US20040162543A1 - Intravascular catheter with multiple axial fibers - Google Patents

Intravascular catheter with multiple axial fibers Download PDF

Info

Publication number
US20040162543A1
US20040162543A1 US10/774,739 US77473904A US2004162543A1 US 20040162543 A1 US20040162543 A1 US 20040162543A1 US 77473904 A US77473904 A US 77473904A US 2004162543 A1 US2004162543 A1 US 2004162543A1
Authority
US
United States
Prior art keywords
shaft
intravascular catheter
members
axial
axial members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/774,739
Inventor
Dean Schaefer
David Paulk
Steven Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scimed Life Systems Inc filed Critical Scimed Life Systems Inc
Priority to US10/774,739 priority Critical patent/US20040162543A1/en
Publication of US20040162543A1 publication Critical patent/US20040162543A1/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCIMED LIFE SYSTEMS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • A61M25/0053Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids having a variable stiffness along the longitudinal axis, e.g. by varying the pitch of the coil or braid

Definitions

  • the present invention generally relates to intravascular catheters. More specifically, the present invention relates to intravascular catheters having braid reinforcement.
  • Intravascular catheters are used in a wide variety of relatively non-invasive medical procedures. Such intravascular catheters may be used for diagnostic or therapeutic purposes.
  • an intravascular catheter allows a physician to remotely perform a medical procedure by inserting the catheter into the vascular system of the patient at a location that is easily accessible and thereafter navigating the catheter to the desired target site.
  • virtually any target site in the patient's vascular system may be remotely accessed, including the coronary, cerebral, and peripheral vasculature.
  • intravascular catheters must be relatively long and thin. Furthermore, in order to navigate through the patient's tortuous vascular system, intravascular catheters must be very flexible. It is also desirable that intravascular catheters be relatively soft in order to minimize the probability of damaging vascular tissue.
  • Intravascular catheters typically have a radiopaque portion and are guided through the patient's vascular system with the assistance of x-ray fluoroscopy.
  • a physician may manipulate the proximal end of the catheter and fluoroscopically monitor the corresponding movement of the distal end of the catheter. It is desirable that intravascular catheters be sufficiently radiopaque along their length and particularly at their distal end such that the physician is able to clearly monitor the progress of the catheter as it is being advanced from the vascular access site to the vascular target site.
  • the catheter may be used for various diagnostic and/or therapeutic purposes.
  • diagnostic and therapeutic techniques require the infusion of fluids through the catheter.
  • pharmaceutical solutions i.e., drugs
  • intravascular catheters be sufficiently resistant to kinking.
  • intravascular catheters be sufficiently resistant to bursting.
  • prior art intravascular catheters have utilized a reinforcement structure such as a braid or coil disposed between an inner tubular polymer layer and an outer tubular polymer layer.
  • a braid reinforcement structure may provide high resistance to bursting and improve the connection integrity between individual shaft segments.
  • a coil reinforcement structure may provide adequate resistance to ovaling and kinking.
  • U.S. Pat. No. 5,057,092 to Webster discloses an intravascular catheter having a braid reinforcing mesh and longitudinal warp members.
  • the longitudinal warp members are intended to provide increased bending stiffness and thus permit reductions in the wall thickness and/or softer materials for the inner and outer tubes.
  • the warp members are interwoven with the braid such that warp members alternate under or over the braid mesh. Because the braid reinforcing mesh is disposed between an inner polymeric layer and an outer polymeric layer, portions of the longitudinal warp members are disposed between the braid reinforcing mesh and the adjacent polymeric layer.
  • the adjacent polymeric layer may conform to the longitudinal warp members so as to create radial protrusions running the length of the catheter.
  • a protrusion along the inside surface of the catheter may not be desirable because it may create friction or bias with devices inserted therein (e.g., guidewires).
  • a protrusion along the outside surface of the catheter may not be desirable because it may create friction, bias or prevent adequate sealing with devices that the catheter is inserted into (e.g., introducer sheaths, compression fittings, etc.).
  • the adjacent polymeric layer may become fixed to the longitudinal warp members as it conforms thereto. Fixing the longitudinal warp members to the adjacent polymeric layer may not be desirable because it may limit relative movement and flexure therebetween. Limiting relative movement and flexure may cause excessive stiffness in one or more planes of flexure. This may cause difficulties in manipulating and navigating the catheter through tortuous vasculature, which is clearly undesirable.
  • the present invention overcomes these disadvantages by providing an intravascular catheter that includes a braid reinforcement with a plurality of axial wires or fibers disposed between the helical members that form the braid.
  • the axial members do not create a protrusion on either side of the braid.
  • the axial members do not become fixed to any polymer layer adjacent the braid.
  • the present invention maintains the benefits of axial members, but without the undesirable effects of friction caused by an axial protrusion and without the undesirable effects of limited flexure caused by an adjacent polymer layer becoming fixed to the axial member.
  • the present invention provides several benefits by utilizing a plurality of axial members.
  • the axial members prevent elongation of the shaft of the catheter thereby maintaining one-to-one correspondence in axial manipulation of the catheter, even when the shaft is placed in tension.
  • the shaft maintains uniform flexibility in several planes of flexure thereby facilitating precise control of the catheter as it is navigated through tortuous vasculature.
  • uniformly spacing the axial members about the circumference of the catheter reduces the likelihood of causing the catheter to curl when the lumen of the catheter becomes clogged and the catheter is pressurized.
  • the strength of the connections between adjacent shaft segments is increased significantly.
  • the stiffness of the catheter may be uniformly increased thereby potentially reducing the profile of the catheter by allowing the wall thickness and/or hardness of the polymer layers to be reduced.
  • the burst strength of the catheter may be significantly increased by virtue of the axial members limiting radial expansion of the shaft.
  • An intravascular catheter in accordance with one embodiment of the present invention includes an elongate shaft having a lumen extending therethrough.
  • the shaft includes an inner polymer layer, a reinforcement layer disposed about the inner layer and an outer polymer layer disposed about the reinforcement layer.
  • the reinforcement layer comprises a tubular braid having two or more interwoven helical members.
  • the reinforcement layer also includes a plurality of axial members disposed between the helical members such that the axial members are retained within the tubular braid structure for at least a length thereof.
  • the axial members may be wires, fibers, filaments, cables or the like, but are generically referred to herein as axial members.
  • the axial members are preferably uniformly spaced about the circumference of the shaft. Virtually any number of axial members may be utilized, depending on the particular characteristics desired. For example, four or eight axial members may be utilized wherein the axial members are uniformly spaced apart by 90° or 45°, respectively, about the circumference of the shaft. In addition, only a portion of the shaft may include a plurality of axial members. For example, the distal shaft portion may have fewer axial members than the proximal shaft portion such that the distal shaft portion is more flexible.
  • the helical members that form the braid may each comprise polymeric material, a metallic material, or a combination thereof.
  • the axial members may comprise a polymeric material or a metallic material. If a polymeric material is utilized for the helical members or the axial members, then each member may comprise a plurality of monofilaments such as LCP. The monofilaments may be held together statically thereby eliminating the need for a binding material that might otherwise add to the profile of the members. To further minimize profile, the monofilaments may be arranged side-by-side to collectively define a flat ribbon or cable.
  • An intravascular catheter in accordance with another embodiment of the present invention includes an elongate shaft having a reinforcement layer.
  • the reinforcement layer comprises a tubular braid including two or more interwoven helical members and a plurality of axial members disposed between the helical members.
  • the catheter may include inner and/or outer polymer layers disposed on either side of the reinforcement layer. Each of the inner and/or outer layers may comprise a single layer of polymeric material or multiple layers of polymeric materials.
  • the present invention also provides a method of making such a catheter.
  • the manufacturing method includes the steps of braiding two or more helical members about a plurality of axial members such that the axial members are disposed between the helical members.
  • the axial members are preferably uniformly spaced about the circumference of the shaft.
  • the helical members may be braided over a carrier such as a mandrel that is later removed or a polymeric tubular member that becomes the inner layer of the catheter shaft. After the reinforcement layer is woven about the carrier, another polymeric tubular member may be disposed about the reinforcement layer to become the outer layer of the catheter shaft.
  • FIG. 1 is a plan view of an intravascular catheter in accordance with the present invention.
  • FIG. 2 is fragmentary partially sectioned side view of the shaft of the catheter illustrated in FIG. 1;
  • FIG. 3 is a cross-sectional view taken along line 3 - 3 in FIG. 1.
  • FIG. 1 illustrates intravascular catheter 10 in accordance with the present invention.
  • Catheter 10 includes an elongate shaft 12 having a proximal region 14 and a distal region 16 .
  • the catheter 10 includes a lumen 18 (as best seen in FIG. 3) extending through the entire length of the elongate shaft 12 to an opening at the distal end 20 of the shaft 12 .
  • Catheter 10 may have, for example, a length of 80-150 cm and an outside diameter of approximately 3F.
  • a manifold 24 is connected to the proximal end 22 of the shaft 12 which includes an interior (not visible) in fluid communication with the lumen 18 of the elongate shaft 12 .
  • the manifold 24 includes a standard fitting 26 for connection to a fluid source such as a syringe.
  • a strain relief 28 is disposed between the manifold 24 and the proximal end 22 of the shaft 12 in order to reduce the tendency of the shaft to kink therebetween.
  • the proximal end 22 of the elongate shaft 12 may extend through the strain relief 28 for connection to the manifold 24 .
  • the distal end of the strain relief 28 may be connected to the proximal end 22 of the elongate shaft 12 with the proximal end of the strain relief 12 connected to the manifold 24 .
  • the intravascular catheter 10 provides a fluid path from the fitting 26 of the manifold 24 to the distal end 20 of the elongate shaft 12 by way of the interior (not visible) of the manifold 24 and the lumen 18 of the elongate shaft 12 .
  • Intravascular catheter 10 may be intravascularly navigated over a guide wire (not shown) and used to deliver diagnostic and/or therapeutic fluids to a desired vascular target site using conventional techniques.
  • Elongate shaft 12 includes a proximal region 14 and a distal region 16 .
  • the proximal region 14 is typically more stiff than the distal region 16 in order to provide more pushability for advancing the distal region 16 .
  • the distal region 16 is usually more flexible than the proximal region 14 to provide more trackability for navigating tortuous vasculature.
  • a multi-layer construction may be used in either the proximal region 14 or both the proximal 14 and distal 16 regions, depending on the pushability, trackability, and other characteristics desired for each region.
  • the multi-layer construction is best seen in FIGS. 2 and 3.
  • the outer layer 30 has been removed to expose the braid reinforcement layer 50 comprising helical members 32 (individually designated as 32 A and 32 B) and the axial members 34 (individually designated as 34 A, 34 B, 34 C and 34 D).
  • the helical members 32 and the axial members 34 are each shown as a set of monofilaments 40 , but may also comprise a single monofilament 40 .
  • the multi-layer construction includes the inner lubricious polymer layer 36 surrounded by the braid reinforcement layer 50 which, in turn, is surrounded by the outer layer 30 .
  • a tie layer 38 may be provided between the braid reinforcement layer 50 and the inner lubricious layer 36 .
  • the inner layer 36 may be formed of a lubricious polymer such as PTFE or HDPE and preferably has a relatively thin wall to minimize profile.
  • Inner layer 26 has an inside diameter sufficiently large to accommodate a conventional guidewire and to accommodate the delivery of fluids therethrough at a sufficient flow rate.
  • the inside diameter of the inner layer 36 may be approximately 0.027 inches and the wall thickness of the inner layer 36 may be approximately 0.0005 inches.
  • the inner layer 36 may be formed, for example, by coating or extruding a lubricious polymer such as PTFE over a removable mandrel, or by using other known manufacturing techniques.
  • the tie layer 38 may be utilized to secure the helical members 32 to the inner lubricious layer 36 .
  • the tie layer 38 enhances the bond between the inner lubricious layer 36 , the helical members 32 , and the outer layer 30 .
  • Tie layer 38 also fills any micro-pores that may form in the inner layer 36 to thereby increase burst strength. Further, tie layer 38 maintains the position of the helical members 32 on the inner layer 36 during the manufacturing process.
  • the thickness of the tie layer 38 may be approximately 0.0003 inches to reduce the corresponding increase in profile.
  • An example of a suitable material for tie layer 38 is polyurethane, which may be coated onto the inner lubricious layer 36 .
  • the helical members 32 are interwoven to form a tubular braid.
  • the helical members 32 may comprise a polymeric material, a metallic material or a combination thereof.
  • Polymeric helical members 32 provide superior flexibility and softness
  • metallic helical members 32 provide superior radiopacity and kink resistance
  • a combination of polymeric and metallic helical members 32 provide all these attributes.
  • the helical members 32 may comprise stainless steel, nickel-titanium alloy, or a highly radiopaque material such as gold, tungsten, iridium, or an alloy thereof. If a plurality of metallic helical members 32 are utilized, one or more of the metallic helical members 32 may comprise stainless steel to provide superior strength and one or more of the other metallic helical members 32 may comprise a highly radiopaque material to provide enhanced radiopacity. Although stainless steel provides higher radiopacity relative to most polymers, a more dense material such as those identified above are preferred for purposes of radiographic visualization.
  • the metallic helical members 32 may have a rectangular cross-section or a circular cross-section, depending on the desired mechanical characteristics and the desired effect on profile. For example, metallic helical members 32 may have a circular cross-section with a diameter of approximately 0.0016 inches.
  • the helical members 32 may comprise a single monofilament 40 or a plurality of monofilaments 40 as shown.
  • the plurality of monofilaments 40 may be unfused or fused together depending on the desired characteristics. Unfused monofilaments 40 may be held together statically thereby eliminating the need for a binding material that might otherwise add to the profile of the shaft 12 .
  • the monofilaments 40 may be arranged side-by- side to collectively define a flat ribbon or cable, as best seen in FIG. 3.
  • Fused monofilaments 40 provide the helical members 32 with mechanical characteristics similar to that of a solid rod. Unfused monofilaments 40 held together statically provide the helical members 32 with mechanical characteristics similar to that of a cable. A cable, as opposed to a solid rod, is more flexible and is able to withstand more fatigue from repeated bending. As such, helical members 32 comprising a plurality of monofilaments 40 held together statically provide a shaft 12 that is more flexible and more durable. These features are significant because the catheter 10 must be able to navigate tortuous vasculature and withstand harsh handling conditions.
  • the monofilaments 40 may be made of a liquid crystal polymer (LCP) available under the trade name VECTRAN. Each monofilament 40 may have a circular cross-section having a diameter of 0.0007 inches. Each helical member 32 may comprise two (2) to ten (10), and preferably five (5) monofilaments 40 which, as stated previously, may be fused or unfused. The monofilaments 40 are preferably unfused and arranged side-by-side to essentially define a flat cable or ribbon. It is possible, however, that the monofilaments 40 be arranged in any manner to collectively define any other desired geometry.
  • LCP liquid crystal polymer
  • the axial members 34 are disposed between the helical members 32 A and 32 B.
  • Axial members 34 may comprise any of the same or similar structures and materials as helical members 32 .
  • each axial member 34 comprises a plurality of LCP monofilaments 40 arranged side-by-side as a flat cable as best seen in FIG. 3.
  • the axial members 34 limit elongation of the shaft 12 when the catheter 10 is placed in tension.
  • the catheter 10 may be placed in tension when the catheter 10 is retracted in the proximal direction or withdrawn from a patient's vascular system and some resistance to movement is encountered. If the resistance to movement is encountered distal of the proximal end 22 , the catheter shaft 12 is placed in tension.
  • the axial members 34 limit elongation of the shaft. Further, the axial members 34 maintain one-to-one correspondence between axial manipulation of the proximal end 22 and axial movement of the distal end 20 of the shaft 12 , even when the catheter 10 is placed in tension. By maintaining one-to-one correspondence in axial manipulation, the axial members 34 maintain precise control of the catheter 10 .
  • the axial members 34 limit elongation of the shaft 12 and maintain precise control of the catheter 10 , but by positioning the axial member 34 between the helical members 32 A and 32 B, the axial members 34 do not create a radial protrusion or become fixed to an adjacent polymer layer, both of which may create undesirable effects.
  • radial protrusions may extend along the length of the inner layer 36 or the outer layer 30 .
  • Such protrusions along the inside surface of the catheter 10 may not be desirable because they may create friction or bias with devices inserted into the lumen 18 .
  • protrusions along the outside surface of the catheter 10 may not be desirable because they may create friction, bias, or prevent adequate sealing with devices that the catheter 10 is inserted into.
  • the inner layer 36 or the outer layer 30 may become fixed to the axial members 34 , thereby limiting relative movement and flexure therebetween. Limiting relative movement and flexure may cause excessive stiffness in one or more planes of flexure. This may cause difficulties in manipulating and navigating the catheter 10 through tortuous vasculature. By positioning the axial members 34 between the helical members 32 A and 32 B, relative movement therebetween is permitted thereby maintaining some amount of flexibility.
  • the axial members 34 provide a number of other advantages. By equally spacing the axial members 34 about the circumference of the shaft 12 , the shaft 12 maintains uniform flexibility in several planes of flexure corresponding to the number of axial members used. The greater the number of axial members used, the greater number of planes of uniform flexibility. Uniform flexibility provides precise control of the catheter 10 as it is navigated through tortuous vasculature.
  • uniform spacing of the axial members 34 about the circumference of the shaft 12 also reduces the likelihood of causing the catheter to curl when the lumen 18 of the catheter 10 becomes clogged and the catheter 10 is pressurized. This may be encountered, for example, if the catheter 10 is utilized to deliver embolic material that unintentionally occludes the lumen 18 . By reducing the likelihood of curling, the likelihood of causing trauma to the interior of the vessel wall is also reduced.
  • the axial members 34 also increase the strength of the connections between adjacent shaft segments and the burst strength of the shaft 12 .
  • the axial members further provide additional stiffness to the catheter shaft 12 such that the wall thickness and/or hardness of the polymer layers 30 and 36 may be reduced.
  • the outer layer 30 may be formed of any suitable polymer such as polyether block amide having a wall thickness of approximately 0.0025 inches.
  • the outer layer 30 may be loaded with a radiopaque contrast material such as barium sulfate, preferably loaded at 30% by weight.
  • the outer layer 30 may be formed by interrupted layer coextrusion (ILC) as described in U.S. Pat. No. 5,622,665 to Wang, which is hereby incorporated by reference.
  • the outer layer 30 may include a proximal portion formed of a relatively high durometer polymer and a distal portion formed of a relatively low durometer polymer.
  • the proximal ILC portion may be formed of PEBAXTM 7233, which has a durometer of 72D and the distal ILC portion may be formed of PEBAXTM 3533 having a durometer of 35D.
  • the outer layer 30 gradually transitions from the relatively high durometer polymer to the relatively low durometer polymer, thereby gradually decreasing stiffness distally.
  • a radiopaque marker band (not shown) may be provided at the distal end 20 of the shaft 12 .
  • a radiopaque marker band may be formed of gold, tungsten, iridium, or an alloy thereof.
  • the radiopaque marker band may be disposed over the braid 50 and encapsulated by the outer layer 30 .
  • the radiopaque marker may be swaged onto or adhesively secured to the braid layer 50 .
  • a radiopaque marker band facilitates radiographic visualization and navigation as discussed previously.
  • the catheter 10 may be manufactured by a number of suitable manufacturing processes including the process described hereinafter.
  • the inner layer 36 and the tie layer 38 may be obtained prefabricated from a suitable vendor, such as H.V. Technologies, and provided as discrete tubes or on a spool as a continuous tube.
  • the helical members 32 are then braided over a carrier (e.g., the tube comprising the inner layer 36 and tie layer 38 ) with the axial members 34 therebetween as described in greater detail hereinafter.
  • the braided subassembly is subsequently cut to the desired length.
  • a marker band is slid over the braid reinforcement layer 50 into position adjacent the distal end 20 of the elongate shaft 12 .
  • the outer layer 30 comprising a prefabricated ILC tube is slid over the braid reinforcement layer 50 .
  • a heat shrink tube e.g., FEP
  • FEP heat shrink tube
  • the die is heated to 380°-430° F. causing the components of the shaft 12 to be fused and compressed together by the combined heat and compressive radial force.
  • the heat shrink tube is then removed, exposing the completed shaft 12 subassembly.
  • the manifold 24 and the strain relief 28 are then attached to the proximal end 22 of the elongate shaft 12 using conventional techniques.
  • the distal end 20 of the elongate shaft 12 is then trimmed to the desired length and a soft tip is thermally fused thereto.
  • a lubricious coating is then applied to the exterior of the catheter shaft 12 .
  • the helical members 32 are braided over a carrier with the axial members 34 therebetween.
  • braiding helical members is well known in the art, positioning axial members between the helical members requires some modification to conventional braiding machines.
  • a conventional Steeger braiding machine may be modified to incorporate individual bobbin carriers that deliver the axial members 34 through a horn gear shaft.
  • the axial member 34 carriers are retrofitted onto the horn gear.
  • one of the helical member 32 A carriers is allowed to pass under and the other helical member 32 B carrier is allowed to pass over the axial members 34 .
  • the net result is a braid reinforcement structure 50 comprising two or more interwoven helical members 32 , with axial members 34 disposed therebetween.
  • the catheter 10 comprises an elongate shaft 12 including a braid reinforcement 50 with axial members 34 disposed between helical members 32 that form the braid 50 .
  • the axial members 34 do not create the undesirable effects of friction caused by radial protrusions and further do not create the undesirable effects of limited flexure caused by an adjacent polymer 30 or 36 becoming fixed to the axial members 34 .
  • the axial members provide a number of advantages including: maintaining one-to-one correspondence in axial manipulation; maintaining uniform flexibility in several planes of flexure; reducing the likelihood of causing a curling effect; increasing the strength of connections between shaft segments; uniformly increasing stiffness of the catheter; and increasing the burst strength of the catheter.

Abstract

An intravascular catheter having a shaft, at least a portion of which includes a braid reinforcement with a plurality of axial members disposed between the helical members that form the braid. The axial members provide a number of advantages including: maintaining one-to-one correspondence in axial manipulation; maintaining uniform flexibility in several planes of flexure; reducing the likelihood of causing a curling effect; increasing the strength of connections between shaft segments; uniformly increasing stiffness of the catheter; and increasing the burst strength of the catheter. By positioning the axial members between the helical members, the axial members do not create a protrusion and do not become fixed to any adjacent polymer layer. Thus, the benefits of axial members are retained, without creating the undesirable effects of friction caused by an axial protrusion and without creating the undesirable effects of limited flexure caused by an adjacent polymer layer becoming fixed to the axial member.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present invention is related to U.S. patent application Ser. No. 09/234,203, filed Jan. 20, 1999, entitled “INTRAVASCULAR CATHETER WITH COMPOSITE REINFORCEMENT”; and U.S. patent application No. (unknown), filed on even date herewith, entitled “INTRAVASCULAR CATHETER WITH AXIAL FIBER”, the entire disclosures of which are hereby incorporated by reference.[0001]
  • FIELD OF THE INVENTION
  • The present invention generally relates to intravascular catheters. More specifically, the present invention relates to intravascular catheters having braid reinforcement. [0002]
  • BACKGROUND OF THE INVENTION
  • Intravascular catheters are used in a wide variety of relatively non-invasive medical procedures. Such intravascular catheters may be used for diagnostic or therapeutic purposes. Generally, an intravascular catheter allows a physician to remotely perform a medical procedure by inserting the catheter into the vascular system of the patient at a location that is easily accessible and thereafter navigating the catheter to the desired target site. By this method, virtually any target site in the patient's vascular system may be remotely accessed, including the coronary, cerebral, and peripheral vasculature. [0003]
  • The distance between the access site and the target site is often in excess of 100 cm. The inside diameter of the vasculature at the access site is often less than 2 cm, and the inside diameter of the vasculature at the target site is often less than 0.5 cm. Accordingly, intravascular catheters must be relatively long and thin. Furthermore, in order to navigate through the patient's tortuous vascular system, intravascular catheters must be very flexible. It is also desirable that intravascular catheters be relatively soft in order to minimize the probability of damaging vascular tissue. [0004]
  • Intravascular catheters typically have a radiopaque portion and are guided through the patient's vascular system with the assistance of x-ray fluoroscopy. A physician may manipulate the proximal end of the catheter and fluoroscopically monitor the corresponding movement of the distal end of the catheter. It is desirable that intravascular catheters be sufficiently radiopaque along their length and particularly at their distal end such that the physician is able to clearly monitor the progress of the catheter as it is being advanced from the vascular access site to the vascular target site. [0005]
  • After the intravascular catheter has been navigated through the patient's vascular system with the distal end thereof adjacent the target site, the catheter may be used for various diagnostic and/or therapeutic purposes. Frequently, diagnostic and therapeutic techniques require the infusion of fluids through the catheter. For example, it may be desirable to inject radiopaque contrast media through the catheter to provide enhanced fluoroscopic visualization for diagnostic purposes, or to inject pharmaceutical solutions (i.e., drugs) to the target site for therapeutic purposes. In order to maintain a fluid path, it is desirable that intravascular catheters be sufficiently resistant to kinking. In addition, because such fluids are delivered under pressure, it is also desirable that intravascular catheters be sufficiently resistant to bursting. [0006]
  • To satisfy some of these desirable features, prior art intravascular catheters have utilized a reinforcement structure such as a braid or coil disposed between an inner tubular polymer layer and an outer tubular polymer layer. A braid reinforcement structure may provide high resistance to bursting and improve the connection integrity between individual shaft segments. A coil reinforcement structure may provide adequate resistance to ovaling and kinking. [0007]
  • Some types of prior art intravascular catheters also utilize longitudinal or axial members to impart stiffness to the catheter shaft. For example, U.S. Pat. No. 5,057,092 to Webster discloses an intravascular catheter having a braid reinforcing mesh and longitudinal warp members. The longitudinal warp members are intended to provide increased bending stiffness and thus permit reductions in the wall thickness and/or softer materials for the inner and outer tubes. The warp members are interwoven with the braid such that warp members alternate under or over the braid mesh. Because the braid reinforcing mesh is disposed between an inner polymeric layer and an outer polymeric layer, portions of the longitudinal warp members are disposed between the braid reinforcing mesh and the adjacent polymeric layer. [0008]
  • With this arrangement, the adjacent polymeric layer may conform to the longitudinal warp members so as to create radial protrusions running the length of the catheter. A protrusion along the inside surface of the catheter may not be desirable because it may create friction or bias with devices inserted therein (e.g., guidewires). A protrusion along the outside surface of the catheter may not be desirable because it may create friction, bias or prevent adequate sealing with devices that the catheter is inserted into (e.g., introducer sheaths, compression fittings, etc.). [0009]
  • Also with this arrangement, the adjacent polymeric layer may become fixed to the longitudinal warp members as it conforms thereto. Fixing the longitudinal warp members to the adjacent polymeric layer may not be desirable because it may limit relative movement and flexure therebetween. Limiting relative movement and flexure may cause excessive stiffness in one or more planes of flexure. This may cause difficulties in manipulating and navigating the catheter through tortuous vasculature, which is clearly undesirable. [0010]
  • Accordingly, it is desirable to provide the advantages of a longitudinal or axial member without creating a protrusion and without fixing the axial member to the adjacent polymeric layer. [0011]
  • SUMMARY OF THE INVENTION
  • The present invention overcomes these disadvantages by providing an intravascular catheter that includes a braid reinforcement with a plurality of axial wires or fibers disposed between the helical members that form the braid. By placing the axial members between the helical members, the axial members do not create a protrusion on either side of the braid. In addition, the axial members do not become fixed to any polymer layer adjacent the braid. Thus, the present invention maintains the benefits of axial members, but without the undesirable effects of friction caused by an axial protrusion and without the undesirable effects of limited flexure caused by an adjacent polymer layer becoming fixed to the axial member. [0012]
  • In addition to avoiding the disadvantages discussed above by positioning the axial members between the helical members, the present invention provides several benefits by utilizing a plurality of axial members. First, the axial members prevent elongation of the shaft of the catheter thereby maintaining one-to-one correspondence in axial manipulation of the catheter, even when the shaft is placed in tension. Second, by equally spacing the axial members about the circumference of the catheter, the shaft maintains uniform flexibility in several planes of flexure thereby facilitating precise control of the catheter as it is navigated through tortuous vasculature. Third, as compared to a single axial member, uniformly spacing the axial members about the circumference of the catheter reduces the likelihood of causing the catheter to curl when the lumen of the catheter becomes clogged and the catheter is pressurized. Fourth, the strength of the connections between adjacent shaft segments is increased significantly. Fifth, the stiffness of the catheter may be uniformly increased thereby potentially reducing the profile of the catheter by allowing the wall thickness and/or hardness of the polymer layers to be reduced. Sixth, the burst strength of the catheter may be significantly increased by virtue of the axial members limiting radial expansion of the shaft. [0013]
  • An intravascular catheter in accordance with one embodiment of the present invention includes an elongate shaft having a lumen extending therethrough. The shaft includes an inner polymer layer, a reinforcement layer disposed about the inner layer and an outer polymer layer disposed about the reinforcement layer. The reinforcement layer comprises a tubular braid having two or more interwoven helical members. The reinforcement layer also includes a plurality of axial members disposed between the helical members such that the axial members are retained within the tubular braid structure for at least a length thereof. The axial members may be wires, fibers, filaments, cables or the like, but are generically referred to herein as axial members. [0014]
  • The axial members are preferably uniformly spaced about the circumference of the shaft. Virtually any number of axial members may be utilized, depending on the particular characteristics desired. For example, four or eight axial members may be utilized wherein the axial members are uniformly spaced apart by 90° or 45°, respectively, about the circumference of the shaft. In addition, only a portion of the shaft may include a plurality of axial members. For example, the distal shaft portion may have fewer axial members than the proximal shaft portion such that the distal shaft portion is more flexible. [0015]
  • The helical members that form the braid may each comprise polymeric material, a metallic material, or a combination thereof. Similarly, the axial members may comprise a polymeric material or a metallic material. If a polymeric material is utilized for the helical members or the axial members, then each member may comprise a plurality of monofilaments such as LCP. The monofilaments may be held together statically thereby eliminating the need for a binding material that might otherwise add to the profile of the members. To further minimize profile, the monofilaments may be arranged side-by-side to collectively define a flat ribbon or cable. [0016]
  • An intravascular catheter in accordance with another embodiment of the present invention includes an elongate shaft having a reinforcement layer. The reinforcement layer comprises a tubular braid including two or more interwoven helical members and a plurality of axial members disposed between the helical members. Optionally, the catheter may include inner and/or outer polymer layers disposed on either side of the reinforcement layer. Each of the inner and/or outer layers may comprise a single layer of polymeric material or multiple layers of polymeric materials. [0017]
  • The present invention also provides a method of making such a catheter. The manufacturing method includes the steps of braiding two or more helical members about a plurality of axial members such that the axial members are disposed between the helical members. The axial members are preferably uniformly spaced about the circumference of the shaft. The helical members may be braided over a carrier such as a mandrel that is later removed or a polymeric tubular member that becomes the inner layer of the catheter shaft. After the reinforcement layer is woven about the carrier, another polymeric tubular member may be disposed about the reinforcement layer to become the outer layer of the catheter shaft.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of an intravascular catheter in accordance with the present invention; [0019]
  • FIG. 2 is fragmentary partially sectioned side view of the shaft of the catheter illustrated in FIG. 1; and [0020]
  • FIG. 3 is a cross-sectional view taken along line [0021] 3-3 in FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. [0022]
  • FIG. 1 illustrates intravascular catheter [0023] 10 in accordance with the present invention. Catheter 10 includes an elongate shaft 12 having a proximal region 14 and a distal region 16. The catheter 10 includes a lumen 18 (as best seen in FIG. 3) extending through the entire length of the elongate shaft 12 to an opening at the distal end 20 of the shaft 12. Catheter 10 may have, for example, a length of 80-150 cm and an outside diameter of approximately 3F.
  • A [0024] manifold 24 is connected to the proximal end 22 of the shaft 12 which includes an interior (not visible) in fluid communication with the lumen 18 of the elongate shaft 12. The manifold 24 includes a standard fitting 26 for connection to a fluid source such as a syringe. A strain relief 28 is disposed between the manifold 24 and the proximal end 22 of the shaft 12 in order to reduce the tendency of the shaft to kink therebetween. The proximal end 22 of the elongate shaft 12 may extend through the strain relief 28 for connection to the manifold 24. Alternatively, the distal end of the strain relief 28 may be connected to the proximal end 22 of the elongate shaft 12 with the proximal end of the strain relief 12 connected to the manifold 24.
  • With either arrangement, the intravascular catheter [0025] 10 provides a fluid path from the fitting 26 of the manifold 24 to the distal end 20 of the elongate shaft 12 by way of the interior (not visible) of the manifold 24 and the lumen 18 of the elongate shaft 12. Intravascular catheter 10 may be intravascularly navigated over a guide wire (not shown) and used to deliver diagnostic and/or therapeutic fluids to a desired vascular target site using conventional techniques.
  • [0026] Elongate shaft 12 includes a proximal region 14 and a distal region 16. The proximal region 14 is typically more stiff than the distal region 16 in order to provide more pushability for advancing the distal region 16. The distal region 16 is usually more flexible than the proximal region 14 to provide more trackability for navigating tortuous vasculature. A multi-layer construction may be used in either the proximal region 14 or both the proximal 14 and distal 16 regions, depending on the pushability, trackability, and other characteristics desired for each region.
  • The multi-layer construction is best seen in FIGS. 2 and 3. In FIG. 2, the [0027] outer layer 30 has been removed to expose the braid reinforcement layer 50 comprising helical members 32 (individually designated as 32A and 32B) and the axial members 34 (individually designated as 34A, 34B, 34C and 34D). The helical members 32 and the axial members 34 are each shown as a set of monofilaments 40, but may also comprise a single monofilament 40. The multi-layer construction includes the inner lubricious polymer layer 36 surrounded by the braid reinforcement layer 50 which, in turn, is surrounded by the outer layer 30. A tie layer 38 may be provided between the braid reinforcement layer 50 and the inner lubricious layer 36.
  • The [0028] inner layer 36 may be formed of a lubricious polymer such as PTFE or HDPE and preferably has a relatively thin wall to minimize profile. Inner layer 26 has an inside diameter sufficiently large to accommodate a conventional guidewire and to accommodate the delivery of fluids therethrough at a sufficient flow rate. For example, the inside diameter of the inner layer 36 may be approximately 0.027 inches and the wall thickness of the inner layer 36 may be approximately 0.0005 inches. The inner layer 36 may be formed, for example, by coating or extruding a lubricious polymer such as PTFE over a removable mandrel, or by using other known manufacturing techniques.
  • The [0029] tie layer 38 may be utilized to secure the helical members 32 to the inner lubricious layer 36. The tie layer 38 enhances the bond between the inner lubricious layer 36, the helical members 32, and the outer layer 30. Tie layer 38 also fills any micro-pores that may form in the inner layer 36 to thereby increase burst strength. Further, tie layer 38 maintains the position of the helical members 32 on the inner layer 36 during the manufacturing process. The thickness of the tie layer 38 may be approximately 0.0003 inches to reduce the corresponding increase in profile. An example of a suitable material for tie layer 38 is polyurethane, which may be coated onto the inner lubricious layer 36.
  • As seen in FIGS. 2 and 3, the helical members [0030] 32 are interwoven to form a tubular braid. For purposes of illustration, only two helical members 32A and 32B are shown. Those skilled in the art will recognize that the braided helical members 32 may vary in number, pattern, pick-count, etc., without departing from the scope of the present invention. The helical members 32 may comprise a polymeric material, a metallic material or a combination thereof. Polymeric helical members 32 provide superior flexibility and softness, metallic helical members 32 provide superior radiopacity and kink resistance, and a combination of polymeric and metallic helical members 32 provide all these attributes.
  • If metallic materials are utilized, the helical members [0031] 32 may comprise stainless steel, nickel-titanium alloy, or a highly radiopaque material such as gold, tungsten, iridium, or an alloy thereof. If a plurality of metallic helical members 32 are utilized, one or more of the metallic helical members 32 may comprise stainless steel to provide superior strength and one or more of the other metallic helical members 32 may comprise a highly radiopaque material to provide enhanced radiopacity. Although stainless steel provides higher radiopacity relative to most polymers, a more dense material such as those identified above are preferred for purposes of radiographic visualization. The metallic helical members 32 may have a rectangular cross-section or a circular cross-section, depending on the desired mechanical characteristics and the desired effect on profile. For example, metallic helical members 32 may have a circular cross-section with a diameter of approximately 0.0016 inches.
  • If polymeric materials are utilized, the helical members [0032] 32 may comprise a single monofilament 40 or a plurality of monofilaments 40 as shown. The plurality of monofilaments 40 may be unfused or fused together depending on the desired characteristics. Unfused monofilaments 40 may be held together statically thereby eliminating the need for a binding material that might otherwise add to the profile of the shaft 12. To further minimize profile, the monofilaments 40 may be arranged side-by- side to collectively define a flat ribbon or cable, as best seen in FIG. 3.
  • Fused [0033] monofilaments 40 provide the helical members 32 with mechanical characteristics similar to that of a solid rod. Unfused monofilaments 40 held together statically provide the helical members 32 with mechanical characteristics similar to that of a cable. A cable, as opposed to a solid rod, is more flexible and is able to withstand more fatigue from repeated bending. As such, helical members 32 comprising a plurality of monofilaments 40 held together statically provide a shaft 12 that is more flexible and more durable. These features are significant because the catheter 10 must be able to navigate tortuous vasculature and withstand harsh handling conditions.
  • The [0034] monofilaments 40 may be made of a liquid crystal polymer (LCP) available under the trade name VECTRAN. Each monofilament 40 may have a circular cross-section having a diameter of 0.0007 inches. Each helical member 32 may comprise two (2) to ten (10), and preferably five (5) monofilaments 40 which, as stated previously, may be fused or unfused. The monofilaments 40 are preferably unfused and arranged side-by-side to essentially define a flat cable or ribbon. It is possible, however, that the monofilaments 40 be arranged in any manner to collectively define any other desired geometry.
  • The [0035] axial members 34 are disposed between the helical members 32A and 32B. Axial members 34 may comprise any of the same or similar structures and materials as helical members 32. Preferably, each axial member 34 comprises a plurality of LCP monofilaments 40 arranged side-by-side as a flat cable as best seen in FIG. 3.
  • The [0036] axial members 34 limit elongation of the shaft 12 when the catheter 10 is placed in tension. The catheter 10 may be placed in tension when the catheter 10 is retracted in the proximal direction or withdrawn from a patient's vascular system and some resistance to movement is encountered. If the resistance to movement is encountered distal of the proximal end 22, the catheter shaft 12 is placed in tension. When significant tension is applied to the shaft 12, the axial members 34 limit elongation of the shaft. Further, the axial members 34 maintain one-to-one correspondence between axial manipulation of the proximal end 22 and axial movement of the distal end 20 of the shaft 12, even when the catheter 10 is placed in tension. By maintaining one-to-one correspondence in axial manipulation, the axial members 34 maintain precise control of the catheter 10.
  • Not only do the [0037] axial members 34 limit elongation of the shaft 12 and maintain precise control of the catheter 10, but by positioning the axial member 34 between the helical members 32A and 32B, the axial members 34 do not create a radial protrusion or become fixed to an adjacent polymer layer, both of which may create undesirable effects.
  • Specifically, if the [0038] axial members 34 were placed over or under the helical members 32, radial protrusions may extend along the length of the inner layer 36 or the outer layer 30. Such protrusions along the inside surface of the catheter 10 may not be desirable because they may create friction or bias with devices inserted into the lumen 18. In addition, protrusions along the outside surface of the catheter 10 may not be desirable because they may create friction, bias, or prevent adequate sealing with devices that the catheter 10 is inserted into. By positioning the axial members 34 between the helical members 32A and 32B, no protrusions are formed thereby maintaining low friction and adequate sealing.
  • Further, if the [0039] axial members 34 were positioned under or over the helical members 32A and 32B, the inner layer 36 or the outer layer 30 may become fixed to the axial members 34, thereby limiting relative movement and flexure therebetween. Limiting relative movement and flexure may cause excessive stiffness in one or more planes of flexure. This may cause difficulties in manipulating and navigating the catheter 10 through tortuous vasculature. By positioning the axial members 34 between the helical members 32A and 32B, relative movement therebetween is permitted thereby maintaining some amount of flexibility.
  • In addition to preventing axial elongation of the [0040] shaft 12 thereby maintaining one- to-one correspondence and axial manipulation of the catheter 10, the axial members 34 provide a number of other advantages. By equally spacing the axial members 34 about the circumference of the shaft 12, the shaft 12 maintains uniform flexibility in several planes of flexure corresponding to the number of axial members used. The greater the number of axial members used, the greater number of planes of uniform flexibility. Uniform flexibility provides precise control of the catheter 10 as it is navigated through tortuous vasculature.
  • As compared to a single axial member, uniform spacing of the [0041] axial members 34 about the circumference of the shaft 12 also reduces the likelihood of causing the catheter to curl when the lumen 18 of the catheter 10 becomes clogged and the catheter 10 is pressurized. This may be encountered, for example, if the catheter 10 is utilized to deliver embolic material that unintentionally occludes the lumen 18. By reducing the likelihood of curling, the likelihood of causing trauma to the interior of the vessel wall is also reduced.
  • The [0042] axial members 34 also increase the strength of the connections between adjacent shaft segments and the burst strength of the shaft 12. The axial members further provide additional stiffness to the catheter shaft 12 such that the wall thickness and/or hardness of the polymer layers 30 and 36 may be reduced.
  • The [0043] outer layer 30 may be formed of any suitable polymer such as polyether block amide having a wall thickness of approximately 0.0025 inches. The outer layer 30 may be loaded with a radiopaque contrast material such as barium sulfate, preferably loaded at 30% by weight. The outer layer 30 may be formed by interrupted layer coextrusion (ILC) as described in U.S. Pat. No. 5,622,665 to Wang, which is hereby incorporated by reference. The outer layer 30 may include a proximal portion formed of a relatively high durometer polymer and a distal portion formed of a relatively low durometer polymer. For example, the proximal ILC portion may be formed of PEBAX™ 7233, which has a durometer of 72D and the distal ILC portion may be formed of PEBAX™ 3533 having a durometer of 35D. By virtue of the ILC process, the outer layer 30 gradually transitions from the relatively high durometer polymer to the relatively low durometer polymer, thereby gradually decreasing stiffness distally.
  • A radiopaque marker band (not shown) may be provided at the [0044] distal end 20 of the shaft 12. Such a radiopaque marker band may be formed of gold, tungsten, iridium, or an alloy thereof. The radiopaque marker band may be disposed over the braid 50 and encapsulated by the outer layer 30. The radiopaque marker may be swaged onto or adhesively secured to the braid layer 50. A radiopaque marker band facilitates radiographic visualization and navigation as discussed previously.
  • The catheter [0045] 10 may be manufactured by a number of suitable manufacturing processes including the process described hereinafter. The inner layer 36 and the tie layer 38 may be obtained prefabricated from a suitable vendor, such as H.V. Technologies, and provided as discrete tubes or on a spool as a continuous tube. The helical members 32 are then braided over a carrier (e.g., the tube comprising the inner layer 36 and tie layer 38) with the axial members 34 therebetween as described in greater detail hereinafter. The braided subassembly is subsequently cut to the desired length. A marker band is slid over the braid reinforcement layer 50 into position adjacent the distal end 20 of the elongate shaft 12. The outer layer 30 comprising a prefabricated ILC tube is slid over the braid reinforcement layer 50. A heat shrink tube (e.g., FEP) is then placed over the shaft 12 components and the composite subassembly is pulled through a heated die. The die is heated to 380°-430° F. causing the components of the shaft 12 to be fused and compressed together by the combined heat and compressive radial force. The heat shrink tube is then removed, exposing the completed shaft 12 subassembly. The manifold 24 and the strain relief 28 are then attached to the proximal end 22 of the elongate shaft 12 using conventional techniques. The distal end 20 of the elongate shaft 12 is then trimmed to the desired length and a soft tip is thermally fused thereto. A lubricious coating is then applied to the exterior of the catheter shaft 12.
  • As mentioned above, the helical members [0046] 32 are braided over a carrier with the axial members 34 therebetween. Although braiding helical members is well known in the art, positioning axial members between the helical members requires some modification to conventional braiding machines. For example, a conventional Steeger braiding machine may be modified to incorporate individual bobbin carriers that deliver the axial members 34 through a horn gear shaft. The axial member 34 carriers are retrofitted onto the horn gear. With this arrangement, one of the helical member 32A carriers is allowed to pass under and the other helical member 32B carrier is allowed to pass over the axial members 34. The net result is a braid reinforcement structure 50 comprising two or more interwoven helical members 32, with axial members 34 disposed therebetween.
  • From the foregoing, it should be apparent to those skilled in the art that the present invention provides both a novel intravascular catheter [0047] 10 and a novel method of manufacture thereof. The catheter 10 comprises an elongate shaft 12 including a braid reinforcement 50 with axial members 34 disposed between helical members 32 that form the braid 50. By positioning the axial members 34 between the helical members 32, the axial members 34 do not create the undesirable effects of friction caused by radial protrusions and further do not create the undesirable effects of limited flexure caused by an adjacent polymer 30 or 36 becoming fixed to the axial members 34. The axial members provide a number of advantages including: maintaining one-to-one correspondence in axial manipulation; maintaining uniform flexibility in several planes of flexure; reducing the likelihood of causing a curling effect; increasing the strength of connections between shaft segments; uniformly increasing stiffness of the catheter; and increasing the burst strength of the catheter.
  • Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims. [0048]

Claims (32)

What is claimed is:
1. An intravascular catheter comprising an elongate shaft having a lumen extending therethrough, the shaft including an inner polymer layer, a reinforcement layer disposed about the inner layer and an outer polymer layer disposed about the reinforcement layer, the reinforcement layer comprising a tubular braid having a first helical member interwoven with a second helical member and a plurality of axial members disposed between the first helical member and the second helical member, wherein the elongate shaft has a circumference and wherein the axial members are spaced apart about the circumference of the shaft.
2. An intravascular catheter as in claim 1, wherein the axial members are uniformly spaced about the circumference of the shaft.
3. An intravascular catheter as in claim 2, wherein four axial members are uniformly spaced apart by 90° about the circumference of the shaft.
4. An intravascular catheter as in claim 2, wherein eight axial members are uniformly spaced apart by 45° about the circumference of the shaft.
5. An intravascular catheter as in claim 2, wherein the elongate shaft includes a proximal portion and a distal portion, and wherein the distal shaft portion has fewer axial members than the proximal shaft portion.
6. An intravascular catheter as in claim 5, wherein the proximal shaft portion has the plurality of axial members and the distal shaft portion has one axial member selected from the plurality of axial members.
7. An intravascular catheter as in claim 1, wherein the axial members are movable relative to the inner and outer layers.
8. An intravascular catheter as in claim 1, wherein the inner and outer layers have respective inner and outer surfaces free of protrusions caused by the axial members.
9. An intravascular catheter as in claim 1, wherein the first and second helical members each comprise polymeric material.
10. An intravascular catheter as in claim 9, wherein the first and second helical members each comprise a plurality of monofilaments.
11. An intravascular catheter as in claim 1, wherein the axial members each comprise a polymeric material.
12. An intravascular catheter as in claim 11, wherein the axial members each comprise a plurality of polymeric monofilaments.
13. An intravascular catheter as in claim 12, wherein the monofilaments are held together statically.
14. An intravascular catheter as in claim 13, wherein the monofilaments comprise LCP.
15. An intravascular catheter as in claim 14, wherein the monofilaments are arranged side-by-side to collectively define a flat ribbon.
16. An intravascular catheter comprising an elongate shaft having a reinforcement layer comprising a tubular braid having a first helical member interwoven with a second helical member and a plurality of axial members disposed between the first helical member and the second helical member.
17. An intravascular catheter as in claim 16, wherein the axial members are uniformly spaced about the circumference of the shaft.
18. An intravascular catheter as in claim 17, wherein four axial members are uniformly spaced apart by 90° about the circumference of the shaft.
19. An intravascular catheter as in claim 17, wherein eight axial members are uniformly spaced apart by 45° about the circumference of the shaft.
20. An intravascular catheter as in claim 16, wherein the elongate shaft includes a proximal portion and a distal portion, and wherein the distal shaft portion has fewer axial members than the proximal shaft portion.
21. An intravascular catheter as in claim 20, wherein the proximal shaft portion has the plurality of axial members and the distal shaft portion has one axial member selected from the plurality of axial members.
22. An intravascular catheter as in claim 16, wherein the first and second helical members each comprise polymeric material.
23. An intravascular catheter as in claim 22, wherein the first and second helical members each comprise a plurality of monofilaments.
24. An intravascular catheter as in claim 16, wherein the axial members each comprise a polymeric material.
25. An intravascular catheter as in claim 24, wherein the axial members each comprise a plurality of polymeric monofilaments.
26. An intravascular catheter as in claim 25, wherein the monofilaments are held together statically.
27. An intravascular catheter as in claim 26, wherein the monofilaments comprise LCP.
28. An intravascular catheter as in claim 27, wherein the monofilaments are arranged side-by-side to collectively define a flat ribbon.
29. A method of making a portion of a shaft of an intravascular catheter, the method comprising the steps of:
braiding a first helical member and a second helical member about a carrier such that a plurality of axial members are disposed between the first and second helical members.
30. A method of making a portion of a shaft of an intravascular catheter as in claim 29, wherein the axial members are uniformly spaced about the circumference of the shaft.
31. A method of making a portion of a shaft of an intravascular catheter as in claim 30, wherein four axial members are uniformly spaced apart by 90° about the circumference of the shaft.
32. A method of making a portion of a shaft of an intravascular catheter as in claim 30, wherein eight axial members are uniformly spaced apart by 45° about the circumference of the shaft.
US10/774,739 2000-01-19 2004-02-09 Intravascular catheter with multiple axial fibers Abandoned US20040162543A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/774,739 US20040162543A1 (en) 2000-01-19 2004-02-09 Intravascular catheter with multiple axial fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/487,353 US6709429B1 (en) 2000-01-19 2000-01-19 Intravascular catheter with multiple axial fibers
US10/774,739 US20040162543A1 (en) 2000-01-19 2004-02-09 Intravascular catheter with multiple axial fibers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/487,353 Division US6709429B1 (en) 1999-01-20 2000-01-19 Intravascular catheter with multiple axial fibers

Publications (1)

Publication Number Publication Date
US20040162543A1 true US20040162543A1 (en) 2004-08-19

Family

ID=31978885

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/487,353 Expired - Lifetime US6709429B1 (en) 1999-01-20 2000-01-19 Intravascular catheter with multiple axial fibers
US10/774,739 Abandoned US20040162543A1 (en) 2000-01-19 2004-02-09 Intravascular catheter with multiple axial fibers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/487,353 Expired - Lifetime US6709429B1 (en) 1999-01-20 2000-01-19 Intravascular catheter with multiple axial fibers

Country Status (1)

Country Link
US (2) US6709429B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986284B2 (en) 2012-08-07 2015-03-24 Asahi Intecc Co., Ltd. Catheter
US20180126124A1 (en) * 2016-11-07 2018-05-10 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
WO2022101406A3 (en) * 2020-11-13 2022-07-07 Cardiomech As Device for heart repair

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709429B1 (en) * 2000-01-19 2004-03-23 Scimed Life Systems, Inc. Intravascular catheter with multiple axial fibers
US6942654B1 (en) * 2000-01-19 2005-09-13 Scimed Life Systems, Inc. Intravascular catheter with axial member
US6171295B1 (en) * 1999-01-20 2001-01-09 Scimed Life Systems, Inc. Intravascular catheter with composite reinforcement
US20030216642A1 (en) * 2002-05-16 2003-11-20 Pepin Henry J. Radiopaque and MRI compatible catheter braid
US8377035B2 (en) * 2003-01-17 2013-02-19 Boston Scientific Scimed, Inc. Unbalanced reinforcement members for medical device
US7615043B2 (en) * 2003-08-20 2009-11-10 Boston Scientific Scimed, Inc. Medical device incorporating a polymer blend
US7824392B2 (en) 2003-08-20 2010-11-02 Boston Scientific Scimed, Inc. Catheter with thin-walled braid
DE602004026776D1 (en) * 2003-12-31 2010-06-02 Bard Inc C R REINFORCED MULTILUMEN CATHETER
EP1847288A4 (en) * 2005-02-10 2012-04-11 Kaneka Corp Medical catheter tube and method of producing the same
US20060182907A1 (en) * 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Novel microfibrillar reinforced polymer-polymer composites for use in medical devices
US8192477B2 (en) * 2005-11-14 2012-06-05 Boston Scientific Scimed, Inc. Twisting bifurcation delivery system
US7901396B2 (en) * 2006-04-27 2011-03-08 Medtronic, Inc. Transvenous medical device delivery system
US20080275427A1 (en) * 2007-05-01 2008-11-06 Sage Shahn S Threaded catheter connector, system, and method
US7841994B2 (en) * 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US20100016937A1 (en) * 2008-07-18 2010-01-21 Yousef Alkhatib Twisting Bifurcation Delivery System
US8821510B2 (en) * 2009-04-15 2014-09-02 Cook Medical Technologies Llc Flexible sheath with polymer coil
US9622892B2 (en) * 2012-04-26 2017-04-18 Cook Medical Technologies Llc Longitudinally reinforced sheath
EP3484568B1 (en) 2016-07-13 2022-04-27 Perfuze Limited High flexibility, kink resistant catheter shaft
ES2894768T3 (en) 2017-12-15 2022-02-15 Perfuze Ltd Improved catheters and devices and systems incorporating such catheters
US11607531B2 (en) 2019-05-09 2023-03-21 Neuravi Limited Balloon catheter with venting of residual air in a proximal direction
US11571553B2 (en) 2019-05-09 2023-02-07 Neuravi Limited Balloon guide catheter with thermally expandable material
US20200353205A1 (en) * 2019-05-09 2020-11-12 Neuravi Limited Inflation Lumen Kink Protection and Balloon Profile
US20210220605A1 (en) * 2020-01-21 2021-07-22 Becton, Dickinson And Company Tubular instrument and related devices and methods

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US563181A (en) * 1896-06-30 jones
US2114274A (en) * 1937-11-27 1938-04-12 Delamere Co Inc Tubular braid
US3605750A (en) * 1969-04-07 1971-09-20 David S Sheridan X-ray tip catheter
US4063561A (en) * 1975-08-25 1977-12-20 The Signal Companies, Inc. Direction control device for endotracheal tube
US4191219A (en) * 1978-03-20 1980-03-04 Tripoint, Inc. Triaxial fabric pattern
US4279252A (en) * 1979-08-24 1981-07-21 Martin Michael T X-ray scaling catheter
US4385635A (en) * 1980-04-25 1983-05-31 Ruiz Oscar F Angiographic catheter with soft tip end
US4425919A (en) * 1981-07-27 1984-01-17 Raychem Corporation Torque transmitting catheter apparatus
US4430083A (en) * 1981-03-06 1984-02-07 American Hospital Supply Corporation Infusion catheter
US4444186A (en) * 1981-06-15 1984-04-24 Datascope Corporation Envelope wrapping system for intra-aortic balloon
US4464176A (en) * 1982-06-04 1984-08-07 Mallinckrodt, Inc. Blood vessel catheter for medicine delivery and method of manufacture
US4469483A (en) * 1982-08-25 1984-09-04 Baxter Travenol Laboratories, Inc. Radiopaque catheter
US4563181A (en) * 1983-02-18 1986-01-07 Mallinckrodt, Inc. Fused flexible tip catheter
US4571240A (en) * 1983-08-12 1986-02-18 Advanced Cardiovascular Systems, Inc. Catheter having encapsulated tip marker
US4596563A (en) * 1983-06-09 1986-06-24 Cordis Corporation Thin-walled multi-layered catheter having a fuseless tip
US4636346A (en) * 1984-03-08 1987-01-13 Cordis Corporation Preparing guiding catheter
US4657024A (en) * 1980-02-04 1987-04-14 Teleflex Incorporated Medical-surgical catheter
US4665604A (en) * 1982-02-16 1987-05-19 Cordis Corporation Non-fused torque control catheter
US4690175A (en) * 1981-11-17 1987-09-01 Kabushiki Kaisha Medos Kenkyusho Flexible tube for endoscope
US4753765A (en) * 1984-03-08 1988-06-28 Cordis Corporation Method of making a catheter having a fuseless tip
US4764324A (en) * 1983-12-12 1988-08-16 Warren Burnham Method of making a catheter
US4817613A (en) * 1987-07-13 1989-04-04 Devices For Vascular Intervention, Inc. Guiding catheter
US4838879A (en) * 1986-05-08 1989-06-13 Terumo Kabushiki Kaisha Catheter
US4842590A (en) * 1983-12-14 1989-06-27 Terumo Kabushiki Kaisha Catheter and method for making
US4863442A (en) * 1987-08-14 1989-09-05 C. R. Bard, Inc. Soft tip catheter
US4886506A (en) * 1986-12-23 1989-12-12 Baxter Travenol Laboratories, Inc. Soft tip catheter
US4898591A (en) * 1988-08-09 1990-02-06 Mallinckrodt, Inc. Nylon-PEBA copolymer catheter
US4899787A (en) * 1981-11-17 1990-02-13 Kabushiki Kaisha Medos Kenkyusho Flexible tube for endoscope
US4904431A (en) * 1988-08-12 1990-02-27 Baxter International, Inc. Process for manufacturing catheters
US4925710A (en) * 1988-03-31 1990-05-15 Buck Thomas F Ultrathin-wall fluoropolymer tube with removable fluoropolymer core
US4963306A (en) * 1988-07-14 1990-10-16 Novoste Corporation Method for making fuseless soft tip angiographic catheter
US4990143A (en) * 1990-04-09 1991-02-05 Sheridan Catheter Corporation Reinforced medico-surgical tubes
US5006291A (en) * 1985-04-24 1991-04-09 Plas/Steel Products, Inc. Method for making fiber reinforced plastic tubing
US5019057A (en) * 1989-10-23 1991-05-28 Cordis Corporation Catheter having reinforcing strands
US5037404A (en) * 1988-11-14 1991-08-06 Cordis Corporation Catheter having sections of variable torsion characteristics
US5045072A (en) * 1989-06-13 1991-09-03 Cordis Corporation Catheter having highly radiopaque, flexible tip
US5057092A (en) * 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US5061257A (en) * 1990-04-30 1991-10-29 Cordis Corporation Apertured, reinforced catheter
US5078702A (en) * 1988-03-25 1992-01-07 Baxter International Inc. Soft tip catheters
US5088991A (en) * 1988-07-14 1992-02-18 Novoste Corporation Fuseless soft tip angiographic catheter
US5156785A (en) * 1991-07-10 1992-10-20 Cordis Corporation Extruded tubing and catheters having increased rotational stiffness
US5176660A (en) * 1989-10-23 1993-01-05 Cordis Corporation Catheter having reinforcing strands
US5201723A (en) * 1991-08-27 1993-04-13 Cordis Corporation Inclined side holes in the distal end of a catheter
US5221270A (en) * 1991-06-28 1993-06-22 Cook Incorporated Soft tip guiding catheter
US5234416A (en) * 1991-06-06 1993-08-10 Advanced Cardiovascular Systems, Inc. Intravascular catheter with a nontraumatic distal tip
US5248305A (en) * 1989-08-04 1993-09-28 Cordis Corporation Extruded tubing and catheters having helical liquid crystal fibrils
US5248605A (en) * 1992-12-07 1993-09-28 Life Technologies, Inc. Cloning and expressing restriction endonucleases from haemophilus
US5251640A (en) * 1992-03-31 1993-10-12 Cook, Incorporated Composite wire guide shaft
US5254107A (en) * 1991-03-06 1993-10-19 Cordis Corporation Catheter having extended braid reinforced transitional tip
US5290230A (en) * 1992-05-11 1994-03-01 Advanced Cardiovascular Systems, Inc. Intraluminal catheter with a composite shaft
US5300048A (en) * 1993-05-12 1994-04-05 Sabin Corporation Flexible, highly radiopaque plastic material catheter
US5318032A (en) * 1992-02-05 1994-06-07 Devices For Vascular Intervention Guiding catheter having soft tip
US5335410A (en) * 1993-03-15 1994-08-09 Burnham Warren R Method of making ultra small diameter catheters and of reinforced tubular product
US5380304A (en) * 1991-08-07 1995-01-10 Cook Incorporated Flexible, kink-resistant, introducer sheath and method of manufacture
US5399164A (en) * 1992-11-02 1995-03-21 Catheter Imaging Systems Catheter having a multiple durometer
US5403292A (en) * 1994-05-18 1995-04-04 Schneider (Usa) Inc. Thin wall catheter having enhanced torqueability characteristics
US5433713A (en) * 1991-04-15 1995-07-18 Cordis Corporation Polyetheramide tubing for medical devices
US5441489A (en) * 1989-04-13 1995-08-15 Mitsubishi Cable Industries, Ltd. Catheter with body temperature glass transition region
US5445624A (en) * 1994-01-21 1995-08-29 Exonix Research Corporation Catheter with progressively compliant tip
US5454795A (en) * 1994-06-27 1995-10-03 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US5499973A (en) * 1994-09-08 1996-03-19 Saab; Mark A. Variable stiffness balloon dilatation catheters
US5509910A (en) * 1994-05-02 1996-04-23 Medtronic, Inc. Method of soft tip attachment for thin walled catheters
US5533987A (en) * 1992-04-09 1996-07-09 Scimed Lifesystems, Inc. Dilatation catheter with polymide encased stainless steel braid proximal shaft
US5538510A (en) * 1994-01-31 1996-07-23 Cordis Corporation Catheter having coextruded tubing
US5540707A (en) * 1992-11-13 1996-07-30 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5545149A (en) * 1993-06-25 1996-08-13 Medtronic, Inc. Method of catheter segment attachment
US5582619A (en) * 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5584821A (en) * 1992-06-02 1996-12-17 E-Z-Em, Inc. Soft tip catheter
US5601538A (en) * 1995-03-07 1997-02-11 Medtronic, Inc. Flow directed catheter with hydrophilic distal end
US5603705A (en) * 1993-12-22 1997-02-18 Scimed Life Systems, Inc. Catheter joint with restraining device
US5622665A (en) * 1994-04-20 1997-04-22 Wang; James C. Method for making tubing
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US5658263A (en) * 1995-05-18 1997-08-19 Cordis Corporation Multisegmented guiding catheter for use in medical catheter systems
US5674208A (en) * 1993-08-18 1997-10-07 Scimed Life Systems, Inc. Thin-walled catheter
US5676659A (en) * 1993-11-12 1997-10-14 Medtronic, Inc. Small diameter, high torque catheter
US5690666A (en) * 1992-11-18 1997-11-25 Target Therapeutics, Inc. Ultrasoft embolism coils and process for using them
US5702373A (en) * 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
US5730733A (en) * 1995-06-01 1998-03-24 Scimed Life Systems, Inc. Flow assisted catheter
US5749891A (en) * 1995-06-06 1998-05-12 Target Therapeutics, Inc. Multiple layered vaso-occlusive coils
US5782811A (en) * 1996-05-30 1998-07-21 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US5817057A (en) * 1996-09-13 1998-10-06 Micro Interventional Systems, Inc. Fluid propulsion steerable catheter and method
US5827201A (en) * 1996-07-26 1998-10-27 Target Therapeutics, Inc. Micro-braided guidewire
US5833652A (en) * 1995-09-18 1998-11-10 Y. Pierre Gobin Component mixing catheter
US5833705A (en) * 1995-06-30 1998-11-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5891114A (en) * 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
US5891112A (en) * 1995-04-28 1999-04-06 Target Therapeutics, Inc. High performance superelastic alloy braid reinforced catheter
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US5899892A (en) * 1996-05-31 1999-05-04 Scimed Life Systems, Inc. Catheter having distal fiber braid
US5947940A (en) * 1997-06-23 1999-09-07 Beisel; Robert F. Catheter reinforced to prevent luminal collapse and tensile failure thereof
US6148865A (en) * 1996-12-02 2000-11-21 A & P Technology, Inc. Braided sleeve, tubular article and method of manufacturing the tubular article
US6152909A (en) * 1996-05-20 2000-11-28 Percusurge, Inc. Aspiration system and method
US6171295B1 (en) * 1999-01-20 2001-01-09 Scimed Life Systems, Inc. Intravascular catheter with composite reinforcement
US6709429B1 (en) * 2000-01-19 2004-03-23 Scimed Life Systems, Inc. Intravascular catheter with multiple axial fibers
US6942654B1 (en) * 2000-01-19 2005-09-13 Scimed Life Systems, Inc. Intravascular catheter with axial member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741087A (en) * 1983-09-16 1988-05-03 Plummer Jr Walter A Method of making pre-expanded braided sleeving
US5853418A (en) 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US563181A (en) * 1896-06-30 jones
US2114274A (en) * 1937-11-27 1938-04-12 Delamere Co Inc Tubular braid
US3605750A (en) * 1969-04-07 1971-09-20 David S Sheridan X-ray tip catheter
US4063561A (en) * 1975-08-25 1977-12-20 The Signal Companies, Inc. Direction control device for endotracheal tube
US4191219A (en) * 1978-03-20 1980-03-04 Tripoint, Inc. Triaxial fabric pattern
US4279252A (en) * 1979-08-24 1981-07-21 Martin Michael T X-ray scaling catheter
US4657024A (en) * 1980-02-04 1987-04-14 Teleflex Incorporated Medical-surgical catheter
US4385635A (en) * 1980-04-25 1983-05-31 Ruiz Oscar F Angiographic catheter with soft tip end
US4430083A (en) * 1981-03-06 1984-02-07 American Hospital Supply Corporation Infusion catheter
US4444186A (en) * 1981-06-15 1984-04-24 Datascope Corporation Envelope wrapping system for intra-aortic balloon
US4425919A (en) * 1981-07-27 1984-01-17 Raychem Corporation Torque transmitting catheter apparatus
US4690175A (en) * 1981-11-17 1987-09-01 Kabushiki Kaisha Medos Kenkyusho Flexible tube for endoscope
US4899787A (en) * 1981-11-17 1990-02-13 Kabushiki Kaisha Medos Kenkyusho Flexible tube for endoscope
US4665604A (en) * 1982-02-16 1987-05-19 Cordis Corporation Non-fused torque control catheter
US4464176A (en) * 1982-06-04 1984-08-07 Mallinckrodt, Inc. Blood vessel catheter for medicine delivery and method of manufacture
US4469483A (en) * 1982-08-25 1984-09-04 Baxter Travenol Laboratories, Inc. Radiopaque catheter
US4563181A (en) * 1983-02-18 1986-01-07 Mallinckrodt, Inc. Fused flexible tip catheter
US4596563A (en) * 1983-06-09 1986-06-24 Cordis Corporation Thin-walled multi-layered catheter having a fuseless tip
US4571240A (en) * 1983-08-12 1986-02-18 Advanced Cardiovascular Systems, Inc. Catheter having encapsulated tip marker
US4764324A (en) * 1983-12-12 1988-08-16 Warren Burnham Method of making a catheter
US4842590A (en) * 1983-12-14 1989-06-27 Terumo Kabushiki Kaisha Catheter and method for making
US4636346A (en) * 1984-03-08 1987-01-13 Cordis Corporation Preparing guiding catheter
US4753765A (en) * 1984-03-08 1988-06-28 Cordis Corporation Method of making a catheter having a fuseless tip
US5006291A (en) * 1985-04-24 1991-04-09 Plas/Steel Products, Inc. Method for making fiber reinforced plastic tubing
US4838879A (en) * 1986-05-08 1989-06-13 Terumo Kabushiki Kaisha Catheter
US4886506A (en) * 1986-12-23 1989-12-12 Baxter Travenol Laboratories, Inc. Soft tip catheter
US4817613A (en) * 1987-07-13 1989-04-04 Devices For Vascular Intervention, Inc. Guiding catheter
US4863442A (en) * 1987-08-14 1989-09-05 C. R. Bard, Inc. Soft tip catheter
US5078702A (en) * 1988-03-25 1992-01-07 Baxter International Inc. Soft tip catheters
US4925710A (en) * 1988-03-31 1990-05-15 Buck Thomas F Ultrathin-wall fluoropolymer tube with removable fluoropolymer core
US4963306A (en) * 1988-07-14 1990-10-16 Novoste Corporation Method for making fuseless soft tip angiographic catheter
US5088991A (en) * 1988-07-14 1992-02-18 Novoste Corporation Fuseless soft tip angiographic catheter
US4898591A (en) * 1988-08-09 1990-02-06 Mallinckrodt, Inc. Nylon-PEBA copolymer catheter
US4904431A (en) * 1988-08-12 1990-02-27 Baxter International, Inc. Process for manufacturing catheters
US5037404A (en) * 1988-11-14 1991-08-06 Cordis Corporation Catheter having sections of variable torsion characteristics
US5441489A (en) * 1989-04-13 1995-08-15 Mitsubishi Cable Industries, Ltd. Catheter with body temperature glass transition region
US5171232A (en) * 1989-06-13 1992-12-15 Cordis Corporation Catheter having highly radiopaque, flexible tip
US5045072A (en) * 1989-06-13 1991-09-03 Cordis Corporation Catheter having highly radiopaque, flexible tip
US5171232B1 (en) * 1989-06-13 1997-10-28 Cordis Corp Catheter having highly radiopaque flexible tip
US5248305A (en) * 1989-08-04 1993-09-28 Cordis Corporation Extruded tubing and catheters having helical liquid crystal fibrils
US5019057A (en) * 1989-10-23 1991-05-28 Cordis Corporation Catheter having reinforcing strands
US5176660A (en) * 1989-10-23 1993-01-05 Cordis Corporation Catheter having reinforcing strands
US5057092A (en) * 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US4990143A (en) * 1990-04-09 1991-02-05 Sheridan Catheter Corporation Reinforced medico-surgical tubes
US5061257A (en) * 1990-04-30 1991-10-29 Cordis Corporation Apertured, reinforced catheter
US5254107A (en) * 1991-03-06 1993-10-19 Cordis Corporation Catheter having extended braid reinforced transitional tip
US5433713A (en) * 1991-04-15 1995-07-18 Cordis Corporation Polyetheramide tubing for medical devices
US5234416A (en) * 1991-06-06 1993-08-10 Advanced Cardiovascular Systems, Inc. Intravascular catheter with a nontraumatic distal tip
US5221270A (en) * 1991-06-28 1993-06-22 Cook Incorporated Soft tip guiding catheter
US5156785A (en) * 1991-07-10 1992-10-20 Cordis Corporation Extruded tubing and catheters having increased rotational stiffness
US5380304A (en) * 1991-08-07 1995-01-10 Cook Incorporated Flexible, kink-resistant, introducer sheath and method of manufacture
US5201723A (en) * 1991-08-27 1993-04-13 Cordis Corporation Inclined side holes in the distal end of a catheter
US5318032A (en) * 1992-02-05 1994-06-07 Devices For Vascular Intervention Guiding catheter having soft tip
US5251640A (en) * 1992-03-31 1993-10-12 Cook, Incorporated Composite wire guide shaft
US5533987A (en) * 1992-04-09 1996-07-09 Scimed Lifesystems, Inc. Dilatation catheter with polymide encased stainless steel braid proximal shaft
US5290230A (en) * 1992-05-11 1994-03-01 Advanced Cardiovascular Systems, Inc. Intraluminal catheter with a composite shaft
US5451209A (en) * 1992-05-11 1995-09-19 Advanced Cardiovascular Systems, Inc. Intraluminal catheter with a composite shaft
US5584821A (en) * 1992-06-02 1996-12-17 E-Z-Em, Inc. Soft tip catheter
US5399164A (en) * 1992-11-02 1995-03-21 Catheter Imaging Systems Catheter having a multiple durometer
US5542924A (en) * 1992-11-02 1996-08-06 Catheter Imaging Systems Method of forming a catheter having a multiple durometer
US5540707A (en) * 1992-11-13 1996-07-30 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5826587A (en) * 1992-11-18 1998-10-27 Target Therapeutics, Inc. Ultrasoft embolism coils and process for using them
US5718711A (en) * 1992-11-18 1998-02-17 Target Therapeutics, Inc. Ultrasoft embolism devices and process for using them
US5690666A (en) * 1992-11-18 1997-11-25 Target Therapeutics, Inc. Ultrasoft embolism coils and process for using them
US5248605A (en) * 1992-12-07 1993-09-28 Life Technologies, Inc. Cloning and expressing restriction endonucleases from haemophilus
US5335410A (en) * 1993-03-15 1994-08-09 Burnham Warren R Method of making ultra small diameter catheters and of reinforced tubular product
US5300048A (en) * 1993-05-12 1994-04-05 Sabin Corporation Flexible, highly radiopaque plastic material catheter
US5545149A (en) * 1993-06-25 1996-08-13 Medtronic, Inc. Method of catheter segment attachment
US5674208A (en) * 1993-08-18 1997-10-07 Scimed Life Systems, Inc. Thin-walled catheter
US5676659A (en) * 1993-11-12 1997-10-14 Medtronic, Inc. Small diameter, high torque catheter
US5603705A (en) * 1993-12-22 1997-02-18 Scimed Life Systems, Inc. Catheter joint with restraining device
US5445624A (en) * 1994-01-21 1995-08-29 Exonix Research Corporation Catheter with progressively compliant tip
US5538510A (en) * 1994-01-31 1996-07-23 Cordis Corporation Catheter having coextruded tubing
US5622665A (en) * 1994-04-20 1997-04-22 Wang; James C. Method for making tubing
US5509910A (en) * 1994-05-02 1996-04-23 Medtronic, Inc. Method of soft tip attachment for thin walled catheters
US5403292A (en) * 1994-05-18 1995-04-04 Schneider (Usa) Inc. Thin wall catheter having enhanced torqueability characteristics
US5454795A (en) * 1994-06-27 1995-10-03 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US5499973A (en) * 1994-09-08 1996-03-19 Saab; Mark A. Variable stiffness balloon dilatation catheters
US5601538A (en) * 1995-03-07 1997-02-11 Medtronic, Inc. Flow directed catheter with hydrophilic distal end
US5891112A (en) * 1995-04-28 1999-04-06 Target Therapeutics, Inc. High performance superelastic alloy braid reinforced catheter
US5658263A (en) * 1995-05-18 1997-08-19 Cordis Corporation Multisegmented guiding catheter for use in medical catheter systems
US5730733A (en) * 1995-06-01 1998-03-24 Scimed Life Systems, Inc. Flow assisted catheter
US5749891A (en) * 1995-06-06 1998-05-12 Target Therapeutics, Inc. Multiple layered vaso-occlusive coils
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US5582619A (en) * 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5833705A (en) * 1995-06-30 1998-11-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5702373A (en) * 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
US5833652A (en) * 1995-09-18 1998-11-10 Y. Pierre Gobin Component mixing catheter
US6152909A (en) * 1996-05-20 2000-11-28 Percusurge, Inc. Aspiration system and method
US5782811A (en) * 1996-05-30 1998-07-21 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US5899892A (en) * 1996-05-31 1999-05-04 Scimed Life Systems, Inc. Catheter having distal fiber braid
US5827201A (en) * 1996-07-26 1998-10-27 Target Therapeutics, Inc. Micro-braided guidewire
US5817057A (en) * 1996-09-13 1998-10-06 Micro Interventional Systems, Inc. Fluid propulsion steerable catheter and method
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US6148865A (en) * 1996-12-02 2000-11-21 A & P Technology, Inc. Braided sleeve, tubular article and method of manufacturing the tubular article
US5947940A (en) * 1997-06-23 1999-09-07 Beisel; Robert F. Catheter reinforced to prevent luminal collapse and tensile failure thereof
US5891114A (en) * 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
US6171295B1 (en) * 1999-01-20 2001-01-09 Scimed Life Systems, Inc. Intravascular catheter with composite reinforcement
US6709429B1 (en) * 2000-01-19 2004-03-23 Scimed Life Systems, Inc. Intravascular catheter with multiple axial fibers
US6942654B1 (en) * 2000-01-19 2005-09-13 Scimed Life Systems, Inc. Intravascular catheter with axial member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986284B2 (en) 2012-08-07 2015-03-24 Asahi Intecc Co., Ltd. Catheter
US20180126124A1 (en) * 2016-11-07 2018-05-10 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US10653862B2 (en) * 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US11517718B2 (en) * 2016-11-07 2022-12-06 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
WO2022101406A3 (en) * 2020-11-13 2022-07-07 Cardiomech As Device for heart repair

Also Published As

Publication number Publication date
US6709429B1 (en) 2004-03-23

Similar Documents

Publication Publication Date Title
US6709429B1 (en) Intravascular catheter with multiple axial fibers
US6942654B1 (en) Intravascular catheter with axial member
US6171295B1 (en) Intravascular catheter with composite reinforcement
EP1152788A1 (en) Intravascular catheter with composite reinforcement
EP0930910B1 (en) Guide catheter with enhanced guidewire tracking
EP1551489B1 (en) Wire braid-reinforced microcatheter
US6217565B1 (en) Reinforced variable stiffness tubing
CA2214111C (en) Braidless guide catheter
JP2934319B2 (en) Catheter with twist-resistant distal tip
US5951539A (en) Optimized high performance multiple coil spiral-wound vascular catheter
US20030135198A1 (en) Catheter device having multi-lumen reinforced shaft and method of manufacture for same
US20040039369A1 (en) Reinforced multi-lumen medical shaft
US20050004556A1 (en) Catheter having polymer stiffener rings and method of making the same
EP1212185A1 (en) Introducer device having variable flexibility and kink resistance and method of manufacture of same
CA2564294A1 (en) Intravascular catheter with composite reinforcement
CN114099899A (en) Ribbon extrusion segments for catheter construction

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION