US20040173291A1 - Metal matrix composite - Google Patents

Metal matrix composite Download PDF

Info

Publication number
US20040173291A1
US20040173291A1 US10/715,943 US71594303A US2004173291A1 US 20040173291 A1 US20040173291 A1 US 20040173291A1 US 71594303 A US71594303 A US 71594303A US 2004173291 A1 US2004173291 A1 US 2004173291A1
Authority
US
United States
Prior art keywords
metal matrix
matrix composite
preform
ksi
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/715,943
Inventor
Boris Rozenoyer
William Altergott
Uday Kashalikar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vencore Services and Solutions Inc
Walker Systems Inc
Original Assignee
Foster Miller Inc
Walker Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foster Miller Inc, Walker Systems Inc filed Critical Foster Miller Inc
Priority to US10/715,943 priority Critical patent/US20040173291A1/en
Assigned to WALKER SYSTEMS, INC. reassignment WALKER SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAMBARDEKAR, SHAILESH SHASHIKANT, KOHAUT, JOHN, CASTELLANI, NORMAN, ARTHUR, RICHARD LEE
Assigned to FOSTER-MILLER, INC. reassignment FOSTER-MILLER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALTERGOTT, WILLIAM, KASHALIKAR, UDAY, ROZENOYER, BORIS Y.
Publication of US20040173291A1 publication Critical patent/US20040173291A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/38Cylinder heads having cooling means for liquid cooling the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00905Uses not provided for elsewhere in C04B2111/00 as preforms
    • C04B2111/00913Uses not provided for elsewhere in C04B2111/00 as preforms as ceramic preforms for the fabrication of metal matrix comp, e.g. cermets
    • C04B2111/00931Coated or infiltrated preforms, e.g. with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1073Infiltration or casting under mechanical pressure, e.g. squeeze casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • F01L2301/02Using ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

A metal matrix composite and method wherein a reinforcement preform is made by partially sintering ceramic particles and a metal matrix material is used into the preform. In one example, the resulting isotropic metal matrix composite has an ultimate tensile strength of at least 80 ksi in all directions, a high temperature strength retention of at least 85% up to 500° F., and a high temperature stiffness retention of at least 95% at temperatures up to 500° F. Preferably, the preform has an average pore size of 1-5 microns, an average interconnected porosity 35-45 vol. %, a 100% open porosity, and a flexure strength of greater than 7 ksi.

Description

    RELATED APPLICATIONS
  • This application claims priority from Provisional Application No. 60/427,112 filed Nov. 18, 2002.[0001]
  • GOVERNMENT RIGHTS
  • [0002] This invention was made with U.S. Government support under Contract Nos. NAS8-010019 and NAS8-02014 awarded by NASA, DAAE07-99-C-L016 and DAAE07-98-C-X015 awarded by the U.S. Army, DAAD17-02-C-0039 awarded by U.S. Army, and DAAH01-00-C-R070 awarded by U.S. Army. The Government has certain rights in the invention.
  • FIELD OF THE INVENTION
  • This invention relates to isotropic metal matrix composites with superior strength and high-temperature strength and stiffness retention features and a method of making the same. [0003]
  • BACKGROUND OF THE INVENTION
  • There is an ongoing search for new high strength and durable light weight materials. In one example, aluminum alloys have been used for both the engine head and block of gasoline engines to lower the weight of the engine and improve fuel economy. But, aluminum alloys do not have a sufficient stiffness or high-temperature strength for diesel engines where the cylinder pressure can be at least twice that of a gasoline engine. [0004]
  • Metal matrix composites including ceramic reinforcement material in a metal matrix are an attractive alternative to metal alloys because of their high strength and low weight. Usually, the ceramic reinforcement material is in the form of powders, fibers, or whiskers. [0005]
  • Unfortunately, the typical tensile strengths for many metal matrix composites range from 30 to 70 ksi and, moreover, typical metal matrix composites lose a substantial percent of strength and stiffness at temperatures above 200° F. Wear resistance is also an issue in some known metal matrix composites. [0006]
  • Those skilled in the art have long sought a stronger and more durable metal matrix composite which exhibits high temperature strength and stiffness retention. See, for example, patent application No. PCT/US97/06323; U.S. Pat. No. 5,394,930; EP 0754,659 B1; EP 0380,973; and U.S. Pat. No. 5,141,683 all incorporated by this reference herein. [0007]
  • Sometimes, the ceramic powders of the metal matrix composite are first formed into a preform prior to infusion by the metal matrix material. Compaction and adhesive binders are usually used to make the preform. The paper entitled “Strength and Fracture Toughness of Aluminum/Alumina Composites with Interpenetrating Networks” (Prielipp et. al, Materials Science and Engineering (A 197, 1995, 19-30)), incorporated by reference herein, proposes sintering the ceramic powders to make a preform which can then be machined to provide near net shape parts and components. But, the highest tensile strength of the resulting metal matrix composite was 75 ksi which is not suitable for some applications. There have been reports of metal matrix composites with a flexural strength exceeding 100 ksi but the tensile strength was less than 70 ksi. [0008]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of this invention to provide a metal matrix composite which exhibits a higher tensile strength. [0009]
  • It is a further object of this invention to provide such a metal matrix composite which retains its tensile strength and stiffness at elevated temperatures. [0010]
  • It is a further object of this invention to provide such a metal matrix composite which exhibits good wear resistance. [0011]
  • It is a further object of this invention to provide such a metal matrix composite which has a low coefficient of thermal expansion. [0012]
  • This invention results from the realization that a more durable metal matrix composite with a higher tensile strength and which sufficiently retains its tensile strength and stiffness at elevated temperatures is effected by the use of a partially sintered reinforcement preform tailored to have a specified pore size, porosity, and flexure strength, by choosing substantially pure ceramic powders, and by carefully selecting the metal matrix material to be infused into the preform depending on the choice of the ceramic powders. Ceramic powders are partially sintered resulting in an isotropic reinforcement preform. The preform is infused with a metal matrix material by pressure casting, squeeze casting, or similar techniques resulting in an isotropic metal matrix composite with high strength, high stiffness, temperature resistance, a low coefficient of thermal expansion, and good wear resistance properties. [0013]
  • This invention features an isotropic metal matrix composite comprising a reinforcement preform made by partially sintering ceramic particles and a metal matrix material infused into the preform. In one example, the resulting isotropic metal matrix composite has an ultimate tensile strength of at least 80 ksi in all directions. The tensile strength is typically greater than or equal to 100 ksi. Typically, the isotropic metal matrix composite has a high temperature strength retention of at least 85% up to 500° F. and a high temperature stiffness retention of at least 95% at temperatures up to 500° F. [0014]
  • It is preferred that the preform has an average pore size of 1-5 microns, an average interconnected porosity 35-45 vol. %, a 100% open porosity, a flexure strength of greater than 7 ksi, and isotropic properties. It is also preferred that the ceramic particles are substantially pure (e.g., at least 99.0% pure). [0015]
  • The metal matrix material should be selected to prevent chemical reaction with the preform. The particles of the preform may be alumina or silicon carbide and the metal matrix material may be aluminum, aluminum alloys, magnesium, magnesium alloys, copper, and copper alloys. If aluminum is used, it should be substantially pure aluminum (e.g., 99.999% pure aluminum). One preferred aluminum alloy is aluminum alloy No. 201. Typically, the metal matrix composite has a coefficient of thermal expansion of less than 7.0 ppm/° F. [0016]
  • This invention also features a method of making a metal matrix composite wherein ceramic particles are partially sintered to form an isotropic reinforcement preform having an average pore size of between 1-5 microns, an average interconnected porosity of between 35-45 vol. %, an approximately 100% open porosity, and a flexure strength of greater than 7 ksi. The partially sintered preform is then infused with a metal matrix material. [0017]
  • Infusion may include subjecting the preform to the molten metal matrix material under pressure by pressure casting or squeeze casting techniques. [0018]
  • Typically, the isotropic metal matrix composite has an isotropic high temperature stiffness retention of at least 95% at temperatures up to 500° F., a high temperature strength retention of at least 85% up to 500° F., and an ultimate tensile strength is at least 80 ksi in all directions. The ceramic particles should be substantially pure and in one example were at least 99.0% pure. It is preferred that the metal matrix material is selected to prevent chemical reaction with the preform. The particles of the preform may be alumina or silicon carbide and the metal matrix material may be aluminum, aluminum alloys, magnesium, magnesium alloys, copper, and copper alloys.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which: [0020]
  • FIG. 1 is a three dimensional schematic view of an example of a metal matrix composite part in accordance with the subject invention in the form of a diesel engine combustion plate; [0021]
  • FIG. 2 is a three dimensional schematic view of two combustion plates joined within a cast aluminum alloy structure; [0022]
  • FIG. 3 is a three dimensional schematic view of an example of a reinforcement preform made by partially sintering ceramic particles in accordance with the subject invention; [0023]
  • FIG. 4 is a photomicrograph of the preform shown in FIG. 3; and [0024]
  • FIG. 5 is a photomicrograph of the preform shown in FIG. 3 after infusion by a metal matrix material.[0025]
  • DISCLOSURE OF THE PREFERRED EMBODIMENTS
  • Aside from the preferred embodiments or examples disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various different ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the particular components set forth in the following description or illustrated in the drawings. [0026]
  • Metal matrix [0027] composite part 10, FIG. 1 is, in one particular example of this invention, a diesel engine combustion plate insert, but the invention is clearly not limited to this part alone. In this example, the ceramic reinforcement material used was alumina and the metal matrix material was aluminum alloy No. 201. Other possible ceramic reinforcement materials include silicon carbide, and other oxide and non-oxide ceramics. Other possible metal matrix materials include, inter alia, substantially pure aluminum (e.g., 99.999% pure or better), aluminum alloys, magnesium, magnesium alloys, copper, and copper alloys.
  • Two [0028] such parts 10, FIG. 2, in one example, were joined to be a part of cast aluminum alloy structure 12 to form a diesel engine head plate subcomponent. Inserts 10 may be joined to structure 12 by gravity casting or using processes such as brazing or diffusion bonding.
  • The construction of [0029] part 10, FIGS. 1-2 begins with partially sintering ceramic particles to form the reinforcement preform 14, FIG. 3. The ceramic particles used should be substantially pure (e.g., at least 99.0% pure) to prevent substrate strength deterioration due to undesirable chemical reactions at the ceramic/aluminum alloy metal interface during pressure casting. Preferably, preform 14 has isotropic properties, a pore size of between 1-5 microns, an average interconnected porosity of between 35-45 vol. %, 100% open (interconnected) porosity, and a flexure strength of greater than 7 ksi. Machining of preform 14 can take place before infusion as shown in FIG. 3 or after infusion with the metal matrix material.
  • In the example shown in FIG. 3, the Al[0030] 2O3 preform 14 (99.1% wt) had a 100% open (interconnected) porosity, a median pore size of between 2.6-3.4 microns, an apparent porosity of 40.7%, a bulk density of 2.33 g/cc, a flexural strength of 7.8 ksi, and a thermal conductivity (200-550° F.) of 0.06-0.04 W/cm-° K and a CTE (RT-550° F.), of 3.39-3.71 10(−6)/° F.
  • FIG. 4 is a photomicrograph of [0031] preform 14, FIG. 3 showing the isotropic nature of the partially sintered ceramic (Al2O3) particles.
  • Surprisingly, one preform that met the above requirements is available from Coors Ceramics, Inc. (Golden, Colo.) and is typically used for filtering purposes and for kiln components. Other preforms that have an open porosity, an average pore size of 1-5 microns, an average interconnected porosity of between 35-45 vol. %, and a flexure strength of greater than 7 ksi made of alumina, silicon carbide and other ceramic materials, however, can be used. The molded shape of the preform will depend on the particular application. [0032]
  • To [0033] form part 10, FIGS. 1-2, a metal matrix material is infused into the preform. In one example, aluminum alloy no. 354 was melted and preform 14, FIG. 3 subjected to the molten alloy material under pressure by pressure casting or squeeze casting techniques. A photomicrograph of one isotropic resultant part or component (e.g., part 10, FIGS. 1-2) is shown in FIG. 5.
  • The resulting metal matrix composite part had a flexural strength of 89.5 ksi, a thermal conductivity (200-550° F.) of 5.52-6.46 W/cm-° K and a coefficient of thermal expansion (RT-550° F.) of between 5.52-6.46 10(−6)/° F. [0034]
  • Additional examples resulted in ultimate tensile strengths (using a standard axial tension test methodology) of at least 80 ksi in all directions and even exceeding 100 ksi and all aluminum/alumina examples resulted in a metal matrix composite with a high temperature strength retention of 85% up to 500° F. or even 550° F. and a high temperature stiffness retention of 95% at temperatures up to 500° F. The measured coefficient of thermal expansion was less than 7.0 ppm/° F. [0035]
  • Preferably, the metal matrix material chosen (e.g., substantially pure aluminum, aluminum alloys, magnesium, magnesium alloys, copper, and copper alloys) do not react chemically with the material of the preform and vice versa. [0036]
  • As shown in FIG. 5, the metal matrix composite exhibits a dense, fully infiltrated structure with a clean matrix/ceramics interface and an absence of cast defects. The isotropic metal matrix composite of the subject invention has a high flexural strength and, at the same time, a low coefficient of thermal expansion and a high thermal conductivity. By changing the matrix alloy and final heat treatment of the metal matrix composite, it would be possible to achieve various combinations of mechanical and physical properties to meet different requirements for metal matrix composites in substantially variable conditions. One positive feature of a continuous porous alumina preform (e.g., 100% open porosity) is its retention of strength at elevated temperatures and thus it can be utilized in service conditions where conventional high temperature aluminum alloys severely lose their strength. Also, the use of alumina reinforcement enables applications where high wear and light materials are needed. [0037]
  • The mechanical and thermophysical properties of the porous alumina preform and the corresponding metal matrix composite can be tailored to accommodate a wide range of service requirements for both structural and specific applications by slight variations in the porous substrate processing parameters. [0038]
  • If the preform is made of a partially sintered ceramic material, there is also no need to place the preform in the mold since it is able to retain its shape during all stages of the pressure casting process. An additional advantage of a porous preform is that it can be sintered and/or machined to a net shape prior to infiltration by the metal matrix material. Metal matrix composite shapes, such as plates, rods, bars and the like, can be pressure cast and then finish machined to the final shape. Moreover, it is possible to infuse multiple preforms at one pressure casting run to utilize the processing space of the pressure casting unit in the most efficient way. Therefore, the unit cost of the metal matrix composite pressure casting run can be substantially reduced by maximizing the volume of the metal matrix composites created per casting and by the elimination of expendable graphite molds. [0039]
  • To minimize fabrication costs, it is preferred to directly infiltrate the aluminum matrix alloy into the partially sintered reinforcement preform. Two experiments were performed to determine how to best infiltrate multiple large parts in a single pressure casting to produce a fully homogeneous, pore-free metal matrix composite microstructure using free-standing porous ceramic performs. [0040]
  • EXAMPLE 1
  • Five 8.75″ diameter×0.3″ thick partially sintered reinforcement preforms made by partially sintering ceramic particles (Al[0041] 2O3) were pressure cast within a simple graphite mold to keep the five preforms separated to facilitate casting demolding and metal matrix composite part separation and surface cleaning. All five preforms were successfully infiltrated and did not show any casting defects.
  • EXAMPLE 2
  • A pressure casting chamber was equipped with two separate independent heating elements and separate thermocouples to record temperatures in both heating zones. Two presintered reinforcement preforms made by partially sintering ceramic particles were suspended using tubular stainless steel holders above the graphite crucible with the Al-2Cu metal matrix alloy charge. The crucible was placed on the top of the pneumatic piston allowing crucible movement in the vertical direction. After the chamber was evacuated, the aluminum alloy was melted and overheated to 770° C. At this temperature, the crucible with the melt was raised to the level and the porous preforms were fully immersed into the melt and the chamber was pressurized with argon to 885 psi. The temperature of the melt and the pressure were maintained at this level for 12 minutes and then the heater power was turned off and the crucible was lowered to its initial position to terminate a contact of the preforms with the pool of liquid alloy and to allow solidification of the matrix alloy within the free-standing porous preform plates. It took 15 minutes for full solidification of the alloy under positive pressure. After cooling to room temperature and unloading a defect-free, near net shape metal matrix composite part as depicted in FIG. 1 was obtained. [0042]
  • The result, in any embodiment, is a metal matrix composite with a higher tensile strength and which retains its tensile strength and stiffness at elevated temperatures. The metal matrix composite of the subject invention exhibits good wear resistance and has a low coefficient of thermal expansion. By using a partially sintered reinforcement preform tailored to have a specified open pore size and a specific range of porosity and flexural strengths and by using substantially pure ceramic powders and by selecting the metal matrix material depending on the choice of the ceramic powders to be infused into the preform, a wide variety of different types of parts and components for a wide variety of applications is effected. [0043]
  • Although specific features of the invention are described and shown in some drawings and examples and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments or examples disclosed in the subject application are not to be taken as the only possible embodiments or examples. [0044]
  • Other embodiments will occur to those skilled in the art and are within the following claims:[0045]

Claims (40)

What is claimed is:
1. A metal matrix composite comprising:
an isotropic reinforcement preform made by partially sintering ceramic particles; and
a metal matrix infused into the preform yielding an isotropic metal matrix composite having an ultimate tensile strength of at least 80 ksi in all directions.
2. The metal matrix composite of claim 1 in which the tensile strength is greater than or equal to 100 ksi.
3. The metal matrix composite of claim 1 in which the metal matrix composite has an isotropic high temperature strength retention of at least 85% up to 500° F.
4. The metal matrix composite of claim 1 in which the metal matrix composite has an isotropic high temperature stiffness retention of at least 95% at temperatures up to 500° F.
5. The metal matrix composite of claim 1 in which the preform has an average pore size of 1-5 microns, an average interconnected porosity 35-45 vol. %, a 100% open porosity, and a flexure strength of greater than 7 ksi.
6. The metal matrix composite of claim 1 in which the ceramic particles are substantially pure.
7. The metal matrix composite of claim 6 in which the ceramic particles are at least 99.0% pure.
8. The metal matrix composite of claim 1 in which the metal matrix material is selected to prevent chemical reaction with the preform.
9. The metal matrix composite of claim 1 in which the particles of the preform are selected from the group consisting of alumina and silicon carbide.
10. The metal matrix composite of claim 1 in which the metal matrix material is selected from the group consisting of aluminum, aluminum alloys, magnesium, magnesium alloys, copper, and copper alloys.
11. The metal matrix composite of claim 10 in which the aluminum is substantially pure aluminum.
12. The metal matrix composite of claim 11 in which the aluminum is 99.999% pure aluminum.
13. The metal matrix composite of claim 10 in which the aluminum alloy is aluminum alloy No. 201.
14. The metal matrix composite of claim 1 in which the metal matrix composite has a coefficient of thermal expansion of less than 7.0 ppm/° F.
15. A metal matrix composite comprising:
a partially sintered reinforcement preform made of ceramic particles; and
a metal matrix infused into the preform yielding an isotropic metal matrix composite having a high temperature strength retention of at least 85% up to 500° F.
16. The metal matrix composite of claim 15 in which the ultimate tensile strength of the metal matrix composite is at least 80 ksi in all directions.
17. The metal matrix composite of claim 15 in which the metal matrix composite has a high temperature stiffness retention of at least 95% at temperatures up to 500° F.
18. The metal matrix composite of claim 15 in which the preform has an average pore size of 1-5 microns, an average interconnected porosity 35-45 vol. %, a 100% open porosity, and a flexure strength of greater than 7 ksi.
19. A metal matrix composite comprising:
a partially sintered reinforcement preform made of ceramic particles; and
a metal matrix infused into the preform yielding an isotropic metal matrix composite with a high temperature stiffness retention of at least 95% at temperatures up to 500° F.
20. The metal matrix composite of claim 19 in which the metal matrix composite has a high temperature strength retention of at least 85% up to 500° F.
21. The metal matrix composite of claim 19 in which the preform has an average pore size of 1-5 microns, an average interconnected porosity of between 35-45 vol. %, approximately 100% open porosity, and a flexure strength of greater than 7 ksi.
22. The metal matrix composite of claim 19 in which the ultimate tensile strength of the metal matrix composite is at least 80 ksi in all directions.
23. A metal matrix composite comprising:
a reinforcement preform made by partially sintering ceramic particles to have an average pore size of between 1-5 microns, an average interconnected porosity of between 35-45 vol. %, approximately 100% open porosity, and a flexure strength of greater than 7 ksi, and isotropic properties; and
a metal matrix infused into the preform.
24. The metal matrix composite of claim 23 in which the metal matrix composite has a high temperature strength retention of at least 85% up to 500° F.
25. The metal matrix composite of claim 23 in which the ultimate tensile strength of the metal matrix composite is at least 80 ksi in all directions.
26. The metal matrix composite of claim 23 in which the metal matrix composite has a high temperature stiffness retention of at least 95% at temperatures up to 500° F.
27. A metal matrix composite comprising:
a preform made by partially sintering ceramic particles to have an average pore size of between 1-5 microns, an average interconnected porosity of between 35-45 vol. %, approximately 100% open porosity, a flexure strength of greater than 7 ksi, and isotropic properties; and
a metal matrix infused into the preform yielding an isotropic metal matrix composite with a high temperature strength retention of at least 85% up to 500° F., high temperature stiffness retention of at least 95% up to 500° F., and an ultimate tensile strength of at least 80 ksi in all directions.
28. A method of making a metal matrix composite, the method comprising:
partially sintering ceramic particles to form a reinforcement preform having an average pore size of between 1-5 microns, an average interconnected porosity of between 35-45 vol. %, an approximately 100% open porosity, and a flexure strength of greater than 7 ksi; and
infusing the partially sintered preform with a metal matrix material.
29. The method of claim 28 in which infusion includes subjecting the preform to the molten metal matrix material under pressure.
30. The method of claim 29 in which infusion includes pressure casting.
31. The method of claim 29 in which infusion includes squeeze casting.
32. The method of claim 28 in which the resulting metal matrix composite has a high temperature stiffness retention of at least 95% at temperatures up to 500° F.
33. The method of claim 28 in which the resulting metal matrix composite has a high temperature strength retention of at least 85% up to 500° F.
34. The method of claim 28 in which the ultimate tensile strength of the resulting metal matrix composite is at least 80 ksi in all directions.
35. The method of claim 28 in which the ceramic particles are substantially pure.
36. The method of claim 35 in which the ceramic particles are at least 99.0% pure.
37. The method of claim 28 in which the metal matrix material is selected to prevent chemical reaction with the preform.
38. The method of claim 28 in which the particles of the preform are selected from the group consisting of alumina and silicon carbide.
39. The method of claim 28 in which the metal matrix material is selected from the group consisting of aluminum, aluminum alloys, magnesium, magnesium alloys, copper, and copper alloys.
40. The method of claim 39 in which the aluminum is substantially pure aluminum
US10/715,943 2002-11-18 2003-11-18 Metal matrix composite Abandoned US20040173291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/715,943 US20040173291A1 (en) 2002-11-18 2003-11-18 Metal matrix composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42711202P 2002-11-18 2002-11-18
US10/715,943 US20040173291A1 (en) 2002-11-18 2003-11-18 Metal matrix composite

Publications (1)

Publication Number Publication Date
US20040173291A1 true US20040173291A1 (en) 2004-09-09

Family

ID=32930310

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/715,943 Abandoned US20040173291A1 (en) 2002-11-18 2003-11-18 Metal matrix composite

Country Status (1)

Country Link
US (1) US20040173291A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309262A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Manufacturing apparatus and method for producing a preform
US20090309252A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Method of controlling evaporation of a fluid in an article
US20100152015A1 (en) * 2006-10-06 2010-06-17 Dirk Staudenecker Composite material and composite component, and method for producing such
JP2013237597A (en) * 2012-05-17 2013-11-28 Hitachi Metals Ltd Preform, metal-ceramic composite using the same and method for manufacturing the same
US20140272446A1 (en) * 2013-03-15 2014-09-18 Kannametal Inc. Wear-resistant claddings
US9283734B2 (en) 2010-05-28 2016-03-15 Gunite Corporation Manufacturing apparatus and method of forming a preform
US10780491B2 (en) 2018-01-11 2020-09-22 Ford Global Technologies, Llc Aluminum casting design with alloy set cores for improved intermetallic bond strength
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1318733A (en) * 1919-10-14 Wiljfkid dobion
US1717836A (en) * 1927-05-27 1929-06-18 Colt S Mfg Co Multiple electric connecting device
US3975075A (en) * 1974-09-18 1976-08-17 Dracon Industries Unitary offset wall plug
US4091231A (en) * 1977-03-29 1978-05-23 Thomas & Betts Corporation Adjustable floor receptacle
US4266266A (en) * 1978-12-21 1981-05-05 Sanner George E Electrical fixture intended primarily for outdoor use and designed to protect an electrical device housed therein from the elements
US4323724A (en) * 1980-05-01 1982-04-06 Shine William P Unitary insertable self-anchoring poke-thru wiring device
US4336416A (en) * 1979-06-15 1982-06-22 Harvey Hubbell Incorporated Fire-rated feed-through fitting for transferring insulated wires through a concrete floor
US4583799A (en) * 1983-10-17 1986-04-22 Westinghouse Electric Corp. Multiple outlet receptacle
US4770643A (en) * 1986-08-11 1988-09-13 Norman Castellani In-floor fitting
US4861679A (en) * 1986-08-19 1989-08-29 Nuova Samim S.P.A. Composite material of Zn-Al alloy reinforced with silicon carbide powder
US5024976A (en) * 1988-11-03 1991-06-18 Kennametal Inc. Alumina-zirconia-silicon carbide-magnesia ceramic cutting tools
US5141683A (en) * 1989-01-31 1992-08-25 T&N Technology Limited Method of producing reinforced materials
US5167271A (en) * 1988-10-20 1992-12-01 Lange Frederick F Method to produce ceramic reinforced or ceramic-metal matrix composite articles
US5240654A (en) * 1989-12-22 1993-08-31 Comalco Aluminium Limited Method of making ceramic microspheres
US5394930A (en) * 1990-09-17 1995-03-07 Kennerknecht; Steven Casting method for metal matrix composite castings
US5458181A (en) * 1989-02-15 1995-10-17 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US5735332A (en) * 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
US6338906B1 (en) * 1992-09-17 2002-01-15 Coorstek, Inc. Metal-infiltrated ceramic seal

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1318733A (en) * 1919-10-14 Wiljfkid dobion
US1717836A (en) * 1927-05-27 1929-06-18 Colt S Mfg Co Multiple electric connecting device
US3975075A (en) * 1974-09-18 1976-08-17 Dracon Industries Unitary offset wall plug
US4091231A (en) * 1977-03-29 1978-05-23 Thomas & Betts Corporation Adjustable floor receptacle
US4266266A (en) * 1978-12-21 1981-05-05 Sanner George E Electrical fixture intended primarily for outdoor use and designed to protect an electrical device housed therein from the elements
US4336416A (en) * 1979-06-15 1982-06-22 Harvey Hubbell Incorporated Fire-rated feed-through fitting for transferring insulated wires through a concrete floor
US4323724A (en) * 1980-05-01 1982-04-06 Shine William P Unitary insertable self-anchoring poke-thru wiring device
US4583799A (en) * 1983-10-17 1986-04-22 Westinghouse Electric Corp. Multiple outlet receptacle
US4770643A (en) * 1986-08-11 1988-09-13 Norman Castellani In-floor fitting
US4861679A (en) * 1986-08-19 1989-08-29 Nuova Samim S.P.A. Composite material of Zn-Al alloy reinforced with silicon carbide powder
US5167271A (en) * 1988-10-20 1992-12-01 Lange Frederick F Method to produce ceramic reinforced or ceramic-metal matrix composite articles
US5024976A (en) * 1988-11-03 1991-06-18 Kennametal Inc. Alumina-zirconia-silicon carbide-magnesia ceramic cutting tools
US5141683A (en) * 1989-01-31 1992-08-25 T&N Technology Limited Method of producing reinforced materials
US5458181A (en) * 1989-02-15 1995-10-17 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US5240654A (en) * 1989-12-22 1993-08-31 Comalco Aluminium Limited Method of making ceramic microspheres
US5394930A (en) * 1990-09-17 1995-03-07 Kennerknecht; Steven Casting method for metal matrix composite castings
US5735332A (en) * 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
US6338906B1 (en) * 1992-09-17 2002-01-15 Coorstek, Inc. Metal-infiltrated ceramic seal

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100152015A1 (en) * 2006-10-06 2010-06-17 Dirk Staudenecker Composite material and composite component, and method for producing such
US8455379B2 (en) 2008-06-17 2013-06-04 Century, Inc. Ceramic article
US8153541B2 (en) 2008-06-17 2012-04-10 Century, Inc. Ceramic article
US20090312174A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Ceramic article
US7793703B2 (en) 2008-06-17 2010-09-14 Century Inc. Method of manufacturing a metal matrix composite
US8550145B2 (en) 2008-06-17 2013-10-08 Century, Inc. Method of manufacturing a metal matrix composite
US8016018B2 (en) 2008-06-17 2011-09-13 Century, Inc. Method of manufacturing a metal matrix composite
US20090309252A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Method of controlling evaporation of a fluid in an article
US20090309262A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Manufacturing apparatus and method for producing a preform
US20110061830A1 (en) * 2008-06-17 2011-03-17 Century, Inc. Method of Manufacturing a Metal Matrix Composite
US9803265B2 (en) 2008-06-17 2017-10-31 Gunite Corporation Metal matrix composite
US9283734B2 (en) 2010-05-28 2016-03-15 Gunite Corporation Manufacturing apparatus and method of forming a preform
JP2013237597A (en) * 2012-05-17 2013-11-28 Hitachi Metals Ltd Preform, metal-ceramic composite using the same and method for manufacturing the same
US20140272446A1 (en) * 2013-03-15 2014-09-18 Kannametal Inc. Wear-resistant claddings
US10780491B2 (en) 2018-01-11 2020-09-22 Ford Global Technologies, Llc Aluminum casting design with alloy set cores for improved intermetallic bond strength
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same

Similar Documents

Publication Publication Date Title
US5735332A (en) Method for making a ceramic metal composite
CN107326211B (en) A kind of high body part ceramic-metal laminar composite and preparation method thereof
JP2921893B2 (en) Method for producing composite article having complicated internal morphology
US5525374A (en) Method for making ceramic-metal gradient composites
US5047181A (en) Forming of complex high performance ceramic and metallic shapes
Dickerson et al. Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method
US6180258B1 (en) Metal-matrix composites and method for making such composites
US5626914A (en) Ceramic-metal composites
US3852099A (en) Dense silicon carbide ceramic and method of making same
US5503122A (en) Engine components including ceramic-metal composites
US20040173291A1 (en) Metal matrix composite
JPH08501500A (en) Method for manufacturing ceramic-metal composite material
US11046618B2 (en) Discrete solidification of melt infiltration
KR0134955B1 (en) Method for manufacturing articles having thermal shock resistance and elasticity
US5676907A (en) Method for making near net shape ceramic-metal composites
US11154930B2 (en) Method for producing a porous shaped body
EP1314498A2 (en) Composite material and method for production of the same
WO2019123223A1 (en) Method of making a porous preform in silicon carbide with controlled porosity and silicon carbide porous preform
EP0513243A1 (en) Improved method of making large cross section injection molded or slip cast ceramic shapes.
EP0753101B1 (en) Engine components including ceramic-metal composites
Chen et al. Novel Al/Al2O3 composite foams by direct oxidation conversion
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP3834283B2 (en) Composite material and manufacturing method thereof
JP3358472B2 (en) Method for producing silicon nitride ceramic-based composite material
JP2002241871A (en) Metal/ceramic composite material having machinable part and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: WALKER SYSTEMS, INC., WEST VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CASTELLANI, NORMAN;KOHAUT, JOHN;ARTHUR, RICHARD LEE;AND OTHERS;REEL/FRAME:015029/0296;SIGNING DATES FROM 20001129 TO 20001205

AS Assignment

Owner name: FOSTER-MILLER, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROZENOYER, BORIS Y.;ALTERGOTT, WILLIAM;KASHALIKAR, UDAY;REEL/FRAME:015336/0699

Effective date: 20040420

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION