US20040151906A1 - Flame-retardant cable - Google Patents

Flame-retardant cable Download PDF

Info

Publication number
US20040151906A1
US20040151906A1 US10/719,698 US71969803A US2004151906A1 US 20040151906 A1 US20040151906 A1 US 20040151906A1 US 71969803 A US71969803 A US 71969803A US 2004151906 A1 US2004151906 A1 US 2004151906A1
Authority
US
United States
Prior art keywords
flame
cable according
retardant cable
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/719,698
Inventor
Olivier Pinto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Original Assignee
Nexans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans SA filed Critical Nexans SA
Assigned to NEXANS reassignment NEXANS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PINTO, OLIVIER
Publication of US20040151906A1 publication Critical patent/US20040151906A1/en
Priority to US12/815,504 priority Critical patent/US20110110632A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the acquirers of electrical and/or optical cables for transporting power and/or transmitting information seek, in the event of a fire, to avoid flame propagating along a cable, even if laid vertically, and to prevent the insulating material that covers the cable core from dripping away when melted at high temperature.
  • European patent application EP 1 191 547 A1 describes a cable whose insulating layer of polyethylene is coated in an outer layer that is thin, preferably 5 micrometers ( ⁇ m) to 50 ⁇ m thick, and serving to combat fire propagation, for example.
  • the coating is of polyacrylate polymer formed by ultraviolet radiation.
  • the object of the invention is to devise a flame-retardant cable, which is preferably inexpensive, and which is quick and easy to manufacture.
  • Another object of the invention is to devise such a cable that withstands abrasion.
  • the invention provides a flame-retardant cable comprising a transmission element, a flammable element, and a flame-retardant coating layer surrounding said flammable element, and made of a material based on a polymer obtained from a polymerizable liquid composition containing at least a precursor for said polymer including functional groups selected from acrylates, methacrylates, epoxies, vinyl ethers, allyl ethers, and oxetanes,
  • said material includes at least one phosphorous group.
  • the phosphorous group(s) provide the flame-retardant properties of the coating of the invention.
  • the phosphorous group may be chemically bonded to said polymer, and in this embodiment, the precursor of said polymer may include at least one phosphorous group.
  • the material of the invention may be free from halogens, elements which are conventionally used as fire-retarding agents.
  • said flammable element may be selected from one or more of the following elements: an insulating layer; a sheathing layer; a reinforcing element; a tube for protecting optical fibers; a grooved core; a serving string; a tape; and a braid.
  • said insulating layer may be made of a material selected from a halogen-free thermoplastic polymer, and preferably polyethylene which presents good dielectric properties.
  • polyethylene protected by the flame-retardant coating of the invention can advantageously replace polytetrafluoroethylene (PTFE) or copolymers of tetrafluoroethylene and hexafluoropropylene (fluorinated ethylene propylene copolymer FEP) that are better at withstanding fire, but that present poorer dielectric properties.
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylene propylene copolymer
  • the flammable element may include its own flame-retarding mineral fills, but that do not provide it with sufficient protection against fire.
  • the flame-retarding coating reinforces the ability of said element to withstand fire.
  • the transmission element is selected from an optical conductor and an electrical conductor.
  • said flame-retarding coating layer is made by applying said polmerizable liquid composition on said flammable element using a coating technique selected from spraying, dipping, impregnation, and application by means of a brush.
  • said flame-retarding coating layer is formed from a tape impregnated in said polymerizable liquid composition and wound on said flammable element.
  • said polymerizable liquid composition may contain a reactive diluant including an antiabrasion compound which is preferably of bicyclic structure and contains at least one functional group that is selectively reactive with one of the functional groups of said polymer precursor.
  • the coating is not only highly flame-retardant, but also withstands abrasion and presents good thermomechanical properties.
  • the antiabrasion compound is easily miscible and makes the composition easier to apply.
  • Said composition may be polymerizable, for example, by actinic radiation (ultraviolet radiation, electrons, gamma rays, etc.).
  • actinic radiation ultraviolet radiation, electrons, gamma rays, etc.
  • the polymer precursor (monomer, oligomer) including acrylate functional groups and at least one phosphorous group is sold, for example, by UCB Chemicals under the reference Ebecryl IRR 527.
  • the number of parts by weight of said antiabrasion compound relative to 100 parts by weight of said composition is preferably less than 95 and preferably lies in the range 10 to 30 in order to conserve the highly fire-retardant nature of the coating.
  • the acrylate equivalent weight of said antiabrasion compound is preferably greater than 80 and is preferably substantially equal to 210.
  • acrylate equivalent weight is used to mean the molar mass of the compound relative to the number of acrylate functions per molecule.
  • the coating layer presents good mechanical properties, in particular good elasticity (high breaking elongation), and also improved hardness.
  • Said liquid composition is preferably polymerizable by actinic radiation, and when said actinic radiation is of the ultraviolet type, said composition may include a photoinitiator, the number of parts by weight of said photoinitiator relative to 100 parts by weight of said composition lying in the range 0.1 to 10, and preferably being substantially equal to 3.
  • Said liquid composition is advantageously polymerizable by UV radiation and may contain:
  • Examples 1 and 2 relate to a liquid composition that is polymerizable by radiation of the actinic type for the purpose of making a flame-retardant coating layer of the invention for a power cable, a data cable, or a telecommunications cable.
  • Table 1 gives the properties of a coating No. 1 made of a material based on a polymer obtained by using ultraviolet radiation to polymerize composition No. 1, and of a coating No. 2 made of a material based on a polymer obtained by using ultraviolet radiation to polymerize composition No. 2.
  • the precursor also contains phosphorous groups and the resulting polymer is chemically bonded to phosphorous groups.
  • composition No. 1 presents viscosity that is equal to about 17,000 millipascal-seconds (mPa.s).
  • Composition No. 2 which has viscosity of about 1206 mpa.s at 50° C., is easier to apply than composition No. 1 and leads to a coating No. 2 presenting good elasticity and better resistance to abrasion.
  • an isobornyl acrylate serves to improve the mechanical properties and the abrasion resistance of the coating.
  • this compound with an acrylate functional group that is reactive with one of the acrylate functional groups of the oligomer makes it possible to achieve complete polymerization using a medium pressure mercury vapor lamp emitting in the ultraviolet and mostly in the wavelength range 200 nanometers (nm) to 400 nm, where such a lamp is sold for example by Fusion delivering power of 200 watts per centimeter (W/cm), with the cable traveling at a speed of 80 meters per minute (m/min), and with exposure taking place in a single pass, even when the coating has a thickness of about 100 ⁇ m.
  • W/cm medium pressure mercury vapor lamp emitting in the ultraviolet and mostly in the wavelength range 200 nanometers (nm) to 400 nm, where such a lamp is sold for example by Fusion delivering power of 200 watts per centimeter (W/cm), with the cable traveling at a speed of 80 meters per minute (m/min
  • compositions No. 1 and No. 2 may also include pigments, fillers, spreading additives or sliding additives, adhesion promoters, ultraviolet stabilizers, and antioxidants.
  • Table 2 below gives the results of tests carried out in application of the ISO 4589-2 protocol for determining the oxygen limit index (OLI), the self-extinction time, and the combustion length of five samples, thereby characterizing their flame-retardant properties.
  • Comparative sample No. 1 comprises a layer of power cable sheathing material made up of an ethylene vinyl acetate (EVA) copolymer including flame-retardant mineral fillers such as aluminum trihydrate Al 2 O 3 , 3H 2 O.
  • EVA ethylene vinyl acetate
  • Each of samples No. 2 and No. 3 comprises a filled layer of EVA similar to that of sample No. 1, but covered in an outer flame-retardant covering of a material based on a polymer obtained from composition No. 1 of the invention.
  • Samples Nos. 4 and 5 each comprise a filled EVA layer similar to that of sample No. 1 and covered in an outer flame-retardant coating made of a material based on a polymer obtained from composition No. 2 of the invention.
  • samples Nos. 2, 3, and 5 present an OLI that is 5% greater than that of sample No. 1 (only 1% greater for sample No. 4).
  • the outer coating of the invention on sample No. 4 presents an OLI that is 1% greater than that of sample No. 1. TABLE 2 Thickness of outer Extinction Combustion Sample No. coating ( ⁇ m) OLI (%) time (s) length (mm) 1 — 32 >120 10 2 40 37 175 35 3 70 37 170 35 4 50 33 58 5 5 100 37 103 10
  • Table 3 below gives the results of tests performed on three vertical cables, the tests being carried out using the IEC 3321 protocol.
  • the test consists in subjecting a cable or an insulator conductor in the vertical position to a flame fed with a mixture of air and propane at respective flow rates of 4 liters per minute (/min) and 640 milliliters per minute (m/min) coming from a burner that is positioned at an angle of 45° relative to the vertical axis of the sample and applied for a duration of 60 seconds, and then determining extinction time and combustion length.
  • Cable No. 1 comprises a copper conductor having a section of 16 square millimeters (mm 2 ) coated in a flammable insulating layer made of a compound containing polyethylene cross-linked by the silane process and not containing any flame-retardant mineral fillers.
  • Cables No. 2 and No. 3 both comprise a coated copper conductor similar to the conductor of cable No. 1, each coated in an insulating layer similar to the layer of cable No. 1, said layer in turn being coated in an outer layer of flame-retardant coating made of a material based on a polymer obtained from composition No. 1 in one case and composition No. 2 in the other.
  • a cable passes the test if the combustion distance above the zone in which the flame was applied does not exceed 425 mm. As expected, cable No. 1 does not pass the test. Furthermore, the combustion length of cable No. 3 is shorter than that of cable No. 2.
  • FIG. 1 is a cross-section view of a power cable of the invention.
  • the cable 1 comprises, by way of example, a transmission element 2 such as an electrical conductor, e.g. made of copper, coated in a flammable insulating layer 3 itself coated in a layer 4 of flame-retardant coating made of a material based on a polymer obtained, for example, from composition No. 2 and of thickness that is preferably equal to about 100 ⁇ m.
  • a transmission element 2 such as an electrical conductor, e.g. made of copper, coated in a flammable insulating layer 3 itself coated in a layer 4 of flame-retardant coating made of a material based on a polymer obtained, for example, from composition No. 2 and of thickness that is preferably equal to about 100 ⁇ m.
  • the layer 4 of the invention is an outer coating layer on the insulating layer, since it provides flame-retardant properties and preferably also resistance to abrasion. Nevertheless, the cable 1 could naturally include one or more other layers between the insulating layer and the layer 4 of the invention.
  • the flame-retardant coating layer is made by applying the polymerizable liquid composition on the flammable insulating layer using a conventional coating technique, e.g. application by means of a brush or by spraying.
  • the flame-retardant coating layer is made from a tape impregnated in the composition and wound on the flammable insulating layer.
  • the invention is equally applicable to any flammable element used in the manufacture of a telecommunications or a power cable, for example a reinforcing element, an optical fiber protection tube, a padding element, a grooved core, or a braid.
  • the invention is equally applicable to power cables and to telecommunications cables, to data cables, to electrical cables, and to optical fiber cables.

Abstract

The present invention relates to a flame-retardant cable comprising a transmission element, a flammable element, and a flame-retardant coating layer surrounding said flammable element, and made of a material based on a polymer obtained from a polymerizable liquid composition containing at least a precursor for said polymer including functional groups selected from acrylates, methacrylates, epoxies, vinyl ethers, allyl ethers, and oxetanes,
wherein said material includes at least one phosphorous group.

Description

    RELATED APPLICATIONS
  • This application is related to and claims the benefit of priority to French Patent Application No. 02 15065, filed on Nov. 29, 2002, the entirety of which is incorporated herein by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • In known manner, the acquirers of electrical and/or optical cables for transporting power and/or transmitting information, seek, in the event of a fire, to avoid flame propagating along a cable, even if laid vertically, and to prevent the insulating material that covers the cable core from dripping away when melted at high temperature. [0002]
  • European [0003] patent application EP 1 191 547 A1 describes a cable whose insulating layer of polyethylene is coated in an outer layer that is thin, preferably 5 micrometers (μm) to 50 μm thick, and serving to combat fire propagation, for example. The coating is of polyacrylate polymer formed by ultraviolet radiation.
  • Not all polyacrylate coatings are capable both of retarding degradation of the cable and also of providing a cable which can conserve a degree of operability even when subjected directly to extreme thermal stress such as flame or fire. [0004]
  • Furthermore, it is important for the outer coating also to possess good resistance to abrasion. [0005]
  • OBJECT AND SUMMARY OF THE INVENTION
  • The object of the invention is to devise a flame-retardant cable, which is preferably inexpensive, and which is quick and easy to manufacture. [0006]
  • Another object of the invention is to devise such a cable that withstands abrasion. [0007]
  • To this end, the invention provides a flame-retardant cable comprising a transmission element, a flammable element, and a flame-retardant coating layer surrounding said flammable element, and made of a material based on a polymer obtained from a polymerizable liquid composition containing at least a precursor for said polymer including functional groups selected from acrylates, methacrylates, epoxies, vinyl ethers, allyl ethers, and oxetanes, [0008]
  • wherein said material includes at least one phosphorous group. [0009]
  • The phosphorous group(s) provide the flame-retardant properties of the coating of the invention. [0010]
  • In a preferred embodiment, the phosphorous group may be chemically bonded to said polymer, and in this embodiment, the precursor of said polymer may include at least one phosphorous group. [0011]
  • Advantageously, the material of the invention may be free from halogens, elements which are conventionally used as fire-retarding agents. [0012]
  • According to a characteristic, said flammable element may be selected from one or more of the following elements: an insulating layer; a sheathing layer; a reinforcing element; a tube for protecting optical fibers; a grooved core; a serving string; a tape; and a braid. [0013]
  • When said flammable element is an insulating layer, said insulating layer may be made of a material selected from a halogen-free thermoplastic polymer, and preferably polyethylene which presents good dielectric properties. [0014]
  • By way of example, in the field of telecommunications cables which are often laid vertically in ventilation ducts, polyethylene protected by the flame-retardant coating of the invention can advantageously replace polytetrafluoroethylene (PTFE) or copolymers of tetrafluoroethylene and hexafluoropropylene (fluorinated ethylene propylene copolymer FEP) that are better at withstanding fire, but that present poorer dielectric properties. [0015]
  • The flammable element may include its own flame-retarding mineral fills, but that do not provide it with sufficient protection against fire. In this configuration, the flame-retarding coating reinforces the ability of said element to withstand fire. [0016]
  • In an embodiment of the invention, the transmission element is selected from an optical conductor and an electrical conductor. [0017]
  • In a first embodiment, said flame-retarding coating layer is made by applying said polmerizable liquid composition on said flammable element using a coating technique selected from spraying, dipping, impregnation, and application by means of a brush. [0018]
  • In a second embodiment, said flame-retarding coating layer is formed from a tape impregnated in said polymerizable liquid composition and wound on said flammable element. [0019]
  • Advantageously, said polymerizable liquid composition may contain a reactive diluant including an antiabrasion compound which is preferably of bicyclic structure and contains at least one functional group that is selectively reactive with one of the functional groups of said polymer precursor. [0020]
  • In this way, the coating is not only highly flame-retardant, but also withstands abrasion and presents good thermomechanical properties. In addition, the antiabrasion compound is easily miscible and makes the composition easier to apply. [0021]
  • Said composition may be polymerizable, for example, by actinic radiation (ultraviolet radiation, electrons, gamma rays, etc.). [0022]
  • The polymer precursor (monomer, oligomer) including acrylate functional groups and at least one phosphorous group is sold, for example, by UCB Chemicals under the reference Ebecryl IRR 527. [0023]
  • The number of parts by weight of said antiabrasion compound relative to 100 parts by weight of said composition is preferably less than 95 and preferably lies in the range 10 to 30 in order to conserve the highly fire-retardant nature of the coating. [0024]
  • When said antiabrasion compound contains at least one acrylate functional group, the acrylate equivalent weight of said antiabrasion compound is preferably greater than 80 and is preferably substantially equal to 210. [0025]
  • The term “acrylate equivalent weight” is used to mean the molar mass of the compound relative to the number of acrylate functions per molecule. [0026]
  • Thus, the coating layer presents good mechanical properties, in particular good elasticity (high breaking elongation), and also improved hardness. [0027]
  • Said liquid composition is preferably polymerizable by actinic radiation, and when said actinic radiation is of the ultraviolet type, said composition may include a photoinitiator, the number of parts by weight of said photoinitiator relative to 100 parts by weight of said composition lying in the range 0.1 to 10, and preferably being substantially equal to 3. [0028]
  • Said liquid composition is advantageously polymerizable by UV radiation and may contain: [0029]
  • 80 parts by weight of said polymer precursor, said precursor being a halogen-free oligomer; [0030]
  • 17 parts by weight of isobornyl acrylate; and [0031]
  • 3 parts by weight of a photoinitiator. [0032]
  • DESCRIPTION OF EXAMPLES
  • Other characteristics and advantages of the present invention appear from the following description of examples given by way of non-limiting illustration. [0033]
  • Examples 1 and 2 relate to a liquid composition that is polymerizable by radiation of the actinic type for the purpose of making a flame-retardant coating layer of the invention for a power cable, a data cable, or a telecommunications cable.[0034]
  • EXAMPLE 1
  • Composition No. 1 [0035]
  • 97 parts by weight of Ebecryl IRR 527 from UCB Chemicals, a halogen-free polyester acrylate oligomer having two acrylate functional groups and phosphorous groups; and [0036]
  • 3 parts by weight of the photoinitiator DAROCUR1173 (commercial name) from CIBA. [0037]
  • EXAMPLE 2
  • Composition No. 2 [0038]
  • 80 parts by weight of Ebecryl IRR 527; [0039]
  • 17 parts by weight of an isobornyl acrylate of bicyclic structure such as Genomer 1121 from RAHN, having an acrylate equivalent weight equal to 208; and [0040]
  • 3 parts by weight of DAROCUR1173 (commercial name) photoinitiator. [0041]
  • Table 1 gives the properties of a coating No. 1 made of a material based on a polymer obtained by using ultraviolet radiation to polymerize composition No. 1, and of a coating No. 2 made of a material based on a polymer obtained by using ultraviolet radiation to polymerize composition No. 2. [0042]
  • In these examples, the precursor also contains phosphorous groups and the resulting polymer is chemically bonded to phosphorous groups. [0043]
    TABLE 1
    Coating No. 1 Coating No. 2
    Breaking stress 13.4 21.4
    (MPa) at 25° C.
    Breaking 46 43.1
    elongation (%)
    Hardness (Buchholz <59 123
    method)
  • On heating to 60° C., composition No. 1 presents viscosity that is equal to about 17,000 millipascal-seconds (mPa.s). Composition No. 2, which has viscosity of about 1206 mpa.s at 50° C., is easier to apply than composition No. 1 and leads to a coating No. 2 presenting good elasticity and better resistance to abrasion. [0044]
  • The use of an isobornyl acrylate serves to improve the mechanical properties and the abrasion resistance of the coating. In addition, this compound with an acrylate functional group that is reactive with one of the acrylate functional groups of the oligomer makes it possible to achieve complete polymerization using a medium pressure mercury vapor lamp emitting in the ultraviolet and mostly in the wavelength range 200 nanometers (nm) to 400 nm, where such a lamp is sold for example by Fusion delivering power of 200 watts per centimeter (W/cm), with the cable traveling at a speed of 80 meters per minute (m/min), and with exposure taking place in a single pass, even when the coating has a thickness of about 100 μm. [0045]
  • In a variant, one or other of compositions No. 1 and No. 2 may also include pigments, fillers, spreading additives or sliding additives, adhesion promoters, ultraviolet stabilizers, and antioxidants. [0046]
  • Table 2 below gives the results of tests carried out in application of the ISO 4589-2 protocol for determining the oxygen limit index (OLI), the self-extinction time, and the combustion length of five samples, thereby characterizing their flame-retardant properties. [0047]
  • Comparative sample No. 1 comprises a layer of power cable sheathing material made up of an ethylene vinyl acetate (EVA) copolymer including flame-retardant mineral fillers such as aluminum trihydrate Al[0048] 2O3, 3H2O.
  • Each of samples No. 2 and No. 3 comprises a filled layer of EVA similar to that of sample No. 1, but covered in an outer flame-retardant covering of a material based on a polymer obtained from composition No. 1 of the invention. [0049]
  • Samples Nos. 4 and 5 each comprise a filled EVA layer similar to that of sample No. 1 and covered in an outer flame-retardant coating made of a material based on a polymer obtained from composition No. 2 of the invention. [0050]
  • Because of their outer coatings of the invention, samples Nos. 2, 3, and 5 present an OLI that is 5% greater than that of sample No. 1 (only 1% greater for sample No. 4). [0051]
  • The outer coating of the invention on sample No. 4 presents an OLI that is 1% greater than that of sample No. 1. [0052]
    TABLE 2
    Thickness
    of outer Extinction Combustion
    Sample No. coating (μm) OLI (%) time (s) length (mm)
    1 32 >120 10
    2  40 37 175 35
    3  70 37 170 35
    4  50 33 58 5
    5 100 37 103 10
  • The use of isobornyl acrylate requires the thickness of the coating to be increased in order to obtain an OLI of 37%. Nevertheless, from tests performed on sample No. 5, it is observed that this compound makes it possible not only to improve the mechanical properties and abrasion resistance of the coating, but also to reduce its combustion length and to shorten its extinction time. [0053]
  • Table 3 below gives the results of tests performed on three vertical cables, the tests being carried out using the IEC 3321 protocol. The test consists in subjecting a cable or an insulator conductor in the vertical position to a flame fed with a mixture of air and propane at respective flow rates of 4 liters per minute (/min) and 640 milliliters per minute (m/min) coming from a burner that is positioned at an angle of 45° relative to the vertical axis of the sample and applied for a duration of 60 seconds, and then determining extinction time and combustion length. [0054]
  • Cable No. 1 comprises a copper conductor having a section of 16 square millimeters (mm[0055] 2) coated in a flammable insulating layer made of a compound containing polyethylene cross-linked by the silane process and not containing any flame-retardant mineral fillers.
  • Cables No. 2 and No. 3 both comprise a coated copper conductor similar to the conductor of cable No. 1, each coated in an insulating layer similar to the layer of cable No. 1, said layer in turn being coated in an outer layer of flame-retardant coating made of a material based on a polymer obtained from composition No. 1 in one case and composition No. 2 in the other. [0056]
  • Polymerization was obtained by means of a 200 W/cm ultraviolet lamp and the cable travel speed was 50 m/min. [0057]
    TABLE 3
    Thickness of
    outer coating Extinction Combustion
    Cable No. (μm) time length (mm)
    1 >4′ 440
    2  41   2′28″ 135
    3 100   2′26″  95
  • A cable passes the test if the combustion distance above the zone in which the flame was applied does not exceed 425 mm. As expected, cable No. 1 does not pass the test. Furthermore, the combustion length of cable No. 3 is shorter than that of cable No. 2. [0058]
  • FIG. 1 is a cross-section view of a power cable of the invention. [0059]
  • The [0060] cable 1 comprises, by way of example, a transmission element 2 such as an electrical conductor, e.g. made of copper, coated in a flammable insulating layer 3 itself coated in a layer 4 of flame-retardant coating made of a material based on a polymer obtained, for example, from composition No. 2 and of thickness that is preferably equal to about 100 μm.
  • The [0061] layer 4 of the invention is an outer coating layer on the insulating layer, since it provides flame-retardant properties and preferably also resistance to abrasion. Nevertheless, the cable 1 could naturally include one or more other layers between the insulating layer and the layer 4 of the invention.
  • The flame-retardant coating layer is made by applying the polymerizable liquid composition on the flammable insulating layer using a conventional coating technique, e.g. application by means of a brush or by spraying. [0062]
  • In a variant, the flame-retardant coating layer is made from a tape impregnated in the composition and wound on the flammable insulating layer. [0063]
  • The invention is equally applicable to any flammable element used in the manufacture of a telecommunications or a power cable, for example a reinforcing element, an optical fiber protection tube, a padding element, a grooved core, or a braid. [0064]
  • More generally, the invention is equally applicable to power cables and to telecommunications cables, to data cables, to electrical cables, and to optical fiber cables. [0065]

Claims (18)

What is claimed is:
1. A flame-retardant cable comprising:
a transmission element;
a flammable element; and
a flame-retardant coating layer surrounding said flammable element, and made of a material based on a polymer obtained from a polymerizable liquid composition containing at least a precursor for said polymer including functional groups selected from acrylates, methacrylates, epoxies, vinyl ethers, allyl ethers, and oxetanes,
wherein said material includes at least one phosphorous group.
2. A flame-retardant cable according to claim 1, wherein said phosphorous group is chemically bonded to said polymer.
3. A flame-retardant cable according to claim 1, wherein the precursor of said polymer includes at least one phosphorous group.
4. A flame-retardant cable according to claim 1, wherein said material is halogen-free.
5. A flame-retardant cable according to claim 1, wherein said flammable element is selected from at least one of the following elements: an insulating layer; a sheathing layer; a reinforcing element; an optical fiber protection; a padding element; a groove core; a tape; and a braid.
6. A flame-retardant cable according to claim 1, wherein, when said flammable element is an insulating layer, said insulating layer is made from a material selected from a halogen-free thermoplastic polymer, and preferably a polyethylene.
7. A flame-retardant cable according to claim 1, wherein the transmission element is selected from a conductor of light and a conductor of electricity.
8. A flame-retardant cable according to claim 1, wherein said flame-retardant coating layer is made by applying said polymerizable liquid composition on said flammable element using a coating technique selected from spraying, dipping, impregnation, and application by means of a brush.
9. A flame-retardant cable according to claim 1, wherein said flame-retardant coating layer is made from a tape impregnated in said polymerizable liquid composition and wound on said flammable element.
10. A flame-retardant cable according to claim 1, wherein said polymerizable liquid composition contains a reactive diluant including an antiabrasion compound, preferably of bicyclic structure and containing at least one functional group that is selectively reactive with one of the functional groups of said polymer precursor.
11. A flame-retardant cable according to claim 10, wherein the number of parts by weight of said antiabrasion compound relative to 100 parts by weight of said liquid composition is less than 95.
12. A flame-retardant cable according to claim 10, wherein, when said antiabrasion compound contains at least one acrylate functional group, the acrylate equivalent weight of said antiabrasion compound is greater than 80.
13. A flame-retardant cable according to claim 1, wherein the liquid composition is polymerizable by actinic radiation, and when said actinic radiation is of the UV type, the composition includes a photoinitiator.
14. A flame-retardant cable according to claim 13, wherein the number of parts by weight of said photoinitiator relative to 100 parts by weight of said composition lies in the range 0.1 to 10.
15. A flame-retardant cable according to claim 1, wherein the liquid composition is polymerizable by UV radiation and contains:
80 parts by weight of said polymer precursor, said precursor being a halogen-free oligomer;
17 parts by weight of an isobornyl acrylate; and
3 parts by weight of a photoinitiator.
16. A flame-retardant cable according to claim 11, wherein the number of parts by weight of said antiabrasion compound relative to 100 parts by weight of said liquid composition is in the range 10 to 30.
17. A flame-retardant cable according to claim 12, wherein, when said antiabrasion compound contains at least one acrylate functional group, the acrylate equivalent weight of said antiabrasion compound is about 210.
18. A flame-retardant cable according to claim 14, wherein the number of parts by weight of said photoinitiator relative to 100 parts by weight of said composition is about 3.
US10/719,698 2002-11-29 2003-11-21 Flame-retardant cable Abandoned US20040151906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/815,504 US20110110632A1 (en) 2002-11-29 2010-06-15 Flame retardant cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0215065A FR2848016B1 (en) 2002-11-29 2002-11-29 FLAME RETARDANT
FR0215065 2002-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/815,504 Continuation US20110110632A1 (en) 2002-11-29 2010-06-15 Flame retardant cable

Publications (1)

Publication Number Publication Date
US20040151906A1 true US20040151906A1 (en) 2004-08-05

Family

ID=32241711

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/719,698 Abandoned US20040151906A1 (en) 2002-11-29 2003-11-21 Flame-retardant cable
US12/815,504 Abandoned US20110110632A1 (en) 2002-11-29 2010-06-15 Flame retardant cable

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/815,504 Abandoned US20110110632A1 (en) 2002-11-29 2010-06-15 Flame retardant cable

Country Status (4)

Country Link
US (2) US20040151906A1 (en)
EP (1) EP1424703A1 (en)
KR (2) KR20040047697A (en)
FR (1) FR2848016B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895339A1 (en) * 2006-08-31 2008-03-05 Draka comteq B.V. A loose tube optical waveguide cable
EP1895340A1 (en) * 2006-08-31 2008-03-05 Draka comteq B.V. A loose tube optical waveguide fiber cable
WO2013138286A1 (en) * 2012-03-13 2013-09-19 W.L. Gore & Associates, Inc. Venting array and manufacturing method
WO2014144522A1 (en) * 2013-03-15 2014-09-18 General Cable Technologies Corporation Fire retardant coating for halogen free cables
US20140329088A1 (en) * 2013-03-15 2014-11-06 General Cable Technologies Corporation Easy clean cable
CN105632614A (en) * 2016-03-27 2016-06-01 张庆 Special steel armored signal wire for oil wells
US9696510B1 (en) * 2015-12-30 2017-07-04 Hitachi Cable America Inc. Small form factor flame resistant low smoke halogen free fiber optic cable
CN110556211A (en) * 2019-08-20 2019-12-10 安徽省通信产业服务有限公司 Flame-retardant method for cable protective layer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103632765B (en) * 2013-11-18 2016-04-06 娄底市中凯机电设备有限公司 A kind of high-temperature resistant electronic wire
CN104387730B (en) * 2014-11-26 2017-08-01 王忠强 Power line cables joint insulating materials, sealing tool and encapsulating method
CN112599286B (en) * 2020-12-05 2022-04-05 广东南洋电缆股份有限公司 Multi-core-layer inorganic mineral insulated flexible fireproof cable and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930104A (en) * 1974-10-21 1975-12-30 Gen Electric Flame-resistant polyolefin used as insulator for electrical conductors
US4105825A (en) * 1975-02-05 1978-08-08 General Electric Company Polyolefin with phosphorylated novolac flame retardant, peroxide cured, as metallic insulator
US4417018A (en) * 1981-05-25 1983-11-22 Teijin Limited Flame-retardant resin composition
US4618914A (en) * 1984-03-08 1986-10-21 Nippon Petrochemicals Company, Limited Electrical insulating oil and oil-filled electrical appliances
US5180757A (en) * 1987-12-16 1993-01-19 Michael Lucey Photopolymerizable compositions used in electronics
US5306739A (en) * 1987-12-16 1994-04-26 Mlt/Micro-Lite Technology Corporation Highly filled polymeric compositions
US5759691A (en) * 1996-03-06 1998-06-02 Hoechst Aktiengesellschaft Phosphorus-modified coating compositions, a process for their preparation, and their use
US6025422A (en) * 1998-05-29 2000-02-15 Siecor Operations, Llc Flame retardant polymer compositions
US6114036A (en) * 1992-03-17 2000-09-05 Alliedsignal Inc. Flexible fire retardant multi-layer structures comprising polyolefin and polyamide layers and process for making the same
US20030133679A1 (en) * 2001-11-08 2003-07-17 Dsm N.V. Flame-retardant optical fiber coating composition
US6630565B1 (en) * 1999-02-26 2003-10-07 Ucb, S.A. Phosphorus-comprising materials, their preparation and use
US6755995B1 (en) * 1998-12-28 2004-06-29 Fujikura Ltd. Halogen-free flame-retardant resin composition
US6770820B2 (en) * 2000-07-12 2004-08-03 Kabushiki Kaisha Bridgestone Shielded flat cable
US20050089290A1 (en) * 2003-10-17 2005-04-28 Dsm Ip Assets B.V. Flame retardant UV cured buffered optical fibers and buffer composition

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE598179A (en) * 1959-12-14
US3516965A (en) * 1966-01-04 1970-06-23 Mc Donnell Douglas Corp Composition of polyepoxide and organophosphorus amide curing agent and product thereof
US3459835A (en) * 1966-07-27 1969-08-05 Hooker Chemical Corp Cyclic phosphorus esters and process for the preparation thereof
DE1543500B1 (en) * 1966-10-20 1971-04-15 Albert Ag Chem Werke Process for the preparation of 1,3,2-dioxaphosphorinane derivatives
US3539409A (en) * 1968-06-11 1970-11-10 Cerro Corp Method of making long lengths of epoxy resin insulated wire
DE2052569C3 (en) * 1970-10-27 1979-03-01 Hoechst Ag, 6000 Frankfurt Unsaturated phosphorus-containing carboxylic acid derivatives
US4001176A (en) * 1971-05-03 1977-01-04 Rohm And Haas Company Ring phosphonates as flame-retardants
US3823124A (en) * 1972-04-27 1974-07-09 Ppg Industries Inc Polymers of phosphorus-containing monomers
US3926872A (en) * 1973-01-19 1975-12-16 Scott Paper Co Flame-retardant cellulosics containing graft copolymerized acrylic esters or amides
US4119682A (en) * 1974-10-19 1978-10-10 Hoechst Aktiengesellschaft Unsaturated phosphorus-containing carboxylic acid derivatives
DE2555452A1 (en) * 1974-12-18 1976-06-24 Ciba Geigy Ag FLAME RETARDANT FOR PLASTICS
US4042649A (en) * 1975-09-18 1977-08-16 Ciba-Geigy Corporation 1,2-Oxaphospholanes
US4104433A (en) * 1976-01-02 1978-08-01 Minnesota Mining And Manufacturing Company Flame retardant, non-dripping coating composition comprising crosslinkable copolymers of dihydric phenols with bis chloroalkyl oxetanes
US4098986A (en) * 1976-03-31 1978-07-04 Chas. S. Tanner Co. Copolymerizable monoethylenically unsaturated phosphonates and fire retardant copolymers containing the same
DE3041731A1 (en) * 1980-11-05 1982-06-09 Bayer Ag, 5090 Leverkusen If necessary, foamed intumescent materials and their use
US4549041A (en) * 1983-11-07 1985-10-22 Fujikura Ltd. Flame-retardant cross-linked composition and flame-retardant cable using same
JP2706285B2 (en) * 1988-12-23 1998-01-28 関西ペイント株式会社 Active energy ray-curable composition
DE4431751C1 (en) * 1994-09-06 1996-05-09 Siemens Ag Flame-retardant one-component reaction resin
TW297034B (en) * 1994-09-09 1997-02-01 Siemens Ag
DE19608612C2 (en) * 1996-03-06 1998-12-24 Clariant Gmbh Phosphorus-modified coating compositions, a process for their preparation and their use as intumescent coatings
CN1116164C (en) * 1998-04-09 2003-07-30 可乐丽股份有限公司 Method of forming polymer film coating and method for preparing laminated body of polymer layer and metal foil layer
US6764765B2 (en) * 1998-05-19 2004-07-20 Sony Chemicals Corporation Fire-retardant adhesive, fire-retardant adhesive film using the same, and flat cable
DE19917428A1 (en) * 1999-04-19 2000-10-26 Clariant Gmbh Flame retardant phosphor modified epoxy resins
JP2000331546A (en) * 1999-05-17 2000-11-30 Hitachi Cable Ltd Fire resistant cable
JP4201925B2 (en) * 1999-07-30 2008-12-24 ソマール株式会社 Resin-sealed electronic / electrical parts and method for manufacturing the same
JP4423779B2 (en) * 1999-10-13 2010-03-03 味の素株式会社 Epoxy resin composition, adhesive film and prepreg using the composition, multilayer printed wiring board using the same, and method for producing the same
US6432539B1 (en) * 1999-11-01 2002-08-13 Chang Chun Plastics Co. Ltd. Phosphorus-containing polymer having phenolic units and uses thereof
JP3489025B2 (en) * 2000-01-14 2004-01-19 大塚化学ホールディングス株式会社 Epoxy resin composition and electronic component using the same
JP2001226570A (en) * 2000-02-18 2001-08-21 Toray Ind Inc Flame-retardant polyester resin composition
TW498084B (en) * 2000-07-19 2002-08-11 Chang Chun Plastics Co Ltd Flame-retardant resin and flame retardant composition containing the same
TW572964B (en) * 2000-09-21 2004-01-21 Chang Chun Plastics Co Ltd Flame retarded epoxy resin composition
TW521548B (en) * 2000-10-13 2003-02-21 Zeon Corp Curable composition, molded article, multi-layer wiring substrate, particle and its manufacturing process, varnish and its manufacturing process, laminate, and flame retardant slurry
AU2002228453A1 (en) * 2001-01-11 2002-07-24 DSM IP Assests N.V. Process for the preparation of esters of (meth)acrylic acid
EP1238997A1 (en) * 2001-03-07 2002-09-11 Ucb S.A. Phosphorus containing materials, their preparation and use
US6534179B2 (en) * 2001-03-27 2003-03-18 International Business Machines Corporation Halogen free triazines, bismaleimide/epoxy polymers, prepregs made therefrom for circuit boards and resin coated articles, and use
JP2002332384A (en) * 2001-05-10 2002-11-22 Fujikura Ltd Heat-resistant flame-retardant resin composition
JP2002358837A (en) * 2001-06-01 2002-12-13 Teijin Ltd Flat cable and polyester resin component for coating
US6680119B2 (en) * 2001-08-22 2004-01-20 Siemens Westinghouse Power Corporation Insulated electrical coil having enhanced oxidation resistant polymeric insulation composition
JP2003128753A (en) * 2001-10-19 2003-05-08 Hitachi Chem Co Ltd Flame-retardant thermosetting resin composition, prepreg, laminate, insulating film, metal foil with resin and multilayered wiring board and method for producing the board

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930104A (en) * 1974-10-21 1975-12-30 Gen Electric Flame-resistant polyolefin used as insulator for electrical conductors
US4105825A (en) * 1975-02-05 1978-08-08 General Electric Company Polyolefin with phosphorylated novolac flame retardant, peroxide cured, as metallic insulator
US4417018A (en) * 1981-05-25 1983-11-22 Teijin Limited Flame-retardant resin composition
US4618914A (en) * 1984-03-08 1986-10-21 Nippon Petrochemicals Company, Limited Electrical insulating oil and oil-filled electrical appliances
US5180757A (en) * 1987-12-16 1993-01-19 Michael Lucey Photopolymerizable compositions used in electronics
US5306739A (en) * 1987-12-16 1994-04-26 Mlt/Micro-Lite Technology Corporation Highly filled polymeric compositions
US6114036A (en) * 1992-03-17 2000-09-05 Alliedsignal Inc. Flexible fire retardant multi-layer structures comprising polyolefin and polyamide layers and process for making the same
US5759691A (en) * 1996-03-06 1998-06-02 Hoechst Aktiengesellschaft Phosphorus-modified coating compositions, a process for their preparation, and their use
US6025422A (en) * 1998-05-29 2000-02-15 Siecor Operations, Llc Flame retardant polymer compositions
US6755995B1 (en) * 1998-12-28 2004-06-29 Fujikura Ltd. Halogen-free flame-retardant resin composition
US6630565B1 (en) * 1999-02-26 2003-10-07 Ucb, S.A. Phosphorus-comprising materials, their preparation and use
US6770820B2 (en) * 2000-07-12 2004-08-03 Kabushiki Kaisha Bridgestone Shielded flat cable
US20030133679A1 (en) * 2001-11-08 2003-07-17 Dsm N.V. Flame-retardant optical fiber coating composition
US20050089290A1 (en) * 2003-10-17 2005-04-28 Dsm Ip Assets B.V. Flame retardant UV cured buffered optical fibers and buffer composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895339A1 (en) * 2006-08-31 2008-03-05 Draka comteq B.V. A loose tube optical waveguide cable
EP1895340A1 (en) * 2006-08-31 2008-03-05 Draka comteq B.V. A loose tube optical waveguide fiber cable
US20080056651A1 (en) * 2006-08-31 2008-03-06 Draka Comteq B.V. Loose Tube Optical Waveguide Fiber Cable
US20080056652A1 (en) * 2006-08-31 2008-03-06 Draka Comteq B.V. Strengthened Optical Waveguide Fiber Cable
US7469088B2 (en) 2006-08-31 2008-12-23 Draka Comteq B.V. Strengthened optical waveguide fiber cable
US7522795B2 (en) 2006-08-31 2009-04-21 Draka Comteq B.V. Loose tube optical waveguide fiber cable
WO2013138286A1 (en) * 2012-03-13 2013-09-19 W.L. Gore & Associates, Inc. Venting array and manufacturing method
WO2014144522A1 (en) * 2013-03-15 2014-09-18 General Cable Technologies Corporation Fire retardant coating for halogen free cables
US20140329088A1 (en) * 2013-03-15 2014-11-06 General Cable Technologies Corporation Easy clean cable
EP2973610A4 (en) * 2013-03-15 2016-11-02 Gen Cable Technologies Corp Fire retardant coating for halogen free cables
US11011283B2 (en) * 2013-03-15 2021-05-18 General Cable Technologies Corporation Easy clean cable
US9696510B1 (en) * 2015-12-30 2017-07-04 Hitachi Cable America Inc. Small form factor flame resistant low smoke halogen free fiber optic cable
CN105632614A (en) * 2016-03-27 2016-06-01 张庆 Special steel armored signal wire for oil wells
CN110556211A (en) * 2019-08-20 2019-12-10 安徽省通信产业服务有限公司 Flame-retardant method for cable protective layer

Also Published As

Publication number Publication date
KR20110033828A (en) 2011-03-31
FR2848016B1 (en) 2005-01-28
FR2848016A1 (en) 2004-06-04
KR101132735B1 (en) 2012-04-06
EP1424703A1 (en) 2004-06-02
KR20040047697A (en) 2004-06-05
US20110110632A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
US20110110632A1 (en) Flame retardant cable
US6049647A (en) Composite fiber optic cable
US6301413B1 (en) Fiber optic cable with flame inhibiting capability
US10725257B2 (en) Fiber optic cable
US5310964A (en) Electric and communication cables
US7899291B2 (en) Optical fiber with water-blocking
US5566266A (en) Optical fiber service cable
EP1324091B1 (en) Reinforced tight-buffered optical fiber and cables made with same
EP0410621A1 (en) Building riser cable
CA2225275A1 (en) Single-tube plenum ribbon cable
WO2017095542A1 (en) Coextruded jacket for flame retardant fiber optic cables
US11630275B2 (en) Fire resistant cable having two jackets separated by porous insulating layer
US9116322B1 (en) Cables including strength members that limit jacket elongation
US20230350146A1 (en) Flame retardant fiber optic cable with halogen free sheath for blowing applications
KR100423232B1 (en) A riser rated optical fiber cable
GB2026716A (en) A Glass Optical Fiber Coated with Organopolysiloxane Layers
JP5755165B2 (en) Optical fiber ribbon and manufacturing method thereof
CN215953919U (en) High-strength high-temperature-resistant fire-resistant optical cable
US20230152544A1 (en) Flexible indoor/outdoor high-fiber-count cable
KR101845056B1 (en) optical cable for nuclear power plant
JP6117386B2 (en) Optical fiber ribbon and optical fiber cable
JPH07312120A (en) Fireproof cable
CA2298915A1 (en) Composite fiber optic cable
JP2004157214A (en) Flame-retardant coated optical fiber ribbon and method for manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEXANS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PINTO, OLIVIER;REEL/FRAME:015237/0459

Effective date: 20031212

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION