrium concentration of a compound in an organic phase to that in an aqueous phase.
  • a hydrophilic compound has a P value less than 1.0, typically less than about 0.5, where P is the partition coefficient of the compound between octanol and water, while hydrophobic compounds will generally have a P greater than about 1.0, typically greater than about 5.0.
  • water-insoluble refers to a compound or composition whose solubility in water is less than 5 wt. %, preferably less than 3 wt. %, more preferably less than 1 wt. %, while the term “water-soluble” refers to a compound or composition whose solubility in water is greater than or equal to 5 wt. %, preferably greater than 10 wt. %, more preferably greater than 15 wt. % (measured in water at 20° C.).
  • the invention provides flavored dosage forms for release of a flavoring agent in the mouth, preferably sustained release over an extended time period.
  • the dosage form is a flavored lozenge that comprises a sustained release wet matrix of a biocompatible, water-insoluble hydrophilic polymer, e.g., ethylcellulose, a flavoring agent selected from essential oils, constituents of essential oils, and mixtures thereof, and, optionally, one or more additional beneficial agents, wherein, in an aqueous environment, the matrix gradually releases the flavoring agent and any other beneficial agent therein over a time period of at least 45 minutes, i.e., the length of time that an individually normally retains a lozenge in the mouth, but the lozenge is capable of providing sustained release over a time period of at least one, two, three, or even four or more hours.
  • the lozenges of the invention do not dissolve within the mouth, but rather remain intact until removed by the user and/or until a substantial fraction of the flavoring agent has been released. In the latter case, release of a substantial fraction of the flavoring agent results in degradation of the wet matrix into small fragments that may or may not be swallowed, insofar as the entire dosage form is composed of biocompatible, nontoxic components.
  • the dosage form may also be a chewing gum composed of the aforementioned sustained release wet matrix and a gum base, wherein the gum base represents on the order of 5 wt. % to 90 wt. %, preferably about 5 wt. % to 50 wt. % of the gum. Any conventional gum base may be used, so long as there is no deleterious interaction between the gum base and the flavoring agent, the biocompatible polymer, or other components of the chewing gum.
  • Typical gum bases include, by way of example, elastomers, elastomer plasticizers, waxes, fats, oils, softeners, emulsifiers, fillers, texturizers, and miscellaneous ingredients such as preservatives, colorants, whiteners, and the like.
  • Most gum bases will include at least one elastomer, e.g., a synthetic elastomer such as polyisobutylene, polybutadiene, isobutylene-isoprene copolymer, styrene-butadiene copolymer, polyvinyl acetate, ethylene vinyl acetate, or polyvinyl alcohol, or a natural elastomer, including natural rubbers as well as natural gums (e.g., chicle).
  • the gum will be in the form of a tablet coated with a layer of a quickly dissolving colored or whitened film that provides a desirable appearance and smooth texture.
  • film coatings are generally comprised of natural and/or synthetic hydrophilic polymers such as cellulosics, polyethylene glycol, and the like.
  • the length of time that the lozenge or gum can remain in the mouth and provide sustained release is controlled in part by the appropriate selection of hydrophilic polymer and flavoring agent, and in part by the relative amounts of the hydrophilic polymer and the flavoring agent.
  • the weight ratio of the hydrophilic polymer to the flavoring agent should be in the range of approximately 1:2 to 2:1, preferably in the range of approximately 1:1.5 to 1.5:1, and optimally in the range of approximately 1:1.2 to 1.2:1.
  • a ratio of flavoring agent to polymer that is greater than 2:1 will tend to provide a matrix that may be too sticky for some of the present purposes, while a ratio of less than 1:2 may result in a composition that is not sufficiently cohesive to provide the desired matrix.
  • the aforementioned ratios are not intended to be limiting, however, and ratios outside of the recited ranges may be desirable to provide a different type of composition, e.g., compositions having a particularly soft consistency or a tendency to degrade more quickly.
  • the fraction of each component in the dosage form is not particularly important, although, typically, in a lozenge, the hydrophilic polymer and the flavoring agent each represents approximately 25-49.5 wt. % of the lozenge, and optional additives, e.g., added beneficial agents, sweeteners, and excipients typically represent about 1-50 wt. %, preferably about 1-45 wt. %, of the lozenge.
  • the dosage forms of the invention are useful for the delivery of a beneficial agent to the teeth or a mucosal surface within the oral cavity. Delivery to a mucosal surface within the oral cavity may be used within the context of systemic drug administration, in which case the beneficial agent is actually delivered transmucosally, e.g., through the buccal mucosa of the gums.
  • the dosage form is composed of a wet matrix as described above with regard to sustained release lozenges, but is formulated so as to have a surface that is sufficiently tacky to enable the dosage form to adhere to the teeth or a mucosal surface within the mouth.
  • adhesive polymers that are conventionally used in buccal drug delivery systems, e.g., polyisobutylene, polyisoprene, acrylic acid polymers and copolymers (e.g., those known as “carbomers,” polyalkylene oxides (e.g., polyethylene glycol and copolymers thereof), polyvinyl lactam
  • the dosage form is made adhesive by using a lower molecular weight hydrophilic polymer rather than by incorporation of additional polymers not contained within the wet matrix.
  • various carriers and additives may be incorporated as is well known in the art of transmucosal (e.g., buccal) drug delivery.
  • Typical additives include permeation enhancers such as polyethylene glycol esters, long-chain fatty acid esters of diols and triols (e.g., glycerol monolaurate, propylene glycol monolaurate), lower alkanols, and the like.
  • the hydrophilic polymer is both water-insoluble and biocompatible as those terms are defined herein. That is, the polymer component of the dosage form has: an octanol-water partition coefficient P of less than 1.0, preferably less than 0.5; a solubility in water of less than 5 wt. %, preferably less than 3 wt. %, most preferably less than 1 wt. % at 0° C.; and does not give rise to undesirable biological effects or interact in an adverse manner with any of the other components of the dosage form. When the dosage form is a lozenge, varying the molecular weight or viscosity of the polymer can impart certain properties to the dosage form.
  • a lower molecular weight polymer e.g., ethylcellulose having a solution viscosity of about 6 to 15 cP
  • a higher molecular weight polymer can provide a soft, rubbery, and nontacky lozenge.
  • an exemplary cellulosic polymer is ethylcellulose.
  • the ethylcellulose should have a solution viscosity in the range of approximately 1 to 120 cP, with a preferred solution viscosity in the range of approximately 3 to 100 cP, and a most preferred solution viscosity in the range of approximately 6 to 49 cP.
  • the ethoxyl content is typically in the range of about 45.0% to 52.0%, preferably in the range of about 48.0-49.5%.
  • Suitable ethylcellulose polymers that are available commercially include, without limitation, those that may be obtained from the Dow Chemical Company (Midland, Mich.) as ETHOCEL® ethylcellulose, e.g., ETHOCEL® Standard 4 Premium (solution viscosity range approximately 3 to 5.5 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 7 Premium (solution viscosity range approximately 6 to 8 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 10 Premium (solution viscosity range approximately 9 to 11 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 14 Premium (solution viscosity range approximately 12.6 to 15.4 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 20 Premium (solution viscosity range approximately 18 to 22 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 45 Premium (solution visco
  • lactic acid polymers are lactic acid polymers.
  • the lactic acid polymer may be a homopolymer or a copolymer, if a copolymer, typically a copolymer with glycolic acid, also termed “poly(lactide-co-glycolide.”
  • the lactic acid in these polymers may be in enantiomerically pure form, as D-lactic acid or L-lactic acid, or it may be in the form of a racemic mixture of the two enantiomers.
  • these polymers include poly(D,L-lactic acid), poly(D-lactic acid), poly(L-lactic acid), poly(D,L-lactide-co-glycolide), poly(D-lactide-co-glycolide), and poly(L-lactide-co-glycolide).
  • Suitable lactic acid polymers and copolymers will generally have a number average molecular weight M n in the range of approximately 10,000 to 125,000. With poly(lactide-co-glycolide) polymers, the amount of glycolic acid in the copolymer should not exceed 50 mole %.
  • Any poly(lactide-co-glycolide) selected as the hydrophilic polymer will typically contain approximately 1 mole % to 50 mole %, preferably approximately 15 mole % to 50 mole %, and most preferably approximately 15 mole % to 35 mole %, glycolic acid.
  • the cellulosic polymer can be any such polymer capable of rendering the lactic acid polymer suitable for sustained release in the context of the invention.
  • a release rate accelerator when the hydrophilic polymer is a lactic acid polymer, a release rate accelerator should be used.
  • Suitable release rate accelerators include water-soluble cellulosic polymers such as methylcellulose (MC), hydroxypropyl cellulose (HPC), and hydroxypropyl methylcellulose (HPMC), and ingestible organic solvents such as ethyl acetate and ethanol.
  • the weight ratio of release rate accelerator to the lactic acid polymer is generally in the range of about 0.05:1 to 0.5:1, typically about 0.1:1 to 0.5:1.
  • release rate modifiers such as these may also be used in conjunction with ethylcellulose, in order to adjust the duration of the time period over which the flavoring agent and optionally other agent(s) are released.
  • flavoring agents may be combined, if desired, to produce a particular flavor mix.
  • Preferred flavoring agents are those that upon admixture with the hydrophilic polymer result in a wet matrix that, in an aqueous environment (e.g., in the mouth) gradually releases the flavoring agent and any other incorporated component.
  • a “wet” matrix is meant a matrix that contains a liquid phase that represents a sufficiently large fraction of the matrix to provide a discernibly wet or sticky surface, and/or a soft and rubbery consistency.
  • Ideal flavoring agents in this regard are pharmaceutically acceptable essential oils and chemical constituents of essential oils that can impart a desired flavor.
  • Essential oils as known in the art, are naturally occurring compounds or compositions that accumulate in the oil cells, glandular trichomes, and oil or resin ducts of aromatic plants.
  • Essential oils that can be incorporated into the present flavored dosage forms as suitable flavoring agents include, without limitation, citrus oils such as lemon oil, lime oil, neroli oil, and orange oil, mint oils such as peppermint oil and spearmint oil, and other oils such as anise oil, cardamom oil, cinnamon oil, clove oil, coriander oil, eriodictyon fluidextract, eucalyptus oil, fennel oil, glycyrrhiza extract, lemongrass oil, and nutmeg oil.
  • citrus oils are generally preferred.
  • essential oils contain a number of constituents, many of which can by themselves serve as flavoring agents. Of these, the most well-known essential oil constituents that are widely used as flavoring agents are hydrocarbons, particularly terpenes and sesquiterpenes. “Terpenes” generally refer to hydrocarbons of the formula C 10 H 16 , and, as the term is used herein, also encompass terpene analogs of the formula C n H 2n-4 , as well as terpenes and terpene analogs substituted with one or more nonhydrogen substituents and/or containing a heteroatom such as N, O, or S.
  • sesquiterpenes generally refer to hydrocarbons of the formula C 15 H 24 , but for the purpose of the present invention also encompass sesquiterpene analogs of the formula C n H 2n-6 as well as substituted and/or heteroatom-containing derivatives thereof.
  • terpenes and sesquiterpenes can have any number of molecular structures, including acyclic, monocyclic, bicyclic, and polycyclic structures, wherein the bicyclic and polycyclic structures may or may not be “bridged” bicyclic and polycyclic compounds.
  • the terpenes that are more commonly used as flavoring agents contain two double bonds and one cyclic group (e.g., ⁇ -phellandrene) or one double bond and two cyclic groups in a bridged bicyclic structure (e.g., ⁇ -pinene).
  • terpenes and sesquiterpenes that can be advantageously used as flavoring agents herein include: the terpenes d,l-camphene, d-camphene, l-camphene, ⁇ 3 -carene, trans- ⁇ -ocimene, cis- ⁇ -ocimene, trans- ⁇ -ocimene, cis- ⁇ -ocimene, ⁇ -pinene, ⁇ -phellandrene, ⁇ -terpinene, ⁇ -terpinene, and ⁇ -terpinene; and the sesquiterpenes ⁇ -cadinene, ⁇ -cadinene, ⁇ -caryophyllene, copaene, ⁇ -famesene, isocaryophyllene, and y GmbH.
  • essential oils contain a number of other types of constituents that may also serve as flavoring agents, either individually or in combination. These include, by way of example:
  • organic acids such as p-anisic acid, cinnamic acid, and phenylacetic acid
  • alcohols including phenols, such as d,l-borneol, d-borneol, l-bomeol, carvacrol, chavicol, cinnamyl alcohol, linalool, menthol, nerolidol, nerol, d,l- ⁇ -terpineol, d- ⁇ -terpineol, l- ⁇ -terpineol, and thymol;
  • aldehydes such as acetaldehyde, anisaldehyde, cinnamaldehyde, benzaldehyde, citral, isovaleric aldehyde, piperonal, salicylaldehyde, valeric aldehyde, and vanillin;
  • ketones such as carvone, jasmone, menthone, and piperitone
  • esters such as amyl acetate, bomyl acetate, benzyl benzoate, butyl cinnamate, cinnamyl anthranilate, geranyl acetate, linalyl acetate, menthyl acetate, menthyl isovalerate, and methyl salicylate; and
  • phenol ethers such as anethole, eugenol, safrol, and estragole.
  • flavoring agent will depend, in part, upon the intended use of the dosage form.
  • mint oils such as peppermint oil and spearmint oil are generally preferred.
  • dosage forms designed as diet aids may contain food flavors (e.g., citrus oils or the like) so as to satisfy the need for the taste of food in the mouth.
  • At least one sweetener is preferably incorporated into the formulation.
  • the sweetener may be a sugar, e.g., sucrose, fructose, or dextrose, or, more preferably, a non-sugar sweetening agent to reduce both caloric intake and the likelihood of dental caries.
  • Sweeteners falling within the latter group include many well known artificial sweetening agents, such as, for instance, aspartame, saccharin, saccharin salts (e.g., sodium saccharin, calcium saccharin), sucralose, acesulfame-K (potassium acetosulfam), sorbitol, xylitol, stevioside, steviol, mannitol, erythritol, lactitol, alitame, miraculin, monellin, and thaumatin.
  • artificial sweetening agents such as, for instance, aspartame, saccharin, saccharin salts (e.g., sodium saccharin, calcium saccharin), sucralose, acesulfame-K (potassium acetosulfam), sorbitol, xylitol, stevioside, steviol, mannitol, erythritol, lactitol, al
  • the sweetener is generally incorporated within the wet matrix, i.e., physically entrapped therein, while when the dosage form is a gum, this is not generally the case. That is, with gums, although the sweetener and the wet matrix may be intimately mixed, the sweetener is not entrapped within the gum (although this tends to result in quicker release of the sweetener from a gum than a lozenge, the release of the flavoring agent is gradual in all dosage forms of the invention).
  • the dosage form optionally contains a colorant and/or other conventional additives as well.
  • colorants some essential oils are already colored and the color so provided may be acceptable. For example, peppermint oil imparts a yellow color, while cinnamon oil imparts a brown color.
  • Suitable colorants include natural colorants, i.e., pigments and dyes obtained from mineral, plant, and animal sources. Examples of natural colorants include red ferric oxide, yellow ferric oxide, annattenes, alizarin, indigo, rutin, and quercetin.
  • Synthetic colorants may also be used, and will typically be an FD&C or D&C dye, e.g., an approved dye selected from the so-called “coal-tar” dyes, such as a nitroso dye, a nitro dye, an azo dye, an oxazine, a thiazine, a pyrazolone, a xanthene, an indigoid, an anthraquinone, an acridine, a rosaniline, a phthalein, a quinoline, or a “lake” thereof, i.e., an aluminum or calcium salt thereof.
  • Particularly preferred colorants are food colorants in the “GRAS” (Generally Regarded As Safe) category.
  • additives include, for example:
  • release rate modifiers particularly release rate accelerants that also serve as softening agents, such as water-soluble polymers (e.g., MC, HPC, HPMC, etc.) and ingestible solvents (e.g., ethyl acetate, ethanol, glycerol, glycerol esters, etc.);
  • water-soluble polymers e.g., MC, HPC, HPMC, etc.
  • ingestible solvents e.g., ethyl acetate, ethanol, glycerol, glycerol esters, etc.
  • adhesion modifiers such as adhesion-increasing agents and adhesion-reducing agents
  • ingestible solvents e.g., ethyl acetate and ethanol increase tack when admixed with ethylcellulose
  • mineral oil and vegetable oils which tend to decrease tack when admixed with ethylcellulose
  • additional polymers and polymer compositions including polymers typically used to form hydrogels, e.g., ethylene vinyl acetate, polyvinyl alcohol, polyvinyl pyrrolidone, cellulose acetate, cellulose diacetate, and other cellulose esters, which may increase or decrease tack depending on the particular polymer or polymer composition;
  • flavor stabilizers e.g., starches
  • flavor diluents e.g., ingestible solvents, as above
  • pH-adjusting agents e.g., acids, bases, buffer systems
  • preservatives e.g., antioxidants, antimicrobial agents, etc.
  • fillers e.g., maltodextrin, microcrystalline cellulose, lactose, mannitol, etc.
  • an ingestible solvent can serve as both a release rate modifier and flavor diluent.
  • the dosage form may also include one or more beneficial agents that are released within the mouth.
  • Lozenges of the invention will provide for sustained release of additional beneficial agents because the agents are incorporated within the wet matrix composed of the hydrophilic polymer and the flavoring agent.
  • release of an added beneficial agent may or may not be gradual, since the added agent will generally not be incorporated into the aforementioned wet matrix; rather, the release profile will depend on factors such as the nature of the agent(s), the tendency of the agent to remain in the dosage form (i.e., the physical/chemical attraction of the agent to one or more components of the gum), and the presence of one or more sustained release polymers.
  • the beneficial agent may be administered to provide a local, topical effect, within the oral cavity (e.g., as a topical anti-infective or anesthetic), or to achieve a systemic effect by passing through the mucosal membranes within the oral cavity and into an individual's blood stream.
  • the beneficial agents that may be delivered using the dosage forms of the invention are not limited, as the invention enables the effective delivery of a wide variety of beneficial agents.
  • the beneficial agent administered may be selected from any of the various classes of such agents including, but not limited to, analgesic agents, anesthetic agents (including local anesthetic agents for numbing a painful region within the mouth), anti-anginal agents, antiarthritic agents, anti-arrhythmic agents, antiasthmatic agents, anti-BPH agents, anticancer agents, anticholinergic agents, anticoagulants, anticonvulsants, antidepressants, antidiabetic agents, antidiarrheals, anti-epileptic agents, antifungal agents, antigout agents, antihelminthic agents, antihistamines, antihypertensive agents, antiinflammatory agents, antimalarial agents, antimicrobial agents (including local antibiotics for treatment of an infection of the gum or elsewhere within the oral cavity), antimigraine agents, antimuscarinic agents, antinauseants, antineoplastic agents, antiosteoporosis agents, antiparkinsonism agents, antiprotozoal agents, antipr
  • Active agents administered in combination may be from the same therapeutic class (e.g., two different diet aids) or from different therapeutic classes (e.g., a decongestant and a vitamin). Some agents, as will be appreciated by those of ordinary skill in the art, are encompassed by two or more of the aforementioned groups.
  • any beneficial agent in the dosage form will depend on the particular agent and the intended daily dose, and presumes that one to six, generally two to four, dosage forms will be consumed on a daily basis. Unless explicitly indicated herein, it is to be understood that appropriate daily doses for the various agents will be known to those of ordinary skill in the art of pharmaceutical formulation and pharmacology and/or can be found in the pertinent texts and literature.
  • Beneficial agents of particular interest herein are cold remedies, agents for combating halitosis, local anesthetics and anti-infective agents, diet aids, fluoride-releasing compounds and other agents exhibiting utility in the dental context, and nicotine.
  • Cold remedies include, but are not limited to: sources of Zn 2+ , i.e., ionizable zinc compounds; vitamins, including vitamin C optionally combined with one or more B vitamins; and herbal extracts such as echinacea and golden seal.
  • Ionizable zinc compounds are useful for reducing the duration and/or symptoms of common colds, managing upper respiratory allergy, as nutritional agents, and in treating halitosis, i.e., for reducing or eliminating bad breath.
  • the ionizable zinc compound may be an inorganic or organic complex; examples of suitable complexes include zinc gluconate, acetate, chloride, propionate, butyrate, n-butyrate, beta-hydroxybutyrate, benzoate, formate, and sulfate, although zinc acetate and gluconate are generally preferred for reasons of stability, acidity in an aqueous environment (and thus potential toxicity), and suitability for sustained release in the present formulations.
  • lozenges are preferred to gums, so as to maximize the time period during which the zinc compound is released.
  • the wet matrix of the present dosage forms which provides for gradual release of a flavoring agent in the mouth, also serves to minimize the unpleasant, bitter taste of many zinc-containing compounds.
  • conventional zinc lozenges last only minutes, so that the availability of zinc in the mouth is limited, which correspondingly limits the capability of the zinc to exert a maximal antiviral effect.
  • the amount of ionic zinc (i.e., Zn 2+ ) in a dosage form of the invention is in the range of about 1 mg to about 50 mg, typically in the range of about 5 mg to about 40 mg, preferably in the range of about 15 mg to about 35 mg (these ranges correspond to about 12.8 mg to about 640 mg, typically about 64 mg to about 512, preferably about 192 mg to about 448 mg zinc gluconate, insofar as ionic zinc represents approximately 12.8 wt. % of zinc gluconate).
  • ionizable zinc compounds for the treatment of colds, combinations of ionizable zinc compounds with other cold remedies, e.g., vitamin C, herbal remedies, decongestants, etc., are particularly desirable.
  • other cold remedies e.g., vitamin C, herbal remedies, decongestants, etc.
  • the dosage forms do not require a beneficial agent, insofar as the flavoring agent itself reduces bad breath for extended time periods.
  • Incorporation of an additional beneficial agent such as an ionizable zinc compound can also serve to combat halitosis.
  • a zinc compound as discussed above such as zinc acetate or zinc gluconate, acts in a different manner, by combining with the volatile sulfur compounds that produce halitosis.
  • halitosis can also be incorporated into the dosage form, and may or may not target a particular cause of the problem (e.g., infections of the mouth, nasal or sinus conditions, gastrointestinal disorders, diabetes, etc.).
  • anti-infective agents such as triclosan or phenol may be suitable.
  • the present dosage forms containing a flavoring agent and optionally one or more additional beneficial agents for treating halitosis, can reduce bad breath for up to several hours or more.
  • the dosage form does not promote dental caries, while nevertheless retaining a pleasant, sweet taste for an extended time period.
  • the dosage forms may contain a local anesthetic agent to reduce sore throat pain, and/or a local anti-infective agent to eliminate any bacteria or virii associated with the sore throat.
  • Local anesthetics include, for example, menthol, benzocaine, bupivacaine, butambenpicrate, chlorprocaine, cocaine, dibucaine, dimethisoquin, dyclonine, etidocaine, hexylcaine, hexylresorcinol, ketarine, lidocaine, mepivacaine, phenol, phenolate, pramoxine, procaine, ropavacaine, tetracaine, tripelennamine, xylocalne, and pharmaceutically acceptable salts thereof (e.g., dimethisoquin hydrochloride, pramoxine hydrochloride) while representative anti-infective agents include amylmetacresol, benzalkonium
  • a source of zinc ion such as zinc acetate or zinc gluconate can also be incorporated into a lozenge or gum for reducing sore throat pain, insofar as such compounds exhibit antiviral activity as noted above. It will be appreciated that these dosage forms are also useful in treating and/or reducing pain associated with local viruses of the mouth, which are often manifested as sores or lesions (e.g., those associated with herpes infection), or with various disorders of the tongue.
  • the dosage forms of the invention additionally exhibit utility in facilitating weight reduction, insofar as the sustained release of flavor mimics the taste of food in the mouth, particular when the flavoring agent is a food flavor, e.g., a citrus oil or the like.
  • Incorporation of a diet aid will increase the utility of the dosage forms in this regard.
  • Diet aids include any agents that assist an individual to reduce the intake of food, regardless of mechanism. Therefore, diet aids for use herein may suppress appetite, give the feeling of “fullness,” and/or increase metabolism.
  • exemplary diet aids include 5-hydroxytryptophan, tyrosine, phenylalanine, pseudoephedrine, ephedrine, phenylpropanolamine, chromium picolinate, aspirin, benzocaine, carnitine, and caffeine.
  • Certain herbal preparations, mixtures, and extracts are also suitable diet aids, and include, without limitation, guarana and ma huang.
  • the beneficial agent is one that promotes healthy teeth and gums, or that exhibits other utility in the “dental” context.
  • a fluoride-releasing dosage form may be prepared by incorporating a source of fluoride ion as a beneficial agent.
  • Fluoride-releasing agents are well known and include sodium monofluorophosphate, sodium fluoride, and stannous fluoride.
  • Fluoride-containing dosage forms preferably contain xylitol as a sweetener, as xylitol may potentiate the action of the fluoride.
  • a local anesthetic agent as described above, can provide for desensitization within the mouth, to alleviate a toothache, pain associated with a condition or disorder of the gums, or the pain or discomfort that may follow a dental procedure.
  • nicotine is in the form of the free base or an acid addition salt thereof.
  • nicotine has been incorporated into gums and other drug delivery systems in the form of the acid addition salt, in large part to offset the bitter and unpleasant taste of the free base.
  • the flavored matrix of the present dosage forms provides for very effective taste-masking with respect to a wide variety of beneficial agents, however, nicotine can be incorporated and released as the free base. Since the base is more readily delivered across the mucosal membrane than the salt form of the drug, the invention enables delivery of a lower dose of nicotine, particularly when the dosage form is a lozenge.
  • a lozenge of the invention can contain less than about 5 mg of nicotine, typically 0.1 to 2 mg, preferably 0.25 to 1.5 mg, while nevertheless providing the desired therapeutic effect.
  • nicotine-containing dosage forms it may be desirable to incorporate or disperse the nicotine in an excipient that reduces the volatility of the drug (e.g., mannitol, microcrystalline cellulose, colloidal silica), unless the nicotine is in the form of an acid addition salt.
  • a sweetener is virtually essential to provide taste-masking. While any of the above-mentioned sweeteners may be used, a particularly preferred sweetener in nicotine lozenges is sucralose.
  • lozenges While the above discussion refers to certain dosage forms of the invention as “lozenges,” it is to be understood that the term encompasses lozenge-type dosage forms having some degree of adhesion.
  • dosage forms are generally substantially flat and adhere to the gum or teeth to deliver a beneficial agent, e.g., an anti-infective agent including any of the local anti-infective agents set forth above, a local anesthetic agent, including those exemplified previously, or an anti-inflammatory agent.
  • Anti-inflammatory agents include NSAIDS (nonsteroidal anti-inflammatory agents) such as ketoprofen, flurbiprofen, ibuprofen, naproxen, fenoprofen, benoxaprofen, indoprofen, pirprofen, carprofen, oxaprozin, pranoprofen, suprofen, alminoprofen, butibufen, fenbufen and tiaprofenic acid; acetylsalicylic acid, apazone, diclofenac, difenpiramide, diflunisal, etodolac, flufenamic acid, indomethacin, ketorolac, meclofenamate, mefenamic acid, nabumetone, phenylbutazone, piroxicam, sulindac, and tolmetin, and corticosteroids such as hydrocortisone, hydrocortisone-21-monoest
  • any of the beneficial agents may be in the form of a salt, ester, amide, prodrug, active metabolite, isomer, analog, or the like, provided that the salt, ester, amide, prodrug, active metabolite, isomer, or analog is pharmaceutically acceptable and retains at least some degree of the desired activity.
  • Salts, esters, amides, prodrugs, metabolites, analogs, and other derivatives of the beneficial agents herein may be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 4th Edition (New York: Wiley-Interscience, 1992).
  • acid addition salts are prepared from a beneficial agent in the form of a free base using conventional methodology involving reaction of the free base with an acid.
  • Suitable acids for preparing acid addition salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • An acid addition salt may be reconverted to the free base by treatment with a suitable base.
  • preparation of basic salts of acid moieties that may be present on an active agent may be carried out in a similar manner using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like.
  • Preparation of esters involves transformation of a carboxylic acid group via a conventional esterification reaction involving nucleophilic attack of an RO ⁇ moiety at the carbonyl carbon. Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • Amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.
  • Prodrugs and active metabolites may also be prepared using techniques known to those skilled in the art or described in the pertinent literature. Prodrugs are typically prepared by covalent attachment of a moiety that results in a compound that is therapeutically inactive until modified by an individual's metabolic system.
  • chiral active agents may be in isomerically pure form, or they may be administered as a racemic mixture of isomers.
  • the lozenges are prepared by admixture of the hydrophilic polymer and the flavoring agent and any additional components, including sweeteners, colorants, other additives discussed herein, and additional beneficial agents. Admixture can generally be carried out at room temperature and ambient humidity, unless a particular beneficial agent or other component of the lozenge requires a protected environment, a lower temperature, or lower humidity. Using the appropriate weight ratio of the hydrophilic polymer to the flavoring agent as discussed supra, admixture of the components results in a pliable wet matrix that can be formed into a roll or sheet. After allowing the composition to set, typically over a 24-hour period, the lozenges are then created by cutting of the roll or die cutting of the sheet.
  • the mixture of the components is compressed to form lozenges.
  • the mixture can be compressed in a two-part lozenge-shaped mold, wherein after the mixture is added to a recess within the lower half of the mold, the upper half is aligned therewith and pressure is applied to compress the mixture.
  • Compressed lozenges can be made so as to remain intact within the mouth for extended time periods, on the order of five hours or more. It will be appreciated, however, that the present process can be tailored to provide compressed lozenges that degrade more quickly, for example by varying the proportion of flavoring agent(s) and/or excipients.
  • a somewhat tacky lozenge e.g., a dosage form that adheres to the buccal mucosa for delivery of a beneficial agent
  • a lower molecular weight hydrophilic polymer is used to impart adhesive strength to the lozenge by virtue of the tacky surface provided.
  • one or more adhesive polymers can be incorporated into the lozenge formulation to provide the desired degree of adhesion, as described elsewhere herein.
  • Chewing gums may be prepared by first formulating the wet matrix as described above, i.e., by admixing the hydrophilic polymer and the flavoring agent. Then, the matrix, along with any additional components, e.g., sweeteners, colorants, or other additives, is admixed with a selected chewing gum base as described earlier herein. Mixing may be effected using any suitable mixing device, e.g., a ribbon blender. The resultant chewing gum is then manufactured into strips or tablets of a desired size.
  • any suitable mixing device e.g., a ribbon blender.
  • the dosage forms so prepared are individually packaged in a manner that promotes shelf life and maximizes the stability of the flavoring agent. These requirements translate into a package design in which both the air space and exposed surface area of the lozenge are minimized, and in which the packaging material used has very low permeability to vapor.
  • the packaging material should be in contact with at least 85% of the surface of the lozenge to minimize loss of flavor, and packaging materials that do not transmit organic vapors are optimal.
  • polyolefinic materials such as poly(vinylidene chloride), polyethylene (including low density and higher density polyethylenes), polypropylene, and copolymers thereof represent suitable packaging materials.
  • the dosage forms of the invention may be prepared in any number of shapes and sizes, and the invention is not limited in this regard. Different shapes and sizes may be desirable for different applications. Typical dimensions, however, are on the order of 0.4′′ ⁇ 0.5′′ ⁇ 0.2′′ for lozenges, while lozenge weight is generally in the range of about 0.4 to 0.8 g. For chewing gums, the dimensions will generally be somewhat different, insofar as flat, elongated strips and/or larger tablets are often preferred.
  • Lozenges were prepared by mixing 0.4 g ETHOCEL® Standard 45 Premium (obtained from The Dow Chemical Company, Midland, Mich.), 0.38 g peppermint oil, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was allowed to set for 24 hours in the form of a sheet, and lozenges were then cut therefrom. The lozenges were soft, pliable, and nontacky, and provided sustained release of the peppermint flavor for approximately 4 hours.
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.075 g zinc acetate, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. Using the alkaline Zincon reagent to assay for zinc, release curves were generated when zinc lozenges were placed in 100 ml of water at room temperature. At 24 hours, about 21% of the zinc was released. In the oral environment of a human test subject, after 1 hour in the mouth, the lozenge was tested for remaining zinc and it was found that 40% of the zinc had been released with 60% still remaining in the lozenge.
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.075 g zinc chloride, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. Using the alkaline Zincon reagent to assay for zinc, release curves were generated when zinc lozenges were placed in 100 ml of water at room temperature. At 24 hours, about 37% of the zinc was released.
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.075 g zinc citrate, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. Using the alkaline Zincon reagent to assay for zinc, release curves were generated when zinc lozenges were placed in 100 ml of water at room temperature. At 24 hours, about 3% of the zinc was released. In the oral environment of a human test subject, after 1 hour in the mouth, the lozenge was tested for remaining zinc and it was found that 10% of the zinc had been released with 90% still remaining in the lozenge.
  • Lozenges were prepared according to the above table by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.416 g peppermint oil, 0.2 g zinc gluconate, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 2 lozenges each weighing 0.57 g were cut. Using the alkaline Zincon reagent to assay for zinc, release curves were generated when zinc lozenges were placed in 100 ml of water at room temperature. At 10.5 hours, about 83% of the zinc was released. In the oral environment of a human test subject, after 1 hour in the mouth, the lozenge was tested for remaining zinc and it was found that 32% of the zinc had been released with 70% still remaining in the lozenge.
  • Example 5 The procedure of Example 5 was repeated to provide the zinc gluconate lozenge as indicated in the above table. As may be seen, the total weight of zinc gluconate in this lozenge was twice that of the lozenge of Example 5, and the wt. percent here is 29.1, as opposed to 17.0 in the preceding example. Here, the total amount of zinc released at any given time point was greater than that observed with the lozenge of Example 5, and the overall release rate was somewhat increased.
  • Example 5 The procedure of Example 5 was repeated to provide the vitamin C/zinc gluconate lozenge as indicated in the above table.
  • the combined weight of the active agents (vitamin C and zinc gluconate) was 0.32 g, representing 23 wt. % of the lozenge.
  • the total amount of zinc and vitamin C released at each time point was greater than that observed with the lozenge of Example 5, and the overall release rate was approximately somewhat less than that observed with the lozenge of Example 6.
  • vitamin C is water soluble and is continuously eliminated in the urine after ingestion, a long-lasting lozenge releasing vitamin C over a period of at least an hour is desirable.
  • the vitamin C lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.45 g lime oil, 0.30 g ascorbic acid, and 0.10 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. In the oral environment of a human test subject, the lozenges released flavor and thus the vitamin C for over a two-hour period.
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.10 g menthol, and 0.20 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. In the oral environment of a human test subject, the lozenges lasted two hours, with good peppermint and menthol taste throughout the time period, with the menthol producing an anesthetic effect.
  • Lozenges were prepared according to the method of Example 8, except that the level of menthol was increased to 0.2 g. The anesthetizing effect was found to be stronger with the increased quantity of menthol.
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.10 g benzocaine, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. In the oral environment of a human test subject, the numbing effect of the benzocaine was experienced for over two hours.
  • lozenge formulations were prepared with methylene blue used as the beneficial agent.
  • Formulation 1 Standard formulation, used as control
  • Zinc gluconate formations were prepared to evaluate the effect of the amount of zinc in the dosage from on the rate at which zinc is released therefrom.
  • the two formulations were as follows: Formulation 7-0.2 g zinc gluconate, 0.4 g Ethocel 45, 0.16 g sucralose, 0.5 ml peppermint oil; Formulation 8-0.4 g zinc gluconate, 0.4 g Ethocel 45, 0.16 g sucralose, 0.5 ml peppermint. % Release of Zn from % Release of Zn from Time (hr) Formulation 7 Formulation 8 0.5 11 14 1 14 19 2 17 31 10 83 100
  • a lozenge was prepared as described in Example 1 containing 0.1 g of Ethocel 7 and 5 drops of peppermint oil.
  • the amount of peppermint released over time was as follows: Time (hr) % Release 0.5 9.7 1 13.4 2 20.7 3 26 4 34 15 64 24 81

Abstract

Flavored dosage forms, e.g., lozenges and gums, are provided for sustained release of a flavoring agent in the mouth. The dosage forms provide sustained release by virtue of a wet matrix formed by admixture of a biocompatible, hydrophilic, water-insoluble polymer such as ethylcellulose and a flavoring agent, particularly an essential oil or a constituent thereof, e.g., a terpene or sesquiterpene. The dosage forms may also include a second beneficial agent in addition to the flavoring agent. Exemplary such beneficial agents include ionizable zinc compounds and other cold remedies, local anesthetic and anti-infective agents, diet aids, fluoride-releasing compounds, and nicotine. The dosage forms, when formulated as lozenges, may be somewhat adhesive or substantially nontacky, depending primarily on the molecular weight of the hydrophilic polymer. Adhesive lozenges can serve as dosage forms that adhere to the teeth or gums for delivery of a beneficial agent thereto. Methods for using the dosage forms to provide sustained release of a flavoring agent and optionally deliver a second beneficial agent are also provided, as are methods for treating the common cold, treating a sore throat, facilitating weight loss, and assisting in smoking cessation.

Description

    TECHNICAL FIELD
  • This invention relates generally to sustained release dosage forms, and more particularly relates to dosage forms that provide for sustained release of a flavoring agent over an extended time period. The invention additionally relates to such dosage forms that provide for sustained release of a beneficial agent in addition to a flavoring agent over the extended time period, and to various methods of use, including treatment of halitosis, treatment of the common cold, appetite suppression, and a method of achieving smoking cessation. [0001]
  • BACKGROUND
  • Systems that provide for sustained release of chemical compounds are useful in a host of contexts. Of particular interest herein are sustained release systems for providing gradual release of a beneficial pharmaceutical or other agent in the aqueous environment of the human body, specifically the mouth. The difficulty in achieving optimal sustained release systems for extended delivery of a beneficial agent in the mouth is that most such systems, e.g., lozenges, last for only a matter of minutes. For example, halitosis—commonly known as bad breath—is often treated with flavored lozenges and gums. Flavored lozenges and gums have also been used to deliver a pharmacologically active agent. For example, nicotine gums for assisting in smoking cessation are known and have been commercially available for some time. Most flavored lozenges, however, dissolve in several minutes or less, and therefore provide only a very short-term effect. Similarly, most gums tend to release substantially all of a beneficial agent (e.g., a flavoring agent or a pharmacologically active agent such as nicotine) in well under half an hour. Dosage forms for sustained release of beneficial agents in the mouth can be problematic in other respects as well. For example, commercially available zinc lozenges for treating the common cold tend to dissolve or degrade in well under 15 minutes, and, to the best of applicants' knowledge, no zinc lozenge has been disclosed as providing sustained release of zinc for over 40 minutes. Ideally, effective antiviral pharmacotherapy would involve a far longer time period during which the active agent is released from the lozenge. [0002]
  • Various materials and methods are used in the preparation of sustained release delivery systems. Often, sustained release is achieved by coating a dosage form such as a tablet or drug-containing core with a layer of a polymeric material that gradually hydrolyzes or erodes to release the beneficial agent within. Sustained release has also been achieved by granulating tablet materials with such a polymeric material. For instance, pharmaceutical grade ETHOCEL® brand ethylcellulose, available from the Dow Chemical Company (Midland, Mich.), is primarily used in the pharmaceutical industry to coat tablets and capsules, as granulation binders, and as binders in the direct compression of tablets. To date, however, neither ethylcellulose nor any other water-insoluble hydrophilic polymer as been used to provide a sustained release flavored dosage form as now disclosed. [0003]
  • There is, accordingly, a need in the art for a dosage form and method that achieve release of a beneficial agent in an aqueous environment, particularly in the mouth, over a sustained time period, preferably on the order of an hour or more. An ideal system would be a pleasantly flavored lozenge or gum that is comfortable to retain in the mouth for an extended period of time, provides effecting taste-masking of any bitter-tasting or otherwise unpleasant-tasting beneficial agents or excipients, can be easily manufactured, and can be used to deliver a wide variety of beneficial agents in the mouth. In addition, it would be optimal if the components of the composition could be varied only slightly to provide significant changes in properties and methods of use, e.g., to provide a non-adhesive lozenge or a relatively tacky dosage form that can adhere to the gum or teeth. [0004]
  • SUMMARY OF THE INVENTION
  • It is therefore a primary object of the invention to address the above-described need in the art by providing a dosage form and method that achieve sustained release of a beneficial agent in an aqueous environment such as the mouth for an extended time period. [0005]
  • In one embodiment, then, a flavored lozenge is provided that is composed of a sustained release wet matrix of ethylcellulose and a flavoring agent selected from essential oils, constituents of essential oils (e.g., terpenes and sesquiterpenes), and mixtures thereof. In an aqueous environment, particularly in the mouth, the matrix gradually releases the flavoring agent over a time period of at least 45 minutes and optimally up to four hours or more. Surprisingly, it has been found that the admixture of ethylcellulose with an essential oil, an individual terpene, or an individual sesquiterpene results in a wet matrix that provides for highly effective sustained release of an agent contained therein. [0006]
  • In another embodiment, a flavored lozenge is provided that is composed of at least one biocompatible, water-insoluble, hydrophilic polymer and a flavoring agent effective to provide a sustained release wet matrix upon admixture with the polymer(s), wherein the flavoring agent is as described above, i.e., selected from essential oils, constituents of essential oils, and mixtures thereof. In this embodiment, a preferred polymer is a polymer of lactic acid, in which case a water-soluble cellulosic polymer is preferably incorporated that provides the desired sustained release properties. The lactic acid polymer is either a poly(lactic acid) homopolymer or a copolymer of lactic acid, e.g., poly(lactide-co-glycolide). Here as well, the lozenge provides for sustained release of the flavoring agent in the mouth over a time period of at least 45 minutes. [0007]
  • In either embodiment, at least one beneficial agent may be incorporated into the lozenge in addition to the flavoring agent, and the lozenge provides for sustained release of the beneficial agent as well. The lozenges are not limited with respect to the beneficial agent, except that the agent should be pharmaceutically acceptable and inert with respect to other components of the composition. Exemplary beneficial agents, however, include cold remedies, agents for combating halitosis, local anesthetics and anti-infective agents, diet aids, fluoride-releasing compounds and other agents exhibiting utility in the dental context, and nicotine. Zinc lozenges, for instance, are representative of those lozenges of the invention that can be used to treat colds and halitosis. [0008]
  • In an additional embodiment of the invention, the sustained release wet matrix of the biocompatible, water-insoluble, hydrophilic polymer and the flavoring agent is incorporated into a chewing gum base, such that the dosage form is a chewing gum that provides for sustained release of the flavoring agent. In addition to the flavoring agent within the wet matrix, one or more additional beneficial agents may, if desired, be incorporated into the chewing gum as well. [0009]
  • By varying the molecular weight of the hydrophilic polymer, and/or by incorporating an ingestible solvent such as ethanol or ethyl lactate, the lozenge may be rendered either adhesive or nonadhesive. That is, a lower molecular weight polymer will give rise to a sticky, pliable lozenge that can adhere to the gum, teeth, or dental appliance, while a higher molecular weight hydrophilic polymer will give rise to a soft, rubbery lozenge that is substantially nontacky. Incorporation of an ingestible solvent such as ethanol or ethyl lactate can further increase adhesion. [0010]
  • Methods are also provided for using the presently disclosed dosage forms in the administration of beneficial agents to the mouth of an individual, preferably a human individual. Administration may be local, such that the beneficial agent exhibits its desired effect within the oral cavity. Administration may also be systemic, in which case delivery of the beneficial agent is transmucosal, i.e., the beneficial agent passes through the mucosal lining of the oral cavity and into the bloodstream, such that the beneficial agent then exhibits its desired effect systemically. In one embodiment, the method provides for sustained release of a flavoring agent in the mouth, e.g., in the treatment of halitosis. In other specific embodiments, the following methods are provided: [0011]
  • a method for treating the common cold by administering to an individual in need of such treatment a flavored dosage form comprising an admixture of ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, an ionizable zinc compound, a sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1; [0012]
  • a method for treating a sore throat, comprising administering to an individual in need of such treatment a flavored dosage form comprising an admixture of ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, a local anesthetic agent, and a sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1; [0013]
  • a method for facilitating weight loss, comprising administering to an individual in need of such treatment a flavored dosage form comprising an admixture of ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, a diet aid, and a non-sugar sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1; and [0014]
  • a method for assisting an individual in quitting smoking, comprising administering to an individual in need of such treatment a flavored dosage form comprising an admixture of ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, nicotine, and a sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1. [0015]
  • The lozenges of the invention are not only pleasantly flavored but also comfortable to retain in the mouth for an extended period of time, primarily by virtue of their small size and soft, rubbery consistency. Sustained release of a powerful flavoring agent within the lozenge provides for extremely effective taste-masking, and the lozenges can therefore be used to deliver a host of beneficial agents whose bitter or otherwise unpleasant taste has prevented administration in lozenge form. [0016]
  • In a further embodiment, a flavored dosage form is provided for delivering a beneficial agent to a mucosal surface within the mouth, the dosage form having at least one adhesive surface that serves to adhere the dosage form to the mucosal surface, and comprising ethylcellulose having a solution viscosity in the range of approximately 6 to 15 cP as determined at 25° C. using a 5 wt. % aqueous solution, a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes, a beneficial agent, and a sweetening agent, wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1. The beneficial agent may be, for example, an anti-infective agent, a local anesthetic agent, or a local anti-inflammatory agent. The invention additionally encompasses a method for using the flavored dosage form to release the beneficial agent to the mucosal surface over an extended time period.[0017]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Definitions, Nomenclature, and Overview: [0018]
  • Unless otherwise indicated, the invention is not limited to specific lozenge compositions, formulation components, or methods of manufacture, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. [0019]
  • As used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a polymer” includes a single polymer as well as two or more polymers in combination, reference to “a flavoring agent” or “a colorant” encompasses a combination or mixture of different flavoring agents or colorants as well as a single flavoring agent or colorant, and the like. [0020]
  • In this specification and in the claims that follow, reference will be made to a number of terms, which shall be defined to have the following meanings: [0021]
  • “Optional” or “optionally present”—as in an “optional additive” or an “optionally present additive” means that the subsequently described component (e.g., additive) may or may not be present, so that the description includes instances where the component is present and instances where it is not. [0022]
  • By “pharmaceutically acceptable” is meant a material that is not biologically or otherwise undesirable, i.e., the material may be incorporated into a lozenge of the invention without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the lozenge formulation. The term “biocompatible” is used interchangeably with the term “pharmaceutically acceptable.” When the term “pharmaceutically acceptable” is used to refer to a pharmaceutical excipient, it is implied that the excipient has met the required standards of toxicological and manufacturing testing and/or that it is included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug Administration. [0023]
  • The terms “treating” and “treatment” as used herein refer to reduction in severity and/or frequency of symptoms, elimination of symptoms and/or underlying cause, prevention of the occurrence of symptoms and/or their underlying cause, and improvement or remediation of damage. Thus, for example, “treating” a patient involves prevention of an adverse physiological condition in a susceptible individual as well as treatment of a clinically symptomatic individual by inhibiting or causing regression of the condition. [0024]
  • The term “beneficial agent” refers to any chemical compound, complex or composition that exhibits a beneficial effect, e.g., a therapeutic effect in the treatment of an adverse physiological condition. The term also encompasses pharmaceutically acceptable derivatives of those beneficial agents specifically mentioned herein, including, but not limited to, salts, esters, amides, prodrugs, active metabolites, isomers, analogs, and the like. When the term “beneficial agent” is used, then, or when a particular beneficial agent is specifically identified, it is to be understood that pharmaceutically acceptable, pharmacologically active salts, esters, amides, prodrugs, active metabolites, isomers, analogs, etc. of the beneficial agent are intended as well as the beneficial agent per se. [0025]
  • By an “effective” amount or a “therapeutically effective amount” of a beneficial agent is meant a nontoxic but sufficient amount of the agent to provide the desired effect. The amount of beneficial agent that is “effective” will vary from subject to subject, depending on the age and general condition of the individual, the particular active agent or agents, and the like. Thus, it is not always possible to specify an exact “effective amount.” However, an appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation [0026]
  • The terms “hydrophilic” and “hydrophobic” are generally defined in terms of a partition coefficient P, which is the ratio of the equilibrium concentration of a compound in an organic phase to that in an aqueous phase. A hydrophilic compound has a P value less than 1.0, typically less than about 0.5, where P is the partition coefficient of the compound between octanol and water, while hydrophobic compounds will generally have a P greater than about 1.0, typically greater than about 5.0. [0027]
  • The term “water-insoluble” refers to a compound or composition whose solubility in water is less than 5 wt. %, preferably less than 3 wt. %, more preferably less than 1 wt. %, while the term “water-soluble” refers to a compound or composition whose solubility in water is greater than or equal to 5 wt. %, preferably greater than 10 wt. %, more preferably greater than 15 wt. % (measured in water at 20° C.). [0028]
  • Accordingly, the invention provides flavored dosage forms for release of a flavoring agent in the mouth, preferably sustained release over an extended time period. In one embodiment, the dosage form is a flavored lozenge that comprises a sustained release wet matrix of a biocompatible, water-insoluble hydrophilic polymer, e.g., ethylcellulose, a flavoring agent selected from essential oils, constituents of essential oils, and mixtures thereof, and, optionally, one or more additional beneficial agents, wherein, in an aqueous environment, the matrix gradually releases the flavoring agent and any other beneficial agent therein over a time period of at least 45 minutes, i.e., the length of time that an individually normally retains a lozenge in the mouth, but the lozenge is capable of providing sustained release over a time period of at least one, two, three, or even four or more hours. The lozenges of the invention do not dissolve within the mouth, but rather remain intact until removed by the user and/or until a substantial fraction of the flavoring agent has been released. In the latter case, release of a substantial fraction of the flavoring agent results in degradation of the wet matrix into small fragments that may or may not be swallowed, insofar as the entire dosage form is composed of biocompatible, nontoxic components. [0029]
  • The dosage form may also be a chewing gum composed of the aforementioned sustained release wet matrix and a gum base, wherein the gum base represents on the order of 5 wt. % to 90 wt. %, preferably about 5 wt. % to 50 wt. % of the gum. Any conventional gum base may be used, so long as there is no deleterious interaction between the gum base and the flavoring agent, the biocompatible polymer, or other components of the chewing gum. Typical gum bases include, by way of example, elastomers, elastomer plasticizers, waxes, fats, oils, softeners, emulsifiers, fillers, texturizers, and miscellaneous ingredients such as preservatives, colorants, whiteners, and the like. Most gum bases will include at least one elastomer, e.g., a synthetic elastomer such as polyisobutylene, polybutadiene, isobutylene-isoprene copolymer, styrene-butadiene copolymer, polyvinyl acetate, ethylene vinyl acetate, or polyvinyl alcohol, or a natural elastomer, including natural rubbers as well as natural gums (e.g., chicle). Typically, although not necessarily, the gum will be in the form of a tablet coated with a layer of a quickly dissolving colored or whitened film that provides a desirable appearance and smooth texture. Such film coatings are generally comprised of natural and/or synthetic hydrophilic polymers such as cellulosics, polyethylene glycol, and the like. [0030]
  • The length of time that the lozenge or gum can remain in the mouth and provide sustained release is controlled in part by the appropriate selection of hydrophilic polymer and flavoring agent, and in part by the relative amounts of the hydrophilic polymer and the flavoring agent. In general, the weight ratio of the hydrophilic polymer to the flavoring agent should be in the range of approximately 1:2 to 2:1, preferably in the range of approximately 1:1.5 to 1.5:1, and optimally in the range of approximately 1:1.2 to 1.2:1. A ratio of flavoring agent to polymer that is greater than 2:1 will tend to provide a matrix that may be too sticky for some of the present purposes, while a ratio of less than 1:2 may result in a composition that is not sufficiently cohesive to provide the desired matrix. The aforementioned ratios are not intended to be limiting, however, and ratios outside of the recited ranges may be desirable to provide a different type of composition, e.g., compositions having a particularly soft consistency or a tendency to degrade more quickly. [0031]
  • Otherwise, the fraction of each component in the dosage form is not particularly important, although, typically, in a lozenge, the hydrophilic polymer and the flavoring agent each represents approximately 25-49.5 wt. % of the lozenge, and optional additives, e.g., added beneficial agents, sweeteners, and excipients typically represent about 1-50 wt. %, preferably about 1-45 wt. %, of the lozenge. [0032]
  • As may be surmised from the above description, the dosage forms of the invention are useful for the delivery of a beneficial agent to the teeth or a mucosal surface within the oral cavity. Delivery to a mucosal surface within the oral cavity may be used within the context of systemic drug administration, in which case the beneficial agent is actually delivered transmucosally, e.g., through the buccal mucosa of the gums. In this embodiment, the dosage form is composed of a wet matrix as described above with regard to sustained release lozenges, but is formulated so as to have a surface that is sufficiently tacky to enable the dosage form to adhere to the teeth or a mucosal surface within the mouth. This may be accomplished by using a relatively low molecular weight biocompatible polymer, as discussed infra, and/or by incorporating one or more adhesive polymers that are conventionally used in buccal drug delivery systems, e.g., polyisobutylene, polyisoprene, acrylic acid polymers and copolymers (e.g., those known as “carbomers,” polyalkylene oxides (e.g., polyethylene glycol and copolymers thereof), polyvinyl lactams (e.g., polyvinyl pyrrolidone), and cellulosic materials (e.g., hydroxypropylmethyl cellulose). Preferably, the dosage form is made adhesive by using a lower molecular weight hydrophilic polymer rather than by incorporation of additional polymers not contained within the wet matrix. When the dosage forms of the invention serve as transmucosal delivery systems, various carriers and additives may be incorporated as is well known in the art of transmucosal (e.g., buccal) drug delivery. Typical additives include permeation enhancers such as polyethylene glycol esters, long-chain fatty acid esters of diols and triols (e.g., glycerol monolaurate, propylene glycol monolaurate), lower alkanols, and the like. [0033]
  • The Hydrophilic Polymer: [0034]
  • The hydrophilic polymer is both water-insoluble and biocompatible as those terms are defined herein. That is, the polymer component of the dosage form has: an octanol-water partition coefficient P of less than 1.0, preferably less than 0.5; a solubility in water of less than 5 wt. %, preferably less than 3 wt. %, most preferably less than 1 wt. % at 0° C.; and does not give rise to undesirable biological effects or interact in an adverse manner with any of the other components of the dosage form. When the dosage form is a lozenge, varying the molecular weight or viscosity of the polymer can impart certain properties to the dosage form. More specifically, a lower molecular weight polymer (e.g., ethylcellulose having a solution viscosity of about 6 to 15 cP) can give rise to a pliable, sticky lozenge, as alluded to in the preceding section, while a higher molecular weight polymer can provide a soft, rubbery, and nontacky lozenge. [0035]
  • For the present purpose, an exemplary cellulosic polymer is ethylcellulose. The ethylcellulose should have a solution viscosity in the range of approximately 1 to 120 cP, with a preferred solution viscosity in the range of approximately 3 to 100 cP, and a most preferred solution viscosity in the range of approximately 6 to 49 cP. The ethoxyl content is typically in the range of about 45.0% to 52.0%, preferably in the range of about 48.0-49.5%. Suitable ethylcellulose polymers that are available commercially include, without limitation, those that may be obtained from the Dow Chemical Company (Midland, Mich.) as ETHOCEL® ethylcellulose, e.g., ETHOCEL® Standard 4 Premium (solution viscosity range approximately 3 to 5.5 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 7 Premium (solution viscosity range approximately 6 to 8 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 10 Premium (solution viscosity range approximately 9 to 11 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 14 Premium (solution viscosity range approximately 12.6 to 15.4 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 20 Premium (solution viscosity range approximately 18 to 22 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 45 Premium (solution viscosity range approximately 41 to 49 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Standard 100 Premium (solution viscosity range approximately 90 to 110 cP, ethoxyl content 48.0-49.5%), ETHOCEL® Medium 50 (solution viscosity range approximately 43 to 55 cP, ethoxyl content 45.0-47.0%), ETHOCEL® Medium 70 (solution viscosity range approximately 63 to 85 cP, ethoxyl content 45.0-47.0%), ETHOCEL® Medium 100 (solution viscosity range approximately 90 to 110 cP, ethoxyl content 45.0-47.0%), and ETHOCEL® HE 10 (solution viscosity range approximately 9 to 11 cP, ethoxyl content 49.5-52.0%), with all solution viscosities determined using an Ubbelohde viscometer and a solvent mixture of 80% toluene and 20% alcohol. [0036]
  • Other suitable biocompatible polymers are lactic acid polymers. The lactic acid polymer may be a homopolymer or a copolymer, if a copolymer, typically a copolymer with glycolic acid, also termed “poly(lactide-co-glycolide.” The lactic acid in these polymers may be in enantiomerically pure form, as D-lactic acid or L-lactic acid, or it may be in the form of a racemic mixture of the two enantiomers. Accordingly, these polymers include poly(D,L-lactic acid), poly(D-lactic acid), poly(L-lactic acid), poly(D,L-lactide-co-glycolide), poly(D-lactide-co-glycolide), and poly(L-lactide-co-glycolide). Suitable lactic acid polymers and copolymers will generally have a number average molecular weight M[0037] n in the range of approximately 10,000 to 125,000. With poly(lactide-co-glycolide) polymers, the amount of glycolic acid in the copolymer should not exceed 50 mole %. Any poly(lactide-co-glycolide) selected as the hydrophilic polymer will typically contain approximately 1 mole % to 50 mole %, preferably approximately 15 mole % to 50 mole %, and most preferably approximately 15 mole % to 35 mole %, glycolic acid. The cellulosic polymer can be any such polymer capable of rendering the lactic acid polymer suitable for sustained release in the context of the invention.
  • In this embodiment, when the hydrophilic polymer is a lactic acid polymer, a release rate accelerator should be used. Suitable release rate accelerators, as discussed infra, include water-soluble cellulosic polymers such as methylcellulose (MC), hydroxypropyl cellulose (HPC), and hydroxypropyl methylcellulose (HPMC), and ingestible organic solvents such as ethyl acetate and ethanol. The weight ratio of release rate accelerator to the lactic acid polymer is generally in the range of about 0.05:1 to 0.5:1, typically about 0.1:1 to 0.5:1. If desired, release rate modifiers such as these may also be used in conjunction with ethylcellulose, in order to adjust the duration of the time period over which the flavoring agent and optionally other agent(s) are released. [0038]
  • The Flavoring Agent: [0039]
  • A wide range of flavoring agents is available and may be used as a component of the wet matrix in the dosage forms described herein. Flavoring agents may be combined, if desired, to produce a particular flavor mix. Preferred flavoring agents are those that upon admixture with the hydrophilic polymer result in a wet matrix that, in an aqueous environment (e.g., in the mouth) gradually releases the flavoring agent and any other incorporated component. By a “wet” matrix is meant a matrix that contains a liquid phase that represents a sufficiently large fraction of the matrix to provide a discernibly wet or sticky surface, and/or a soft and rubbery consistency. Ideal flavoring agents in this regard are pharmaceutically acceptable essential oils and chemical constituents of essential oils that can impart a desired flavor. Essential oils, as known in the art, are naturally occurring compounds or compositions that accumulate in the oil cells, glandular trichomes, and oil or resin ducts of aromatic plants. [0040]
  • Essential oils that can be incorporated into the present flavored dosage forms as suitable flavoring agents include, without limitation, citrus oils such as lemon oil, lime oil, neroli oil, and orange oil, mint oils such as peppermint oil and spearmint oil, and other oils such as anise oil, cardamom oil, cinnamon oil, clove oil, coriander oil, eriodictyon fluidextract, eucalyptus oil, fennel oil, glycyrrhiza extract, lemongrass oil, and nutmeg oil. The citrus and mint oils are generally preferred. [0041]
  • As is widely appreciated in the art, essential oils contain a number of constituents, many of which can by themselves serve as flavoring agents. Of these, the most well-known essential oil constituents that are widely used as flavoring agents are hydrocarbons, particularly terpenes and sesquiterpenes. “Terpenes” generally refer to hydrocarbons of the formula C[0042] 10H16, and, as the term is used herein, also encompass terpene analogs of the formula CnH2n-4, as well as terpenes and terpene analogs substituted with one or more nonhydrogen substituents and/or containing a heteroatom such as N, O, or S. Analogously, “sesquiterpenes” generally refer to hydrocarbons of the formula C15H24, but for the purpose of the present invention also encompass sesquiterpene analogs of the formula CnH2n-6 as well as substituted and/or heteroatom-containing derivatives thereof.
  • It will be appreciated from the foregoing definitions that terpenes and sesquiterpenes can have any number of molecular structures, including acyclic, monocyclic, bicyclic, and polycyclic structures, wherein the bicyclic and polycyclic structures may or may not be “bridged” bicyclic and polycyclic compounds. In general, however, the terpenes that are more commonly used as flavoring agents contain two double bonds and one cyclic group (e.g., β-phellandrene) or one double bond and two cyclic groups in a bridged bicyclic structure (e.g., β-pinene). Specific examples of terpenes and sesquiterpenes that can be advantageously used as flavoring agents herein include: the terpenes d,l-camphene, d-camphene, l-camphene, Δ[0043] 3-carene, trans-β-ocimene, cis-β-ocimene, trans-α-ocimene, cis-α-ocimene, β-pinene, β-phellandrene, α-terpinene, β-terpinene, and γ-terpinene; and the sesquiterpenes α-cadinene, β-cadinene, α-caryophyllene, copaene, β-famesene, isocaryophyllene, and ylangene.
  • In addition to the terpenes and sesquiterpenes, essential oils contain a number of other types of constituents that may also serve as flavoring agents, either individually or in combination. These include, by way of example: [0044]
  • organic acids such as p-anisic acid, cinnamic acid, and phenylacetic acid; [0045]
  • alcohols, including phenols, such as d,l-borneol, d-borneol, l-bomeol, carvacrol, chavicol, cinnamyl alcohol, linalool, menthol, nerolidol, nerol, d,l-α-terpineol, d-α-terpineol, l-α-terpineol, and thymol; [0046]
  • aldehydes such as acetaldehyde, anisaldehyde, cinnamaldehyde, benzaldehyde, citral, isovaleric aldehyde, piperonal, salicylaldehyde, valeric aldehyde, and vanillin; [0047]
  • ketones such as carvone, jasmone, menthone, and piperitone; [0048]
  • esters such as amyl acetate, bomyl acetate, benzyl benzoate, butyl cinnamate, cinnamyl anthranilate, geranyl acetate, linalyl acetate, menthyl acetate, menthyl isovalerate, and methyl salicylate; and [0049]
  • phenol ethers such as anethole, eugenol, safrol, and estragole. [0050]
  • The choice of flavoring agent will depend, in part, upon the intended use of the dosage form. In the treatment of halitosis, for example, mint oils such as peppermint oil and spearmint oil are generally preferred. As another example, dosage forms designed as diet aids may contain food flavors (e.g., citrus oils or the like) so as to satisfy the need for the taste of food in the mouth. [0051]
  • Sweeteners, Colorants, and Other Additives: [0052]
  • In order to enhance the taste of the dosage form, at least one sweetener is preferably incorporated into the formulation. The sweetener may be a sugar, e.g., sucrose, fructose, or dextrose, or, more preferably, a non-sugar sweetening agent to reduce both caloric intake and the likelihood of dental caries. Sweeteners falling within the latter group include many well known artificial sweetening agents, such as, for instance, aspartame, saccharin, saccharin salts (e.g., sodium saccharin, calcium saccharin), sucralose, acesulfame-K (potassium acetosulfam), sorbitol, xylitol, stevioside, steviol, mannitol, erythritol, lactitol, alitame, miraculin, monellin, and thaumatin. In lozenges of the invention, the sweetener is generally incorporated within the wet matrix, i.e., physically entrapped therein, while when the dosage form is a gum, this is not generally the case. That is, with gums, although the sweetener and the wet matrix may be intimately mixed, the sweetener is not entrapped within the gum (although this tends to result in quicker release of the sweetener from a gum than a lozenge, the release of the flavoring agent is gradual in all dosage forms of the invention). [0053]
  • The dosage form optionally contains a colorant and/or other conventional additives as well. With respect to colorants, some essential oils are already colored and the color so provided may be acceptable. For example, peppermint oil imparts a yellow color, while cinnamon oil imparts a brown color. [0054]
  • Without an added colorant, and in the absence of a colored flavoring agent, the lozenges and gums of the present invention will tend to be off-white or slightly darker, and may have some degree of translucence. Accordingly, a colorant must be added if a colored dosage form is desired. Suitable colorants include natural colorants, i.e., pigments and dyes obtained from mineral, plant, and animal sources. Examples of natural colorants include red ferric oxide, yellow ferric oxide, annattenes, alizarin, indigo, rutin, and quercetin. Synthetic colorants may also be used, and will typically be an FD&C or D&C dye, e.g., an approved dye selected from the so-called “coal-tar” dyes, such as a nitroso dye, a nitro dye, an azo dye, an oxazine, a thiazine, a pyrazolone, a xanthene, an indigoid, an anthraquinone, an acridine, a rosaniline, a phthalein, a quinoline, or a “lake” thereof, i.e., an aluminum or calcium salt thereof. Particularly preferred colorants are food colorants in the “GRAS” (Generally Regarded As Safe) category. [0055]
  • Other optional additives include, for example: [0056]
  • release rate modifiers, particularly release rate accelerants that also serve as softening agents, such as water-soluble polymers (e.g., MC, HPC, HPMC, etc.) and ingestible solvents (e.g., ethyl acetate, ethanol, glycerol, glycerol esters, etc.); [0057]
  • adhesion modifiers (including adhesion-increasing agents and adhesion-reducing agents) such as ingestible solvents (e.g., ethyl acetate and ethanol increase tack when admixed with ethylcellulose), mineral oil and vegetable oils (which tend to decrease tack when admixed with ethylcellulose), and additional polymers and polymer compositions, including polymers typically used to form hydrogels, e.g., ethylene vinyl acetate, polyvinyl alcohol, polyvinyl pyrrolidone, cellulose acetate, cellulose diacetate, and other cellulose esters, which may increase or decrease tack depending on the particular polymer or polymer composition; [0058]
  • flavor stabilizers (e.g., starches); [0059]
  • flavor diluents (e.g., ingestible solvents, as above); [0060]
  • pH-adjusting agents (e.g., acids, bases, buffer systems); [0061]
  • preservatives (e.g., antioxidants, antimicrobial agents, etc.); [0062]
  • lubricants; and [0063]
  • fillers (e.g., maltodextrin, microcrystalline cellulose, lactose, mannitol, etc.). It will be appreciated that certain compounds can serve at least one purpose; for example, an ingestible solvent can serve as both a release rate modifier and flavor diluent. [0064]
  • Other Beneficial Agents: [0065]
  • In addition to the flavoring agent, the dosage form may also include one or more beneficial agents that are released within the mouth. Lozenges of the invention will provide for sustained release of additional beneficial agents because the agents are incorporated within the wet matrix composed of the hydrophilic polymer and the flavoring agent. With gums, release of an added beneficial agent may or may not be gradual, since the added agent will generally not be incorporated into the aforementioned wet matrix; rather, the release profile will depend on factors such as the nature of the agent(s), the tendency of the agent to remain in the dosage form (i.e., the physical/chemical attraction of the agent to one or more components of the gum), and the presence of one or more sustained release polymers. [0066]
  • The beneficial agent may be administered to provide a local, topical effect, within the oral cavity (e.g., as a topical anti-infective or anesthetic), or to achieve a systemic effect by passing through the mucosal membranes within the oral cavity and into an individual's blood stream. The beneficial agents that may be delivered using the dosage forms of the invention are not limited, as the invention enables the effective delivery of a wide variety of beneficial agents. Therefore, the beneficial agent administered may be selected from any of the various classes of such agents including, but not limited to, analgesic agents, anesthetic agents (including local anesthetic agents for numbing a painful region within the mouth), anti-anginal agents, antiarthritic agents, anti-arrhythmic agents, antiasthmatic agents, anti-BPH agents, anticancer agents, anticholinergic agents, anticoagulants, anticonvulsants, antidepressants, antidiabetic agents, antidiarrheals, anti-epileptic agents, antifungal agents, antigout agents, antihelminthic agents, antihistamines, antihypertensive agents, antiinflammatory agents, antimalarial agents, antimicrobial agents (including local antibiotics for treatment of an infection of the gum or elsewhere within the oral cavity), antimigraine agents, antimuscarinic agents, antinauseants, antineoplastic agents, antiosteoporosis agents, antiparkinsonism agents, antiprotozoal agents, antipruritics, antipsychotic agents, antipyretics, antispasmodics, antithyroid agents, antitubercular agents, antiulcer agents, anti-urinary incontinence agents, antiviral agents, anxiolytics, attention deficit disorder (ADD) and attention deficit hyperactivity disorder (ADHD) drugs, calcium channel blockers, cardiac inotropic agents, beta-blockers, central nervous system stimulants, cognition enhancers, corticosteroids, COX-2 inhibitors, cough and cold preparations, diet aids, diuretics, gastrointestinal agents, genetic materials, histamine receptor antagonists, hormonolytics, hypnotics, hypoglycemic agents, immunosuppressants, keratolytics, leukotriene inhibitors, lipid-regulating agents, macrolides, mitotic inhibitors, muscle relaxants, narcotic antagonists, neuroleptic agents, nicotine, nutritional agents, such as vitamins, essential amino acids, and fatty acids; parasympatholytic agents, sedatives, sex hormones, sympathomimetic agents, tranquilizers, vasodilators, vitamins, and combinations thereof. [0067]
  • Any of the aforementioned active agents may also be administered in combination using the present formulations. Active agents administered in combination may be from the same therapeutic class (e.g., two different diet aids) or from different therapeutic classes (e.g., a decongestant and a vitamin). Some agents, as will be appreciated by those of ordinary skill in the art, are encompassed by two or more of the aforementioned groups. [0068]
  • The appropriate amount of any beneficial agent in the dosage form will depend on the particular agent and the intended daily dose, and presumes that one to six, generally two to four, dosage forms will be consumed on a daily basis. Unless explicitly indicated herein, it is to be understood that appropriate daily doses for the various agents will be known to those of ordinary skill in the art of pharmaceutical formulation and pharmacology and/or can be found in the pertinent texts and literature. [0069]
  • Beneficial agents of particular interest herein are cold remedies, agents for combating halitosis, local anesthetics and anti-infective agents, diet aids, fluoride-releasing compounds and other agents exhibiting utility in the dental context, and nicotine. [0070]
  • Cold remedies include, but are not limited to: sources of Zn[0071] 2+, i.e., ionizable zinc compounds; vitamins, including vitamin C optionally combined with one or more B vitamins; and herbal extracts such as echinacea and golden seal.
  • Ionizable zinc compounds are useful for reducing the duration and/or symptoms of common colds, managing upper respiratory allergy, as nutritional agents, and in treating halitosis, i.e., for reducing or eliminating bad breath. The ionizable zinc compound may be an inorganic or organic complex; examples of suitable complexes include zinc gluconate, acetate, chloride, propionate, butyrate, n-butyrate, beta-hydroxybutyrate, benzoate, formate, and sulfate, although zinc acetate and gluconate are generally preferred for reasons of stability, acidity in an aqueous environment (and thus potential toxicity), and suitability for sustained release in the present formulations. In this embodiment, lozenges are preferred to gums, so as to maximize the time period during which the zinc compound is released. The wet matrix of the present dosage forms, which provides for gradual release of a flavoring agent in the mouth, also serves to minimize the unpleasant, bitter taste of many zinc-containing compounds. In addition, conventional zinc lozenges last only minutes, so that the availability of zinc in the mouth is limited, which correspondingly limits the capability of the zinc to exert a maximal antiviral effect. Generally, the amount of ionic zinc (i.e., Zn[0072] 2+) in a dosage form of the invention is in the range of about 1 mg to about 50 mg, typically in the range of about 5 mg to about 40 mg, preferably in the range of about 15 mg to about 35 mg (these ranges correspond to about 12.8 mg to about 640 mg, typically about 64 mg to about 512, preferably about 192 mg to about 448 mg zinc gluconate, insofar as ionic zinc represents approximately 12.8 wt. % of zinc gluconate).
  • For the treatment of colds, combinations of ionizable zinc compounds with other cold remedies, e.g., vitamin C, herbal remedies, decongestants, etc., are particularly desirable. [0073]
  • In treatment of halitosis, the dosage forms do not require a beneficial agent, insofar as the flavoring agent itself reduces bad breath for extended time periods. Incorporation of an additional beneficial agent such as an ionizable zinc compound, however, can also serve to combat halitosis. While the flavoring agent masks the odor associated with halitosis, a zinc compound as discussed above, such as zinc acetate or zinc gluconate, acts in a different manner, by combining with the volatile sulfur compounds that produce halitosis. Other agents for reducing or eliminating halitosis can also be incorporated into the dosage form, and may or may not target a particular cause of the problem (e.g., infections of the mouth, nasal or sinus conditions, gastrointestinal disorders, diabetes, etc.). For example, anti-infective agents such as triclosan or phenol may be suitable. In contrast to breath mints and other breath fresheners known in the art, the present dosage forms, containing a flavoring agent and optionally one or more additional beneficial agents for treating halitosis, can reduce bad breath for up to several hours or more. With non-sugar sweeteners, the dosage form does not promote dental caries, while nevertheless retaining a pleasant, sweet taste for an extended time period. [0074]
  • In a related embodiment, the dosage forms may contain a local anesthetic agent to reduce sore throat pain, and/or a local anti-infective agent to eliminate any bacteria or virii associated with the sore throat. Local anesthetics include, for example, menthol, benzocaine, bupivacaine, butambenpicrate, chlorprocaine, cocaine, dibucaine, dimethisoquin, dyclonine, etidocaine, hexylcaine, hexylresorcinol, ketarine, lidocaine, mepivacaine, phenol, phenolate, pramoxine, procaine, ropavacaine, tetracaine, tripelennamine, xylocalne, and pharmaceutically acceptable salts thereof (e.g., dimethisoquin hydrochloride, pramoxine hydrochloride) while representative anti-infective agents include amylmetacresol, benzalkonium, cetylpyridinium, chlorhexidine, dequilinium, domiphen, dichlorobenzyl alcohol, phenol, and tyrothicin. Of course, a source of zinc ion such as zinc acetate or zinc gluconate can also be incorporated into a lozenge or gum for reducing sore throat pain, insofar as such compounds exhibit antiviral activity as noted above. It will be appreciated that these dosage forms are also useful in treating and/or reducing pain associated with local viruses of the mouth, which are often manifested as sores or lesions (e.g., those associated with herpes infection), or with various disorders of the tongue. [0075]
  • The dosage forms of the invention additionally exhibit utility in facilitating weight reduction, insofar as the sustained release of flavor mimics the taste of food in the mouth, particular when the flavoring agent is a food flavor, e.g., a citrus oil or the like. Incorporation of a diet aid, however, will increase the utility of the dosage forms in this regard. Diet aids include any agents that assist an individual to reduce the intake of food, regardless of mechanism. Therefore, diet aids for use herein may suppress appetite, give the feeling of “fullness,” and/or increase metabolism. While any diet aid may be administered to an individual using the present dosage forms, exemplary diet aids include 5-hydroxytryptophan, tyrosine, phenylalanine, pseudoephedrine, ephedrine, phenylpropanolamine, chromium picolinate, aspirin, benzocaine, carnitine, and caffeine. Certain herbal preparations, mixtures, and extracts are also suitable diet aids, and include, without limitation, guarana and ma huang. [0076]
  • In another embodiment, the beneficial agent is one that promotes healthy teeth and gums, or that exhibits other utility in the “dental” context. For instance, a fluoride-releasing dosage form may be prepared by incorporating a source of fluoride ion as a beneficial agent. Fluoride-releasing agents are well known and include sodium monofluorophosphate, sodium fluoride, and stannous fluoride. Fluoride-containing dosage forms preferably contain xylitol as a sweetener, as xylitol may potentiate the action of the fluoride. Also, a local anesthetic agent, as described above, can provide for desensitization within the mouth, to alleviate a toothache, pain associated with a condition or disorder of the gums, or the pain or discomfort that may follow a dental procedure. [0077]
  • Another beneficial agent is nicotine, which may be in the form of the free base or an acid addition salt thereof. As an aid to smoking cessation, nicotine has been incorporated into gums and other drug delivery systems in the form of the acid addition salt, in large part to offset the bitter and unpleasant taste of the free base. Because the flavored matrix of the present dosage forms provides for very effective taste-masking with respect to a wide variety of beneficial agents, however, nicotine can be incorporated and released as the free base. Since the base is more readily delivered across the mucosal membrane than the salt form of the drug, the invention enables delivery of a lower dose of nicotine, particularly when the dosage form is a lozenge. That is, a lozenge of the invention can contain less than about 5 mg of nicotine, typically 0.1 to 2 mg, preferably 0.25 to 1.5 mg, while nevertheless providing the desired therapeutic effect. With nicotine-containing dosage forms, it may be desirable to incorporate or disperse the nicotine in an excipient that reduces the volatility of the drug (e.g., mannitol, microcrystalline cellulose, colloidal silica), unless the nicotine is in the form of an acid addition salt. Also, a sweetener is virtually essential to provide taste-masking. While any of the above-mentioned sweeteners may be used, a particularly preferred sweetener in nicotine lozenges is sucralose. [0078]
  • While the above discussion refers to certain dosage forms of the invention as “lozenges,” it is to be understood that the term encompasses lozenge-type dosage forms having some degree of adhesion. Such dosage forms are generally substantially flat and adhere to the gum or teeth to deliver a beneficial agent, e.g., an anti-infective agent including any of the local anti-infective agents set forth above, a local anesthetic agent, including those exemplified previously, or an anti-inflammatory agent. Anti-inflammatory agents include NSAIDS (nonsteroidal anti-inflammatory agents) such as ketoprofen, flurbiprofen, ibuprofen, naproxen, fenoprofen, benoxaprofen, indoprofen, pirprofen, carprofen, oxaprozin, pranoprofen, suprofen, alminoprofen, butibufen, fenbufen and tiaprofenic acid; acetylsalicylic acid, apazone, diclofenac, difenpiramide, diflunisal, etodolac, flufenamic acid, indomethacin, ketorolac, meclofenamate, mefenamic acid, nabumetone, phenylbutazone, piroxicam, sulindac, and tolmetin, and corticosteroids such as hydrocortisone, hydrocortisone-21-monoesters (e.g., hydrocortisone-21-acetate, hydrocortisone-21-butyrate, hydrocortisone-21-propionate, hydrocortisone-21-valerate, etc.), hydrocortisone-17,21-diesters (e.g., hydrocortisone-17,21-diacetate, hydrocortisone-17-acetate-21-butyrate, hydrocortisone-17,21-dibutyrate, etc.), alclometasone, dexamethasone, flumethasone, prednisolone, methylprednisolone, clobetasol, betamethasone fluocinonide, mometasone, triamcinolone acetonide, and the like. [0079]
  • Any of the beneficial agents may be in the form of a salt, ester, amide, prodrug, active metabolite, isomer, analog, or the like, provided that the salt, ester, amide, prodrug, active metabolite, isomer, or analog is pharmaceutically acceptable and retains at least some degree of the desired activity. Salts, esters, amides, prodrugs, metabolites, analogs, and other derivatives of the beneficial agents herein may be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 4th Edition (New York: Wiley-Interscience, 1992). [0080]
  • For example, acid addition salts are prepared from a beneficial agent in the form of a free base using conventional methodology involving reaction of the free base with an acid. Suitable acids for preparing acid addition salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. An acid addition salt may be reconverted to the free base by treatment with a suitable base. Conversely, preparation of basic salts of acid moieties that may be present on an active agent may be carried out in a similar manner using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like. Preparation of esters involves transformation of a carboxylic acid group via a conventional esterification reaction involving nucleophilic attack of an RO[0081] moiety at the carbonyl carbon. Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures. Amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine. Prodrugs and active metabolites may also be prepared using techniques known to those skilled in the art or described in the pertinent literature. Prodrugs are typically prepared by covalent attachment of a moiety that results in a compound that is therapeutically inactive until modified by an individual's metabolic system.
  • Other derivatives and analogs of the beneficial agents may be prepared using standard techniques known to those skilled in the art of synthetic organic chemistry, or may be deduced by reference to the pertinent literature. In addition, chiral active agents may be in isomerically pure form, or they may be administered as a racemic mixture of isomers. [0082]
  • Methods of Manufacture and Use: [0083]
  • The lozenges are prepared by admixture of the hydrophilic polymer and the flavoring agent and any additional components, including sweeteners, colorants, other additives discussed herein, and additional beneficial agents. Admixture can generally be carried out at room temperature and ambient humidity, unless a particular beneficial agent or other component of the lozenge requires a protected environment, a lower temperature, or lower humidity. Using the appropriate weight ratio of the hydrophilic polymer to the flavoring agent as discussed supra, admixture of the components results in a pliable wet matrix that can be formed into a roll or sheet. After allowing the composition to set, typically over a 24-hour period, the lozenges are then created by cutting of the roll or die cutting of the sheet. In a preferred embodiment, the mixture of the components is compressed to form lozenges. For example, the mixture can be compressed in a two-part lozenge-shaped mold, wherein after the mixture is added to a recess within the lower half of the mold, the upper half is aligned therewith and pressure is applied to compress the mixture. Compressed lozenges can be made so as to remain intact within the mouth for extended time periods, on the order of five hours or more. It will be appreciated, however, that the present process can be tailored to provide compressed lozenges that degrade more quickly, for example by varying the proportion of flavoring agent(s) and/or excipients. [0084]
  • If a somewhat tacky lozenge is desired, e.g., a dosage form that adheres to the buccal mucosa for delivery of a beneficial agent, the same procedures are followed except that a lower molecular weight hydrophilic polymer is used to impart adhesive strength to the lozenge by virtue of the tacky surface provided. Alternatively, or in addition, one or more adhesive polymers can be incorporated into the lozenge formulation to provide the desired degree of adhesion, as described elsewhere herein. [0085]
  • Chewing gums may be prepared by first formulating the wet matrix as described above, i.e., by admixing the hydrophilic polymer and the flavoring agent. Then, the matrix, along with any additional components, e.g., sweeteners, colorants, or other additives, is admixed with a selected chewing gum base as described earlier herein. Mixing may be effected using any suitable mixing device, e.g., a ribbon blender. The resultant chewing gum is then manufactured into strips or tablets of a desired size. [0086]
  • The dosage forms so prepared are individually packaged in a manner that promotes shelf life and maximizes the stability of the flavoring agent. These requirements translate into a package design in which both the air space and exposed surface area of the lozenge are minimized, and in which the packaging material used has very low permeability to vapor. A plastic-lined foil, wherein the plastic is a low permeability material, is optimal. Ideally, the packaging material should be in contact with at least 85% of the surface of the lozenge to minimize loss of flavor, and packaging materials that do not transmit organic vapors are optimal. For example, polyolefinic materials such as poly(vinylidene chloride), polyethylene (including low density and higher density polyethylenes), polypropylene, and copolymers thereof represent suitable packaging materials. [0087]
  • The dosage forms of the invention may be prepared in any number of shapes and sizes, and the invention is not limited in this regard. Different shapes and sizes may be desirable for different applications. Typical dimensions, however, are on the order of 0.4″×0.5″×0.2″ for lozenges, while lozenge weight is generally in the range of about 0.4 to 0.8 g. For chewing gums, the dimensions will generally be somewhat different, insofar as flat, elongated strips and/or larger tablets are often preferred. [0088]
  • It is to be understood that while the invention has been described in conjunction with the preferred specific embodiments thereof, the description above as well as the examples that follow are intended to illustrate and not limit the scope of the invention. Other aspects, advantages and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains. [0089]
  • All patents, patent applications, journal articles, and other references cited herein are incorporated by reference in their entireties. [0090]
  • EXAMPLE 1 Preparation of Flavored Lozenges
  • Lozenges were prepared by mixing 0.4 g ETHOCEL® Standard 45 Premium (obtained from The Dow Chemical Company, Midland, Mich.), 0.38 g peppermint oil, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was allowed to set for 24 hours in the form of a sheet, and lozenges were then cut therefrom. The lozenges were soft, pliable, and nontacky, and provided sustained release of the peppermint flavor for approximately 4 hours. [0091]
  • EXAMPLE 2 Preparation of Zinc Acetate Lozenges
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.075 g zinc acetate, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. Using the alkaline Zincon reagent to assay for zinc, release curves were generated when zinc lozenges were placed in 100 ml of water at room temperature. At 24 hours, about 21% of the zinc was released. In the oral environment of a human test subject, after 1 hour in the mouth, the lozenge was tested for remaining zinc and it was found that 40% of the zinc had been released with 60% still remaining in the lozenge. [0092]
  • EXAMPLE 3 Preparation of Zinc Chloride Lozenges
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.075 g zinc chloride, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. Using the alkaline Zincon reagent to assay for zinc, release curves were generated when zinc lozenges were placed in 100 ml of water at room temperature. At 24 hours, about 37% of the zinc was released. [0093]
  • EXAMPLE 4 Preparation of Zinc Citrate Lozenges
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.075 g zinc citrate, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. Using the alkaline Zincon reagent to assay for zinc, release curves were generated when zinc lozenges were placed in 100 ml of water at room temperature. At 24 hours, about 3% of the zinc was released. In the oral environment of a human test subject, after 1 hour in the mouth, the lozenge was tested for remaining zinc and it was found that 10% of the zinc had been released with 90% still remaining in the lozenge. [0094]
  • EXAMPLE 5 Preparation Of Zinc Gluconate Lozenges
  • [0095]
    Component Weight (g) wt. %
    Ethocel 45: 0.4 34.0
    Peppermint oil 0.416 35.4
    Sucralose 0.16 13.6
    Zinc gluconate 0.2 17.0
    Total weight 1.176
  • Lozenges were prepared according to the above table by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.416 g peppermint oil, 0.2 g zinc gluconate, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 2 lozenges each weighing 0.57 g were cut. Using the alkaline Zincon reagent to assay for zinc, release curves were generated when zinc lozenges were placed in 100 ml of water at room temperature. At 10.5 hours, about 83% of the zinc was released. In the oral environment of a human test subject, after 1 hour in the mouth, the lozenge was tested for remaining zinc and it was found that 32% of the zinc had been released with 70% still remaining in the lozenge. [0096]
  • EXAMPLE 6 Preparation of Zinc Gluconate Lozenges
  • [0097]
    Component Weight (g) wt. %
    Ethocel 45: 0.4 29.1
    Peppermint oil 0.416 30.2
    Sucralose 0.16 11.6
    Zinc gluconate 0.4 29.1
    Total weight 1.376
  • The procedure of Example 5 was repeated to provide the zinc gluconate lozenge as indicated in the above table. As may be seen, the total weight of zinc gluconate in this lozenge was twice that of the lozenge of Example 5, and the wt. percent here is 29.1, as opposed to 17.0 in the preceding example. Here, the total amount of zinc released at any given time point was greater than that observed with the lozenge of Example 5, and the overall release rate was somewhat increased. [0098]
  • EXAMPLE 7 Preparation of Vitamin C/Zinc Gluconate Lozenges
  • [0099]
    Component Weight (g) wt. %
    Ethocel 45: 0.4 28.8
    Orange oil 0.51 36.7
    Sucralose 0.16 11.5
    Zinc gluconate 0.2 14.4
    Vitamin C 0.12 8.6
    Total weight 1.39
  • The procedure of Example 5 was repeated to provide the vitamin C/zinc gluconate lozenge as indicated in the above table. As may be seen, the combined weight of the active agents (vitamin C and zinc gluconate) was 0.32 g, representing 23 wt. % of the lozenge. Here, the total amount of zinc and vitamin C released at each time point was greater than that observed with the lozenge of Example 5, and the overall release rate was approximately somewhat less than that observed with the lozenge of Example 6. [0100]
  • EXAMPLE 8 Preparation of Vitamin C Lozenges
  • Since vitamin C is water soluble and is continuously eliminated in the urine after ingestion, a long-lasting lozenge releasing vitamin C over a period of at least an hour is desirable. The vitamin C lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.45 g lime oil, 0.30 g ascorbic acid, and 0.10 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. In the oral environment of a human test subject, the lozenges released flavor and thus the vitamin C for over a two-hour period. [0101]
  • EXAMPLE 9 Preparation of Sore Throat Lozenges
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.10 g menthol, and 0.20 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. In the oral environment of a human test subject, the lozenges lasted two hours, with good peppermint and menthol taste throughout the time period, with the menthol producing an anesthetic effect. [0102]
  • EXAMPLE 10 Preparation of Sore Throat Lozenges
  • Lozenges were prepared according to the method of Example 8, except that the level of menthol was increased to 0.2 g. The anesthetizing effect was found to be stronger with the increased quantity of menthol. [0103]
  • EXAMPLE 11 Preparation of Sore Throat Lozenges
  • Lozenges were prepared by mixing 0.40 g ETHOCEL® Standard 45 Premium, 0.38 g peppermint oil, 0.10 g benzocaine, and 0.16 g sucralose at room temperature and ambient humidity. Admixture of the components resulted in a soft, wet composition that was formed into a cylinder and allowed to set for 24 hours. Then, 5 lozenges each weighing 0.2 g were cut. In the oral environment of a human test subject, the numbing effect of the benzocaine was experienced for over two hours. [0104]
  • EXAMPLE 12 Evaluation of Factors Affecting Release Rates
  • In order to determine the effect of various formulation parameters on release profile from dosage forms of the invention, the following lozenge formulations were prepared with methylene blue used as the beneficial agent. [0105]
  • Formulation 1: Standard formulation, used as control [0106]
  • 0.4 g Ethocel 45 [0107]
  • 0.16 g Sucralose [0108]
  • 50 mg Methylene Blue [0109]
  • 26 drops peppermint oil (0.42 g) [0110]
  • Formulation 2: 25% Additional Ethocel 7 [0111]
  • 0.4 g Ethocel 45 [0112]
  • 0.1 g Ethocel 7 [0113]
  • 0.16 g Sucralose [0114]
  • 50 mg Methylene Blue [0115]
  • 33 drops peppermint oil (0.53 g) [0116]
  • Formulation 3: 100% Increased sucralose [0117]
  • 0.4 g Ethocel 45 [0118]
  • 0.32 g Sucralose [0119]
  • 50 mg Methylene Blue [0120]
  • 33 drops peppermint oil (0.53 g) [0121]
  • Formulation 4: Increased Ethocel 45 [0122]
  • 0.5 g Ethocel 45 [0123]
  • 0.16 g Sucralose [0124]
  • 50 mg Methylene Blue [0125]
  • 33 drops peppermint oil (0.53 g) [0126]
  • Formulation 5: Ethocel 7 (instead of Ethocel 45) [0127]
  • 0.4 g Ethocel 7 [0128]
  • 0.16 g Sucralose [0129]
  • 50 mg Methylene Blue [0130]
  • 26 drops peppermint oil (0.42 g) [0131]
  • Formulation 6: 1.5 times more peppermint oil [0132]
  • 0.4 g Ethocel 45 [0133]
  • 0.16 g Sucralose [0134]
  • 50 mg Methylene Blue [0135]
  • 40 drops peppermint oil (0.64 g) [0136]
  • The lozenges were placed in 100 ml of water and the absorbance at 668 nm was monitored to determine the release of methylene blue at various times. The results are summarized in the following table. [0137]
    Release Rates: % Methylene Blue Released
    Formula Formula Formula Formula Formula
    Time (hr) Formula 1* 2 3 4 5 6
    0.5 4.5 4.2 7.1 5.4 2.6 2.4
    1 6 5.1 8.9 7 3.3 3.3
    2 7.5 6.3 11.9 9.4 4.3 4.1
    9.5 12 7.7 18 11.8 4.9 4.6
    16 15 8.5 20.4 13.3 5.4 4.8
    24 18 8.7 23.5 14.8 6.6 5.5
  • As may be deduced from the table, addition of the lower molecular weight hydrophilic polymer (Ethocel 7; Formulation 2) and substitution of the lower molecular weight hydrophilic polymer for the higher molecular weight polymer (Formulation 5) significantly decrease release rate, as does an increase in the proportion of the essential oil (Formula 6). Incorporation of additional higher molecular weight hydrophilic polymer (Ethocel 45; Formulation 4) also decreased the release rate, but not as significantly. By contrast, increasing the relative amount of sucralose (Formulation 3) provided a noticeable increase in release rate. [0138]
  • EXAMPLE 13 Additional Release Rate Studies (Zinc Gluconate)
  • Zinc gluconate formations were prepared to evaluate the effect of the amount of zinc in the dosage from on the rate at which zinc is released therefrom. The two formulations were as follows: Formulation 7-0.2 g zinc gluconate, 0.4 g Ethocel 45, 0.16 g sucralose, 0.5 ml peppermint oil; Formulation 8-0.4 g zinc gluconate, 0.4 g Ethocel 45, 0.16 g sucralose, 0.5 ml peppermint. [0139]
    % Release of Zn from % Release of Zn from
    Time (hr) Formulation 7 Formulation 8
    0.5 11 14
    1 14 19
    2 17 31
    10 83 100
  • When administered in vivo, the percent of zinc released after 1 hour in the mouth was about 25-40%. [0140]
  • EXAMPLE 14 Additional Release Rate Studies (Flavored Lozenge)
  • A lozenge was prepared as described in Example 1 containing 0.1 g of Ethocel 7 and 5 drops of peppermint oil. The amount of peppermint released over time was as follows: [0141]
    Time (hr) % Release
    0.5 9.7
    1 13.4
    2 20.7
    3 26
    4 34
    15 64
    24 81
  • In vivo, the lozenges related most of the peppermint within about 3-4 hours and then broke apart. [0142]

Claims (98)

We claim:
1. A flavored dosage form comprising a sustained release wet matrix of ethylcellulose and a flavoring agent selected from essential oils, constituents of essential oils, and mixtures thereof, wherein, in an aqueous environment, the matrix gradually releases the flavoring agent over a time period of at least 45 minutes.
2. The dosage form of claim 1, wherein the weight ratio of the hydrophilic polymer to the flavoring agent is selected to provide sustained release of the flavoring agent over a time period of at least 1 hour.
3. The dosage form of claim 2, wherein the weight ratio of the hydrophilic polymer to the flavoring agent is selected to provide sustained release of the flavoring agent over a time period of at least 2 hours.
4. The dosage form of claim 3, wherein the weight ratio of the hydrophilic polymer to the flavoring agent is selected to provide sustained release of the flavoring agent over a time period of at least 3 hours.
5. The dosage form of claim 1, wherein the ethylcellulose has a solution viscosity in the range of approximately 1 to 120 cP as determined at 25° C. using a 5 wt. % aqueous solution.
6. The dosage form of claim 5, wherein the solution viscosity is in the range of approximately 3 to 100 cP.
7. The dosage form of claim 6, wherein the solution viscosity is in the range of approximately 6 to 49 cP.
8. The dosage form of claim 1, wherein the flavoring agent is an essential oil.
9. The dosage form of claim 8, wherein the essential oil imparts a food flavor.
10. The dosage form of claim 9, wherein the essential oil is a citrus oil.
11. The dosage form of claim 10, wherein the citrus oil is selected from lemon oil, lime oil, neroli oil, orange oil, and combinations thereof.
12. The dosage form of claim 9, wherein the essential oil is a mint oil.
13. The dosage form of claim 12, wherein the mint oil is peppermint oil, spearmint oil, or a combination thereof.
14. The dosage form of claim 9, wherein the essential oil is selected from anise oil, cardamom oil, cinnamon oil, clove oil, coriander oil, eriodictyon fluidextract, eucalyptus oil, fennel oil, glycyrrhiza extract, lemongrass oil, nutmeg oil, and combinations thereof.
15. The dosage form of claim 1, wherein the flavoring agent is a constituent of an essential oil.
16. The dosage form of claim 15, wherein the flavoring agent is selected from terpenes, sesquiterpenes, and combinations thereof.
17. The dosage form of claim 16, wherein the flavoring agent is a terpene.
18. The dosage form of claim 17, wherein the terpene is selected from d,l-camphene, d-camphene, l-camphene, Δ3-carene, trans-β-ocimene, cis-β-ocimene, trans-α-ocimene, cis-α-ocimene, β-pinene, β-phellandrene, α-terpinene, β-terpinene, γ-terpinene, and combinations thereof.
19. The dosage form of claim 16, wherein the flavoring agent is a sesquiterpene.
20. The dosage form of claim 19, wherein the sesquiterpene is selected from α-cadinene, β-cadinene, α-caryophyllene, copaene, β-famesene, isocaryophyllene, ylangene, and combinations thereof.
21. The dosage form of claim 15, wherein the flavoring agent is an organic acid, an alcohol, an aldehyde, a ketone, an ester, a phenyl ether, or a mixture thereof.
22. The dosage form of claim 21, wherein the flavoring agent is selected from p-anisic acid, cinnamic acid, phenylacetic acid, d,l-bomeol, d-borneol, l-borneol, carvacrol, chavicol, cinnamyl alcohol, linalool, menthol, nerolidol, nerol, d,l-α-terpineol, d-α-terpineol, l-α-terpineol, thymol, acetaldehyde, anisaldehyde, cinnamaldehyde, benzaldehyde, citral, isovaleric aldehyde, piperonal, salicylaldehyde, valeric aldehyde, vanillin, carvone, jasmone, menthone, piperitone, amyl acetate, bornyl acetate, benzyl benzoate, butyl cinnamate, cinnamyl anthranilate, geranyl acetate, linalyl acetate, menthyl acetate, menthyl isovalerate, methyl salicylate anethole, eugenol, safrol, estragole, and combinations thereof.
23. The dosage form of claim 1, wherein the weight ratio of the hydrophilic polymer to the flavoring agent is in the range of approximately 1:2 to 2:1.
24. The dosage form of claim 23, wherein the weight ratio is in the range of approximately 1:1.5 to 1.5:1.
25. The dosage form of claim 24, wherein the weight ratio is in the range of approximately 1:1.2 to 1.2:1.
26. The dosage form of claim 1, further including an effective sweetening amount of a sweetener selected from a sugar, a non-sugar sweetening agent, or a mixture thereof.
27. The dosage form of claim 26, wherein the sweetener is a sugar.
28. The dosage form of 26, wherein the sweetener is a non-sugar sweetening agent.
29. The dosage form of claim 28, wherein the non-sugar sweetening agent is selected from aspartame, saccharin, sodium saccharin, calcium saccharin, sucralose, acesulfame-K, sorbitol, xylitol, steviosin, steviol, mannitol, erythritol, lactitol, and mixtures thereof.
30. The dosage form of claim 1, comprising a lozenge.
31. The dosage form of claim 1, further including an amount of a gum base effective to provide the dosage form as a chewing gum.
32. The dosage form of any one of claims 1, 30, and 31, further comprising an effective amount of a beneficial agent in addition to the flavoring agent.
33. The dosage form of claim 32, wherein the beneficial agent is a source of Zn2+.
34. The dosage form of claim 33, wherein the beneficial agent is selected from zinc gluconate, acetate, chloride, propionate, butyrate, n-butyrate, β-hydroxybutyrate, benzoate, formate, and sulfate.
35. The dosage form of claim 34, wherein the beneficial agent is selected from zinc gluconate and zinc acetate.
36. The dosage form of claim 33, further comprising at least one additional agent for treating the common cold.
37. The dosage form of claim 36, wherein the at least one additional agent is vitamin C.
38. The dosage form of claim 32, wherein the beneficial agent is a local anesthetic agent.
39. The dosage form of claim 32, wherein the beneficial agent is a local antibiotic.
40. The dosage form of claim 32, wherein the beneficial agent is a diet aid.
41. The dosage form of claim 40, wherein the diet aid is selected from 5-hydroxytryptophan, tyrosine, phenylalanine, pseudoephedrine, ephedrine, phenylpropanolamine, chromium picolinate, aspirin, caffeine, and combinations thereof.
42. The dosage form of claim 40, wherein the diet aid is an herbal mixture or extract thereof.
43. The dosage form of claim 41, wherein the diet aid is selected from guarana and ma huang.
44. The dosage form of claim 32, wherein the beneficial agent is a source of fluoride ion.
45. The dosage form of claim 32, wherein the beneficial agent is nicotine.
46. The dosage form of claim 1, further comprising a colorant.
47. The dosage form of claim 30, further including at least one additive selected from release rate accelerants, release rate retardants, adhesion-increasing agents, adhesion-reducing agents, flavor stabilizers, flavor diluents, pH-adjusting agents, preservatives, lubricants, and fillers.
48. A flavored lozenge comprising at least one biocompatible, water-insoluble, hydrophilic polymer and a flavoring agent effective to provide a sustained release wet matrix upon admixture with said at least one polymer, wherein the flavoring agent is selected from essential oils, constituents of essential oils, and mixtures thereof, and further wherein the lozenge provides for sustained release of the flavoring agent in the mouth over a time period of at least 45 minutes.
49. The lozenge of claim 48, wherein said at least one biocompatible, water-insoluble, hydrophilic polymer comprises a lactic acid polymer.
50. The lozenge of claim 49, wherein the lactic acid polymer is a homopolymer selected from poly(D,L-lactic acid), poly(D-lactic acid), poly(L-lactic acid), and mixtures thereof.
51. The lozenge of claim 49, wherein the lactic acid polymer is a poly(lactide-co-glycolide) selected from poly(D,L-lactide-co-glycolide), poly(D-lactide-co-glycolide), poly(L-lactide-co-glycolide).
52. The lozenge of claim 49, wherein said at least one biocompatible, water-insoluble hydrophilic polymer further comprises a water-soluble cellulosic polymer.
53. The lozenge of claim 51, wherein said at least one biocompatible, water-insoluble hydrophilic polymer further comprises a water-soluble cellulosic polymer.
54. The lozenge of claim 52 or claim 53, wherein the cellulosic polymer is selected from methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and combinations thereof.
55. The lozenge of claim 48, further including an effective sweetening amount of a sweetener selected from a sugar, a non-sugar sweetening agent, or a mixture thereof.
56. The lozenge of 55, wherein the sweetener is a non-sugar sweetening agent.
57. The lozenge of claim 56, wherein the non-sugar sweetening agent is selected from aspartame, saccharin, sodium saccharin, calcium saccharin, sucralose, acesulfame-K, sorbitol, xylitol, steviosin, steviol, mannitol, erythritol, lactitol, and mixtures thereof.
58. The lozenge of claim 48, further comprising an effective amount of a beneficial agent in addition to the flavoring agent, and wherein the lozenge additionally provides for sustained release of the beneficial agent in the mouth over a time period of at least 45 minutes.
59. The lozenge of claim 58, wherein the beneficial agent is a source of Zn2+.
60. The lozenge of claim 59, wherein the beneficial agent is selected from zinc gluconate, acetate, chloride, propionate, butyrate, n-butyrate, P-hydroxybutyrate, benzoate, formate, and sulfate.
61. The lozenge of claim 60, wherein the beneficial agent is selected from zinc gluconate and zinc acetate.
62. The lozenge of claim 59, further comprising at least one additional agent for treating the common cold.
63. The lozenge of claim 62, wherein the at least one additional agent is vitamin C.
64. The lozenge of claim 58, wherein the beneficial agent is a topical anesthetic agent.
65. The lozenge of claim 58, wherein the beneficial agent is a topical anti-infective agent.
66. The lozenge of claim 58, wherein the beneficial agent is a diet aid.
67. The lozenge of claim 66, wherein the diet aid is selected from 5-hydroxytryptophan, tyrosine, phenylalanine, pseudoephedrine, ephedrine, phenylpropanolamine, chromium picolinate, aspirin, caffeine, and combinations thereof.
68. The lozenge of claim 67, wherein the diet aid is an herbal mixture or extract thereof.
69. The lozenge of claim 68, wherein the diet aid is selected from guarana and ma huang.
70. The lozenge of claim 60, wherein the beneficial agent is a source of fluoride ion.
71. The lozenge of claim 60, wherein the beneficial agent is nicotine.
72. The lozenge of claim 48, further comprising a colorant.
73. The lozenge of claim 48, further including at least one additive selected from release rate accelerants, release rate retardants, adhesion-increasing agents, adhesion-reducing agents, flavor diluents, pH-adjusting agents, preservatives, lubricants, and fillers.
74. A flavored lozenge for sustained release of a flavoring agent, comprising an admixture of:
ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution;
a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes; and
a non-sugar sweetening agent,
wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.2 to 1.21.
75. The lozenge of claim 74, further comprising an effective amount of a beneficial agent, and wherein the lozenge additionally provides for sustained release of the beneficial agent in the mouth over a time period of at least 45 minutes.
76. A method for achieving sustained release of a flavoring agent in the mouth over a time period of at least 45 minutes, comprising administering the dosage form of claim 1 to the mouth of an individual.
77. A method for achieving sustained release of a flavoring agent in the mouth over a time period of at least 45 minutes, comprising administering the lozenge of claim 48 to the mouth of an individual.
78. A method for delivering a beneficial agent to a human individual, comprising administering the dosage form of claim 32 to the mouth of the individual.
79. A method for achieving sustained release of a beneficial agent in the mouth over a time period of at least 45 minutes, comprising administering the lozenge of claim 58 or claim 75 to the mouth of an individual.
80. The method of claim 79, wherein the beneficial agent is an ionizable zinc compound a topical anesthetic agent, a topical anti-infective agent, a diet aid, a source of fluoride ion, or nicotine.
81. A method for treating the common cold, comprising administering to an individual in need of such treatment a flavored lozenge comprising an admixture of:
ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution;
a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes;
an ionizable zinc compound; and
a sweetening agent,
wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1.
82. The method of claim 81, wherein the ionizable zinc compound is zinc gluconate.
83. The method of claim 81, wherein the ionizable zinc compound is zinc acetate.
84. The method of claim 81, wherein the lozenge further comprises vitamin C.
85. The method of claim 81, wherein the weight ratio is in the range of approximately 1:1.2 to 1.2:1.
86. A method for treating a sore throat, comprising administering to an individual in need of such treatment a flavored lozenge comprising an admixture of:
ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution;
a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes;
a local anesthetic agent; and
a sweetening agent,
wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1.
87. The method of claim 86, wherein the lozenge further comprises a local anti-infective agent.
88. The method of claim 86, wherein the weight ratio is in the range of approximately 1:1.2 to 1.2:1.
89. A method for facilitating weight loss, comprising administering to an individual in need of such treatment a flavored lozenge comprising an admixture of:
ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution;
a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes;
a diet aid; and
a non-sugar sweetening agent,
wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1.
90. The method of claim 89, wherein the diet aid is selected from 5-hydroxytryptophan, tyrosine, phenylalanine, pseudoephedrine, ephedrine, phenylpropanolamine, chromium picolinate, aspirin, caffeine, and combinations thereof.
91. The method of claim 89, wherein the diet aid is an herbal mixture or extract thereof.
92. The method of claim 91, wherein the diet aid is selected from guarana and ma huang.
93. The method of claim 89, wherein the weight ratio is in the range of approximately 1:1.2 to 1.2:1.
94. A method for assisting an individual in quitting smoking, comprising administering to an individual in need of such treatment a flavored lozenge comprising an admixture of:
ethylcellulose having a solution viscosity in the range of approximately 6 to 49 cP as determined at 25° C. using a 5 wt. % aqueous solution;
a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes;
nicotine; and
a sweetening agent,
wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1.
95. A flavored dosage form for delivering a beneficial agent to a mucosal surface within the mouth, the dosage form having at least one adhesive surface that serves to adhere the dosage form to the mucosal surface, wherein the dosage form comprises:
ethylcellulose having a solution viscosity in the range of approximately 6 to 15 cP as determined at 25° C. using a 5 wt. % aqueous solution;
a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes;
a beneficial agent; and
a sweetening agent,
wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1.
96. The dosage form of claim 95, wherein the beneficial agent is an anti-infective agent, a local anesthetic agent, or a local anti-inflammatory agent.
97. A method for delivering a beneficial agent to a mucosal surface within the mouth, comprising administering to an individual in need of such treatment a flavored dosage form having at least one adhesive surface that serves to adhere the dosage form to the mucosal surface, and comprising:
ethylcellulose having a solution viscosity in the range of approximately 6 to 15 cP as determined at 25° C. using a 5 wt. % aqueous solution;
a flavoring agent selected from essential oils, individual terpenes, and individual sesquiterpenes;
a beneficial agent; and
a sweetening agent,
wherein the weight ratio of the ethylcellulose to the flavoring agent is in the range of approximately 1:1.5 to 1.5:1.
98. The method of claim 97, wherein the beneficial agent is an anti-infective agent, a local anesthetic agent, or a local anti-inflammatory agent.
US10/358,602 2003-02-04 2003-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth Abandoned US20040151771A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/358,602 US20040151771A1 (en) 2003-02-04 2003-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth
PCT/US2004/003181 WO2004070017A2 (en) 2003-02-04 2004-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth
CA2515006A CA2515006C (en) 2003-02-04 2004-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth
EP08162515A EP1987821A3 (en) 2003-02-04 2004-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth
EP04708157A EP1589952B1 (en) 2003-02-04 2004-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth
ES04708157T ES2314371T3 (en) 2003-02-04 2004-02-04 LONG-TERM AROMATIC ADMINISTRATION FORMS FOR THE PROLONGED RELEASE OF ACTIVE SUBSTANCES IN THE MOUTH.
DE602004017127T DE602004017127D1 (en) 2003-02-04 2004-02-04 LONG-TERM, AROMATED PHARMACEUTICAL FOR THE EXTENDED RELEASE OF ACTIVE SUBSTANCES IN THE MOUTH
AT04708157T ATE411008T1 (en) 2003-02-04 2004-02-04 LONG-LASTING, FLAVORED DOSAGE FORM FOR PROLONGED RELEASE OF ACTIVE SUBSTANCES IN THE MOUTH
US10/772,781 US8236348B2 (en) 2003-02-04 2004-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/358,602 US20040151771A1 (en) 2003-02-04 2003-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/772,781 Continuation-In-Part US8236348B2 (en) 2003-02-04 2004-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth

Publications (1)

Publication Number Publication Date
US20040151771A1 true US20040151771A1 (en) 2004-08-05

Family

ID=32771236

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/358,602 Abandoned US20040151771A1 (en) 2003-02-04 2003-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth
US10/772,781 Active - Reinstated 2026-08-13 US8236348B2 (en) 2003-02-04 2004-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/772,781 Active - Reinstated 2026-08-13 US8236348B2 (en) 2003-02-04 2004-02-04 Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth

Country Status (7)

Country Link
US (2) US20040151771A1 (en)
EP (2) EP1589952B1 (en)
AT (1) ATE411008T1 (en)
CA (1) CA2515006C (en)
DE (1) DE602004017127D1 (en)
ES (1) ES2314371T3 (en)
WO (1) WO2004070017A2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030181509A1 (en) * 2002-03-21 2003-09-25 Hinz Martin C. Serotonin and catecholamine system segment optimization technology
US20040229285A1 (en) * 2003-02-21 2004-11-18 Hinz Martin C. Serotonin and catecholamine system segment optimization technology
US20040250723A1 (en) * 2003-06-10 2004-12-16 Heidelberger Druckmaschinen Ag Method for metering dampening solution when printing with an offset press
US20050065190A1 (en) * 1999-10-04 2005-03-24 Hinz Martin C. Comprehensive pharmacologic therapy for treatment of obesity including cysteine
US20050233008A1 (en) * 1999-10-04 2005-10-20 Hinz Martin C Comprehensive pharmacologic therapy for treatment of a dysfunction
US20060280694A1 (en) * 2005-06-09 2006-12-14 John Peldyak Composition for the mineralization of dental hard tissues and the reduction of caries-inducive microflora
WO2007041035A2 (en) * 2005-09-30 2007-04-12 Wm. Wrigley Jr. Company Oral composition and method for stress reduction associated with smoking cessation
US20070092552A1 (en) * 2003-04-30 2007-04-26 Tim Clarot Chewable lozenge cold remedy composition and method for making same
WO2008033155A1 (en) * 2006-09-15 2008-03-20 Auriga Laboratories, Inc. Kits for prevention and treatment of rhinitis
US20080226801A1 (en) * 2007-03-14 2008-09-18 Concentrate Manufacturing Company Of Ireland Anisic Acid Modified Steviol Glycoside Sweetened Beverage Products
US20080253976A1 (en) * 2007-04-16 2008-10-16 Douglas Craig Scott Personal Care Compositions Comprising An Antimicrobial Blend of Essential Oils or Constituents Thereof
US20090130178A1 (en) * 2007-11-19 2009-05-21 Xvasive, Inc. Formulation for decreasing tobacco, alcohol, drug or food consumption
US20090131889A1 (en) * 2007-11-19 2009-05-21 Oronsky Bryan Todd Topical composition for treating pain
US20090162488A1 (en) * 2007-12-21 2009-06-25 The Concentrate Manufacturing Company Of Ireland Beverage products and flavor systems having a non-sweetening amount of monatin
US20090162487A1 (en) * 2007-12-21 2009-06-25 The Concentrate Manufacturing Company Of Ireland Beverage products and flavor systems having a non-sweetening amount of rebaudioside a
US20090234012A1 (en) * 2002-03-21 2009-09-17 Martin C. Hinz Administration of dopa precursors with sources of dopa to effectuate optimal catecholamine neurotransmitter outcomes
US20090311795A1 (en) * 2002-03-21 2009-12-17 Hinz Martin C Bilateral control of functions traditionally regulated by only serotonin or only dopamine
US20100104614A1 (en) * 2008-06-27 2010-04-29 Oronsky Bryan T Providone compositions for wound healing
EP2242484A1 (en) * 2007-09-26 2010-10-27 Bennes, Inc. Sustained release dosage form for lubricating an oral cavity
US20110117175A1 (en) * 2009-11-18 2011-05-19 Rosenbaum Richard J Sweet analgesic for use in medical procedures or treatments
US20110200670A1 (en) * 2010-02-18 2011-08-18 Jatin Thakkar Nicotine Containing Soft Gelatin Pastilles
US8029846B2 (en) 2007-03-14 2011-10-04 The Concentrate Manufacturing Company Of Ireland Beverage products
US8277862B2 (en) 2007-03-14 2012-10-02 Concentrate Manufacturing Company Of Ireland Beverage products having steviol glycosides and at least one acid
US8277861B2 (en) 2007-03-14 2012-10-02 Concentrate Manufacturing Company Of Ireland Beverage products having steviol glycosides and at least one acid
WO2012146763A1 (en) * 2011-04-29 2012-11-01 Oracain Ii Aps Pharmaceutical compositions comprising a local anaesthetic such as bupivacaine for local administration to the mouth or throat
WO2013103318A1 (en) * 2012-01-05 2013-07-11 Mcneil Ab Solid nicotine-comprising dosage form with reduced organoleptic disturbance
WO2014022760A1 (en) * 2012-08-03 2014-02-06 Msm Innovations, Inc. Method and kit for bowel preparation
US9011365B2 (en) 2013-03-12 2015-04-21 Medibotics Llc Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food
US9067070B2 (en) 2013-03-12 2015-06-30 Medibotics Llc Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type
US20160000731A1 (en) * 2014-07-02 2016-01-07 Xlear, Inc. Sore-throat compositions and related methods
US9238075B2 (en) 2011-12-07 2016-01-19 Msm Innovations, Inc. Method for bowel preparation
US9314048B2 (en) 2007-03-14 2016-04-19 The Concentrate Manufacturing Company Of Ireland Beverage products with non-nutritive sweetener and bitterant
US9456916B2 (en) 2013-03-12 2016-10-04 Medibotics Llc Device for selectively reducing absorption of unhealthy food
US9629832B2 (en) 2002-12-20 2017-04-25 Niconovum Usa, Inc. Physically and chemically stable nicotine-containing particulate material
US9877500B2 (en) 2007-03-14 2018-01-30 Concentrate Manufacturing Company Of Ireland Natural beverage products
US20180070626A1 (en) * 2012-01-20 2018-03-15 Altria Client Services Llc Oral tobacco product
US10219999B2 (en) 2006-03-16 2019-03-05 Niconovum Usa, Inc. Snuff composition
CN110129133A (en) * 2015-02-06 2019-08-16 爱茉莉太平洋股份有限公司 Reproduce the spice composition of citrus flower class fragrance
CN110463974A (en) * 2019-09-19 2019-11-19 合肥工业大学 A kind of sodium salt-cellulose membrane dips in salt and preparation method
US11369129B2 (en) 2012-01-20 2022-06-28 Altria Client Services Llc Oral product
US11541001B2 (en) 2012-01-20 2023-01-03 Altria Client Services Llc Oral product
US11864578B2 (en) 2012-01-20 2024-01-09 Altria Client Services Llc Oral product

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9253991B2 (en) 1999-09-20 2016-02-09 Jack Barreca Chewing gum with B vitamins
US9387168B2 (en) 1999-09-20 2016-07-12 Jack Barreca Chewing gum with tomatidine
US6491540B1 (en) * 1999-09-20 2002-12-10 Jack Barreca Center-filled supplement gum
SE521512C2 (en) 2001-06-25 2003-11-11 Niconovum Ab Device for administering a substance to the front of an individual's oral cavity
JP2004057013A (en) * 2002-07-24 2004-02-26 Koryo Shokuhin Gijutsu Academy:Kk Gum base composition
WO2006120495A1 (en) * 2005-05-13 2006-11-16 Advanced Scientific Developements Pharmaceutical composition comprising an antiviral agent, an antitumour agent or an antiparasitic agent and an active substance selected from carveol, thymol, eugenol, borneol and carvacrol
WO2006120494A1 (en) * 2005-05-13 2006-11-16 Advanced Scientific Developements Pharmaceutical combination comprising an antibacterial agent and an active substance selected from carveol, thymol, eugenol, borneol and carvacrol
WO2006120496A1 (en) * 2005-05-13 2006-11-16 Advanced Scientific Developements Pharmaceutical combination comprising an antifungal agent and an active substance selected from carveol, eugenol, thymol, borneol and carvacrol
US8449931B2 (en) * 2006-08-28 2013-05-28 Michael Dubrovsky Chewing gum composition
WO2008033543A2 (en) * 2006-09-14 2008-03-20 Bahram Memarzadeh Halogenated alkyl di- and trisaccharides, pharmaceutical formulations, diagnostic kits and methods of treatment
CA2678500A1 (en) * 2007-02-15 2008-08-21 Derma-Young Ltd. Compositions and methods for enhancing transmucosal delivery
WO2009037319A2 (en) * 2007-09-18 2009-03-26 Niconovum Ab Stable chewing gum compositions comprising maltitol and providing rapid release of nicotine
US20090081291A1 (en) * 2007-09-26 2009-03-26 Gin Jerry B Sustained Release Dosage Forms For Delivery of Agents to an Oral Cavity of a User
EP3093010A1 (en) * 2007-10-19 2016-11-16 Reckitt Benckiser Healthcare (UK) Limited Oral composition comprising a cooling agent
US20090155392A1 (en) * 2007-12-17 2009-06-18 Bret David Nelson Methods and Systems for Sublingual Guarana Administration
WO2009114784A1 (en) * 2008-03-14 2009-09-17 Intelliherb, Llc Licorice lollipop that inhibits dental caries formation
TW201010743A (en) * 2008-09-05 2010-03-16 Otsuka Pharma Co Ltd Pharmaceutical solid preparation
US8833378B2 (en) * 2008-09-17 2014-09-16 Niconovum Ab Process for preparing snuff composition
KR101050429B1 (en) 2009-03-18 2011-07-19 연세대학교 산학협력단 Composition for the prevention or treatment of obesity, dyslipidemia, fatty liver or insulin resistance syndrome comprising camphor as an active ingredient
BR112013008985A2 (en) * 2010-10-12 2016-07-05 Cerecor Inc antitussive compositions comprising memantine
FR2972327B1 (en) * 2011-03-11 2017-08-11 Laboratoires Le Stum MUCOADHESIVE NUTRACEUTICAL COMPOSITION COMPRISING ANTIOXIDANT ASSOCIATION
CN103040090B (en) 2012-01-20 2016-03-30 奥驰亚客户服务公司 Remove the oral product of tobacco
KR20150066599A (en) * 2012-02-23 2015-06-16 히타치가세이가부시끼가이샤 Composition for forming n-type diffusion layer, method for producing semiconductor substrate having n-type diffusion layer, and method for producing solar cell element
US8853189B2 (en) 2012-05-31 2014-10-07 Prima Innovations, Llc Antispasmodic 1,2-Diols and 1,2,3-triols
WO2014024193A1 (en) * 2012-08-07 2014-02-13 Prodel Pharma Ltd. Compositions and methods for rapid transmucosal delivery of pharmaceutical ingredients
US9185931B2 (en) 2013-05-13 2015-11-17 Altria Client Services Inc. Oral product
WO2014186410A1 (en) 2013-05-13 2014-11-20 NeuOra Microceuticals, LLC Long lasting breath mint
CN104186872B (en) * 2014-08-14 2016-10-05 华南理工大学 Borneol leaves extracting solution and borneol leaves green tea beverage and preparation method
CA3011174C (en) 2016-01-21 2023-10-17 Unilever Plc Laundry product
EP3612151A1 (en) * 2017-04-19 2020-02-26 WM. Wrigley Jr. Company Licorice extract synergy with menthol for breath freshening in a confectionary product
CN111031806A (en) * 2017-07-18 2020-04-17 Ghl专业面粉有限责任公司 Functional enhanced flour and methods of making and using same
US11564967B1 (en) * 2022-01-24 2023-01-31 Tran Ky Huynh Oral compositions containing extracts of a betel leaf and related methods

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1526039A (en) * 1922-05-12 1925-02-10 William C Arkell Chewing gum and method of making the same
US3818107A (en) * 1972-09-28 1974-06-18 Brook D Chewing gum with sustained flavor release compositions
US3857964A (en) * 1973-02-09 1974-12-31 Brook D Controlled release flavor compositions
US3870790A (en) * 1970-01-22 1975-03-11 Forest Laboratories Solid pharmaceutical formulations containing hydroxypropyl methyl cellulose
US3920849A (en) * 1974-10-15 1975-11-18 Int Flavors & Fragrances Inc Chewing gum containing flavor composition
US4001438A (en) * 1974-10-15 1977-01-04 International Flavors & Fragrances Inc Flavor composition for use in orally utilizable compositions
US4039653A (en) * 1974-01-23 1977-08-02 Defoney, Brenman, Mayes & Baron Long-acting articles for oral delivery and process
US4259355A (en) * 1979-03-05 1981-03-31 International Flavors & Fragrances Inc. Chewing gum containing flavor composition and flavor composition therefor
US4386106A (en) * 1981-12-01 1983-05-31 Borden, Inc. Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4391824A (en) * 1981-07-27 1983-07-05 American Cyanamid Company Ureylenebis (hydroxy naphthalenesulfonic acids)
US4503070A (en) * 1981-07-31 1985-03-05 Eby Iii George A Method for reducing the duration of the common cold
US4568560A (en) * 1984-03-16 1986-02-04 Warner-Lambert Company Encapsulated fragrances and flavors and process therefor
US4597959A (en) * 1982-04-30 1986-07-01 Arthur Barr Sustained release breath freshener, mouth and palate coolant wafer composition and method of use
US4678516A (en) * 1984-10-09 1987-07-07 The Dow Chemical Company Sustained release dosage form based on highly plasticized cellulose ether gels
US4684528A (en) * 1984-06-11 1987-08-04 Godfrey Science & Design, Inc. Flavor of zinc supplements for oral use
US4758439A (en) * 1984-06-11 1988-07-19 Godfrey Science & Design, Inc. Flavor of zinc supplements for oral use
US4956385A (en) * 1981-07-31 1990-09-11 Eby Iii George A Method for reducing the duration of the common cold
US5002970A (en) * 1981-07-31 1991-03-26 Eby Iii George A Flavor masked ionizable zinc compositions for oral absorption
US5030459A (en) * 1989-11-07 1991-07-09 Warner-Lambert Company High impact mint flavor for high base chewing gum
US5059416A (en) * 1989-06-26 1991-10-22 Warner-Lambert Company Zinc compound delivery system with improved taste and texture
US5095035A (en) * 1981-07-31 1992-03-10 Eby Iii George A Flavor stable zinc acetate compositions for oral absorption
US5286748A (en) * 1981-01-05 1994-02-15 Eby Iii George A General method of shortening the duration of common colds by application of medicaments to tissues of oral cavity
US5409905A (en) * 1981-01-05 1995-04-25 Eby, Iii; George A. Cure for commond cold
US5849322A (en) * 1995-10-23 1998-12-15 Theratech, Inc. Compositions and methods for buccal delivery of pharmaceutical agents
US5955097A (en) * 1996-10-18 1999-09-21 Virotex Corporation Pharmaceutical preparation applicable to mucosal surfaces and body tissues
US5989522A (en) * 1989-01-31 1999-11-23 Yissum Research & Development Company Of The Hebrew University Of Jerusalem Oral antifungal preventative, and method of use
US6316008B1 (en) * 1998-09-03 2001-11-13 John C. Godfrey Combination of zinc ions and vitamin C and method of making

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33465E (en) 1981-07-31 1990-11-27 Method for reducing the duration of the common cold
CA1208558A (en) * 1982-10-07 1986-07-29 Kazuo Kigasawa Soft buccal
US4528125A (en) * 1983-03-03 1985-07-09 The Dow Chemical Company Sustained release compositions
WO1997040812A1 (en) 1996-04-26 1997-11-06 Warner-Lambert Company Enhanced zinc containing oral composition
AU2891997A (en) * 1996-05-13 1997-12-05 Novartis Consumer Health S.A. Buccal delivery system
US5942244A (en) * 1997-07-31 1999-08-24 Farmo-Nat Ltd. Local oral herbal slow release tablets
GB9721373D0 (en) 1997-10-08 1997-12-10 Johnson & Son Inc S C Improvements in liquid compositions
US20020054917A1 (en) * 1998-08-14 2002-05-09 Gohlke Marcus B. Compositions comprising beta glucan and lactoferrin, and methods for their use
US20030206942A1 (en) * 1998-09-25 2003-11-06 Neema Kulkarni Fast dissolving orally consumable films containing an antitussive and a mucosa coating agent
DE19856101A1 (en) * 1998-12-04 2000-06-08 Labtec Gmbh Patch for local administration of drugs in the oral cavity includes a drug-containing matrix comprising a water-insoluble cellulose ether and a water-soluble cellulose ether in a defined ratio
WO2000037044A1 (en) * 1998-12-21 2000-06-29 Biovail International Ltd. Soft and chewy cough and cold relief composition
FR2795962B1 (en) 1999-07-08 2003-05-09 Prographarm Laboratoires PROCESS FOR THE MANUFACTURE OF MASK TASTE COATED GRANULES AND IMMEDIATE RELEASE OF THE ACTIVE INGREDIENT
GB2355405A (en) 1999-10-20 2001-04-25 Azn Biotech Ltd Zinc lactate compositions
WO2002092037A1 (en) * 2001-05-15 2002-11-21 The Procter & Gamble Company Oral care confectionery compositions
WO2004000235A2 (en) * 2002-06-25 2003-12-31 Wm. Wrigley Jr. Company Breath freshening and oral cleansing product with magnolia bark extract

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1526039A (en) * 1922-05-12 1925-02-10 William C Arkell Chewing gum and method of making the same
US3870790A (en) * 1970-01-22 1975-03-11 Forest Laboratories Solid pharmaceutical formulations containing hydroxypropyl methyl cellulose
US3818107A (en) * 1972-09-28 1974-06-18 Brook D Chewing gum with sustained flavor release compositions
US3857964A (en) * 1973-02-09 1974-12-31 Brook D Controlled release flavor compositions
US4039653A (en) * 1974-01-23 1977-08-02 Defoney, Brenman, Mayes & Baron Long-acting articles for oral delivery and process
US3920849A (en) * 1974-10-15 1975-11-18 Int Flavors & Fragrances Inc Chewing gum containing flavor composition
US4001438A (en) * 1974-10-15 1977-01-04 International Flavors & Fragrances Inc Flavor composition for use in orally utilizable compositions
US4259355A (en) * 1979-03-05 1981-03-31 International Flavors & Fragrances Inc. Chewing gum containing flavor composition and flavor composition therefor
US5286748A (en) * 1981-01-05 1994-02-15 Eby Iii George A General method of shortening the duration of common colds by application of medicaments to tissues of oral cavity
US5409905A (en) * 1981-01-05 1995-04-25 Eby, Iii; George A. Cure for commond cold
US4391824A (en) * 1981-07-27 1983-07-05 American Cyanamid Company Ureylenebis (hydroxy naphthalenesulfonic acids)
US4956385A (en) * 1981-07-31 1990-09-11 Eby Iii George A Method for reducing the duration of the common cold
US4503070A (en) * 1981-07-31 1985-03-05 Eby Iii George A Method for reducing the duration of the common cold
US5095035A (en) * 1981-07-31 1992-03-10 Eby Iii George A Flavor stable zinc acetate compositions for oral absorption
US5002970A (en) * 1981-07-31 1991-03-26 Eby Iii George A Flavor masked ionizable zinc compositions for oral absorption
US4386106A (en) * 1981-12-01 1983-05-31 Borden, Inc. Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4597959A (en) * 1982-04-30 1986-07-01 Arthur Barr Sustained release breath freshener, mouth and palate coolant wafer composition and method of use
US4568560A (en) * 1984-03-16 1986-02-04 Warner-Lambert Company Encapsulated fragrances and flavors and process therefor
US4758439A (en) * 1984-06-11 1988-07-19 Godfrey Science & Design, Inc. Flavor of zinc supplements for oral use
US4684528A (en) * 1984-06-11 1987-08-04 Godfrey Science & Design, Inc. Flavor of zinc supplements for oral use
US4678516A (en) * 1984-10-09 1987-07-07 The Dow Chemical Company Sustained release dosage form based on highly plasticized cellulose ether gels
US5989522A (en) * 1989-01-31 1999-11-23 Yissum Research & Development Company Of The Hebrew University Of Jerusalem Oral antifungal preventative, and method of use
US5059416A (en) * 1989-06-26 1991-10-22 Warner-Lambert Company Zinc compound delivery system with improved taste and texture
US5030459A (en) * 1989-11-07 1991-07-09 Warner-Lambert Company High impact mint flavor for high base chewing gum
US5849322A (en) * 1995-10-23 1998-12-15 Theratech, Inc. Compositions and methods for buccal delivery of pharmaceutical agents
US5955097A (en) * 1996-10-18 1999-09-21 Virotex Corporation Pharmaceutical preparation applicable to mucosal surfaces and body tissues
US6290984B1 (en) * 1996-10-18 2001-09-18 Virotex Corporation Pharmaceutical preparation applicable to mucosal surfaces and body tissues
US6316008B1 (en) * 1998-09-03 2001-11-13 John C. Godfrey Combination of zinc ions and vitamin C and method of making

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135567A1 (en) * 1999-10-04 2006-06-22 Hinz Martin C Comprehensive pharmacologic therapy for treatment of obesity
US7547723B2 (en) 1999-10-04 2009-06-16 Hinz Martin C Comprehensive pharmacologic therapy for treatment of a dysfunction
US7268161B2 (en) 1999-10-04 2007-09-11 Hinz Martin C Comprehensive pharmacologic therapy for treatment of obesity including cysteine
US20050065190A1 (en) * 1999-10-04 2005-03-24 Hinz Martin C. Comprehensive pharmacologic therapy for treatment of obesity including cysteine
US20050233008A1 (en) * 1999-10-04 2005-10-20 Hinz Martin C Comprehensive pharmacologic therapy for treatment of a dysfunction
US20080241278A1 (en) * 2002-03-21 2008-10-02 Hinz Martin C Serotonin and catecholamine system segment optimization technology
US20090311795A1 (en) * 2002-03-21 2009-12-17 Hinz Martin C Bilateral control of functions traditionally regulated by only serotonin or only dopamine
US20030181509A1 (en) * 2002-03-21 2003-09-25 Hinz Martin C. Serotonin and catecholamine system segment optimization technology
US20060178423A1 (en) * 2002-03-21 2006-08-10 Hinz Martin C Serotonin and catecholamine system segment optimization technology
US20090234012A1 (en) * 2002-03-21 2009-09-17 Martin C. Hinz Administration of dopa precursors with sources of dopa to effectuate optimal catecholamine neurotransmitter outcomes
US9629832B2 (en) 2002-12-20 2017-04-25 Niconovum Usa, Inc. Physically and chemically stable nicotine-containing particulate material
US20040229285A1 (en) * 2003-02-21 2004-11-18 Hinz Martin C. Serotonin and catecholamine system segment optimization technology
US20070092552A1 (en) * 2003-04-30 2007-04-26 Tim Clarot Chewable lozenge cold remedy composition and method for making same
US20040250723A1 (en) * 2003-06-10 2004-12-16 Heidelberger Druckmaschinen Ag Method for metering dampening solution when printing with an offset press
US20060280694A1 (en) * 2005-06-09 2006-12-14 John Peldyak Composition for the mineralization of dental hard tissues and the reduction of caries-inducive microflora
US20070144544A1 (en) * 2005-09-30 2007-06-28 Cai David J Oral composition and method for stress reduction associated with smoking cessation
WO2007041035A3 (en) * 2005-09-30 2007-05-24 Wrigley W M Jun Co Oral composition and method for stress reduction associated with smoking cessation
WO2007041035A2 (en) * 2005-09-30 2007-04-12 Wm. Wrigley Jr. Company Oral composition and method for stress reduction associated with smoking cessation
US10219999B2 (en) 2006-03-16 2019-03-05 Niconovum Usa, Inc. Snuff composition
WO2008033155A1 (en) * 2006-09-15 2008-03-20 Auriga Laboratories, Inc. Kits for prevention and treatment of rhinitis
US8535747B2 (en) 2007-03-14 2013-09-17 Concentrate Manufacturing Company Of Ireland Beverage products having steviol glycosides and at least one acid
US9877500B2 (en) 2007-03-14 2018-01-30 Concentrate Manufacturing Company Of Ireland Natural beverage products
US9314048B2 (en) 2007-03-14 2016-04-19 The Concentrate Manufacturing Company Of Ireland Beverage products with non-nutritive sweetener and bitterant
US8535746B2 (en) 2007-03-14 2013-09-17 Concentrate Manufacturing Company Of Ireland Beverage products having steviol glycosides and at least one acid
US8084073B2 (en) * 2007-03-14 2011-12-27 Concentrate Manufacturing Company Of Ireland Anisic acid modified steviol glycoside sweetened beverage products
US20080226801A1 (en) * 2007-03-14 2008-09-18 Concentrate Manufacturing Company Of Ireland Anisic Acid Modified Steviol Glycoside Sweetened Beverage Products
US8337928B2 (en) 2007-03-14 2012-12-25 Concentrate Manufacturing Company Of Ireland Anisic acid modified steviol glycoside sweetened beverage products
US8277861B2 (en) 2007-03-14 2012-10-02 Concentrate Manufacturing Company Of Ireland Beverage products having steviol glycosides and at least one acid
US8277862B2 (en) 2007-03-14 2012-10-02 Concentrate Manufacturing Company Of Ireland Beverage products having steviol glycosides and at least one acid
US8029846B2 (en) 2007-03-14 2011-10-04 The Concentrate Manufacturing Company Of Ireland Beverage products
US20080253976A1 (en) * 2007-04-16 2008-10-16 Douglas Craig Scott Personal Care Compositions Comprising An Antimicrobial Blend of Essential Oils or Constituents Thereof
EP2242484A1 (en) * 2007-09-26 2010-10-27 Bennes, Inc. Sustained release dosage form for lubricating an oral cavity
EP2242484A4 (en) * 2007-09-26 2012-05-09 Bennes Inc Sustained release dosage form for lubricating an oral cavity
US20090130178A1 (en) * 2007-11-19 2009-05-21 Xvasive, Inc. Formulation for decreasing tobacco, alcohol, drug or food consumption
US20090131889A1 (en) * 2007-11-19 2009-05-21 Oronsky Bryan Todd Topical composition for treating pain
WO2009067536A3 (en) * 2007-11-19 2009-07-30 Xvasive Inc Formulation for decreasing tobacco, alcohol, drug or food consumption
US20090130182A1 (en) * 2007-11-19 2009-05-21 Oronsky Bryan Todd Topical compositions for treating pain
US8784872B2 (en) * 2007-11-19 2014-07-22 Comgenrx, Inc. Formulation for decreasing tobacco, alcohol, drug or food consumption
WO2009067536A2 (en) * 2007-11-19 2009-05-28 Xvasive, Inc. Formulation for decreasing tobacco, alcohol, drug or food consumption
US20090162488A1 (en) * 2007-12-21 2009-06-25 The Concentrate Manufacturing Company Of Ireland Beverage products and flavor systems having a non-sweetening amount of monatin
US20090162487A1 (en) * 2007-12-21 2009-06-25 The Concentrate Manufacturing Company Of Ireland Beverage products and flavor systems having a non-sweetening amount of rebaudioside a
US20100104614A1 (en) * 2008-06-27 2010-04-29 Oronsky Bryan T Providone compositions for wound healing
US20110117175A1 (en) * 2009-11-18 2011-05-19 Rosenbaum Richard J Sweet analgesic for use in medical procedures or treatments
US20110200670A1 (en) * 2010-02-18 2011-08-18 Jatin Thakkar Nicotine Containing Soft Gelatin Pastilles
US8470366B2 (en) 2010-02-18 2013-06-25 Jatin Thakkar Nicotine containing soft gelatin pastilles
WO2011101860A1 (en) 2010-02-18 2011-08-25 Jatin Vasant Thakkar Nicotine-containing soft gelatin pastilles
US9956211B2 (en) 2011-04-29 2018-05-01 Moberg Pharma Ab Pharmaceutical compositions comprising a local anaesthetic such as bupivacaine for local administration to the mouth or throat
US10493068B2 (en) 2011-04-29 2019-12-03 Moberg Pharma Ab Pharmaceutical compositions comprising a local anaesthetic such as bupivacaine for local administration to the mouth or throat
WO2012146763A1 (en) * 2011-04-29 2012-11-01 Oracain Ii Aps Pharmaceutical compositions comprising a local anaesthetic such as bupivacaine for local administration to the mouth or throat
US9238075B2 (en) 2011-12-07 2016-01-19 Msm Innovations, Inc. Method for bowel preparation
CN104053433A (en) * 2012-01-05 2014-09-17 麦克内尔股份公司 Solid nicotine-comprising dosage form with reduced organoleptic disturbance
JP2015503581A (en) * 2012-01-05 2015-02-02 マクニール・アーベーMcNeilAB Solid nicotine-containing dosage forms with reduced sensory stimulation
WO2013103318A1 (en) * 2012-01-05 2013-07-11 Mcneil Ab Solid nicotine-comprising dosage form with reduced organoleptic disturbance
RU2623018C2 (en) * 2012-01-05 2017-06-21 Макней Аб Solid nicotine-containing dosage form with reduced unpleasant organoleptic impact
US20180070626A1 (en) * 2012-01-20 2018-03-15 Altria Client Services Llc Oral tobacco product
US10602768B2 (en) * 2012-01-20 2020-03-31 Altria Client Services Llc Oral tobacco product
US11864578B2 (en) 2012-01-20 2024-01-09 Altria Client Services Llc Oral product
US11541001B2 (en) 2012-01-20 2023-01-03 Altria Client Services Llc Oral product
US11540554B2 (en) 2012-01-20 2023-01-03 Altria Client Services Llc Oral tobacco product
US11369129B2 (en) 2012-01-20 2022-06-28 Altria Client Services Llc Oral product
US9433660B2 (en) 2012-08-03 2016-09-06 Msm Innovations, Inc Method and kit for bowel preparation
WO2014022760A1 (en) * 2012-08-03 2014-02-06 Msm Innovations, Inc. Method and kit for bowel preparation
US9067070B2 (en) 2013-03-12 2015-06-30 Medibotics Llc Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type
US9456916B2 (en) 2013-03-12 2016-10-04 Medibotics Llc Device for selectively reducing absorption of unhealthy food
US9011365B2 (en) 2013-03-12 2015-04-21 Medibotics Llc Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food
US20160000731A1 (en) * 2014-07-02 2016-01-07 Xlear, Inc. Sore-throat compositions and related methods
CN110129133A (en) * 2015-02-06 2019-08-16 爱茉莉太平洋股份有限公司 Reproduce the spice composition of citrus flower class fragrance
CN110463974A (en) * 2019-09-19 2019-11-19 合肥工业大学 A kind of sodium salt-cellulose membrane dips in salt and preparation method

Also Published As

Publication number Publication date
EP1987821A2 (en) 2008-11-05
WO2004070017A2 (en) 2004-08-19
CA2515006C (en) 2012-07-17
CA2515006A1 (en) 2004-08-19
EP1987821A3 (en) 2011-09-07
ATE411008T1 (en) 2008-10-15
ES2314371T3 (en) 2009-03-16
WO2004070017A3 (en) 2005-01-27
US20040247669A1 (en) 2004-12-09
EP1589952A2 (en) 2005-11-02
DE602004017127D1 (en) 2008-11-27
US8236348B2 (en) 2012-08-07
EP1589952B1 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US8236348B2 (en) Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth
US20090081291A1 (en) Sustained Release Dosage Forms For Delivery of Agents to an Oral Cavity of a User
US20090081294A1 (en) Sustained release dosage form for lubricating an oral cavity
US9161909B2 (en) Adhesive compositions for the treatment of xerostomia
US20070231387A1 (en) Film-coated solid dosage forms
US20040136923A1 (en) Edible film for relief of cough or symptoms associated with pharyngitis
WO2008045579A1 (en) Oral delivery vehicles containing a traditional chinese medicine of extract thereof
Gadhavi et al. Medicated Chewing Gum-A 21st Century Drug Delivery Sysytem
EP2027852A1 (en) Adhesive compositions for the treatment of xerostoma
EP1885196A1 (en) Confectionery products for the treatment of dry mouth
US20100104518A1 (en) Chewing gum, confection, and other oral delivery vehicles containing a traditional chinese medicine or extract thereof
Mohire et al. Novel approaches in development of metronidazole orodispersible tablets
JP5614571B2 (en) Chewing gum medicine and method for producing chewing gum medicine
US11857557B2 (en) Oral dissolvable film containing vitamin D3
WO2010132126A1 (en) Flavored tooth-whitening composition in the form of a sustained release matrix
WO2023114529A2 (en) Pharmacoactive formulations for delivery of psychedelic compounds
WO2018224897A1 (en) Treatment of oral candidiasis

Legal Events

Date Code Title Description
AS Assignment

Owner name: BENNES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GIN, JERRY B.;ROSS, BENJAMIN F.;REEL/FRAME:013748/0989

Effective date: 20030203

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION