US20040191500A1 - Anti-microbial fiber and fibrous products - Google Patents

Anti-microbial fiber and fibrous products Download PDF

Info

Publication number
US20040191500A1
US20040191500A1 US10/785,850 US78585004A US2004191500A1 US 20040191500 A1 US20040191500 A1 US 20040191500A1 US 78585004 A US78585004 A US 78585004A US 2004191500 A1 US2004191500 A1 US 2004191500A1
Authority
US
United States
Prior art keywords
layer
microbial
product
additive
plastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/785,850
Inventor
Stephen Foss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOSS MANUFACTURING COMPANY LLC
Original Assignee
Foss Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foss Manufacturing Co Inc filed Critical Foss Manufacturing Co Inc
Priority to US10/785,850 priority Critical patent/US20040191500A1/en
Assigned to FOSS MANUFACTURING CO., INC. reassignment FOSS MANUFACTURING CO., INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOSS, STEPHEN W.
Publication of US20040191500A1 publication Critical patent/US20040191500A1/en
Assigned to FOSS MANUFACTURING COMPANY, LLC reassignment FOSS MANUFACTURING COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOSS MANUFACTURING COMPANY, INC.
Assigned to CAPITALSOURCE FINANCE LLC reassignment CAPITALSOURCE FINANCE LLC SECURITY AGREEMENT Assignors: FOSS MANUFACTURING COMPANY, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B17/00Selection of special materials for underwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F13/8405Additives, e.g. for odour, disinfectant or pH control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • A61L2/238Metals or alloys, e.g. oligodynamic metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1615Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of natural origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0028Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/449Yarns or threads with antibacterial properties
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B2400/00Functions or special features of shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
    • A41B2400/60Moisture handling or wicking function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F13/8405Additives, e.g. for odour, disinfectant or pH control
    • A61F2013/8408Additives, e.g. for odour, disinfectant or pH control with odour control
    • A61F2013/8414Additives, e.g. for odour, disinfectant or pH control with odour control with anti-microbic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/10Multiple layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/70Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/251Mica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2907Staple length fiber with coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2915Rod, strand, filament or fiber including textile, cloth or fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition
    • Y10T442/3073Strand material is core-spun [not sheath-core bicomponent strand]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/3154Sheath-core multicomponent strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/444Strand is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/638Side-by-side multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/64Islands-in-sea multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric
    • Y10T442/692Containing at least two chemically different strand or fiber materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/697Containing at least two chemically different strand or fiber materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/699Including particulate material other than strand or fiber material

Definitions

  • the present invention relates generally to products having anti-microbial (and/or anti-fungal) properties which remain with the product after repeated launderings/uses. More specifically it provides wide sheet materials that are made of a wholly or partly synthetic material and having anti-microbial and anti-fungal properties. Such sheets can be used with other synthetic or natural materials to form a variety of different end use products. This invention provides for sheet materials for end use products that are resistant to bacterial and fungal growth as well as to the deterioration of the agents contained in these materials.
  • There is a laminate embodiment which relates to generally to laminate materials, and, more particularly that are made of a wholly thermoplastic stiff reinforcing multiple laminate moldable into compound shapes and bondable via a thermoplastic hot melt adhesive to a carrier surface to be reinforced.
  • Examples of some organic types of anti-microbial agents are U.S. Pat. Nos. 5,408,022 and 5,494,987 (an anti-microbial polymerizable composition containing an ethylenically unsaturated monomer, a specific one-, di- or tri-functional anti-microbial monomer and a polymerization initiator which can yield an unreleasable anti-microbial polymer from which the anti-microbial component is not released), U.S. Pat. No.
  • 5,709,870 (a silver containing anti-microbial agent which comprises carboxymethylcellulose, a crosslinked compound, containing silver in the amount of 0.01 to 1% by weight and having a degree of substitution of carboxymethyl group of not less than 0.4 and the anti-microbial agent being a silver salt of carboxymethylcellulose, which is insoluble to water),
  • an organic solvent-soluble mucopolysaccharide consisting of an ionic complex of at least one mucopolysaccharide and a quaternary phosphonium, an antibacterial antithrombogenic composition comprising organic solvent-soluble mucopolysaccharide and an organic polymer material, an antibacterial antithrombogenic composition comprising organic solvent-soluble mucopolysaccharide and an inorganic antibacterial agent, and to a medical material comprising organic solvent-soluble mucopolysaccharide).
  • Japanese Patent No. 1246204 (1988) which discloses an anti-microbial thermoplastic article with copper a compound added to the melted polymer just before extruding, in which the anti-microbial material is said to be resistant to washing.
  • U.S. Pat. No. 5,180,585 which discloses an antimicrobial with a first coating providing the antimicrobial properties and a second coating as a protective layer.
  • a metal having antimicrobial properties is used including silver which is coated with a secondary protective layer.
  • Japanese Patent No. 2099606 (1990) which discloses a fiber with anti-microbial properties made of a liquid polyester and inorganic micro particles of zinc silicate, both being added to the melted polymer after polymerization and just before extrusion.
  • thermoplastic material which are candidates for treatment with anti-microbial agents include material such as polyamides (nylon 6 or 6,6), polyvinyl, polyolefins, polyurethanes, polyethylene terephthalate, styrene-butadiene rubbers.
  • Japanese Patent No. 2091009 (1990) and U.S. Pat. No. 5,047,448 disclose an anti-microbial thermoplastic polymer with copper or zinc compounds and fine particles of Al, Ag, Fe and Zn compounds and a liquid polyester, in which the anti-microbial material is said to be resistant to washing.
  • Japanese Patent No. 2169740 (1990) discloses a thermoplastic fiber such as PET which uses silver, copper or zinc as an anti-microbial agent. There is a cellulose component which reduces the amount of thermoplastic with anti-microbial agent and reduces the cost.
  • U.S. Pat. No. 5,071,551 discloses a water purifier having a secondary filter downstream of its primary filter for removing microorganisms and antimicrobial means disposed between the two filters. use of an anti-microbial agent for a water purifier.
  • Japanese Patent No. 6116872 (1994) discloses a suede-like synthetic leather with an anti-microbial agent. It discloses the use of anti-microbial zeolite having an anti-microbial metal ion. It uses two fiber types and includes PET.
  • U.S. Pat. No. 5,733,949 discloses an anti-microbial adhesive composition for dental use.
  • the composition was made by blending of a polymerizable monomer having alcoholic hydroxy group and water to a dental composition containing an anti-microbial polymerizable monomer and a polymerizable monomer having acidic group, and with a polymerization catalyst.
  • Such composition has capability to improve adhesive strength between the tooth and the restorative material to prevent microbial invasion at the interface and kill microorganisms remaining in the microstructure.
  • U.S. Pat. No. 5,876,489 discloses a germ-removing filter with a filter substrate and an anti-microbial material dispersedly mixed into the filter substrate.
  • the anti-microbial material is an ion exchange fiber bonded with silver ion.
  • silver ions capable of killing living germs through an ion exchange reaction.
  • U.S. Pat. No. 5,900,258 discloses a method for preventing a microorganism from growing and the breakdown of urea to ammonia on the surface of skin, wall, floor, countertop or wall covering, or in absorbent materials by incorporating an effective amount of naturally-occurring and/or synthetic zeolites.
  • the absorbent materials are diapers, clothing, bedsheets, bedpads, surgical apparel, blankets, filters, filtering aids, wall coverings, countertops, and cutting boards, etc.
  • Use of zeolite preventing bacterial infections and rashes in mammals may compromise cell wall processes including basic transport processes. Zeolites may capture or neutralize electrons and inhibit electron transport through key enzymes of the electron transport chain such as cytochrome oxidase.
  • U.S. Pat. No. 6,037,057 is for a bi-component fiber in which the cross sectional area of the sheath is less than 28% of the total cross sectional area. It also discloses the use of a slickening agent and use of an anti-microbial agent which is an inert inorganic particle having a first coating with the anti-microbial properties, and a second coating which has protective properties.
  • anti-microbial additives are organic and many organic materials either act as antibiotics and the bacteria “learns” to go around the compound, or many of them give off dioxins in use.
  • additives are applied topically to the fibers or fabrics and tend to wash off or wear off over time and become ineffective. Also, by washing off the additives are placed into the waste water stream.
  • PETG as used herein means an amorphous polyester of terephthalic acid and a mixture of predominately ethylene glycol and a lesser amount of 1,4-cyclohexanedimethanol. It is known that PETG can be used in polycarbonate blends to improve impact strength, transparency, processability, solvent resistance and environmental stress cracking resistance.
  • Udipi discloses in U.S. Pat. Nos. 5,104,934 and 5,187,228 that polymer blends consisting essentially of PC, PETG and a graft rubber composition, can be useful as thermoplastic injection molding resins.
  • thermoforming thermoplastic substrates wherein an integral coating is formed on the thermoplastic substrate that is resistant to removal of the coating.
  • the coating composition employs, in a solvent base, a pigment and a thermoplastic material compatible with the to-be-coated thermoplastic substrate.
  • the thermoplastic material in cooperation with the pigment, solvent and other components of the coating composition, are, after coating on the thermoplastic substrate, heated to a thermoforming temperature and the thermoplastic material is intimately fused to the thermoplastic substrate surface.
  • Hanes in U.S. Pat. No. 5,756,578 discloses that a polymer blend comprising a monovinylarene/conjugated diene black copolymer, an amorphous poly(ethylene terephthalate), e.g. PETG, and a crystalline poly(ethylene terephthalate), e.g. PET, has a combination of good clarity, stiffness and toughness.
  • thermoplastic article typically in the form of sheet material, having a fabric comprising textile fibers embedded therein.
  • the thermoplastic article is obtained by applying heat and pressure to a laminate comprising an upper sheet material, a fabric comprised of textile fibers and a lower sheet material.
  • the upper and lower sheet materials are formed from a co-polyester, e.g. PETG.
  • PETG co-polyester
  • This thermoplastic article may be used in the construction industry as glazing for windows. One or both surface of the article may be textured during the formation of the articles.
  • Ellison in U.S. Pat. No. 5,985,079 discloses a flexible composite surfacing film for providing a substrate with desired surface characteristics and a method for producing this film.
  • the film comprises a flexible temporary carrier film and a flexible transparent outer polymer clear coat layer releasably bonded to the temporary carrier film.
  • a pigment base coat layer is adhered to the outer clear coat layer and is visible there through, and a thermo-formable backing layer is adhered to the pigmented base coat layer.
  • the film is produced by extruding a molten transparent thermoplastic polymer and applying the polymer to a flexible temporary carrier thereby forming a continuous thin transparent film.
  • the formed composite may be heated while the transparent thermoplastic polymer film is bonded to the flexible temporary carrier to evaporate the volatile liquid vehicle and form a pigment polymer layer.
  • the heating step also molecularly relaxes the underlying film of transparent thermoplastic polymer to relieve any molecular orientation caused by the extrusion. Ellison also mentions that it is desirable to form the flexible temporary carrier from a material that can withstand the molten temperature of the transparent thermoplastic polymer.
  • the preferred flexible temporary carriers used in his invention are PET and PETG.
  • Sheet materials for various uses are vulnerable to the seeding of bacteria and fungi from various sources, thus providing hospitable sites for their uninhibited growth. The latter is especially true since, depending upon the end use, they often are used in environments where there is great exposure to microbes and fungi. One example is cafeteria trays. Thus, these materials would benefit from having antibacterial and anti-fungal agents incorporated onto them and/or into them. However, most prior art approaches of providing sheet materials with anti-microbial or anti-fungal agents have limited effect.
  • U.S. Pat. No. 3,959,556 (1976) relates to synthetic fibers that incorporate an anti-microbial agent.
  • U.S. Pat. No. 4,624,679 (1986), mentioned above, uses anti-microbial agents in connection with thermoplastic materials. These materials are formed by mixing polyamide resins, anti-microbial agents, and an antioxidant for reducing the degradation of the anti-microbial agent at the high temperatures necessary for processing.
  • these materials have two inherent commercial disadvantages.
  • the anti-microbial agents incorporated into them do show some resistance to repeated washings, these agents do leach out of the materials, primarily because they are not physically incorporated into them.
  • the anti-microbial agents are only loosely bound into the material and are relatively easily washed away or naturally abraded away over time.
  • the anti-microbial agents used in these applications are generally organic substances.
  • the disadvantage of these agents when used as anti-microbial agents is that bacteria can develop a resistance to their action.
  • bacteria can develop a resistance to their action.
  • U.S. Pat. No. 4,923,914 for a Surface-Segregatable, Melt-Extrudable Thermoplastic Composition discloses forming a fiber or film of polymer and an additive in which the additive concentration is greater at the surface.
  • the additive concentration is greater at the surface.
  • surfactants are added to polymers to impart a special property thereto such as a hydrophilic character to the surface, if the additive is compatible with the polymer there is a uniform concentration of the additive throughout the polymer.
  • the surfactant is incompatible at melt-extrusion temperatures. The patentee describes a process for overcoming this problem.
  • U.S. Pat. No. 4,350,732 for reinforcing laminate which issued Sep. 21, 1982 discusses a moldable laminate which could be molded into curved shapes and which is bondable to a carrier surface and which is useful in the making of military boots and the like.
  • the present invention is an improvement.
  • Institutional furnishings are subject to excessive wear and tear. These furnishings must withstand the constant onslaught of dirt and spills of a variety of substances. They must also stand up to frequent cleanings with industrial strength cleansers. As a result, these furnishings could be made stronger and more resistant by using anti-microbial and anti-fungal agents in their manufacture. The limited prior art approaches of coating fibers and/or fabrics with anti-microbial or anti-fungal materials have had only limited success.
  • Home furnishings are not subjected to as much wear and tear as institutional furnishings and are usually made of a material which has a softer “feel” and is usually more delicate than those made for institutional use. Therefore, it is difficult to make such materials which will stand up to repeated washings and to wear, particularly when they have been prepared with additives for special properties such as anti-microbial agents.
  • U.S. Pat. No. 3,983,061 for a process for the permanent finishing of fiber materials, including carpets discloses an aqueous acid liquid for finishing fiber materials especially dyed carpets to make them anti-static, dirt-repellent, and optionally anti-microbial using a single bath process for finishing dyed textile floor coverings to make provide these characteristics to them. It states that the properties are “permanent” and defines this to mean retaining the properties after a “prolonged” period of wear and tear. However, the anti-microbial properties are not believed to last sufficiently long to be of commercially useful application, and the anti-microbial agent disclosed is organic in nature.
  • U.S. Pat. No. 4,371,577 for an anti-microbial carpet containing amino acid type surfactant is incorporated into fibrous materials prior to or after fabrication into a carpet using an organic material.
  • the fibrous materials can be polyamide acrylic, polyester or polypropylene fibers.
  • the preparation is accomplished in two manners. The first is that the pile yams, the carpet foundations or the yams for carpet foundation are subjected to the impregnation treatment with a surfactant, and the other is that a carpet fabricated from fibrous materials is impregnated with an organic material.
  • U.S. Pat. No. 5,762,650 for a biocide plus surfactant for protecting carpets where the dyeing and anti-microbial finishing is performed simultaneously.
  • the anti-microbial agent is an organic material.
  • U.S. Pat. No. 5,709,870 discloses a silver-containing anti-microbial agent that has good affinity to the fiber and is stable to heat and light.
  • the anti-microbial consists of silver bound to carboxymethylcellulose in the amount of 0.01 to 1.0 percent silver by weight that is applied to the fibers.
  • the present invention provides a synthetic product comprising high and low levels of various thermoplastic polymers and controlled concentrations of inorganic anti-microbial additives mixed with polymers and selectively placed in the end product for greatest technical effectiveness and cost effectiveness.
  • the present invention also provides a synthetic anti-microbial product comprising high tenacity polymers e.g. polyesters, polyethylene terephalate (PET) in one portion and hydrolysis resistance polymers in another portion with hydrophilic and anti-microbial additives.
  • high tenacity polymers e.g. polyesters, polyethylene terephalate (PET) in one portion and hydrolysis resistance polymers in another portion with hydrophilic and anti-microbial additives.
  • PET polyethylene terephalate
  • hydrolysis resistance polymers in another portion with hydrophilic and anti-microbial additives.
  • the latter portion can be deliberately made hydrolysis-vulnerable to allow “blooming” and enhanced access to anti-microbial additives in the course of several washings or extended uses.
  • the various polymers include but are not limited to, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), PCT, PETG [PET, type G], Co-PET and copolyesters generally, Styrene, polytrimethylene terephalate (PTT)m 3GT, Halar®, polyamide 6 or 6,6, etc.
  • the additives include pigments, hydrophilic or hydrophobic additives, anti-odor additives and anti-microbial/anti-fungal inorganic compounds, such as copper, zinc, tin and silver.
  • PETG excellent wetting characteristics can be used to distribute the anti-microbial additive uniformly within a product.
  • the PETG could carry other inorganic anti-microbial additives such as copper, zinc, or tin.
  • the invention may be used to carry pigments with the PETG to achieve certain colors.
  • the anti-microbial will usually be included at and near the surface of a thin layer such as a film.
  • the concentration of the anti-microbial agent can be varied as a gradient using mixing strategies.
  • the concentration of anti-microbial agent within or on the surface of sheet material can also be varied regionally using materials containing varying amounts of anti-microbial agents in conjunction with both natural and synthetic materials having different amounts of anti-microbial agents or even no added anti-microbial agents.
  • a variety of other agents can be added, either by mixing or topically, to color the material and/or to make it resistant to staining, fire, and ultraviolet (UV) light as well as altering its water absorbing qualities.
  • Various polymers without limitation, can be used to form these fibers.
  • anti-microbial refers, but is not limited, to antibacterial and anti-fungal.
  • the present invention provides several embodiments, one of which relates to the co-extrusion of flat or shaped films or profiles.
  • the product may be a multi-layer construction with the surface layer, on one or both sides, containing zeolite of silver (or other metal such as tin, copper, zinc, etc.).
  • the product may be a flat film for use in a flat form for counter tops, floors, walls, or molded into shapes such as cafeteria trays, serving dishes, high chair table, refrigerator trays, microwave liners, and luggage.
  • the extrusion may be a rain gutter, a screen enclosure, a counter top, hand railing, duct work, sanitary piping, water pipe, gasket materials, around dishwasher, garage door), etc.
  • the surface layer may have anti-microbial properties in applications such as telephone handsets, baby bottles, computer keyboards, plastic utensils, and milk bottles.
  • the choice of particle size of the zeolite is based on the thickness of the film to obtain the best combination of surface area with anchoring in the film. For example, a very thin film of 3 m would be best served with a 1-2 m zeolite, which would have a maximum dimension of 2 ⁇ 1.73 or about 3.5 m.
  • the inner films could be made of basically any thermoplastic resin, such as; PE, PP, PET, PS, PCT, Polyamide (nylon), Acrylic, PVC, etc.
  • the surface layer(s) could be made of the same polymers plus some low temperature ones such as PETG, Polycaprolactone, EVA, etc.
  • Home and institutional furnishings are provided which are made from fibers, yarns, fabrics, materials, and substrates having anti-microbial properties using inorganic silver-containing compounds.
  • concentration of the anti-microbial agent can be varied within the product-as a gradient using mixing strategies.
  • concentration of anti-microbial agent within a product can also be varied regionally using varying amounts of anti-microbial agents in conjunction with different amounts of anti-microbial agents or even no added anti-microbial agents.
  • a variety of other agents can be added, either by mixing or topically, to color the product and/or to make it resistant to stains, fire, and ultraviolet (UV) light, as well as altering its water absorbing qualities.
  • UV ultraviolet
  • Various polymers can be used.
  • anti-microbial refers, but is not limited, to having anti-bacterial and anti-fungal properties.
  • FIG. 1 is a side view of a sheet material having an anti-microbial film layer co-extruded thereon;
  • FIG. 2 is a side view of a sheet material having two anti-microbial films extruded thereon, one on each side;
  • FIG. 3 is a side view of a further arrangement in which a double sheet material is complete surrounded by an anti-microbial film;
  • FIG. 4 is a side view of a shaped sheet material having two anti-microbial films extruded thereon;
  • FIG. 5 is an isometric view of a food tray constructed in accordance with the present invention.
  • FIG. 6 is a partial sectional view of apparatus for making a multi-layer co-extruded sheet
  • FIG. 7 is a sectional view through the apparatus shown in FIG. 6;
  • FIG. 8 is an isometric view of apparatus for making a side-by-side co-extruded sheet
  • FIG. 9 is a cross section through an insole made in accordance with the present invention.
  • FIG. 10 is a plan view of the insole of FIG. 9;
  • FIG. 11 is a cross section through a laminate for footwear components
  • anti-microbial in the United States, all claims concerning anti-microbial and anti-fungal properties must be thoroughly tested to Environmental Protection Agency (EPA) and Food and Drug Administration (FDA) standards before making claims.
  • the anti-microbial herein can be said to “kill bacteria” in that it kills 99.99% (log 4) of bacteria in 24 hours, and “anti-microbial” in that is kills 99.9% (log 3) of bacteria in 24 hours. This is based upon actual test results. Testing, such as by using the shake flask test, has demonstrated that when fibers and fabrics are tested using the anti-microbial system disclosed herein, the number of bacteria on the fibers is reduced by 99.99% or more over a 24-hour period and at least by 99.9%.
  • This testing was performed using several different bacteria, including Pseudomonas aeruginosa, Staphylococcus aereus and Klebsiella pneumoniae.
  • the testing was conducted using both unwashed fibers and fibers that had been washed fifty times to simulate use of the fiber in an application, such as a pillow.
  • the EPA has indicated that products tested using this system may claim “Prohibits Bacteria Growth and Migration Along the Surface of the Product.”
  • the addition of the agent in this system inhibits the growth of mold and mildew or odor-causing bacteria in the fibers. This is a true anti-microbial product.
  • the fibers retain their efficacy after simulated use conditions so that the anti-microbial action lasts the life of the product.
  • Sheet material as disclosed, for example in pending provisional application Serial 60/180,240 filed Feb. 4, 2000, the contents of which are physically incorporated herein below, in which flat or shaped sheets or films, including wide sheets can be individually extruded or there can be co-extrusion of flat or shaped films or profiles.
  • the product may be a multi-layer construction with the surface layer, on one or both sides, containing zeolite of silver (or other metal such as tin, copper, zinc, etc.).
  • the product may be a flat film for use in a flat form for counter tops, floors, walls, or molded into shapes such as cafeteria trays, shoe insoles, serving dishes, high chair table, refrigerator trays, microwave liners, and luggage.
  • the extrusion may be a rain gutter, a screen enclosure, a counter top, hand railing, duct work, sanitary piping, water pipe, gasket materials around dishwashers, and the like.
  • the surface layer may have anti-microbial properties in applications such as telephone handsets, baby bottles, computer keyboards, plastic utensils, milk bottles, and the like.
  • the choice of particle size of the zeolite is based on the thickness of the film to obtain the best combination of surface area with anchoring in the film. For example, a very thin film of 3 ⁇ would be best served with a 1-2 ⁇ zeolite, which would have a maximum dimension of 2 ⁇ 1.73 or about 3.5 ⁇ .
  • the inner films could be made of basically any thermoplastic resin, such as; PE, PP, PET, PS, PCT, Polyamide (nylon), Acrylic, PVC, etc.
  • the surface layer(s) could be made of the same polymers plus some low temperature ones such as PETG, Polycaprolactone, EVA, and the like.
  • Anti-microbial films are used to make sheet materials for a variety of applications in which it is necessary or desirable to reduce bacterial and fungal growth and their resultant odor.
  • An anti-microbial sheet material is made of film which comprises various thermoplastic polymers and additives.
  • the anti-microbial synthetic films can comprise inorganic anti-microbial additives, distributed only in certain areas in order to reduce the amount of the anti-microbial agents being used, and therefore the cost of such films.
  • the anti-microbial additives used in the synthetic film do not wash off over time because they are integrally incorporated into these films, thus their effectiveness is increased and prolonged.
  • the anti-microbial synthetic films comprise high tenacity polymers (e.g. PET) in one component and hydrolysis resistance polymers (e.g. PCT) in another component.
  • the hydrophilic and anti-microbial additives provide a hydrolysis-resistant surface.
  • fibers may be included and extruded. For example, such fibers could be used to make the two outer layers of the sheet material using sheath/core arrangements so that the anti-microbial agent is only present in the sheath to reduce the amount of anti-microbial agent which is used.
  • the present invention provides several embodiments, some of which relate to the co-extrusion of flat or shaped films, sheets or profiles.
  • the product may be a co-extruded multi-layer construction with the surface layer, on one or both sides, containing an inorganic anti-microbial and/or anti-fungal agent.
  • the product may be a flat film for use in a flat form for such uses as counter tops, floors, walls, or molded into shapes such as cafeteria trays, serving dishes, high chair tables, refrigerator trays, microwave liners and luggage.
  • the extrusion may be a rain gutter, a screen enclosure, a counter top, hand railing, duct work, sanitary piping , water pipe, and gasket materials around dishwashers and garage doors.
  • the surface layer may have anti-microbial properties in applications such as telephone handsets, baby bottles, computer keyboards, plastic utensils, milk bottles, automotive interior parts, aircraft/bus/train seat and trim parts, and the like.
  • the choice of particle size of the zeolyte is based on the thickness of the film to obtain the best combination of surface area with anchoring in the film. For example, a very thin film of 3 m would be best served with a 1-2 m zeolite, which would have a maximum cubic dimension of 2 ⁇ 1.73 or about 3.5 m. In this manner the anti-microbial particles are at least partially exposed and are not completely embedded in the thermoplastic material where they would have no anti-microbial effect unless the covering surface were abraded away.
  • the inner films or layers can be made of basically any thermoplastic resin, such as; PE, PP, PET, PS, PCT, Polyamide (nylon), Acrylic, PVC, etc.
  • the surface layer(s) can be made of the same polymers plus some low temperature ones such as PETG, Polycaprolactone, EVA, etc.
  • FIG. 1 shows one type of multi-layer sheet in accordance with the present invention.
  • the multi-layer sheet material 66 has a main, thicker support layer 68 and a surface layer 70 which is a thin layer of a thermoplastic material which is sufficiently thin that small particles of anti-microbial agent are contained therein and have portions thereof which are at the surface or just below the surface of the layer. In this way the anti-microbial particles are bonded into the surface layer 70 and therefore remain there for the life of the material or product made from the sheet material and provide anti-microbial properties for the entire time. It is advantageous to have the anti-microbial agent only at the surface since this is the only place where it comes into contact with microbes and fungi and to have the agent in other places in the multi-layer sheet material is wasteful.
  • FIG. 2 Another type of multi-layer sheet construction, which may be used to accomplish the purposes of the present invention is shown in FIG. 2.
  • the multi-layer sheet material 72 has a main support layer 74 and both surfaces thereof have surface layers 78 and 80 , respectively.
  • One or both of the surface layers 78 and 80 have the anti-microbial agent.
  • Layer 74 is a wide sheet of material which may be extruded of thermoplastic material. It can be a rigid material or a flexible material depending upon the end use.
  • the second and third layers of wide sheet material are attached to it by suitable means known in the art or they may be co-extruded as described below in connection with FIGS. 6-8.
  • There is a surface layer having an anti-microbial agent (which may be or include an anti-fungal agent) is attached to both sides of the composite layers. These layers are connected by a suitable means known in the art when they are not co-extruded.
  • This three layer arrangement may be co-extruded at one time so that the three layers are bonded together immediately after extrusion and while the layers are still hot and prior to quenching.
  • FIGS. 6 and 7 For a discussion of the co-extrusion process, see FIGS. 6 and 7 and the description thereof which appears below.
  • the three layer sheet 72 which includes the support layer 74 of at least 10 microns in thickness which is extruded at the same time as a second sheet 78 which becomes a two-layer sheet, the second sheet being 4 microns in thickness and being supported by the first layer.
  • the extruding of both layers is done at the same time and the second sheet 78 is joined to the first sheet 74 before the quenching is complete.
  • a third sheet 80 similar to the second one, 78 can be made at the same time.
  • the second and third sheets may have an anti-microbial agent of the type discussed herein mixed with the thermoplastic material so that the three layer sheet has a thin top layer and a thin bottom layer which possess anti-microbial properties.
  • FIG. 3 shows a multi-layer sheet 82 having a first inner layer 84 and a second inner layer 86 with two surface layers 88 and 90 . It also includes edge layers 92 and 76 , and which is suitable for various purposes. It may be constructed as shown in FIGS. 6 and 7 and as described below.
  • FIG. 4 shows a multi-layer sheet 94 which has a shape in the form of a curve and which includes a center support layer 96 and two surface layers 98 and 100 .
  • FIG. 5 shows a food tray 102 which may be the type which contains food and is purchased in food stores with food packaged therein.
  • This tray includes two basic parts, a bottom 104 and a top 106 .
  • the bottom 104 may be of PET which is crystallized in order to provide a firm layer which may support the food products contained therein. After the multi-layer sheet material is made, the food tray parts are formed in dies.
  • This bottom part 104 has a bottom layer 108 and four side-walls 110 , 112 , 114 , and 116 .
  • the bottom 104 there is an inner layer 118 of a thin film which is attached to a support layer 122 and this film 118 contains an anti-microbial agent as indicated by the stippling.
  • This film 118 contains an anti-microbial agent as indicated by the stippling.
  • tabs 124 and 125 on the bottom which fit into holes 120 on the top 106 .
  • the top is made of a transparent material and is in the amorphous state.
  • the anti-microbial agent prevents the growing of microbes which are killed upon contact with the inner film layer of the bottom of the food tray.
  • a suitable die has a funnel-shaped expansion chamber 128 terminating in a slotted die outlet 128 defined by a pair of spaced die lips.
  • the die has a shallow chamber entrance section 132 .
  • the feed block 126 comprises a plurality of slotted layer distribution passages 134 in the form of mutually spaced apart slots or openings lying substantially parallel to slotted die outlet 128 .
  • the passages extend from an inlet side to an outlet side of the feed block 126 .
  • the feed block further comprises end encapsulation slots 166 and 158 extending between inlet and outlet sides without intersecting passages 134 and lying substantially perpendicular thereto. Otherwise, slots 166 and 158 may extend along planes converging together from the inlet side to the outlet side.
  • the feed block assembly 152 includes a frame 136 connected to the upstream end of the die in some suitable manner and defining a chamber (not shown) open on opposite sides to facilitate removal and replacement of feed block 126 with an interchangeable feed block designed to accommodate specific resin viscosities, selected polymer matchups, layer thickness changes, layer geometry, etc.
  • Frame 136 includes various connectors 138 A and 138 B to which extruders (not shown) of polymer melts are connected, and to which feed channels or feed lines (also not shown) are likewise connected for feeding the melts to slots 134 A- 134 E, 166 and 158 , or to selected ones thereof.
  • the feed block may be connected in some suitable manner to frame 136 or may be unconnected thereto.
  • Apparatus generally designated 152 is illustrated in FIGS. 6 and 7 as comprising a slit die 140 of mating die halves.
  • a feed block assembly, generally designated 150 is totally integrated into the die as it is inserted within a die cavity 156 open at the upstream end of the die and at opposing sides of the die, shown in FIG. 6.
  • Feed block assembly 150 comprises feed block 126 , connectors 138 A and 138 B and melt feed lines 141 A and 141 B, respectively, extending from the connector 138 A for feeding plastic melt from the extruder to the slotted passages 134 A, 134 B and 134 C, and from the connector 138 B for feeding plastic melts from the extruder to the slotted passages 134 D and 134 E.
  • a third feed line (not shown) can be connected to slotted passages 166 and 158 of the feed block. If the edges are not to be different the slotted passages 166 and 158 are not or may be omitted from the construction of feed block 126 . Thus, the entire feed block assembly 150 can be removed from cavity 156 and replaced by another feed block assembly for a new production cycle.
  • Feed block 126 of apparatus 152 can be provided with externally accessible means to control the melt streams of polymer melt passing through the outermost slots 134 D and 134 E for adjusting the distribution of the outer or skin layers of the skin laminate to be formed.
  • control means may be in the form of a restrictor bar 154 extending transversely to the direction of flow of melt through the passages for controlling the width and/or shape of the outermost passage upon manual manipulation of an adjustment screw 146 .
  • the restrictor bar may be located in a side cavity 148 of the feed block.
  • the skin layer control means may be in the form of a driven wedge 164 mating with a drive wedge 160 connected to a screw drive 142 via flange 162 , as more clearly shown in FIG. 7.
  • the wedges may be housed in a suitable side cavity 144 , and a turning of screw drive 142 shifts wedge 160 along the screw drive and causes the driven wedge to be shifted transversely relative to the melt flow through the feed block for controlling the distribution of the skin layer flowing through the outer-most passage of the feed block.
  • Restrictor bar 154 can be utilized on both sides of the feed block, and the wedge arrangement can likewise be utilized on both sides.
  • Restrictor bar 154 and wedge 164 can have flat melt flow engaging surfaces, or these surfaces can be concavely or convexly shaped or otherwise contoured to control the layer distribution of the skin layers by modifying the outer slots to accommodate differences in melt viscosities, etc.
  • one or both outer layers may have an anti-microbial agent. If a three-layer arrangement is made it can have a center layer of 10 m and the outer layers may be 4 m. In such an event the particle size may be about 1.5-2 m. If zeolite of silver particles are used and made this size then substantially every particle of zeolite will have at least a portion exposed by projecting through the outer surface of the layer in which it is embedded.
  • FIG. 8 shows a die 168 having a single extrusion slot with three portions, 170 , 172 and 174 .
  • the sheet which is extruded thereby is shown having a center section 176 and two edge portions 178 and 180 .
  • the width of the center portion 176 is the same as the widths of the edge portions together.
  • die slot portion 170 produces edge portion 178
  • die slot portion 172 produces center portion 176
  • die slot portion 174 produces edge portion 180 .
  • the stippling indicates that an anti-microbial and/or an anti-fungal agent has been incorporated into the center portion of the extruded sheet.
  • the extruded sheet is shown having a thickness 182 which is the same throughout, although portions could be of different thickness if this is desired.
  • FIG. 8 shows a manner of making a co-extrusion multi-layer sheet in which the edges 178 and 180 of the extruded sheet are different from the center 176 in some respect and if desired, after extrusion and while still having the heat of the extrusion (prior to quenching) the two edge portions 178 and 180 are folded under to provide a layer under the center section.
  • a two-layer sheet is formed with layer 176 having microbe and fungus killing properties on one side of the two-layer sheet.
  • the die and sheet could have only two sections of equal width, in which event one would be folded over the other to form the two-layer sheet with one layer having anti-microbial properties.
  • Anti-microbial agents can be used in making sheet materials for a variety of applications in which it is necessary or desirable to reduce bacterial and fungal growth and their resultant odor.
  • any of the embodiments described above could be used. Both the strength and resiliency of these materials is important. Any number of shaped designs could be used as appropriate. In some instances, round would be appropriate whereas in other instances rectangular or other shapes, both simple and complicated would be appropriate, all depending upon the use to be made of the material.
  • anti-microbial agents include the addition of agents to increase or decrease hydrophobicity.
  • anti-odor additives may be particularly useful in cafeteria or other types of food trays.
  • the relatively small size of the preferred anti-microbial agent which is silver-containing zeolite compounds (which can be as small as 2 microns and less) that are used in the manufacturing of the sheet film allow these anti-microbial agents to be incorporated into the thin sheet films instead of being applied to them.
  • these anti-microbial agents are an integral part of the film, they are not washed or easily abraded away and the finished articles manufactured from them are able to withstand significant wear and multiple washings while maintaining their anti-microbial effectiveness. In the case of products which are thrown away after use, the resistance to washings is not an important factor.
  • the synthetic films used in the present invention can be made of various polymers and co-polymers, including thermoplastic ones. These polymers include, but are not limited to, polyethylene (PE), polypropylene (PP), poly 1,4 cyclohexylene dimethylene terephthalate (PCT), PET, PET type G (PETG), co-PET, and co-polymers generally. These films can also contain styrene, Halar®, and various polyamides.
  • anti-microbial means a thousand-fold reduction in bacteria.
  • the materials and products of this invention are subjected to tests which show a 1000-fold reduction in colony forming units (CFU) of bacteria.
  • CFU colony forming units
  • To kill bacteria means a ten thousand-fold reduction in bacteria and the materials and products of this invention are capable of a 10,000-fold reduction in CFU of bacteria.
  • This level of antibacterial protection is achieved generally by having between 0.1 and 20 percent by weight of an anti-microbial agent incorporated into a multi-layered sheet material.
  • the anti-microbial agent concentration can be reduced to between 0.2 and 6.0 percent in multi-layer sheets in which the anti-microbial agent is only mixed into the outer layer(s) of the multi-layer sheet. This latter configuration allows less anti-microbial compound to be used, thus significantly reducing the cost of manufacture, and thus the cost of the sheet material.
  • Color pigments can be added to these anti-microbial films in order to provide a pleasing coloration for such sheet materials when the ultimate products are purchased by consumers.
  • these pigment materials can be added such that the pigments are encapsulated in the polymers that are used to make these sheet materials.
  • materials for end use products made from these colored films are color-fast and do not leach out their color during washing, thus significantly reducing fading during use and washing.
  • the need for conventional dyeing techniques can be reduced or eliminated, the disposal of environmentally damaging dye materials is avoided. This, in and of itself, can reduce the costs of manufacturing finished colored sheet materials due to the elimination of the manufacturing infrastructure and associated personnel needed to process residual dye effluents.
  • additives that protect against damage from UV light can be added to the film polymer or coated onto it so that the sheet materials or end use products formed are resistant to the fading of colors and UV damage generally, although this is not a factor for all products.
  • Both flame-resistant and -retardant agents can also be added to the films of this invention in a manner similar to that described for UV protecting agents. In this way, the sheet materials formed can be made resistant to fire.
  • the films can be made either hydrophilic or hydrophobic as desired by mixing other agents into the film polymers or applying them to the film surface. By modifying the wetability characteristics of the films, they can be made more useful for various applications. For example, hydrophilic films are effective in applications in which one wants the anti-microbial sheet material to more easily absorb water, such as when the material is designed to be used in humid conditions. Alternatively, hydrophobic films are effective in applications in which one wants to avoid the absorption of such solutions.
  • the anti-microbial agents can also be added to low-melt polymer films that can be activated and melted during sheet material production by raising the temperature, thus spreading the anti-microbial agents throughout the material when the low-melt films melt and coat the surface of the supporting layer.
  • a sheet material can be produced that has a purposely designed regional variation in anti-microbial effectiveness throughout.
  • the latter situation can be achieved by using an amorphous binding film such as PETG, which can be blended to form various types of sheet materials.
  • PETG amorphous binding film
  • the PETG melts, wetting the surface of the surrounding films adjacent surface or surfaces.
  • solidified PETG forms and binds the layers together while spreading the anti-microbial agent throughout the surfaces.
  • the anti-microbial agent can be uniformly distributed throughout the material.
  • the anti-microbial additives used are metals such as copper, zinc, tin, and silver as part of an inorganic matrix.
  • the best results can be obtained using a zeolite of silver dispersed in a PE,PP, PS, Nylon, PET, or PBT carrier. These additives can be added directly to the melt without a carrier.
  • the total anti-microbial additive concentration ranges from 0.2 to 6.0 percent by weight of fiber depending on performance requirements.
  • Other additives which can be incorporated include one or more of UV stabilizers at 0.1 to 5.0 percent; fire-retardant additives at 0.1 to 5.0 percent; pigments at 0.1 to 5.0 percent; hydrophilic additives at 0.2 to 5.0 percent; and hydrophobic additives at 0.2 to 5.0 percent.
  • Another configuration of the present invention is a multi-layered film in which the components are the same polymers and additives as described above.
  • one layer is used for strength
  • another layer is used as a binder that contains inserted additives.
  • Variants of this such as three and four layered products, and even up to ten layered products with the outer two layers carrying the anti-microbial agent can also be made.
  • the nominal binder or binder component can also be a strength enhancer in some combinations. It will also be understood that other variants including but not limited to combinations, can be made. For example, a first extrusion could produce intermediate film products and such products could be put together with each other or with separate layers.
  • Another embodiment is a grouping of layers used to practice the invention.
  • One configuration uses PET or other high tenacity polymer at between 20 and 80 percent by weight.
  • Poly 1,4 cyclohexylene dimethylene terephthalate (PCT) or other hydrolysis resistant polymer is used in another layer at a ratio of 80 to 20 percent.
  • PCT poly 1,4 cyclohexylene dimethylene terephthalate
  • One layer is designed to provide the strength and the modulus can be varied to create a high modulus layer, or a low modulus layer, or anywhere in between.
  • the use of PCT in the a layer provides a hydrolysis resistant surface and resistance to long term washings in boiling water and strong soaps.
  • the multi-layer anti-microbial/anti-fungal synthetic layers can be produced in a wide range of thicknesses.
  • Additives include pigments, compounds to create a hydrophilic surface, and anti-microbial, anti-fungal, and anti-odor agents.
  • the pigment additives provide uniform colors that do not fade significantly over long-term use and washing, unlike dyes, because these additives are integrally mixed within the polymer making up the sheet or film.
  • compounds may be used which create a hydrophilic surface.
  • the anti-microbial, anti-fungal and anti-odor additives can be varied, both in types and amounts, depending on the final product desired.
  • One layer made from low temperature polymers with a melting or softening temperature below 200 degrees C. such as PETG, PE, PP, co-PET, or amorphous PET, may be used as binder carrier for anti-microbial additives.
  • the anti-microbial additives are inorganic compounds of metals such as copper, tin, zinc, silver, etc.
  • the preferred compound is a zeolite of silver dispersed in PE, PET, or PBT before being added to the layer.
  • the additives could be added directly to the primary polymer with pre-dispersion.
  • the total active ingredients range from 0.1 to 20 percent by sheet weight.
  • an anti-microbial sheet material can be produced that is able to withstand significant wear and washings and maintain its effectiveness.

Abstract

An anti-microbial sheet or film and various products made partially or wholly therefrom comprised of inorganic anti-microbial additives, distributed in certain areas to reduce the amount of the anti-microbial agents being used, and therefore the cost of such products. The products can incorporate anti-microbial additives so that they are not removed by repeated washing in boiling water and in dry clean cycles and become ineffective and conversely enhance access to the additives by washing or the like. The products comprise high tenacity polymers (e.g. PET) in one portion and hydrolysis resistance polymers (e.g. PCT) in another portion with the additives.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a divisional application of Ser. No. 09/565,138 filed May 5, 2000 which claims the priority of the following provisional applications: Serial No. 60/136,261, filed May 27, 1999; Serial No. 60/173,207, filed Dec. 27, 1999; Serial No. 60/172,285, filed Dec. 17, 1999; Serial No. 60/172,533, filed Dec. 17, 1999; Serial No. 60/180,536, filed Feb. 7, 2000; Serial No. 60/181,251, filed Feb. 9, 2000; and Serial No. 60/180,240, filed Feb. 4, 2000.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates generally to products having anti-microbial (and/or anti-fungal) properties which remain with the product after repeated launderings/uses. More specifically it provides wide sheet materials that are made of a wholly or partly synthetic material and having anti-microbial and anti-fungal properties. Such sheets can be used with other synthetic or natural materials to form a variety of different end use products. This invention provides for sheet materials for end use products that are resistant to bacterial and fungal growth as well as to the deterioration of the agents contained in these materials. There is a laminate embodiment which relates to generally to laminate materials, and, more particularly that are made of a wholly thermoplastic stiff reinforcing multiple laminate moldable into compound shapes and bondable via a thermoplastic hot melt adhesive to a carrier surface to be reinforced. [0002]
  • BACKGROUND OF THE INVENTION
  • There is a growing interest today in products which have anti-microbial and anti-fungal properties. There are a number of additives, fibers and products on the market which claim to have these properties. However, many do not have such properties, or the properties do not remain for the life of the product, or they have adverse environmental consequences. [0003]
  • Various materials have been used in the past to provide anti-microbial and anti-fungal properties to fibers and fabrics. [0004]
  • Examples of some organic types of anti-microbial agents, are U.S. Pat. Nos. 5,408,022 and 5,494,987 (an anti-microbial polymerizable composition containing an ethylenically unsaturated monomer, a specific one-, di- or tri-functional anti-microbial monomer and a polymerization initiator which can yield an unreleasable anti-microbial polymer from which the anti-microbial component is not released), U.S. Pat. No. 5,709,870 (a silver containing anti-microbial agent which comprises carboxymethylcellulose, a crosslinked compound, containing silver in the amount of 0.01 to 1% by weight and having a degree of substitution of carboxymethyl group of not less than 0.4 and the anti-microbial agent being a silver salt of carboxymethylcellulose, which is insoluble to water), U.S. Pat. No. 5,783,570 (an organic solvent-soluble mucopolysaccharide consisting of an ionic complex of at least one mucopolysaccharide and a quaternary phosphonium, an antibacterial antithrombogenic composition comprising organic solvent-soluble mucopolysaccharide and an organic polymer material, an antibacterial antithrombogenic composition comprising organic solvent-soluble mucopolysaccharide and an inorganic antibacterial agent, and to a medical material comprising organic solvent-soluble mucopolysaccharide). [0005]
  • Examples of some inorganic types of anti-microbial agents are: [0006]
  • Japanese Patent No. 1246204 (1988) which discloses an anti-microbial thermoplastic article with copper a compound added to the melted polymer just before extruding, in which the anti-microbial material is said to be resistant to washing. [0007]
  • U.S. Pat. No. 5,180,585 which discloses an antimicrobial with a first coating providing the antimicrobial properties and a second coating as a protective layer. A metal having antimicrobial properties is used including silver which is coated with a secondary protective layer. [0008]
  • Japanese Patent No. 2099606 (1990) which discloses a fiber with anti-microbial properties made of a liquid polyester and inorganic micro particles of zinc silicate, both being added to the melted polymer after polymerization and just before extrusion. [0009]
  • The use of anti-microbial agents in connection with thermoplastic material is known from U.S. Pat. No. 4,624,679 (1986). This patent is concerned with the degradation of anti-microbial agents during processing. This patent states that thermoplastic compounds which are candidates for treatment with anti-microbial agents include material such as polyamides (nylon 6 or 6,6), polyvinyl, polyolefins, polyurethanes, polyethylene terephthalate, styrene-butadiene rubbers. [0010]
  • Japanese Patent No. 2091009 (1990) and U.S. Pat. No. 5,047,448 disclose an anti-microbial thermoplastic polymer with copper or zinc compounds and fine particles of Al, Ag, Fe and Zn compounds and a liquid polyester, in which the anti-microbial material is said to be resistant to washing. [0011]
  • Japanese Patent No. 2169740 (1990) discloses a thermoplastic fiber such as PET which uses silver, copper or zinc as an anti-microbial agent. There is a cellulose component which reduces the amount of thermoplastic with anti-microbial agent and reduces the cost. [0012]
  • Examples of inorganic types of anti-microbial agent which have zeolite with silver is disclosed in U.S. Pat. Nos. 4,911,898, 5,094,847, 4,938,958 (use of zeolite with exchangeable ions such as silver and others), U.S. Pat. No. 5,244,667 (an anti-microbial composition which involves use of partial or complete substitution of ion-exchangeable metal ion such a silver, copper, zinc and others), U.S. Pat. No. 5,405,644 (an anti-microbial fiber having a silver containing inorganic microbiocide and the silver ion is stated to have been supported by zeolite, among other materials, the purpose being to prevent discoloration). [0013]
  • Various products have been made using anti-microbial fibers. U.S. Pat. No. 5,071,551 discloses a water purifier having a secondary filter downstream of its primary filter for removing microorganisms and antimicrobial means disposed between the two filters. use of an anti-microbial agent for a water purifier. [0014]
  • Japanese Patent No. 6116872 (1994) discloses a suede-like synthetic leather with an anti-microbial agent. It discloses the use of anti-microbial zeolite having an anti-microbial metal ion. It uses two fiber types and includes PET. [0015]
  • U.S. Pat. No. 5,733,949 discloses an anti-microbial adhesive composition for dental use. The composition was made by blending of a polymerizable monomer having alcoholic hydroxy group and water to a dental composition containing an anti-microbial polymerizable monomer and a polymerizable monomer having acidic group, and with a polymerization catalyst. Such composition has capability to improve adhesive strength between the tooth and the restorative material to prevent microbial invasion at the interface and kill microorganisms remaining in the microstructure. [0016]
  • U.S. Pat. No. 5,876,489 discloses a germ-removing filter with a filter substrate and an anti-microbial material dispersedly mixed into the filter substrate. The anti-microbial material is an ion exchange fiber bonded with silver ion. In the ion exchange fiber, silver ions capable of killing living germs through an ion exchange reaction. [0017]
  • U.S. Pat. No. 5,900,258 discloses a method for preventing a microorganism from growing and the breakdown of urea to ammonia on the surface of skin, wall, floor, countertop or wall covering, or in absorbent materials by incorporating an effective amount of naturally-occurring and/or synthetic zeolites. The absorbent materials are diapers, clothing, bedsheets, bedpads, surgical apparel, blankets, filters, filtering aids, wall coverings, countertops, and cutting boards, etc. Use of zeolite preventing bacterial infections and rashes in mammals may compromise cell wall processes including basic transport processes. Zeolites may capture or neutralize electrons and inhibit electron transport through key enzymes of the electron transport chain such as cytochrome oxidase. [0018]
  • U.S. Pat. No. 6,037,057 is for a bi-component fiber in which the cross sectional area of the sheath is less than 28% of the total cross sectional area. It also discloses the use of a slickening agent and use of an anti-microbial agent which is an inert inorganic particle having a first coating with the anti-microbial properties, and a second coating which has protective properties. [0019]
  • One of the disadvantages of some of the prior art is that the anti-microbial additives are organic and many organic materials either act as antibiotics and the bacteria “learns” to go around the compound, or many of them give off dioxins in use. [0020]
  • Also, many such additives are applied topically to the fibers or fabrics and tend to wash off or wear off over time and become ineffective. Also, by washing off the additives are placed into the waste water stream. [0021]
  • Thus, there still exists a need to develop metal-containing anti-microbial agents that do not cause the development of resistant bacterial strains for incorporation into products that are used to make a variety of materials. There also still exists a need for these anti-microbial agents to be resistant to being abraded or washed away, thus maintaining their potency as an integral part of the products into which they are incorporated. [0022]
  • PETG as used herein means an amorphous polyester of terephthalic acid and a mixture of predominately ethylene glycol and a lesser amount of 1,4-cyclohexanedimethanol. It is known that PETG can be used in polycarbonate blends to improve impact strength, transparency, processability, solvent resistance and environmental stress cracking resistance. [0023]
  • Udipi discloses in U.S. Pat. Nos. 5,104,934 and 5,187,228 that polymer blends consisting essentially of PC, PETG and a graft rubber composition, can be useful as thermoplastic injection molding resins. [0024]
  • Chen et al. in U.S. Pat. No. 5,106,897 discloses a method for improving the low temperature impact strength of a thermoplastic polyblend of PETG and SAN with no adverse effect on the polyblends clarity. The polyblends are useful in a wide variety of applications including low temperature applications. [0025]
  • Billovits et al. in U.S. Pat. No. 5,134,201 discloses that miscible blends of a thermoplastic methylol polyester and a linear, saturated polyester or co-polyester of aromatic dicarboxylic acid, such as PETG and PET, have improved clarity and exhibit an enhanced barrier to oxygen relative to PET and PETG. [0026]
  • Batdorf in U.S. Pat. No. 5,268,203 discloses a method of thermoforming thermoplastic substrates wherein an integral coating is formed on the thermoplastic substrate that is resistant to removal of the coating. The coating composition employs, in a solvent base, a pigment and a thermoplastic material compatible with the to-be-coated thermoplastic substrate. The thermoplastic material, in cooperation with the pigment, solvent and other components of the coating composition, are, after coating on the thermoplastic substrate, heated to a thermoforming temperature and the thermoplastic material is intimately fused to the thermoplastic substrate surface. [0027]
  • Ogoe et al. in U.S. Pat. No. 5,525,651 disclose that a blend of polycarbonate and chlorinated polyethylene has a desirable balance of impact and ignition resistance properties, and useful in the production of films, fibers, extruded sheets, multi-layer laminates, and the like. [0028]
  • Hanes in U.S. Pat. No. 5,756,578 discloses that a polymer blend comprising a monovinylarene/conjugated diene black copolymer, an amorphous poly(ethylene terephthalate), e.g. PETG, and a crystalline poly(ethylene terephthalate), e.g. PET, has a combination of good clarity, stiffness and toughness. [0029]
  • Eckart et al. in U.S. Pat. No. 5,958,539 disclose a novel thermoplastic article, typically in the form of sheet material, having a fabric comprising textile fibers embedded therein. The thermoplastic article is obtained by applying heat and pressure to a laminate comprising an upper sheet material, a fabric comprised of textile fibers and a lower sheet material. The upper and lower sheet materials are formed from a co-polyester, e.g. PETG. This thermoplastic article may be used in the construction industry as glazing for windows. One or both surface of the article may be textured during the formation of the articles. [0030]
  • Ellison in U.S. Pat. No. 5,985,079 discloses a flexible composite surfacing film for providing a substrate with desired surface characteristics and a method for producing this film. The film comprises a flexible temporary carrier film and a flexible transparent outer polymer clear coat layer releasably bonded to the temporary carrier film. A pigment base coat layer is adhered to the outer clear coat layer and is visible there through, and a thermo-formable backing layer is adhered to the pigmented base coat layer. The film is produced by extruding a molten transparent thermoplastic polymer and applying the polymer to a flexible temporary carrier thereby forming a continuous thin transparent film. The formed composite may be heated while the transparent thermoplastic polymer film is bonded to the flexible temporary carrier to evaporate the volatile liquid vehicle and form a pigment polymer layer. The heating step also molecularly relaxes the underlying film of transparent thermoplastic polymer to relieve any molecular orientation caused by the extrusion. Ellison also mentions that it is desirable to form the flexible temporary carrier from a material that can withstand the molten temperature of the transparent thermoplastic polymer. The preferred flexible temporary carriers used in his invention are PET and PETG. [0031]
  • Sheet materials for various uses are vulnerable to the seeding of bacteria and fungi from various sources, thus providing hospitable sites for their uninhibited growth. The latter is especially true since, depending upon the end use, they often are used in environments where there is great exposure to microbes and fungi. One example is cafeteria trays. Thus, these materials would benefit from having antibacterial and anti-fungal agents incorporated onto them and/or into them. However, most prior art approaches of providing sheet materials with anti-microbial or anti-fungal agents have limited effect. [0032]
  • A variety of patents relate to anti-microbial materials being added to materials. For example, U.S. Pat. No. 3,959,556 (1976) relates to synthetic fibers that incorporate an anti-microbial agent. U.S. Pat. No. 4,624,679 (1986), mentioned above, uses anti-microbial agents in connection with thermoplastic materials. These materials are formed by mixing polyamide resins, anti-microbial agents, and an antioxidant for reducing the degradation of the anti-microbial agent at the high temperatures necessary for processing. [0033]
  • Several other patents describe anti-microbial materials in which the anti-microbial agent is resistant to being washed away. U.S. Pat. No. 4,919,998 (1990) discloses an anti-microbial material that retains its desirable properties after repeated washings. [0034]
  • However, these materials have two inherent commercial disadvantages. First, while the anti-microbial agents incorporated into them do show some resistance to repeated washings, these agents do leach out of the materials, primarily because they are not physically incorporated into them. In fact, in many cases, the anti-microbial agents are only loosely bound into the material and are relatively easily washed away or naturally abraded away over time. [0035]
  • On the other hand if the agents are buried too deeply in the material or homogeneously distributed they will not contact microbes at all and the economics of usage will be adversely affected. [0036]
  • Second, the anti-microbial agents used in these applications are generally organic substances. The disadvantage of these agents when used as anti-microbial agents is that bacteria can develop a resistance to their action. Thus, one is faced with the emergence of bacterial strains that are no longer affected by these anti-microbial agents which negates the function of these materials. [0037]
  • U.S. Pat. No. 4,923,914 for a Surface-Segregatable, Melt-Extrudable Thermoplastic Composition discloses forming a fiber or film of polymer and an additive in which the additive concentration is greater at the surface. for example when surfactants are added to polymers to impart a special property thereto such as a hydrophilic character to the surface, if the additive is compatible with the polymer there is a uniform concentration of the additive throughout the polymer. In the past such webs have been bloomed to bring the surfactant to the surface. But the surfactant is incompatible at melt-extrusion temperatures. The patentee describes a process for overcoming this problem. [0038]
  • However, the process described has not been very usable with anti-microbial agents. For example, see U.S. Pat. No. 5,280,167 which describes the '914 patent discussed above and states that previous attempts to apply the teachings thereof to the preparation of non-woven webs having anti-microbial activity were not successful. This '167 patent provides for delayed anti-microbial activity in order to delay the segregation characteristic of the '914 patent from occurring. The additive which is used is a siloxane quaternary ammonium salt, an organic material. [0039]
  • While these anti-microbial agents are designed to prevent the development of resistant bacterial strains, the use of metal-containing materials presents the added difficulty of being able to successfully disperse the anti-microbial agents throughout the material. Since these metal-containing compounds exists as fairly large size particles (10 microns and greater), the ability to evenly mix or distribute them is limited. In addition, because of this size problem, these substances must necessarily be applied to the surfaces of materials instead of being incorporated into them. The latter causes the additional disadvantage of making the applied anti-microbial agents relatively labile to washings or abrasion. [0040]
  • Thus, there still exists a need to develop anti-microbial non-woven sheet material and fabrics for various uses that do not cause the development of resistant bacterial strains. There also still exists a need for these filters to have substrates-anti-microbial agent systems that are resistant to being washed away, thus maintaining their potency as an integral part of the filters into which they are incorporated. [0041]
  • U.S. Pat. No. 4,350,732 for reinforcing laminate which issued Sep. 21, 1982 discusses a moldable laminate which could be molded into curved shapes and which is bondable to a carrier surface and which is useful in the making of military boots and the like. The present invention is an improvement. [0042]
  • Institutional furnishings are subject to excessive wear and tear. These furnishings must withstand the constant onslaught of dirt and spills of a variety of substances. They must also stand up to frequent cleanings with industrial strength cleansers. As a result, these furnishings could be made stronger and more resistant by using anti-microbial and anti-fungal agents in their manufacture. The limited prior art approaches of coating fibers and/or fabrics with anti-microbial or anti-fungal materials have had only limited success. [0043]
  • Home furnishings are not subjected to as much wear and tear as institutional furnishings and are usually made of a material which has a softer “feel” and is usually more delicate than those made for institutional use. Therefore, it is difficult to make such materials which will stand up to repeated washings and to wear, particularly when they have been prepared with additives for special properties such as anti-microbial agents. [0044]
  • U.S. Pat. No. 3,983,061 for a process for the permanent finishing of fiber materials, including carpets, discloses an aqueous acid liquid for finishing fiber materials especially dyed carpets to make them anti-static, dirt-repellent, and optionally anti-microbial using a single bath process for finishing dyed textile floor coverings to make provide these characteristics to them. It states that the properties are “permanent” and defines this to mean retaining the properties after a “prolonged” period of wear and tear. However, the anti-microbial properties are not believed to last sufficiently long to be of commercially useful application, and the anti-microbial agent disclosed is organic in nature. [0045]
  • U.S. Pat. No. 4,371,577 for an anti-microbial carpet containing amino acid type surfactant is incorporated into fibrous materials prior to or after fabrication into a carpet using an organic material. The fibrous materials can be polyamide acrylic, polyester or polypropylene fibers. The preparation is accomplished in two manners. The first is that the pile yams, the carpet foundations or the yams for carpet foundation are subjected to the impregnation treatment with a surfactant, and the other is that a carpet fabricated from fibrous materials is impregnated with an organic material. [0046]
  • U.S. Pat. No. 5,762,650 for a biocide plus surfactant for protecting carpets where the dyeing and anti-microbial finishing is performed simultaneously. The anti-microbial agent is an organic material. [0047]
  • While there are known anti-microbial agents which are said to be designed to prevent the development of resistant bacterial strains, the use of metal-containing materials presents the added difficulty of being able to successfully disperse the anti-microbial agents throughout the fibers. Since these metal-containing compounds exist as fairly large size particles (10 microns and greater), the ability to evenly mix or distribute them is limited. In addition, because of this size problem, these substances must necessarily be applied to the fibers instead of being incorporated into them. The latter causes the additional disadvantage of making the applied anti-microbial agents relatively labile to washings. [0048]
  • Thus, there still exists a need to develop fabrics, materials and surfaces substrates for use in home and institutional furnishings which contain metal-containing anti-microbial agents that do not cause the development of resistant bacterial strains for incorporation into fibers that are used to make a variety of fabrics. There also still exists a need for these anti-microbial agents to be resistant to being washed away, thus maintaining their potency as an integral part of the fibers, fabrics, materials, and furnishings into which they are incorporated. [0049]
  • U.S. Pat. No. 5,709,870 (1998), mentioned above, discloses a silver-containing anti-microbial agent that has good affinity to the fiber and is stable to heat and light. The anti-microbial consists of silver bound to carboxymethylcellulose in the amount of 0.01 to 1.0 percent silver by weight that is applied to the fibers. [0050]
  • While these anti-microbial agents are designed to prevent the development of resistant bacterial strains, the use of metal-containing materials presents the added difficulty of being able to successfully disperse the anti-microbial agents throughout the fibers. Since these metal-containing compounds exists as fairly large size particles (10 microns and greater), the ability to evenly mix or distribute them is limited. In addition, because of this size problem, these substances must necessarily be applied to the fibers instead of being incorporated into them. The latter causes the additional disadvantage of making the applied anti-microbial agents relatively labile to washings. [0051]
  • Thus, there still exists a need to develop metal-containing anti-microbial agents that do not cause the development of resistant bacterial strains for incorporation into fibers that are used to make a variety of materials. There also still exists a need for these anti-microbial agents to be resistant to being abraded away, thus maintaining their potency as an integral part of the fibers into which they are incorporated. In the event they are not disposable, they need to be resistant to washings. [0052]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide anti-microbial agents that are efficacious and greatly resistant to washing off or wearing off of the product to which they are applied. [0053]
  • It is also an object of the present invention to provide anti-microbial additives that are inorganic. [0054]
  • It is another object of the present invention to provide products in which the anti-microbial agent is applied to certain areas, or has higher concentrations in certain areas, to reduce the amount of the anti-microbial agent which needs to be used and thus lower the cost of such products. [0055]
  • It is a further object of the present invention to provide an anti-microbial agents that can be: [0056]
  • combined with color pigments for coloration to withstand fading; [0057]
  • combined with UV additives to withstand fading and degradation in products exposed to significant UV light; [0058]
  • combined with additives to make the surface of the product hydrophilic or hydrophobic; [0059]
  • combined with additives to make the product flame retardant or flame resistant; [0060]
  • combined with additives to make the product anti-stain; and/or [0061]
  • using pigments with the anti-microbial so that the need for conventional dyeing and disposal of dye materials is avoided. [0062]
  • Thus, the present invention provides a synthetic product comprising high and low levels of various thermoplastic polymers and controlled concentrations of inorganic anti-microbial additives mixed with polymers and selectively placed in the end product for greatest technical effectiveness and cost effectiveness. [0063]
  • The present invention also provides a synthetic anti-microbial product comprising high tenacity polymers e.g. polyesters, polyethylene terephalate (PET) in one portion and hydrolysis resistance polymers in another portion with hydrophilic and anti-microbial additives. In some applications the latter portion can be deliberately made hydrolysis-vulnerable to allow “blooming” and enhanced access to anti-microbial additives in the course of several washings or extended uses. [0064]
  • The various polymers, include but are not limited to, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), PCT, PETG [PET, type G], Co-PET and copolyesters generally, Styrene, polytrimethylene terephalate (PTT)m 3GT, Halar®, polyamide 6 or 6,6, etc. The additives include pigments, hydrophilic or hydrophobic additives, anti-odor additives and anti-microbial/anti-fungal inorganic compounds, such as copper, zinc, tin and silver. [0065]
  • The excellent wetting characteristics of PETG can be used to distribute the anti-microbial additive uniformly within a product. In addition to the zeolite of silver, the PETG could carry other inorganic anti-microbial additives such as copper, zinc, or tin. [0066]
  • In addition to the anti-microbial component, the invention may be used to carry pigments with the PETG to achieve certain colors. [0067]
  • The use of hot water improves the products in that washing the products in hot water opens the pores of the PET and such washed products perform better than unwashed products (this is thought to be due to the removal of spinning/weaving lubricants). [0068]
  • It is a principal object of the present film embodiment to provide such sheet and film materials that meet these needs in a manner consistent with industry specifications, overall durability, and cost-effectiveness. [0069]
  • It is another object of the film and sheet embodiment [present invention] to provide such sheet materials in various forms such as rigid, semi-rigid or flexible and which may be constructed covered with thin films, or not, as desired. [0070]
  • The foregoing objects are met by sheet and film materials of an anti-microbial non-fibrous material such as melted thermoplastic material that has been designed using inorganic silver-containing compounds that allow the formation of both mono- and multi-layer polymeric materials having these anti-microbial agents intermixed within the polymer during material formation. [0071]
  • The anti-microbial will usually be included at and near the surface of a thin layer such as a film. The concentration of the anti-microbial agent can be varied as a gradient using mixing strategies. The concentration of anti-microbial agent within or on the surface of sheet material can also be varied regionally using materials containing varying amounts of anti-microbial agents in conjunction with both natural and synthetic materials having different amounts of anti-microbial agents or even no added anti-microbial agents. A variety of other agents can be added, either by mixing or topically, to color the material and/or to make it resistant to staining, fire, and ultraviolet (UV) light as well as altering its water absorbing qualities. Various polymers, without limitation, can be used to form these fibers. In the context of this invention, anti-microbial refers, but is not limited, to antibacterial and anti-fungal. [0072]
  • The present invention provides several embodiments, one of which relates to the co-extrusion of flat or shaped films or profiles. The product may be a multi-layer construction with the surface layer, on one or both sides, containing zeolite of silver (or other metal such as tin, copper, zinc, etc.). [0073]
  • The product may be a flat film for use in a flat form for counter tops, floors, walls, or molded into shapes such as cafeteria trays, serving dishes, high chair table, refrigerator trays, microwave liners, and luggage. [0074]
  • As a profile the extrusion may be a rain gutter, a screen enclosure, a counter top, hand railing, duct work, sanitary piping, water pipe, gasket materials, around dishwasher, garage door), etc. [0075]
  • The same concept applies to multi-layer injection molded parts. In this case the surface layer may have anti-microbial properties in applications such as telephone handsets, baby bottles, computer keyboards, plastic utensils, and milk bottles. [0076]
  • The choice of particle size of the zeolite is based on the thickness of the film to obtain the best combination of surface area with anchoring in the film. For example, a very thin film of 3 m would be best served with a 1-2 m zeolite, which would have a maximum dimension of 2×1.73 or about 3.5 m. [0077]
  • The inner films could be made of basically any thermoplastic resin, such as; PE, PP, PET, PS, PCT, Polyamide (nylon), Acrylic, PVC, etc. The surface layer(s) could be made of the same polymers plus some low temperature ones such as PETG, Polycaprolactone, EVA, etc. [0078]
  • It is a principal object of the present embodiment to provide such sheet and film materials that meet these needs in a manner consistent with industry specifications, overall durability, and cost-effectiveness. [0079]
  • The foregoing objects are met by sheet and film materials of an anti-microbial non-fibrous material such as melted thermoplastic material that has been designed [0080]
  • Home and institutional furnishings are provided which are made from fibers, yarns, fabrics, materials, and substrates having anti-microbial properties using inorganic silver-containing compounds. The concentration of the anti-microbial agent can be varied within the product-as a gradient using mixing strategies. The concentration of anti-microbial agent within a product can also be varied regionally using varying amounts of anti-microbial agents in conjunction with different amounts of anti-microbial agents or even no added anti-microbial agents. A variety of other agents can be added, either by mixing or topically, to color the product and/or to make it resistant to stains, fire, and ultraviolet (UV) light, as well as altering its water absorbing qualities. Various polymers, can be used. In the context of this invention, anti-microbial refers, but is not limited, to having anti-bacterial and anti-fungal properties.[0081]
  • BRIEF DESCRIPTION OF THE DRAWING
  • Other objects, features and advantages will be apparent from the following detailed description of preferred embodiments taken in conjunction with the accompanying drawings in which: [0082]
  • FIG. 1 is a side view of a sheet material having an anti-microbial film layer co-extruded thereon; [0083]
  • FIG. 2 is a side view of a sheet material having two anti-microbial films extruded thereon, one on each side; [0084]
  • FIG. 3 is a side view of a further arrangement in which a double sheet material is complete surrounded by an anti-microbial film; [0085]
  • FIG. 4 is a side view of a shaped sheet material having two anti-microbial films extruded thereon; [0086]
  • FIG. 5 is an isometric view of a food tray constructed in accordance with the present invention; [0087]
  • FIG. 6 is a partial sectional view of apparatus for making a multi-layer co-extruded sheet; [0088]
  • FIG. 7 is a sectional view through the apparatus shown in FIG. 6; [0089]
  • FIG. 8 is an isometric view of apparatus for making a side-by-side co-extruded sheet; [0090]
  • FIG. 9 is a cross section through an insole made in accordance with the present invention; [0091]
  • FIG. 10 is a plan view of the insole of FIG. 9; [0092]
  • FIG. 11 is a cross section through a laminate for footwear components;[0093]
  • DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • In the United States, all claims concerning anti-microbial and anti-fungal properties must be thoroughly tested to Environmental Protection Agency (EPA) and Food and Drug Administration (FDA) standards before making claims. The anti-microbial herein can be said to “kill bacteria” in that it kills 99.99% (log 4) of bacteria in 24 hours, and “anti-microbial” in that is kills 99.9% (log 3) of bacteria in 24 hours. This is based upon actual test results. Testing, such as by using the shake flask test, has demonstrated that when fibers and fabrics are tested using the anti-microbial system disclosed herein, the number of bacteria on the fibers is reduced by 99.99% or more over a 24-hour period and at least by 99.9%. This testing was performed using several different bacteria, including Pseudomonas aeruginosa, Staphylococcus aereus and Klebsiella pneumoniae. The testing was conducted using both unwashed fibers and fibers that had been washed fifty times to simulate use of the fiber in an application, such as a pillow. The EPA has indicated that products tested using this system may claim “Prohibits Bacteria Growth and Migration Along the Surface of the Product.” The addition of the agent in this system inhibits the growth of mold and mildew or odor-causing bacteria in the fibers. This is a true anti-microbial product. The fibers retain their efficacy after simulated use conditions so that the anti-microbial action lasts the life of the product. [0094]
  • Sheet Material [0095]
  • Sheet material as disclosed, for example in pending provisional application Serial 60/180,240 filed Feb. 4, 2000, the contents of which are physically incorporated herein below, in which flat or shaped sheets or films, including wide sheets can be individually extruded or there can be co-extrusion of flat or shaped films or profiles. The product may be a multi-layer construction with the surface layer, on one or both sides, containing zeolite of silver (or other metal such as tin, copper, zinc, etc.). The product may be a flat film for use in a flat form for counter tops, floors, walls, or molded into shapes such as cafeteria trays, shoe insoles, serving dishes, high chair table, refrigerator trays, microwave liners, and luggage. As a profile the extrusion may be a rain gutter, a screen enclosure, a counter top, hand railing, duct work, sanitary piping, water pipe, gasket materials around dishwashers, and the like. The same concept applies to multi-layer injection molded parts. In this case the surface layer may have anti-microbial properties in applications such as telephone handsets, baby bottles, computer keyboards, plastic utensils, milk bottles, and the like. The choice of particle size of the zeolite is based on the thickness of the film to obtain the best combination of surface area with anchoring in the film. For example, a very thin film of 3μ would be best served with a 1-2μ zeolite, which would have a maximum dimension of 2×1.73 or about 3.5μ. The inner films could be made of basically any thermoplastic resin, such as; PE, PP, PET, PS, PCT, Polyamide (nylon), Acrylic, PVC, etc. The surface layer(s) could be made of the same polymers plus some low temperature ones such as PETG, Polycaprolactone, EVA, and the like. Anti-microbial films are used to make sheet materials for a variety of applications in which it is necessary or desirable to reduce bacterial and fungal growth and their resultant odor. An anti-microbial sheet material is made of film which comprises various thermoplastic polymers and additives. The anti-microbial synthetic films can comprise inorganic anti-microbial additives, distributed only in certain areas in order to reduce the amount of the anti-microbial agents being used, and therefore the cost of such films. The anti-microbial additives used in the synthetic film do not wash off over time because they are integrally incorporated into these films, thus their effectiveness is increased and prolonged. The anti-microbial synthetic films comprise high tenacity polymers (e.g. PET) in one component and hydrolysis resistance polymers (e.g. PCT) in another component. The hydrophilic and anti-microbial additives provide a hydrolysis-resistant surface. If desired, fibers may be included and extruded. For example, such fibers could be used to make the two outer layers of the sheet material using sheath/core arrangements so that the anti-microbial agent is only present in the sheath to reduce the amount of anti-microbial agent which is used. [0096]
  • The present invention provides several embodiments, some of which relate to the co-extrusion of flat or shaped films, sheets or profiles. The product may be a co-extruded multi-layer construction with the surface layer, on one or both sides, containing an inorganic anti-microbial and/or anti-fungal agent. [0097]
  • The product may be a flat film for use in a flat form for such uses as counter tops, floors, walls, or molded into shapes such as cafeteria trays, serving dishes, high chair tables, refrigerator trays, microwave liners and luggage. [0098]
  • As a profile the extrusion may be a rain gutter, a screen enclosure, a counter top, hand railing, duct work, sanitary piping , water pipe, and gasket materials around dishwashers and garage doors. [0099]
  • The same concept applies to multi-layer injection molded parts. In this case the surface layer may have anti-microbial properties in applications such as telephone handsets, baby bottles, computer keyboards, plastic utensils, milk bottles, automotive interior parts, aircraft/bus/train seat and trim parts, and the like. [0100]
  • When the anti-microbial is zeolite of silver, the choice of particle size of the zeolyte is based on the thickness of the film to obtain the best combination of surface area with anchoring in the film. For example, a very thin film of 3 m would be best served with a 1-2 m zeolite, which would have a maximum cubic dimension of 2×1.73 or about 3.5 m. In this manner the anti-microbial particles are at least partially exposed and are not completely embedded in the thermoplastic material where they would have no anti-microbial effect unless the covering surface were abraded away. [0101]
  • The inner films or layers can be made of basically any thermoplastic resin, such as; PE, PP, PET, PS, PCT, Polyamide (nylon), Acrylic, PVC, etc. The surface layer(s) can be made of the same polymers plus some low temperature ones such as PETG, Polycaprolactone, EVA, etc. [0102]
  • Sheet Material Laminates [0103]
  • FIG. 1 shows one type of multi-layer sheet in accordance with the present invention. The [0104] multi-layer sheet material 66 has a main, thicker support layer 68 and a surface layer 70 which is a thin layer of a thermoplastic material which is sufficiently thin that small particles of anti-microbial agent are contained therein and have portions thereof which are at the surface or just below the surface of the layer. In this way the anti-microbial particles are bonded into the surface layer 70 and therefore remain there for the life of the material or product made from the sheet material and provide anti-microbial properties for the entire time. It is advantageous to have the anti-microbial agent only at the surface since this is the only place where it comes into contact with microbes and fungi and to have the agent in other places in the multi-layer sheet material is wasteful.
  • Another type of multi-layer sheet construction, which may be used to accomplish the purposes of the present invention is shown in FIG. 2. In this arrangement the [0105] multi-layer sheet material 72 has a main support layer 74 and both surfaces thereof have surface layers 78 and 80, respectively. One or both of the surface layers 78 and 80 have the anti-microbial agent. Layer 74 is a wide sheet of material which may be extruded of thermoplastic material. It can be a rigid material or a flexible material depending upon the end use. The second and third layers of wide sheet material are attached to it by suitable means known in the art or they may be co-extruded as described below in connection with FIGS. 6-8. There is a surface layer having an anti-microbial agent (which may be or include an anti-fungal agent) is attached to both sides of the composite layers. These layers are connected by a suitable means known in the art when they are not co-extruded.
  • This three layer arrangement may be co-extruded at one time so that the three layers are bonded together immediately after extrusion and while the layers are still hot and prior to quenching. For a discussion of the co-extrusion process, see FIGS. 6 and 7 and the description thereof which appears below. [0106]
  • There are many uses which may be made of this composite, and the end use is evaluated to determine additional features which are added. For example, if the finished composite of FIG. 1 or FIG. 2 is to be formed into a shape for cafeteria trays or food trays (see FIG. 5), then only one surface layer having the anti-microbial agent is needed and the support layer is rigid to provide rigidity to the tray. The material is hard and smooth so that it may be easily cleaned yet still provide the anti-microbial effect. The food tray is die formed after the sheet is made by the co-extrusion process. [0107]
  • It is possible to form the three [0108] layer sheet 72 which includes the support layer 74 of at least 10 microns in thickness which is extruded at the same time as a second sheet 78 which becomes a two-layer sheet, the second sheet being 4 microns in thickness and being supported by the first layer. The extruding of both layers is done at the same time and the second sheet 78 is joined to the first sheet 74 before the quenching is complete. If desired a third sheet 80 similar to the second one, 78, can be made at the same time. The second and third sheets may have an anti-microbial agent of the type discussed herein mixed with the thermoplastic material so that the three layer sheet has a thin top layer and a thin bottom layer which possess anti-microbial properties.
  • FIG. 3 shows a [0109] multi-layer sheet 82 having a first inner layer 84 and a second inner layer 86 with two surface layers 88 and 90. It also includes edge layers 92 and 76, and which is suitable for various purposes. It may be constructed as shown in FIGS. 6 and 7 and as described below.
  • FIG. 4 shows a [0110] multi-layer sheet 94 which has a shape in the form of a curve and which includes a center support layer 96 and two surface layers 98 and 100.
  • FIG. 5 shows a [0111] food tray 102 which may be the type which contains food and is purchased in food stores with food packaged therein. This tray includes two basic parts, a bottom 104 and a top 106. The bottom 104 may be of PET which is crystallized in order to provide a firm layer which may support the food products contained therein. After the multi-layer sheet material is made, the food tray parts are formed in dies. This bottom part 104 has a bottom layer 108 and four side- walls 110, 112, 114, and 116. For all the parts of the bottom 104, there is an inner layer 118 of a thin film which is attached to a support layer 122 and this film 118 contains an anti-microbial agent as indicated by the stippling. There are tabs 124 and 125 on the bottom which fit into holes 120 on the top 106. The top is made of a transparent material and is in the amorphous state. The anti-microbial agent prevents the growing of microbes which are killed upon contact with the inner film layer of the bottom of the food tray.
  • Making Co-Extruded Sheet Material Laminates [0112]
  • With reference to FIGS. 6 and 7, a suitable die has a funnel-shaped [0113] expansion chamber 128 terminating in a slotted die outlet 128 defined by a pair of spaced die lips. The die has a shallow chamber entrance section 132.
  • The [0114] feed block 126 comprises a plurality of slotted layer distribution passages 134 in the form of mutually spaced apart slots or openings lying substantially parallel to slotted die outlet 128. The passages extend from an inlet side to an outlet side of the feed block 126.
  • The feed block further comprises [0115] end encapsulation slots 166 and 158 extending between inlet and outlet sides without intersecting passages 134 and lying substantially perpendicular thereto. Otherwise, slots 166 and 158 may extend along planes converging together from the inlet side to the outlet side. The feed block assembly 152 includes a frame 136 connected to the upstream end of the die in some suitable manner and defining a chamber (not shown) open on opposite sides to facilitate removal and replacement of feed block 126 with an interchangeable feed block designed to accommodate specific resin viscosities, selected polymer matchups, layer thickness changes, layer geometry, etc.
  • [0116] Frame 136 includes various connectors 138A and 138B to which extruders (not shown) of polymer melts are connected, and to which feed channels or feed lines (also not shown) are likewise connected for feeding the melts to slots 134A-134E, 166 and 158, or to selected ones thereof.
  • The feed block may be connected in some suitable manner to frame [0117] 136 or may be unconnected thereto.
  • Apparatus generally designated [0118] 152 is illustrated in FIGS. 6 and 7 as comprising a slit die 140 of mating die halves. A feed block assembly, generally designated 150, is totally integrated into the die as it is inserted within a die cavity 156 open at the upstream end of the die and at opposing sides of the die, shown in FIG. 6. Feed block assembly 150 comprises feed block 126, connectors 138A and 138B and melt feed lines 141A and 141B, respectively, extending from the connector 138A for feeding plastic melt from the extruder to the slotted passages 134A, 134B and 134C, and from the connector 138B for feeding plastic melts from the extruder to the slotted passages 134D and 134E. When an anti-microbial or the like is to be provided in the thinner outer sides of the sheet material, such an agent is added into the melt which is then extruded and fed to feed line 141B and connector 138B to extruding slots 134D and 134E. In the event the edges of the laminated sheet material is to differ from the material fed into feed lines 141A and 141B, a third feed line (not shown) can be connected to slotted passages 166 and 158 of the feed block. If the edges are not to be different the slotted passages 166 and 158 are not or may be omitted from the construction of feed block 126. Thus, the entire feed block assembly 150 can be removed from cavity 156 and replaced by another feed block assembly for a new production cycle.
  • Feed block [0119] 126 of apparatus 152 can be provided with externally accessible means to control the melt streams of polymer melt passing through the outermost slots 134D and 134E for adjusting the distribution of the outer or skin layers of the skin laminate to be formed. Such control means may be in the form of a restrictor bar 154 extending transversely to the direction of flow of melt through the passages for controlling the width and/or shape of the outermost passage upon manual manipulation of an adjustment screw 146. The restrictor bar may be located in a side cavity 148 of the feed block.
  • Otherwise, the skin layer control means may be in the form of a driven [0120] wedge 164 mating with a drive wedge 160 connected to a screw drive 142 via flange 162, as more clearly shown in FIG. 7. The wedges may be housed in a suitable side cavity 144, and a turning of screw drive 142 shifts wedge 160 along the screw drive and causes the driven wedge to be shifted transversely relative to the melt flow through the feed block for controlling the distribution of the skin layer flowing through the outer-most passage of the feed block.
  • [0121] Restrictor bar 154 can be utilized on both sides of the feed block, and the wedge arrangement can likewise be utilized on both sides. Restrictor bar 154 and wedge 164 can have flat melt flow engaging surfaces, or these surfaces can be concavely or convexly shaped or otherwise contoured to control the layer distribution of the skin layers by modifying the outer slots to accommodate differences in melt viscosities, etc.
  • With this arrangement one or both outer layers may have an anti-microbial agent. If a three-layer arrangement is made it can have a center layer of 10 m and the outer layers may be 4 m. In such an event the particle size may be about 1.5-2 m. If zeolite of silver particles are used and made this size then substantially every particle of zeolite will have at least a portion exposed by projecting through the outer surface of the layer in which it is embedded. [0122]
  • FIG. 8 shows a [0123] die 168 having a single extrusion slot with three portions, 170, 172 and 174. The sheet which is extruded thereby is shown having a center section 176 and two edge portions 178 and 180. The width of the center portion 176 is the same as the widths of the edge portions together. When the extrusion process takes place die slot portion 170 produces edge portion 178, die slot portion 172 produces center portion 176 and die slot portion 174 produces edge portion 180. The stippling indicates that an anti-microbial and/or an anti-fungal agent has been incorporated into the center portion of the extruded sheet. The extruded sheet is shown having a thickness 182 which is the same throughout, although portions could be of different thickness if this is desired.
  • Thus FIG. 8 shows a manner of making a co-extrusion multi-layer sheet in which the [0124] edges 178 and 180 of the extruded sheet are different from the center 176 in some respect and if desired, after extrusion and while still having the heat of the extrusion (prior to quenching) the two edge portions 178 and 180 are folded under to provide a layer under the center section. In this manner a two-layer sheet is formed with layer 176 having microbe and fungus killing properties on one side of the two-layer sheet.
  • If desired, the die and sheet could have only two sections of equal width, in which event one would be folded over the other to form the two-layer sheet with one layer having anti-microbial properties. [0125]
  • Construction of the Multi-Layer Sheet Material [0126]
  • Anti-microbial agents can be used in making sheet materials for a variety of applications in which it is necessary or desirable to reduce bacterial and fungal growth and their resultant odor. [0127]
  • In manufacturing these materials, any of the embodiments described above could be used. Both the strength and resiliency of these materials is important. Any number of shaped designs could be used as appropriate. In some instances, round would be appropriate whereas in other instances rectangular or other shapes, both simple and complicated would be appropriate, all depending upon the use to be made of the material. [0128]
  • Also, other modifications of the characteristics of these materials beyond that of adding anti-microbial agents, including the addition of agents to increase or decrease hydrophobicity, is useful. In addition, anti-odor additives may be particularly useful in cafeteria or other types of food trays. [0129]
  • The relatively small size of the preferred anti-microbial agent which is silver-containing zeolite compounds (which can be as small as 2 microns and less) that are used in the manufacturing of the sheet film allow these anti-microbial agents to be incorporated into the thin sheet films instead of being applied to them. Thus, because these anti-microbial agents are an integral part of the film, they are not washed or easily abraded away and the finished articles manufactured from them are able to withstand significant wear and multiple washings while maintaining their anti-microbial effectiveness. In the case of products which are thrown away after use, the resistance to washings is not an important factor. [0130]
  • Specifically, higher loading of the anti-microbial agents (up to 5 times) is used to more effectively act against fungi. This higher loading may be achieved by using various zeolites followed by heating the film polymer, e.g. PET, to between 180 and 228 degrees Fahrenheit in hot water which allows further metal loading or ion exchange to replace resident metal ions with another ion or mixture of ions. In addition, this would allow the zeolite at or near the surface of the film to be preferentially loaded with the metal ion or mixtures thereof that has the desired biological effect. These methods are particularly useful in reducing costs when expensive metal ions, such as silver, are used in these processes. Also, by adding certain metals, e.g. silver, at this point in the process and not having it present during the high temperature film extrusion process, any yellowing or discoloration due to oxidation of the metal ion or its exposure to sulfur and halogens would be greatly reduced. [0131]
  • The synthetic films used in the present invention can be made of various polymers and co-polymers, including thermoplastic ones. These polymers include, but are not limited to, polyethylene (PE), polypropylene (PP), poly 1,4 cyclohexylene dimethylene terephthalate (PCT), PET, PET type G (PETG), co-PET, and co-polymers generally. These films can also contain styrene, Halar®, and various polyamides. [0132]
  • As defined in this invention, anti-microbial means a thousand-fold reduction in bacteria. Thus, the materials and products of this invention are subjected to tests which show a 1000-fold reduction in colony forming units (CFU) of bacteria. To kill bacteria means a ten thousand-fold reduction in bacteria and the materials and products of this invention are capable of a 10,000-fold reduction in CFU of bacteria. [0133]
  • This level of antibacterial protection is achieved generally by having between 0.1 and 20 percent by weight of an anti-microbial agent incorporated into a multi-layered sheet material. Alternatively, the anti-microbial agent concentration can be reduced to between 0.2 and 6.0 percent in multi-layer sheets in which the anti-microbial agent is only mixed into the outer layer(s) of the multi-layer sheet. This latter configuration allows less anti-microbial compound to be used, thus significantly reducing the cost of manufacture, and thus the cost of the sheet material. [0134]
  • It is also possible to use these integrated anti-microbial compounds to make sheet materials and products that have a varying distribution of the anti-microbial agent. For example, by varying the concentrations of the anti-microbial agent during mixture with the film-forming polymers, films having varying anti-microbial content can be formed which can then be added in varying amounts to form sheet materials having varying concentrations of anti-microbial agents. In addition, the amount of anti-microbial present in the film itself can be varied, either lengthwise or in cross-section. Similarly, higher and lower concentrations of these anti-microbial agents in the overall films can be achieved by using multi-layered sheets in which, for example, the anti-microbial agent is present only in an outer layer section, thus significantly reducing manufacturing and selling costs. Any of the above manufactured anti-microbial films can be used with films that do not contain anti-microbial agents such that sheets and products can be made having overall and localized variations in concentrations of anti-microbial agents. [0135]
  • Color pigments can be added to these anti-microbial films in order to provide a pleasing coloration for such sheet materials when the ultimate products are purchased by consumers. Similarly to the above anti-microbial agents, these pigment materials can be added such that the pigments are encapsulated in the polymers that are used to make these sheet materials. By using this method of coloring the films, materials for end use products made from these colored films are color-fast and do not leach out their color during washing, thus significantly reducing fading during use and washing. In addition, since the need for conventional dyeing techniques can be reduced or eliminated, the disposal of environmentally damaging dye materials is avoided. This, in and of itself, can reduce the costs of manufacturing finished colored sheet materials due to the elimination of the manufacturing infrastructure and associated personnel needed to process residual dye effluents. [0136]
  • In a similar fashion to anti-microbial agents and color pigments, a variety of other additives that are used for various purposes can be combined with the polymers during or after film formation and extrusion. For example, additives that protect against damage from UV light can be added to the film polymer or coated onto it so that the sheet materials or end use products formed are resistant to the fading of colors and UV damage generally, although this is not a factor for all products. Both flame-resistant and -retardant agents can also be added to the films of this invention in a manner similar to that described for UV protecting agents. In this way, the sheet materials formed can be made resistant to fire. [0137]
  • In addition, the films can be made either hydrophilic or hydrophobic as desired by mixing other agents into the film polymers or applying them to the film surface. By modifying the wetability characteristics of the films, they can be made more useful for various applications. For example, hydrophilic films are effective in applications in which one wants the anti-microbial sheet material to more easily absorb water, such as when the material is designed to be used in humid conditions. Alternatively, hydrophobic films are effective in applications in which one wants to avoid the absorption of such solutions. [0138]
  • The anti-microbial agents can also be added to low-melt polymer films that can be activated and melted during sheet material production by raising the temperature, thus spreading the anti-microbial agents throughout the material when the low-melt films melt and coat the surface of the supporting layer. By varying the amount of anti-microbial-containing low-melt film regionally and/or by varying the amount of anti-microbial agent in these low-melt films, a sheet material can be produced that has a purposely designed regional variation in anti-microbial effectiveness throughout. [0139]
  • Specifically, the latter situation can be achieved by using an amorphous binding film such as PETG, which can be blended to form various types of sheet materials. After heat activation, the PETG melts, wetting the surface of the surrounding films adjacent surface or surfaces. In this way, solidified PETG forms and binds the layers together while spreading the anti-microbial agent throughout the surfaces. Because of the excellent wetting characteristics of PETG, the anti-microbial agent can be uniformly distributed throughout the material. These methods of activating PETG may also be used to additionally distribute other additives described above throughout the finished materials. [0140]
  • The anti-microbial additives used are metals such as copper, zinc, tin, and silver as part of an inorganic matrix. The best results can be obtained using a zeolite of silver dispersed in a PE,PP, PS, Nylon, PET, or PBT carrier. These additives can be added directly to the melt without a carrier. The total anti-microbial additive concentration ranges from 0.2 to 6.0 percent by weight of fiber depending on performance requirements. Other additives which can be incorporated include one or more of UV stabilizers at 0.1 to 5.0 percent; fire-retardant additives at 0.1 to 5.0 percent; pigments at 0.1 to 5.0 percent; hydrophilic additives at 0.2 to 5.0 percent; and hydrophobic additives at 0.2 to 5.0 percent. [0141]
  • Another configuration of the present invention is a multi-layered film in which the components are the same polymers and additives as described above. In this embodiment one layer is used for strength another layer is used as a binder that contains inserted additives. Variants of this such as three and four layered products, and even up to ten layered products with the outer two layers carrying the anti-microbial agent can also be made. [0142]
  • It should be understood that the nominal binder or binder component can also be a strength enhancer in some combinations. It will also be understood that other variants including but not limited to combinations, can be made. For example, a first extrusion could produce intermediate film products and such products could be put together with each other or with separate layers. [0143]
  • Another embodiment is a grouping of layers used to practice the invention. One configuration uses PET or other high tenacity polymer at between 20 and 80 percent by weight. Poly 1,4 cyclohexylene dimethylene terephthalate (PCT) or other hydrolysis resistant polymer is used in another layer at a ratio of 80 to 20 percent. One layer is designed to provide the strength and the modulus can be varied to create a high modulus layer, or a low modulus layer, or anywhere in between. The use of PCT in the a layer provides a hydrolysis resistant surface and resistance to long term washings in boiling water and strong soaps. The multi-layer anti-microbial/anti-fungal synthetic layers can be produced in a wide range of thicknesses. [0144]
  • Additives include pigments, compounds to create a hydrophilic surface, and anti-microbial, anti-fungal, and anti-odor agents. The pigment additives provide uniform colors that do not fade significantly over long-term use and washing, unlike dyes, because these additives are integrally mixed within the polymer making up the sheet or film. In addition, compounds may be used which create a hydrophilic surface. The anti-microbial, anti-fungal and anti-odor additives can be varied, both in types and amounts, depending on the final product desired. [0145]
  • One layer made from low temperature polymers with a melting or softening temperature below 200 degrees C., such as PETG, PE, PP, co-PET, or amorphous PET, may be used as binder carrier for anti-microbial additives. [0146]
  • The anti-microbial additives are inorganic compounds of metals such as copper, tin, zinc, silver, etc. The preferred compound is a zeolite of silver dispersed in PE, PET, or PBT before being added to the layer. The additives could be added directly to the primary polymer with pre-dispersion. The total active ingredients range from 0.1 to 20 percent by sheet weight. [0147]
  • Thus, an anti-microbial sheet material can be produced that is able to withstand significant wear and washings and maintain its effectiveness. [0148]
  • It will now be apparent to those skilled in the art that other embodiments, improvements, details, and uses can be made consistent with the letter and spirit of the foregoing disclosure and within the scope of this patent, which is limited only by the following claims, construed in accordance with the patent law, including the doctrine of equivalents.[0149]

Claims (26)

What is claimed is:
1. An anti-microbial product in the form of a wide plastic sheet, comprising:
a first layer of a plastic polymer matrix and an anti-microbial/anti-fungal inorganic additive dispersed therein, the thickness of the layer being approximately 1.5 to 3 times the nominal particle size of the additive; and
at least one further plastic polymer layer adjacent to and providing support to the first layer.
2. The product of claim 1, wherein the additive is one selected from the group consisting of copper, zinc, tin and silver.
3. The product of claim 2, wherein the additive is a zeolite of silver.
4. The product of claim 1, wherein the additive comprises approximately 1 micron cubes and the first layer thickness is approximately 2 microns thick.
5. The product of claim 1, wherein the at least one further layer has dispersed therein a second additive selected from the group consisting of pigments, anti-odor compounds, UV resistant, anti-stain, flame retardant or flame resistant, hydrophilic, and hydrophobic materials.
6. The product of claim 5, wherein the second additive is a hydrolysis resistant polymer providing resistance to long term washings in boiling water and strong soaps.
7. The product of claim 5, wherein the second additive is a pigment providing uniform colors that do not fade significantly over long-term use and washing.
8. The product of claim 1, the first layer being sufficiently dimensioned such that particles of the additive are held close to the outer surface of the first layer while affording resistance to removal therefrom under production and usage conditions of the product.
9. The product of claim 1, wherein the at least one further layer comprises:
at least one further layer of a plastic polymer matrix and an anti-microbial/anti-fungal inorganic additive dispersed therein; and
a thicker support layer disposed adjacent to and between the first layer and the at least one further layer of plastic polymer matrix and additive dispersed therein.
10. The product of claim 1, further comprising:
at least one edge layer of a plastic polymer matrix and an anti-microbial/anti-fungal inorganic additive dispersed therein, the edge layer adjacent to both the first layer and the at least one further layer.
11. The product of claim 1, wherein the plastic polymer of the first layer is selected from the group consisting of polyolefin, polyethylene, polypropylene, poly 1,4 cyclohexylene dimethylene terephthalate, PETG, co-PET, Styrene, Halar®, PTT, 3GT, polyamide, polycaprolactone, PET, Polycarbonate, PVC, and EVA.
12. The product of claim 1, wherein the plastic polymer of the at least one further layer is comprised of a thermoplastic resin selected from the group consisting of polyethylene, polypropylene, poly 1,4 cyclohexylene dimethylene terephthalate, PET, PETG, co-PET, Styrene, Halar®, PTT, 3GT, polyamide, acrylic, PET, Polycarbonate, PVC, and an ionomer, EVA or styrene stiffened ionomer, and an impact resistant strength layer of nonwoven material.
13. The product of claim 1, wherein the concentration of the additive varies as a gradient within a section of the first layer.
14. The product of claim 1, wherein the concentration of the additive varies regionally within a section of the first layer.
15. The product of claim 1, formed as a flat film.
16. The product of claim 15, consisting of part of work surface, floor, or wall.
17. The product of claim 1, formed as an article exhibiting a rigid, shaped contour.
18. The product of claim 17, consisting of part of a food storing, conveying or serving article. consisting in part of an article for storing or conveying clothing or personal items.
19. The product of claim 1, formed as a profiled article wherein the additive is on the inner or outer surface of the profile.
20. The product of claim 19, selected from one of piping, tubing, and gutters.
21. The product of claim 19, consisting of part of a household or industrial appliance, fixture or utility.
22. The product of claim 1, formed as an injection molded article.
23. The product of claim 22, consisting of part of a hand-held device or utensil.
24. An anti-microbial product in the form of a wide plastic sheet, comprising:
a first layer of a plastic polymer matrix and an anti-microbial/anti-fungal inorganic additive dispersed therein, the thickness of the layer being sufficiently thin such that substantially all particles of the additive are held close to the outer surface of the first layer while affording resistance to removal therefrom under production and usage conditions of the product; and
at least one further plastic polymer layer adjacent to and providing support to the first layer.
25. An anti-microbial product in the form of a wide plastic sheet, comprising:
a first layer of a plastic polymer matrix and an anti-microbial/anti-fungal inorganic additive dispersed therein, the thickness of the layer being sufficiently thin such that substantially all particles of the additive have portions available at the outer surface of the first layer; and
at least one further plastic polymer layer adjacent to and providing support to the first layer.
26. An anti-microbial product in the form of a wide plastic sheet, comprising:
a first layer of a plastic polymer matrix and an anti-microbial/anti-fungal inorganic additive dispersed therein, the thickness of the layer being less than the maximum dimension of the particles of the additive; and
at least one further plastic polymer layer adjacent to and providing support to the first layer.
US10/785,850 1999-05-27 2004-02-24 Anti-microbial fiber and fibrous products Abandoned US20040191500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/785,850 US20040191500A1 (en) 1999-05-27 2004-02-24 Anti-microbial fiber and fibrous products

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US13626199P 1999-05-27 1999-05-27
US17228599P 1999-12-17 1999-12-17
US17253399P 1999-12-17 1999-12-17
US17320799P 1999-12-27 1999-12-27
US18024000P 2000-02-04 2000-02-04
US18053600P 2000-02-07 2000-02-07
US18125100P 2000-02-09 2000-02-09
US09/565,138 US6723428B1 (en) 1999-05-27 2000-05-05 Anti-microbial fiber and fibrous products
US10/785,850 US20040191500A1 (en) 1999-05-27 2004-02-24 Anti-microbial fiber and fibrous products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/565,138 Division US6723428B1 (en) 1999-05-27 2000-05-05 Anti-microbial fiber and fibrous products

Publications (1)

Publication Number Publication Date
US20040191500A1 true US20040191500A1 (en) 2004-09-30

Family

ID=27574916

Family Applications (11)

Application Number Title Priority Date Filing Date
US09/565,138 Expired - Lifetime US6723428B1 (en) 1999-05-27 2000-05-05 Anti-microbial fiber and fibrous products
US10/406,720 Abandoned US20030170453A1 (en) 1999-05-27 2003-04-02 Anti-microbial fiber and fibrous products
US10/655,330 Abandoned US20050101213A1 (en) 1999-05-27 2003-09-04 Anti-microbial fabrics, garments and articles
US10/762,920 Abandoned US20040214495A1 (en) 1999-05-27 2004-01-22 Anti-microbial products
US10/765,414 Abandoned US20040202860A1 (en) 1999-05-27 2004-01-27 Anti-microbial fiber and fibrous products
US10/765,255 Abandoned US20050019568A1 (en) 1999-05-27 2004-01-27 Anti-microbial fiber and fibrous products
US10/768,840 Expired - Lifetime US6946196B2 (en) 1999-05-27 2004-01-30 Anti-microbial fiber and fibrous products
US10/770,306 Expired - Lifetime US6841244B2 (en) 1999-05-27 2004-02-02 Anti-microbial fiber and fibrous products
US10/772,127 Abandoned US20050003728A1 (en) 1999-05-27 2004-02-04 Anti-microbial fiber and fibrous products
US10/785,850 Abandoned US20040191500A1 (en) 1999-05-27 2004-02-24 Anti-microbial fiber and fibrous products
US11/010,546 Abandoned US20050106390A1 (en) 1999-05-27 2004-12-13 Anti-microbial fiber and fibrous products

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US09/565,138 Expired - Lifetime US6723428B1 (en) 1999-05-27 2000-05-05 Anti-microbial fiber and fibrous products
US10/406,720 Abandoned US20030170453A1 (en) 1999-05-27 2003-04-02 Anti-microbial fiber and fibrous products
US10/655,330 Abandoned US20050101213A1 (en) 1999-05-27 2003-09-04 Anti-microbial fabrics, garments and articles
US10/762,920 Abandoned US20040214495A1 (en) 1999-05-27 2004-01-22 Anti-microbial products
US10/765,414 Abandoned US20040202860A1 (en) 1999-05-27 2004-01-27 Anti-microbial fiber and fibrous products
US10/765,255 Abandoned US20050019568A1 (en) 1999-05-27 2004-01-27 Anti-microbial fiber and fibrous products
US10/768,840 Expired - Lifetime US6946196B2 (en) 1999-05-27 2004-01-30 Anti-microbial fiber and fibrous products
US10/770,306 Expired - Lifetime US6841244B2 (en) 1999-05-27 2004-02-02 Anti-microbial fiber and fibrous products
US10/772,127 Abandoned US20050003728A1 (en) 1999-05-27 2004-02-04 Anti-microbial fiber and fibrous products

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/010,546 Abandoned US20050106390A1 (en) 1999-05-27 2004-12-13 Anti-microbial fiber and fibrous products

Country Status (6)

Country Link
US (11) US6723428B1 (en)
EP (1) EP1212478A4 (en)
AU (1) AU5162800A (en)
CA (1) CA2375567C (en)
MX (1) MXPA01012196A (en)
WO (1) WO2000073552A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9440001B2 (en) 2013-03-06 2016-09-13 Specialty Fibres and Materials Limited Absorbent materials
CN111434227A (en) * 2019-01-11 2020-07-21 可成科技股份有限公司 Antimicrobial structure and method of making same

Families Citing this family (430)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034330A1 (en) * 1996-11-12 2005-02-17 Baychar Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US20040200094A1 (en) * 1996-11-12 2004-10-14 Baychar Softboots and waterproof /breathable moisture transfer composite and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
US6723428B1 (en) * 1999-05-27 2004-04-20 Foss Manufacturing Co., Inc. Anti-microbial fiber and fibrous products
DE10085395T1 (en) * 1999-12-27 2002-12-05 Kimberly Clark Co Fibers that provide controlled release of an active agent
US8301550B2 (en) 2000-05-08 2012-10-30 Smart Options, Llc Method and system for reserving future purchases of goods or services
US8620771B2 (en) 2000-05-08 2013-12-31 Smart Options, Llc Method and system for reserving future purchases of goods and services
US8930260B2 (en) 2000-05-08 2015-01-06 Smart Options, Llc Method and system for reserving future purchases of goods and services
US9070150B2 (en) 2000-05-08 2015-06-30 Smart Options, Llc Method and system for providing social and environmental performance based sustainable financial instruments
US7313539B1 (en) 2000-05-08 2007-12-25 Pappas Christian S Method and system for reserving future purchases of goods or services
US8650114B2 (en) 2000-05-08 2014-02-11 Smart Options, Llc Method and system for reserving future purchases of goods or services
US9047634B2 (en) 2000-05-08 2015-06-02 Smart Options, Llc Method and system for reserving future purchases of goods and services
US7962375B2 (en) 2000-05-08 2011-06-14 Option It, Inc. Method and system for reserving future purchases of goods and services
US9064258B2 (en) 2000-05-08 2015-06-23 Smart Options, Llc Method and system for reserving future purchases of goods and services
US9092813B2 (en) 2000-05-08 2015-07-28 Smart Options, Llc Method and system for reserving future purchases of goods and services
US9026472B2 (en) 2000-05-08 2015-05-05 Smart Options, Llc Method and system for reserving future purchases of goods and services
US7996292B2 (en) 2000-05-08 2011-08-09 Option It, Inc. Method and system for reserving future purchases of goods and services
US9026471B2 (en) 2000-05-08 2015-05-05 Smart Options, Llc Method and system for reserving future purchases of goods and services
US8192765B2 (en) 2000-06-21 2012-06-05 Icet, Inc. Material compositions for microbial and chemical protection
US7445799B1 (en) * 2000-06-21 2008-11-04 Icet, Inc. Compositions for microbial and chemical protection
US6926862B2 (en) * 2001-06-01 2005-08-09 Kimberly-Clark Worldwide, Inc. Container, shelf and drawer liners providing absorbency and odor control
US20030124941A1 (en) * 2001-11-06 2003-07-03 Hwo Charles Chiu-Hsiung Poly (trimethylene terephthalate) based spunbonded nonwovens
CN1620502A (en) * 2001-11-09 2005-05-25 陶氏环球技术公司 Enzyme-based system and sensor for measuring acetone
US7794994B2 (en) * 2001-11-09 2010-09-14 Kemeta, Llc Enzyme-based system and sensor for measuring acetone
ITMI20012521A1 (en) * 2001-11-30 2003-05-30 Orlandi Spa BARRIER-EFFECT MATTRESS COVER FABRIC
GB2384985A (en) * 2002-02-12 2003-08-13 Barry Siberry Cures and preventions for fungal infections in humans and animals
DE10208066A1 (en) 2002-02-25 2003-09-04 Bsh Bosch Siemens Hausgeraete Inner part for a refrigerator
JP2003245304A (en) * 2002-02-25 2003-09-02 Toray Ind Inc Diaper
EP2228018B1 (en) 2002-06-17 2012-05-09 Tyco Healthcare Group LP Annular support structures
US20080131648A1 (en) * 2003-06-23 2008-06-05 Solid Water Holdings Waterproof/breathable, moisture transfer, soft shell alpine boots and snowboard boots, insert liners and footbeds
KR20050044885A (en) * 2002-07-03 2005-05-13 하이볼테이지그래픽스인코오포레이티드 Process for printing and molding a flocked article
KR20110055576A (en) * 2002-09-16 2011-05-25 트리오신 홀딩 아이엔씨 Electrostatically charged filter media incorporating an active agent
US20050217037A1 (en) * 2002-10-08 2005-10-06 Negola Edward J Dyed polyolefin yarn and textile fabrics using such yarns
US20040076792A1 (en) * 2002-10-22 2004-04-22 Green David E. Topically applied antimicrobial carpet treatment
US8100872B2 (en) 2002-10-23 2012-01-24 Tyco Healthcare Group Lp Medical dressing containing antimicrobial agent
WO2004043162A2 (en) 2002-11-12 2004-05-27 Safe Foods Corporation Application system with recycle and related use of antimicrobial quaternary ammonium compound
US20040106342A1 (en) * 2002-11-29 2004-06-03 Sturm Raymond C. Nonwoven roll towels having antimicrobial characteristics
US20060182812A1 (en) * 2003-01-20 2006-08-17 Yasuharu Ono Antibacterial compositions and antibacterial products
US6990688B2 (en) * 2003-06-02 2006-01-31 Aperfine Lauren M Thermochromic water proof apparel
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20120251597A1 (en) * 2003-06-19 2012-10-04 Eastman Chemical Company End products incorporating short-cut microfibers
US7842306B2 (en) 2003-08-14 2010-11-30 Milliken & Company Wound care device having fluid transfer properties
WO2005017240A1 (en) * 2003-08-15 2005-02-24 Foss Manufacturing Co., Inc. Synthetic fibers modified with ptfe to improve performance
US20050085567A1 (en) * 2003-08-15 2005-04-21 Foss Manufacturing Co., Inc. Flame retardant spiral crimp polyester staple fiber
CN100442034C (en) * 2003-08-25 2008-12-10 高安株式会社 Sound absorbing material
US20050053644A1 (en) * 2003-09-10 2005-03-10 Salemi Anthony S. Indented antimicrobial paper and a process for making and using the same
US20050113771A1 (en) * 2003-11-26 2005-05-26 Kimberly-Clark Worldwide, Inc. Odor control in personal care products
US20050142966A1 (en) * 2003-12-31 2005-06-30 Kimberly-Clark Worldwide, Inc. Odor control materials and face masks including odor control materials
US20050200595A1 (en) * 2004-03-12 2005-09-15 Fors Steven L. Input device for an information system
US20080226908A1 (en) * 2004-03-23 2008-09-18 John Greg Hancock Bi-Component Electrically Conductive Drawn Polyester Fiber and Method For Making Same
AU2005227888A1 (en) * 2004-03-23 2005-10-13 The Clorox Company Method for diluting hypochlorite
ES2245875B1 (en) * 2004-03-26 2006-11-16 Joaquin Espuelas Peñalva MANUFACTURING AND FILTER PROCESS OF NON-WOVEN FABRIC AND / OR FILTERING INJECTED SHEETS OR STRUCTURES OBTAINED BY SUCH PROCESS FOR FILTRATION AND ELIMINATION OF THE PNEUMOFILA LEGIONELLA.
US20070294920A1 (en) * 2005-10-28 2007-12-27 Soft shell boots and waterproof /breathable moisture transfer composites and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
US20070141940A1 (en) * 2005-10-28 2007-06-21 Lightweight, breathable, waterproof, soft shell composite apparel and technical alpine apparel
US20070281567A1 (en) * 2004-04-05 2007-12-06 Solid Water Holding Waterproof/breathable technical apparel
US20060004273A1 (en) * 2004-05-24 2006-01-05 Lobodzinski S S Biological signal sensor on a body surface
SI1766126T1 (en) * 2004-05-26 2014-02-28 Bonar B.V. Cushioned vinyl floor covering
MXPA06013970A (en) * 2004-06-03 2007-10-23 Biokidz Usa Biohazard mask suitable for civilians.
AU2005265096A1 (en) * 2004-06-17 2006-01-26 Microban Products Company Antimicrobial refrigerator air filter
BRPI0512222A (en) * 2004-06-18 2008-02-19 Boc Group Inc antimicrobial coating for gas cylinders and coupling components
US9668488B2 (en) 2004-06-22 2017-06-06 Healthy Fiber, LLC Calorie reduction-taste retention food products
US7975404B2 (en) * 2004-07-01 2011-07-12 Stanbee Company, Inc. Stiffeners for use in footwear
US7407701B2 (en) * 2004-07-30 2008-08-05 Kx Technologies Llc Lofted composite with enhanced air permeability
US8372094B2 (en) 2004-10-15 2013-02-12 Covidien Lp Seal element for anastomosis
WO2006044490A2 (en) 2004-10-18 2006-04-27 Tyco Healthcare Group, Lp Annular adhesive structure
US7938307B2 (en) 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
US20060085886A1 (en) * 2004-10-25 2006-04-27 Cole Williams Perspiration shield and method of making same
EP1815049A1 (en) * 2004-11-15 2007-08-08 Textronics, Inc. Functional elastic composite yarn, methods for making the same, and articles incorporating the same
WO2006051384A1 (en) * 2004-11-15 2006-05-18 Textronics, Inc. Elastic composite yarn, methods for making the same, and articles incorporating the same
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
US7942890B2 (en) 2005-03-15 2011-05-17 Tyco Healthcare Group Lp Anastomosis composite gasket
US7757340B2 (en) 2005-03-25 2010-07-20 S.C. Johnson & Son, Inc. Soft-surface remediation device and method of using same
US20060238436A1 (en) * 2005-04-23 2006-10-26 Applied Radar Method for constructing microwave antennas and circuits incorporated within nonwoven fabric
WO2006116706A2 (en) 2005-04-28 2006-11-02 High Voltage Graphics, Inc. Flocked multi-colored adhesive article with bright lustered flock and methods for making the same
US20060257616A1 (en) * 2005-05-12 2006-11-16 Stowe-Pharr Mills, Inc. (D/B/A Pharr Yarns, Inc.) Renewable nonwoven carpet
US20070277849A1 (en) * 2006-06-06 2007-12-06 Shah Ketan N Method of neutralizing a stain on a surface
US7727289B2 (en) * 2005-06-07 2010-06-01 S.C. Johnson & Son, Inc. Composition for application to a surface
US8061269B2 (en) 2008-05-14 2011-11-22 S.C. Johnson & Son, Inc. Multilayer stencils for applying a design to a surface
US8557758B2 (en) 2005-06-07 2013-10-15 S.C. Johnson & Son, Inc. Devices for applying a colorant to a surface
US7776108B2 (en) 2005-06-07 2010-08-17 S.C. Johnson & Son, Inc. Composition for application to a surface
US8846154B2 (en) 2005-06-07 2014-09-30 S.C. Johnson & Son, Inc. Carpet décor and setting solution compositions
MX2007015450A (en) * 2005-06-07 2008-02-19 Johnson & Son Inc S C Design devices for applying a design to a surface.
US20080282642A1 (en) * 2005-06-07 2008-11-20 Shah Ketan N Method of affixing a design to a surface
US20060281382A1 (en) * 2005-06-10 2006-12-14 Eleni Karayianni Surface functional electro-textile with functionality modulation capability, methods for making the same, and applications incorporating the same
CA2613854A1 (en) * 2005-06-30 2007-01-11 Kyowa Chemical Industry Co., Ltd. Antibacterial agent composed of silver-containing aluminum sulfate hydroxide particles and use thereof
DE602006000082T2 (en) * 2005-07-07 2008-05-15 Rohm And Haas Co. Fiber with antimicrobial composition
DE602006004754D1 (en) * 2005-07-29 2009-02-26 Fiberweb Inc LIQUID, NON-FLUID LUBRICANT FROM BICOMPONENT FILAMENTS
JP4704466B2 (en) * 2005-07-29 2011-06-15 ファイバーウェブ,インコーポレイテッド Antibacterial multi-component filter media
US7655829B2 (en) 2005-07-29 2010-02-02 Kimberly-Clark Worldwide, Inc. Absorbent pad with activated carbon ink for odor control
US7413802B2 (en) 2005-08-16 2008-08-19 Textronics, Inc. Energy active composite yarn, methods for making the same, and articles incorporating the same
FR2891116B1 (en) * 2005-09-29 2007-12-14 Olivier Lefebvre SOLE FOR SHOE
WO2007073525A2 (en) * 2005-11-28 2007-06-28 Yvonne Daily Hot-flash wipes and clothing
US8771831B2 (en) * 2005-12-23 2014-07-08 The United States Of America As Represented By The Secretary Of The Army Multi-functional yarns and fabrics having anti-microbial, anti-static and anti-odor characterisitics
WO2007078203A1 (en) * 2006-01-03 2007-07-12 Norwex Holding As Anti-bacterial micro-fibre and production thereof
US9629626B2 (en) 2006-02-02 2017-04-25 Covidien Lp Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
WO2007101062A1 (en) * 2006-02-22 2007-09-07 Microban Products Company Antimicrobial insert device for water-bearing appliance
US7827704B2 (en) 2006-02-28 2010-11-09 Polyworks, Incorporated Methods of making polymeric articles and polymeric articles formed thereby
US7793813B2 (en) 2006-02-28 2010-09-14 Tyco Healthcare Group Lp Hub for positioning annular structure on a surgical device
DE202007000668U1 (en) 2006-03-03 2007-03-29 W.L. Gore & Associates Gmbh Shoe sole stabilizing material
US20070204402A1 (en) * 2006-03-06 2007-09-06 Emily Harris Infant support and development pillow
US7661204B2 (en) * 2006-03-30 2010-02-16 Maxson Floyd S Insole
US20070243781A1 (en) * 2006-04-12 2007-10-18 Ming-Tzu Chou Antimicrobial cloth
US7914611B2 (en) * 2006-05-11 2011-03-29 Kci Licensing, Inc. Multi-layered support system
US20070269643A1 (en) * 2006-05-16 2007-11-22 James Calvin Bennett Antimicrobial pool filter
US20070281154A1 (en) * 2006-05-31 2007-12-06 Lace Lastics Company, Inc. Fabrics with Silver-Containing Yarn for Health Care Facility Rooms
US20070286878A1 (en) * 2006-06-07 2007-12-13 Harruna Issifu I Removable films for sanitizing substrates and methods of use thereof
US7849542B2 (en) * 2006-06-21 2010-12-14 Dreamwell, Ltd. Mattresses having flame resistant panel
EP1870914A2 (en) * 2006-06-22 2007-12-26 ZIMM Maschinenelemente GmbH + Co Limit switch with a switching part
US20080003430A1 (en) * 2006-06-28 2008-01-03 3M Innovative Properties Company Particulate-loaded polymer fibers and extrusion methods
US7635415B2 (en) * 2006-06-29 2009-12-22 The Clorox Company Regenerable cleaning implement for sanitizing a surface
US7322966B1 (en) * 2006-07-13 2008-01-29 Deerin Robert F Absorbent garment
US20080023385A1 (en) * 2006-07-27 2008-01-31 Baker Jr John Frank Antimicrobial multicomponent filtration medium
US7908772B2 (en) * 2006-08-15 2011-03-22 Columbia Insurance Company Footwear with additives and a plurality of removable footbeds
IL177979A (en) * 2006-09-10 2015-05-31 Cupron Inc Multi-layered material
EP1905338A1 (en) * 2006-09-29 2008-04-02 Electrolux Home Products Corporation N.V. Antibacterial element and household dishwasher featuring such an element
WO2008127287A2 (en) * 2006-10-11 2008-10-23 Biolife, L.L.C. Materials and methods for wound treatment
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
WO2008057281A2 (en) 2006-10-26 2008-05-15 Tyco Healthcare Group Lp Methods of using shape memory alloys for buttress attachment
US8778817B2 (en) * 2006-10-30 2014-07-15 Mcneil-Ppc, Inc. Method of making a cover material including a skin care composition
AU2013206359A1 (en) * 2006-10-30 2013-07-04 Mcneil-Ppc, Inc. Cover material for an absorbent article including a skin care composition and an absorbent article having a cover material including a skin care composition
US8092814B2 (en) * 2006-10-30 2012-01-10 Mcneil-Ppc, Inc. Cover material for an absorbent article including a skin care composition and an absorbent article having a cover material including a skin care composition
TWI324196B (en) * 2006-12-06 2010-05-01 Taiwan Textile Res Inst Spunbond non-woven containing bamboo charcoal and method for fabricating the same
US7754625B2 (en) * 2006-12-22 2010-07-13 Aglon Technologies, Inc. Wash-durable and color stable antimicrobial treated textiles
US9254591B2 (en) 2008-04-14 2016-02-09 Polyworks, Inc. Deep draw method of making impact and vibration absorbing articles and the articles formed thereby
US20110277923A1 (en) * 2006-12-23 2011-11-17 Polyworks, Inc. molding system, method and articles formed thereby
US8183167B1 (en) * 2007-01-19 2012-05-22 NanoHorizons, Inc. Wash-durable, antimicrobial and antifungal textile substrates
WO2008097776A1 (en) * 2007-02-09 2008-08-14 United Feather & Down, Inc. Blended fiber containing silver, blended filling containing silver fibers, and method for making same
AU2008223389B2 (en) 2007-03-06 2013-07-11 Covidien Lp Surgical stapling apparatus
US8011555B2 (en) 2007-03-06 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
WO2008128214A1 (en) 2007-04-13 2008-10-23 Polyworks, Inc. Impact and vibration absorbing body-contacting medallions, methods of use and methods of making
US8038045B2 (en) 2007-05-25 2011-10-18 Tyco Healthcare Group Lp Staple buttress retention system
US20080295843A1 (en) * 2007-06-01 2008-12-04 Haas Marci B Self sanitizing face masks and method of manufacture
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
US7950561B2 (en) 2007-06-18 2011-05-31 Tyco Healthcare Group Lp Structure for attachment of buttress material to anvils and cartridges of surgical staplers
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
CN100593424C (en) * 2007-07-18 2010-03-10 北京万生药业有限责任公司 Apparatus for humidifying and conveying oxygen
US20090031679A1 (en) * 2007-07-30 2009-02-05 Kirsten Braden Disposable saddle pad
US7626062B2 (en) 2007-07-31 2009-12-01 Carner William E System and method for recycling plastics
WO2009018574A2 (en) * 2007-08-02 2009-02-05 Brant Buchanan Multi-utility footwear device
US20090107925A1 (en) * 2007-10-31 2009-04-30 Chevron U.S.A. Inc. Apparatus and process for treating an aqueous solution containing biological contaminants
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US8560369B2 (en) * 2007-11-01 2013-10-15 Red Hat, Inc. Systems and methods for technical support based on a flock structure
US8974814B2 (en) * 2007-11-12 2015-03-10 California Institute Of Technology Layered drug delivery polymer monofilament fibers
DE102007054132A1 (en) * 2007-11-14 2009-05-20 Mitsubishi Polyester Film Gmbh Antimicrobially finished, biaxially oriented polyester film
DE102007054133A1 (en) * 2007-11-14 2009-05-20 Mitsubishi Polyester Film Gmbh Antimicrobially finished, coated, biaxially oriented polyester film
US20090130160A1 (en) * 2007-11-21 2009-05-21 Fiber Innovation Technology, Inc. Fiber for wound dressing
US20090170421A1 (en) 2008-01-02 2009-07-02 Adrian John R Grille
US8007904B2 (en) * 2008-01-11 2011-08-30 Fiber Innovation Technology, Inc. Metal-coated fiber
WO2009101642A1 (en) * 2008-02-12 2009-08-20 Akkua S.R.L. Fitness sock
WO2009115217A1 (en) * 2008-03-19 2009-09-24 Carl Freudenberg Kg Nonwoven fabric provided with antibacterial finishing and having conjugate fibers
EP2103724B1 (en) * 2008-03-19 2011-06-08 Carl Freudenberg KG Wiping cloth with an antibacterial non-woven fabric
DE102008015053A1 (en) * 2008-03-19 2009-09-24 Carl Freudenberg Kg Antibacterial textile with bicomponent fibers, e.g. for clothing, has fiber body incorporating at least one doping substance for antimicrobial effect
JP2009226380A (en) * 2008-03-25 2009-10-08 Nichias Corp Chemical filter and method for producing the same
US10646370B2 (en) * 2008-04-01 2020-05-12 Donaldson Company, Inc. Enclosure ventilation filter and assembly method
US8226452B2 (en) * 2008-04-24 2012-07-24 Destination Maternity Corporation Pull up nursing undergarment
US8469769B2 (en) * 2008-04-24 2013-06-25 Destination Maternity Corporation Nursing garment and method of making
US7958668B2 (en) * 2008-06-13 2011-06-14 Eleven Llc Animal trap having timed release door
JP2011528610A (en) * 2008-06-30 2011-11-24 スリーエム イノベイティブ プロパティズ カンパニー Method for in situ formation of metal nanoclusters in a porous substrate field
US7882688B2 (en) * 2008-07-02 2011-02-08 AG Technologies, Inc. Process for manufacturing yarn made from a blend of polyester fibers and silver fibers
US7886515B2 (en) * 2008-07-02 2011-02-15 AG Technologies, Inc. Process for manufacturing yarn made from a blend of fibers of cotton, nylon and silver
US20100021512A1 (en) * 2008-07-24 2010-01-28 Stanley Arron Incontinence garments with a silver lining infection stopper
US20100030170A1 (en) * 2008-08-01 2010-02-04 Keith Alan Keller Absorptive Pad
CN102177016B (en) * 2008-08-28 2015-11-25 泰科保健集团有限合伙公司 Antimicrobial fibre and correlated product and method
CA2735391A1 (en) * 2008-08-28 2010-03-04 Andover Healthcare, Inc. Silver based antimicrobial compositions and articles
JP2010063959A (en) * 2008-09-09 2010-03-25 Nichias Corp Chemical filter and method of manufacturing the same
US10188103B2 (en) * 2008-09-15 2019-01-29 The Boeing Company Antimicrobial coating fabrication method and structure
US10537915B2 (en) 2008-09-15 2020-01-21 The Boeing Company Contaminant resistant coating fabrication structure and method
DK2352403T3 (en) * 2008-11-19 2014-04-14 Huntleigh Technology Ltd Multilayer Support System
MX2011005333A (en) 2008-11-20 2011-08-15 Water Visions International Inc Antimicrobial device and materials for fluid treatment.
US8069587B2 (en) * 2008-11-20 2011-12-06 3M Innovative Properties Company Molded insulated shoe footbed and method of making an insulated footbed
GB0821345D0 (en) * 2008-11-21 2008-12-31 P Q Silicas Uk Ltd Composition and dressing with nitric oxide
WO2010066142A1 (en) * 2008-12-09 2010-06-17 Sun Xianlin Anti-counterfeit fiber and anti-counterfeit paper containing the same
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
US20100213002A1 (en) * 2009-02-26 2010-08-26 Honeywell International Inc. Fibrous materials, noise suppression materials, and methods of manufacturing noise suppression materials
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US7988027B2 (en) 2009-03-31 2011-08-02 Tyco Healthcare Group Lp Crimp and release of suture holding buttress material
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
US20100275467A1 (en) * 2009-04-29 2010-11-04 Kuan-Min Tsai Insole
WO2010138090A2 (en) * 2009-05-29 2010-12-02 Oztek Tekstil Terbiye Tesisleri Sanayi Ve Ticaret Anonim Sirketi A protective fabric embodiment for military purposes and a cloth produced by use of this fabric embodiment
US20100324516A1 (en) * 2009-06-18 2010-12-23 Tyco Healthcare Group Lp Apparatus for Vacuum Bridging and/or Exudate Collection
KR20120094896A (en) * 2009-07-06 2012-08-27 몰리코프 미네랄스, 엘엘씨 Ceria for use as an antimicrobial barrier and disinfectant in a wound dressing
US20120124862A1 (en) * 2009-07-23 2012-05-24 Harold Kalde Bi-component/binder fiber insole
US20110079235A1 (en) * 2009-08-26 2011-04-07 Reed Gladys B System, apparatus, and method for hair weaving thread
WO2011034952A1 (en) * 2009-09-15 2011-03-24 Montel Media Group Sanitary systems
US20110086078A1 (en) * 2009-10-14 2011-04-14 Water Visions International, Inc. Fibrous antimicrobial materials, structures, and barrier applications
US9693772B2 (en) 2009-10-15 2017-07-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US10842485B2 (en) 2009-10-15 2020-11-24 Covidien Lp Brachytherapy buttress
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US20150231409A1 (en) 2009-10-15 2015-08-20 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US9610080B2 (en) 2009-10-15 2017-04-04 Covidien Lp Staple line reinforcement for anvil and cartridge
WO2011066391A2 (en) 2009-11-25 2011-06-03 Difusion Technologies, Inc. Post-charging of zeolite doped plastics with antimicrobial metal ions
CN102834122B (en) 2009-12-11 2015-03-11 扩散技术公司 Method of manufacturing antimicrobial implants of polyetheretherketone
US9901128B2 (en) * 2009-12-24 2018-02-27 David A. Gray Antimicrobial apparel and fabric and coverings
US20110250450A1 (en) * 2010-01-15 2011-10-13 Noble Fiber Technologies, Llc Extruded component with antimicrobial glass particles
US20110214226A1 (en) * 2010-03-05 2011-09-08 Dundas Lisa A Disposable toilet seat lift apparatus
SG184837A1 (en) * 2010-04-19 2012-11-29 Elizabeth Lizhi Lin Washable, antimicrobial, breathable, multi-layered, absorbent sheet and articles.
EP2561125A1 (en) * 2010-04-21 2013-02-27 Battelle Memorial Institute Fibers containing ferrates and methods
US20110262704A1 (en) * 2010-04-21 2011-10-27 Moshe Rock Flame resistant composite fabrics
BR112012026636B1 (en) 2010-05-07 2019-01-15 Difusion Technologies, Inc. Increased hydrophilicity medical implants and method to minimize biofilm formation in a patient
CN103025192A (en) * 2010-06-25 2013-04-03 安泰国际公司 Shoe with conforming upper
CN101862573B (en) * 2010-06-29 2012-05-30 广东志高空调有限公司 Automatic dedusting and cleaning device for filter screen of air conditioner
US20120029458A1 (en) * 2010-07-27 2012-02-02 Joshua James Norman Bag
US8424118B2 (en) * 2010-07-30 2013-04-23 Longworth Industries, Inc. Undergarment
US8959666B2 (en) * 2010-07-30 2015-02-24 Longworth Industries, Inc. Undergarment
EP2601546A4 (en) * 2010-08-05 2014-11-12 3M Innovative Properties Co Multilayer film comprising matte surface layer and articles
US20120094120A1 (en) 2010-10-18 2012-04-19 PurThread Technologies, Inc. Enhancing and preserving anti-microbial performance in fibers with pigments
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
US9961943B2 (en) 2010-11-03 2018-05-08 F3 Tech, Llc Athletic sock
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
US8651062B2 (en) 2010-12-10 2014-02-18 Marc H. Arsenault Easy to insert pet carrier
US8918930B2 (en) 2011-01-04 2014-12-30 Huntleigh Technology Limited Methods and apparatuses for low-air-loss (LAL) coverlets and airflow units for coverlets
US8360765B2 (en) 2011-01-07 2013-01-29 Covidien Lp Systems and method for forming a coaxial implant
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
US8641967B2 (en) 2011-02-23 2014-02-04 Applied Silver, Inc. Anti-microbial device
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
US8789737B2 (en) 2011-04-27 2014-07-29 Covidien Lp Circular stapler and staple line reinforcement material
CA2836312C (en) 2011-06-01 2017-03-14 Saint-Gobain Adfors Canada, Ltd. Multi-directional reinforcing drywall tape
CN103906494B (en) 2011-07-28 2016-11-09 亨特来夫工业技术有限公司 Multi-layered support system
US9326903B2 (en) 2011-10-03 2016-05-03 Huntleigh Technology Limited Multi-layered support system
US9675351B2 (en) 2011-10-26 2017-06-13 Covidien Lp Buttress release from surgical stapler by knife pushing
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
WO2013067155A1 (en) * 2011-11-04 2013-05-10 Ronner David E Fabric material
US9611086B2 (en) * 2011-11-11 2017-04-04 Hinson & Hale Medical Technologies, Inc. Reusable surgical wrappers
US9351732B2 (en) 2011-12-14 2016-05-31 Covidien Lp Buttress attachment to degradable polymer zones
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
US8967448B2 (en) 2011-12-14 2015-03-03 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9113885B2 (en) 2011-12-14 2015-08-25 Covidien Lp Buttress assembly for use with surgical stapling device
WO2013106410A2 (en) 2012-01-10 2013-07-18 Duda Marcus Improved sock for treatment of foot and leg wounds, methods of use and manufacture
BR112014017924A8 (en) 2012-01-20 2017-07-11 Huntleigh Technology Ltd THERMAL SUPPORT AND CONTROL SYSTEM
US9010609B2 (en) 2012-01-26 2015-04-21 Covidien Lp Circular stapler including buttress
US9010612B2 (en) 2012-01-26 2015-04-21 Covidien Lp Buttress support design for EEA anvil
US9326773B2 (en) 2012-01-26 2016-05-03 Covidien Lp Surgical device including buttress material
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US9931116B2 (en) 2012-02-10 2018-04-03 Covidien Lp Buttress composition
US20130212808A1 (en) * 2012-02-21 2013-08-22 Charles A. Lachenbruch Topper with Targeted Fluid Flow Distribution
US8820606B2 (en) 2012-02-24 2014-09-02 Covidien Lp Buttress retention system for linear endostaplers
US20170175310A1 (en) * 2012-02-29 2017-06-22 Levana Textiles Limited Fabrics, compression garments and compression garment systems
US20150051352A1 (en) * 2012-03-09 2015-02-19 Isp Investments Inc. Multi-functional grafted polymers
CN102605530A (en) * 2012-03-20 2012-07-25 福建凤竹纺织科技股份有限公司 Production process for elastic knitted fabric
US9513088B2 (en) 2012-04-02 2016-12-06 W. L. Gore & Associates, Inc. Protective undergarment
US9572576B2 (en) 2012-07-18 2017-02-21 Covidien Lp Surgical apparatus including surgical buttress
US20140048580A1 (en) 2012-08-20 2014-02-20 Covidien Lp Buttress attachment features for surgical stapling apparatus
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
US20140131418A1 (en) 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
US9192384B2 (en) 2012-11-09 2015-11-24 Covidien Lp Recessed groove for better suture retention
US9681936B2 (en) 2012-11-30 2017-06-20 Covidien Lp Multi-layer porous film material
US20140150291A1 (en) * 2012-11-30 2014-06-05 Scot K LARSEN Impact Resistant Running Shoe Insert
US9295466B2 (en) 2012-11-30 2016-03-29 Covidien Lp Surgical apparatus including surgical buttress
US9522002B2 (en) 2012-12-13 2016-12-20 Covidien Lp Surgical instrument with pressure distribution device
US9402627B2 (en) 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
US9204881B2 (en) 2013-01-11 2015-12-08 Covidien Lp Buttress retainer for EEA anvil
US9433420B2 (en) 2013-01-23 2016-09-06 Covidien Lp Surgical apparatus including surgical buttress
US9414839B2 (en) 2013-02-04 2016-08-16 Covidien Lp Buttress attachment for circular stapling device
US9192383B2 (en) 2013-02-04 2015-11-24 Covidien Lp Circular stapling device including buttress material
WO2014130940A1 (en) 2013-02-22 2014-08-28 Eastern Maine Healthcare Services Antimicrobial blood pressure cuff cover
US9504470B2 (en) 2013-02-25 2016-11-29 Covidien Lp Circular stapling device with buttress
US20140239047A1 (en) 2013-02-28 2014-08-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US8558008B2 (en) 2013-02-28 2013-10-15 Dermira, Inc. Crystalline glycopyrrolate tosylate
US9006462B2 (en) 2013-02-28 2015-04-14 Dermira, Inc. Glycopyrrolate salts
AU2014223172B2 (en) 2013-02-28 2016-09-08 Journey Medical Corporation Glycopyrrolate salts
US9782173B2 (en) 2013-03-07 2017-10-10 Covidien Lp Circular stapling device including buttress release mechanism
US20140263033A1 (en) * 2013-03-13 2014-09-18 2266170 Ontario Inc. Process For Forming A Three-Dimensional Non-Woven Structure
US20140259721A1 (en) * 2013-03-13 2014-09-18 Biovation, Llc Biodegradable polymer non-woven field boot dryer insert with absorbency and antimicrobial chemistry
CN103194855B (en) * 2013-03-18 2016-03-23 河南舒莱卫生用品有限公司 A kind of preparation method of nanometer silver antimicrobial nonwoven fabric and the application on paper diaper thereof
US20140306154A1 (en) * 2013-04-10 2014-10-16 Texanne Holloway Freezer/Fridge Mats
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US20160032501A1 (en) * 2013-04-29 2016-02-04 Solid Water Holdings Moisture transfer yarn and fabric
USD743520S1 (en) 2013-06-20 2015-11-17 Broan-Nutone Llc Range hood
US9256302B2 (en) * 2013-07-22 2016-02-09 No Touch Technologies, Llc Stylus pen
US9908987B2 (en) 2013-08-12 2018-03-06 PurThread Technologies, Inc. Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof
US10640403B2 (en) 2013-08-15 2020-05-05 Applied Silver, Inc. Antimicrobial batch dilution system
US11618696B2 (en) 2013-08-15 2023-04-04 Applied Silver, Inc. Antimicrobial batch dilution system
US9204749B1 (en) * 2013-08-28 2015-12-08 Vincent Trapani Quick release antimicrobial hospital curtain
CN103590139B (en) * 2013-10-16 2016-08-17 扬州广泰化纤有限公司 A kind of powerful three-dimensional crimp memory fiber and manufacture method thereof
US9655620B2 (en) 2013-10-28 2017-05-23 Covidien Lp Circular surgical stapling device including buttress material
US10654075B2 (en) * 2013-11-13 2020-05-19 Zoran Lesic Apparatus and methods for treating a medical device and hand disinfection
US10000881B2 (en) 2013-12-06 2018-06-19 Applied Silver, Inc. Method for antimicrobial fabric application
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9560896B1 (en) 2014-02-12 2017-02-07 Soxsols, Llc Insole for footwear
KR102381804B1 (en) * 2014-03-10 2022-03-31 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 Dishwasher insulation blanket
US9332855B2 (en) 2014-03-13 2016-05-10 John Robert BAXTER Personal cellular tissue repair, recovery and regeneration enhancement sleep system
US9844378B2 (en) 2014-04-29 2017-12-19 Covidien Lp Surgical stapling apparatus and methods of adhering a surgical buttress thereto
USD736903S1 (en) 2014-05-01 2015-08-18 Broan-Nutone Llc Down draft grill
US20150360159A1 (en) * 2014-06-11 2015-12-17 Fibervisions, L.P. Blended Fiber Filters
US9878480B1 (en) 2014-06-24 2018-01-30 PurThread Technologies, Inc. Method for making polymer feedstock usable for generation of fiber having anti-microbial properties
FR3022785B1 (en) * 2014-06-25 2017-10-13 Pylote USE OF MATERIALS INCORPORATING MICROPARTICLES TO PREVENT THE PROLIFERATION OF CONTAMINANTS.
US20160015844A1 (en) * 2014-07-21 2016-01-21 Juliana Collins Sanitizing Floor Mat
MX2017000530A (en) 2014-07-31 2017-05-01 Kimberly Clark Co Anti-adherent composition.
MX2017001057A (en) 2014-07-31 2017-05-09 Kimberly Clark Co Anti-adherent composition.
US10028899B2 (en) 2014-07-31 2018-07-24 Kimberly-Clark Worldwide, Inc. Anti-adherent alcohol-based composition
US10028760B2 (en) * 2014-08-21 2018-07-24 Robert T. Bock Consultancy Llc High intensity ultrasonic tongue cleaner
WO2016029242A1 (en) * 2014-08-25 2016-03-03 Ansell Limited Wound care foot wrap
US9533630B2 (en) * 2014-10-29 2017-01-03 Nonwoven Network LLC High performance moldable composite
US10072366B2 (en) 2014-10-29 2018-09-11 Nonwoven Network LLC Moldable automotive fibrous products with enhanced heat deformation
US10835216B2 (en) 2014-12-24 2020-11-17 Covidien Lp Spinneret for manufacture of melt blown nonwoven fabric
USD778425S1 (en) * 2015-01-08 2017-02-07 Broan-Nutone Llc Ventilator grill
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
JP3197820U (en) * 2015-03-20 2015-06-04 帝人株式会社 Side
AU2015390078B2 (en) 2015-04-01 2020-11-26 Kimberly-Clark Worldwide, Inc. Fibrous substrate for capture of Gram negative bacteria
US11020578B2 (en) 2015-04-10 2021-06-01 Covidien Lp Surgical stapler with integrated bladder
CN104878460A (en) * 2015-04-29 2015-09-02 浙江海利得新材料股份有限公司 Production method of anti-wicking ultralow-shrinkage industrial polyester filaments
USD804627S1 (en) 2015-05-19 2017-12-05 Broan-Nutone Llc Vent hood
USD826391S1 (en) 2015-05-19 2018-08-21 Broan-Nutone Llc Vent hood
CA165306S (en) 2015-05-19 2017-01-23 Broan Nu Tone Llc Vent hood
USD814009S1 (en) 2015-05-19 2018-03-27 Broan-Nutone, Llc Vent hood
US9938659B2 (en) 2015-06-27 2018-04-10 Nonwoven Network LLC Apparatus and method of making a nonwoven ceiling tile and wall panel
US10918110B2 (en) 2015-07-08 2021-02-16 Corning Incorporated Antimicrobial phase-separating glass and glass ceramic articles and laminates
US20170050870A1 (en) 2015-08-21 2017-02-23 Applied Silver, Inc. Systems And Processes For Treating Textiles With An Antimicrobial Agent
USD785777S1 (en) 2015-08-31 2017-05-02 Broan-Nutone Llc Vent hood
USD799679S1 (en) 2015-09-14 2017-10-10 Broan-Nutone Llc Ventilation grill
USD800294S1 (en) 2015-09-14 2017-10-17 Broan-Nutone Llc Ventilation grill
USD815724S1 (en) 2015-09-14 2018-04-17 Broan-Nutone Llc Ventilation grill
USD822821S1 (en) 2015-09-14 2018-07-10 Broan-Nutone, Llc Ventilation grill
USD816206S1 (en) 2015-09-14 2018-04-24 Broan-Nutone Llc Ventilation grill
USD799677S1 (en) 2015-09-14 2017-10-10 Broan-Nutone Llc Ventilation grill
USD799678S1 (en) 2015-09-14 2017-10-10 Broan-Nutone Llc Ventilation grill
USD800295S1 (en) 2015-09-14 2017-10-17 Broan-Nutone Llc Ventilation grill
CH711581A2 (en) * 2015-09-25 2017-03-31 Dratva Christian Clothing, in particular for a human body.
USD774018S1 (en) 2015-10-06 2016-12-13 Broan-Nutone Llc Wireless speaker
US9387125B1 (en) 2016-01-26 2016-07-12 Vive Wear Llc Sock for treatment of foot and leg wounds, methods of use and manufacture
KR102627187B1 (en) 2016-05-26 2024-01-22 킴벌리-클라크 월드와이드, 인크. Anti-adhesion compositions and methods for inhibiting adhesion of microorganisms to surfaces
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
KR101968686B1 (en) * 2016-07-08 2019-04-12 건국대학교 산학협력단 Manufacturing methods of antibiotic shoes insole using bioplastic and antibiotic shoes manufactured by them
US11357937B2 (en) * 2016-08-02 2022-06-14 Altria Client Services Llc Collapsible fiber matrix reservoir for an e-vaping device
US10189729B2 (en) 2016-08-24 2019-01-29 Whirlpool Corporation Method and apparatus for preventing mold growth in the reservoir of a food waste recycling appliance
KR101817935B1 (en) 2016-09-02 2018-02-21 주식회사 지클로 Antibacterial Multi-layered Insole Containing Natural Substance
JP6892727B2 (en) * 2016-09-26 2021-06-23 カンタツ株式会社 Pattern manufacturing equipment, pattern manufacturing method and pattern manufacturing program
USD897521S1 (en) 2016-10-14 2020-09-29 Broan-Nutone Llc Vent hood
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
CA3092627A1 (en) 2017-03-01 2018-09-07 Applied Silver, Inc. Systems and processes for treating textiles with an antimicrobial agent
US10368868B2 (en) 2017-03-09 2019-08-06 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
DE102017002957A1 (en) 2017-03-28 2018-10-04 Mann+Hummel Gmbh Spunbonded fabric, filter medium, filter element and its use and filter arrangement
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
EP3601656B1 (en) 2017-03-28 2023-06-28 MANN+HUMMEL GmbH Spun-bonded fabric material, object comprising a spun-bonded fabric material, filter medium, filter element, and use thereof
WO2018191386A1 (en) * 2017-04-14 2018-10-18 Ladiez Must Have Llc Protective sock preventing fungal type infections
US10602884B2 (en) * 2017-05-05 2020-03-31 Katlien Gargano Multi-functional towel
WO2018231960A1 (en) * 2017-06-13 2018-12-20 Veterinary Diagnostics Institute, Inc. System and procedure for stabilizing, storing and recovering blood samples
CN107158803A (en) * 2017-06-28 2017-09-15 台州市天湖网业有限公司 A kind of PET screen packs and its processing technology
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US20200188835A1 (en) * 2017-08-24 2020-06-18 Purafil, Inc. Method For Removing Gaseous Contaminants From A Fluid Stream
US20190107301A1 (en) * 2017-10-08 2019-04-11 Massood Kamalpour Fibrous dispersion and filtration air outlet system
JP7158840B2 (en) * 2017-10-24 2022-10-24 ロレアル A sheet-like substrate having the function of restricting movement of a formulation applied to a target zone, and a sheet-like cosmetic product manufactured using the same
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
US11925226B2 (en) 2018-02-05 2024-03-12 The Board Of Trustees Of The Leland Stanford Junior University Spectrally selective textile for passive radiative outdoor personal cooling
US11065000B2 (en) 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
USD895783S1 (en) 2018-05-22 2020-09-08 Broan-Nutone Llc Grille assembly for a bathroom ventilation fan
CN108619556B (en) * 2018-06-21 2021-07-06 江西省科学院应用化学研究所 Preparation method of porous fiber composite hemostatic material
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
US20210310162A1 (en) * 2018-10-18 2021-10-07 Massachusetts Institute Of Technology Active Textile Tailoring
CN111109963B (en) * 2018-10-30 2021-09-24 绿能奈米科技有限公司 Bedding structure with non-power energy layer and far infrared fiber
USD946136S1 (en) 2018-11-28 2022-03-15 Broan-Nutone Llc Ventilation grille
USD908861S1 (en) 2018-11-28 2021-01-26 Broan-Nutone Llc Ventilation grille
USD909560S1 (en) 2018-11-28 2021-02-02 Broan-Nutone Llc Ventilation grille
USD902372S1 (en) 2018-11-28 2020-11-17 Broan-Nutone Llc Ventilation grille
USD943730S1 (en) 2018-11-28 2022-02-15 Broan-Nutone Llc Ventilation grille
US11758909B2 (en) * 2018-12-18 2023-09-19 Ascend Performance Materials Operations Llc Antimicrobial nonwoven polyamides with zinc content
US11559151B2 (en) 2019-01-07 2023-01-24 Tempur World, Llc Antimicrobial washable pillow
DE102019200410A1 (en) * 2019-01-15 2020-07-16 Coin Consulting GmbH DIFFERENTIAL DETERGENT WIPE WITH DUAL SUSTAINABILITY CHARACTERISTICS
USD899582S1 (en) 2019-01-22 2020-10-20 Broan-Nutone Llc Ventilation grille
USD898896S1 (en) 2019-01-22 2020-10-13 Broan-Nutone Llc Ventilation grille
DE102019103123A1 (en) * 2019-02-08 2020-08-13 Tesa Se Thermally softenable adhesive tape and method for sheathing elongated goods, in particular cables
US11300305B2 (en) 2019-02-15 2022-04-12 Broan-Nutone Llc Grille attachment feature for a ventilation system
US11326792B2 (en) 2019-02-15 2022-05-10 Broan-Nutone Llc Grille attachment system for a ventilation system
WO2020188325A1 (en) * 2019-03-15 2020-09-24 Vikram Goel Surface cleaning wipes
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
CN110205820B (en) * 2019-04-30 2020-06-12 东华大学 Functional fiber and preparation method thereof
USD946137S1 (en) 2019-05-01 2022-03-15 Broan-Nutone Llc Ventilation grille
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11617411B2 (en) 2019-06-11 2023-04-04 Karnali Innovations LLC Anti-infective shoe soles
CN110528142B (en) * 2019-08-21 2021-08-10 江苏大毛牛新材料有限公司 Natural mosquito-repellent fabric product
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
KR102354177B1 (en) * 2019-10-16 2022-01-24 주식회사 휴비스 Nonwoven fabric for cabin air filter comprising low melting polyester fiber
US11523824B2 (en) 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
CN111041701A (en) * 2019-12-28 2020-04-21 宁波大军长毛绒有限公司 Preparation process of fox fur-imitated fabric
CN111020724A (en) * 2019-12-31 2020-04-17 深圳市宏翔新材料发展有限公司 Preparation method of textilene cloth
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
WO2021222311A1 (en) * 2020-04-27 2021-11-04 Patrick Kelly Method of preparing antimicrobial sheets for articles of manufacture having antimicrobial properties
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
US20210360928A1 (en) * 2020-05-21 2021-11-25 Piana Nonwovens, LLC. Antimicrobial/antiviral nonwoven and applications of the same
KR102148226B1 (en) 2020-06-05 2020-08-26 주식회사 일송글로벌 Antibacterial and antifungal compositions and uses thereof
KR102152232B1 (en) 2020-07-06 2020-09-04 주식회사 성신양행 Eco-friendly antibacterial fiber with improved deodorizing ability and its manufacturing method
DE202020005541U1 (en) 2020-07-21 2021-07-26 Dr. Schumacher Gmbh Disposable wipes for cleaning and / or disinfecting surfaces
DE202020005540U1 (en) 2020-07-21 2021-08-12 Dr. Schumacher Gmbh Multi-layer wipe with improved reach for cleaning and / or disinfecting surfaces
KR102163253B1 (en) 2020-08-14 2020-10-08 주식회사 일송글로벌 Fiber molded products with semi-permanent antibacterial and deodorizing properties
KR102163245B1 (en) 2020-08-14 2020-10-08 주식회사 일송글로벌 Synthetic fiber with semi-permanent antibacterial and anti-fungal properties and uses thereof
KR102163232B1 (en) 2020-08-14 2020-10-08 주식회사 일송글로벌 Masterbatch having antibacterial and anti-fungal properties and its manufacturing method
US20220061429A1 (en) * 2020-08-27 2022-03-03 The Fix Marketing, LLC Gaming gloves
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
CN112226871B (en) * 2020-09-29 2021-11-19 东华大学 Ligament regeneration scaffold with gradient induction activity and preparation method thereof
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
CN113062028A (en) * 2021-03-22 2021-07-02 上海宝鸟服饰有限公司 Antibacterial suit fabric and preparation method thereof
US11344082B1 (en) * 2021-06-21 2022-05-31 SoleScreens LLC Shoe sole cover
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
DE102021122041B3 (en) 2021-08-25 2022-11-03 Dr. Schumacher Gmbh Multi-ply disposable floor wipe with an abrasive strip
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US20230093669A1 (en) * 2021-09-16 2023-03-23 Ascend Performance Materials Operations Llc Antiodor and antimicrobial layers in absorbent materials
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus
CN114277493B (en) * 2021-12-29 2022-08-30 浙江珊琪服饰有限公司 Nano crease-resistant fabric and preparation method thereof
CN114454586A (en) * 2022-02-11 2022-05-10 杭州睿典布艺有限公司 High-strength wear-resistant flame-retardant decorative cloth
CN114589971B (en) * 2022-03-09 2024-02-27 浙江泰铨家居用品有限公司 Antibacterial washing mop sponge
CN114959997B (en) * 2022-06-10 2023-12-26 丹阳市丹祈纺织有限公司 Preparation method of woven multifunctional unidirectional moisture-conducting synthetic fiber fabric
WO2024037967A1 (en) 2022-08-17 2024-02-22 Dr. Schumacher Gmbh Method for producing a multi-layered cloth product
GR1010533B (en) * 2022-09-13 2023-08-29 Ελληνικος Χαλκος Ι.Κ.Ε., Antimicrobial use of a composite fiber material of polyethylene terephtalate and copper ions in air handling units
CN117211008B (en) * 2023-11-09 2024-01-30 龙帛生物科技有限公司 Degradable non-woven fabric material and preparation method thereof

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959556A (en) * 1973-04-10 1976-05-25 Morrison Willard L Antimicrobial blended yarns and fabrics comprised of naturally occurring fibers
US3983061A (en) * 1971-02-16 1976-09-28 Ciba-Geigy Corporation Process for the permanent finishing of fiber materials
US4226232A (en) * 1979-04-09 1980-10-07 Spenco Medical Corporation Wound dressing
US4350732A (en) * 1976-10-26 1982-09-21 Foss Manufacturing Company, Inc. Reinforcing laminate
US4371577A (en) * 1981-05-22 1983-02-01 Mitsubishi Burlington Co., Ltd. Antimicrobial carpet containing amino acid type surfactant
US4401770A (en) * 1982-04-01 1983-08-30 Olin Corporation Shoe insole having antibacterial and antifungal properties
US4624679A (en) * 1985-01-03 1986-11-25 Morton Thiokol, Inc. Compositions containing antimicorbial agents in combination with stabilizers
US4775585A (en) * 1983-01-21 1988-10-04 Kanebo Ltd./Kanto Chemical Co. Polymer article having an antibacterial property containing zeolite particles therein and the processes for producing same
US4864740A (en) * 1986-12-22 1989-09-12 Kimberly-Clark Corporation Disposable hygienic shoe insole and method for making the same
US4919998A (en) * 1988-03-04 1990-04-24 Precision Fabrics Group Woven medical fabric
US4923914A (en) * 1988-04-14 1990-05-08 Kimberly-Clark Corporation Surface-segregatable, melt-extrudable thermoplastic composition
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
US5047448A (en) * 1988-09-27 1991-09-10 Kuraray Company Limited Antimicrobial-shaped article and a process for producing the same
US5071551A (en) * 1988-09-20 1991-12-10 Kabushiki Kaisha Aiaishi Water purifier
US5094847A (en) * 1989-10-20 1992-03-10 Mitsubishi Petrochemical Co., Ltd. Method for producing an antibacterial molded article of polyolefin resin composition comprising a zeolite containing silver and subjecting the surface of the molded article to corona discharge
US5098417A (en) * 1990-04-12 1992-03-24 Ricoh Kyosan, Inc. Cellulosic wound dressing with an active agent ionically absorbed thereon
US5104934A (en) * 1989-12-15 1992-04-14 Monsanto Company Polymer blends of polycarbonate, PETG and ABS
US5106897A (en) * 1990-02-20 1992-04-21 Monsanto Company Method for improving the low temperature impact strength of polyblends of thermoplastic copolyesters and styrene acrylonitrile copolymers
US5134201A (en) * 1991-10-28 1992-07-28 The Dow Chemical Company Miscible polyester blends
US5147339A (en) * 1987-09-22 1992-09-15 Coloplast A/S Dressing material for the treatment of wounds, and corpuscles for use in the production thereof
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
US5187230A (en) * 1989-12-15 1993-02-16 Monsanto Company Rubber-modified polymer blends of polycarbonate and PETG
US5219325A (en) * 1990-03-02 1993-06-15 Duphar International, Research B.V. Wound dressing and method of preparing the same
US5244667A (en) * 1990-02-28 1993-09-14 Hagiwara Research Corp. Silica-gel based antimicrobial composition having an antimicrobial coat of aluminosilicate on the surface of silica gel
US5268203A (en) * 1989-10-30 1993-12-07 H. B. Fuller Company Method of introducing an integral thermo-bonded layer into the surface of a thermoformed substrate
US5300167A (en) * 1992-01-03 1994-04-05 Kimberly-Clark Method of preparing a nonwoven web having delayed antimicrobial activity
US5405644A (en) * 1992-11-17 1995-04-11 Toagosei Chemical Industry Co., Ltd. Process for producing antimicrobial fiber
US5408022A (en) * 1991-10-18 1995-04-18 Kuraray Co., Ltd. Antimicrobial polymerizable composition, the polymer and article obtained from the same
US5525651A (en) * 1993-10-20 1996-06-11 The Dow Chemical Company Blends of polycarbonate and chlorinated polyethylene
US5556699A (en) * 1987-06-30 1996-09-17 Shingawa Fuel Co. Ltd. Antibiotic zeolite-containing film
US5709870A (en) * 1994-10-18 1998-01-20 Rengo Co., Ltd. Antimicrobial agent
US5733949A (en) * 1994-10-07 1998-03-31 Kuraray Co., Ltd. Antimicrobial adhesive composition for dental uses
US5756578A (en) * 1995-01-11 1998-05-26 Phillips Petroleum Company Blends of poly (ethylene terephthalate) and monovinylarene/conjugated diene block copolymers
US5762650A (en) * 1996-08-23 1998-06-09 Olin Corporation Biocide plus surfactant for protecting carpets
US5783570A (en) * 1995-12-26 1998-07-21 Toyo Boseki Kabushiki Kaisha Organic solvent-soluble mucopolysaccharide, antibacterial antithrombogenic composition and medical material
US5876489A (en) * 1995-03-06 1999-03-02 Suntory Limited Germ-removing filter and apparatus for maintaining sterile room under sterile condition
US5900258A (en) * 1996-02-01 1999-05-04 Zeolitics Inc. Anti-bacterial compositions
US5958539A (en) * 1997-08-26 1999-09-28 Eastman Chemical Company Thermoplastic article having textile fiber fabric embedded therein
US5985079A (en) * 1996-03-28 1999-11-16 Rexam Industries Corp. Flexible composite surfacing film and method for producing same
US6037057A (en) * 1998-02-13 2000-03-14 E. I. Du Pont De Nemours And Company Sheath-core polyester fiber including an antimicrobial agent
US6436422B1 (en) * 1998-11-23 2002-08-20 Agion Technologies L.L.C. Antibiotic hydrophilic polymer coating

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3501369A (en) * 1965-11-17 1970-03-17 Johnson & Johnson Nonwoven fabric and method of making the same
US3531368A (en) 1966-01-07 1970-09-29 Toray Industries Synthetic filaments and the like
US3589956A (en) * 1966-09-29 1971-06-29 Du Pont Process for making a thermally self-bonded low density nonwoven product
US4019844A (en) 1973-02-26 1977-04-26 Toray Industries, Inc. Apparatus for producing multiple layers conjugate fibers
US4357476A (en) * 1974-02-22 1982-11-02 Ciba Geigy Corporation, N.Y. Nonylamines
JPS5937956A (en) * 1982-08-24 1984-03-01 カネボウ株式会社 Particle filled fiber structure
US4551378A (en) * 1984-07-11 1985-11-05 Minnesota Mining And Manufacturing Company Nonwoven thermal insulating stretch fabric and method for producing same
US4784909A (en) * 1986-09-16 1988-11-15 Teijin Limited Anti-fungus, deodorant fiber material
US4904523A (en) * 1987-01-06 1990-02-27 Pellon Company Polyester heat bonded product
JPS63175117A (en) * 1987-01-08 1988-07-19 Kanebo Ltd Antimicrobial fibrous structural material
JPH0830287B2 (en) 1987-07-01 1996-03-27 東レ株式会社 Polyester 3-component composite yarn
CH674843A5 (en) * 1988-01-26 1990-07-31 Lonza Ag
JPH01246204A (en) 1988-03-25 1989-10-02 Kuraray Co Ltd Antimicrobial formed products and their production
JPH0299606A (en) 1988-09-29 1990-04-11 Kuraray Co Ltd Fiber having deodorant and antimicrobial performance and production thereof
JPH02169740A (en) 1988-12-16 1990-06-29 Kuraray Co Ltd Bacteriostatic deodorizing cloth
KR920006382B1 (en) * 1989-12-13 1992-08-03 주식회사 선경인더스트리 A process for the preparation of antibiotic polyester fibers
US5005679A (en) * 1990-02-06 1991-04-09 Hjelle Kurt R Tote bags equipped with a cooling chamber
US5244687A (en) * 1992-04-28 1993-09-14 Kraft General Foods, Inc. Product and process of producing a no-fat cheese analog containing rennet casein
JP3131614B2 (en) 1992-06-29 2001-02-05 京セラミタ株式会社 Electrophotographic photoreceptor
JP3159408B2 (en) 1992-09-30 2001-04-23 株式会社クラレ Antibacterial suede-like artificial leather
JPH0754208A (en) * 1993-08-13 1995-02-28 Teijin Ltd Sheath-core type composite binder fiber
JPH07145514A (en) 1993-11-19 1995-06-06 Toray Ind Inc Polyester-based ternary conjugate fiber
US5605739A (en) * 1994-02-25 1997-02-25 Kimberly-Clark Corporation Nonwoven laminates with improved peel strength
US5491186A (en) * 1995-01-18 1996-02-13 Kean; James H. Bonded insulating batt
FR2735418B1 (en) * 1995-06-19 1997-08-22 Heidelberg Harris Sa DEVICE FOR EXCHANGING PLATES OF PRINTING UNITS OF PRINTING MACHINES
US5617903A (en) * 1996-03-04 1997-04-08 Bowen, Jr.; David Papermaker's fabric containing multipolymeric filaments
US5856005A (en) * 1996-06-06 1999-01-05 Design Tex, Inc. Permanently anti-microbial and flame-retardant yarn and fabric made therefrom
JPH1060740A (en) 1996-08-15 1998-03-03 Unitika Ltd Polyester-based self-extensible splittable conjugated fiber and combined filament yarn containing the same and fabric
US5829171A (en) * 1996-10-01 1998-11-03 Perfect Impression Footwear Company Custom-fitting footwear
JPH10198608A (en) * 1997-01-08 1998-07-31 Mitsubishi Electric Corp Memory card
JP2001522947A (en) * 1997-11-06 2001-11-20 イーストマン ケミカル カンパニー Copolyester binder fiber
US6194332B1 (en) * 1998-12-23 2001-02-27 Malden Mills Industries, Inc. Anti-microbial enhanced knit fabric
US6723428B1 (en) * 1999-05-27 2004-04-20 Foss Manufacturing Co., Inc. Anti-microbial fiber and fibrous products
US6218009B1 (en) * 1999-11-30 2001-04-17 Kimberly-Clark Worldwide, Inc. Hydrophilic binder fibers

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983061A (en) * 1971-02-16 1976-09-28 Ciba-Geigy Corporation Process for the permanent finishing of fiber materials
US3959556A (en) * 1973-04-10 1976-05-25 Morrison Willard L Antimicrobial blended yarns and fabrics comprised of naturally occurring fibers
US4350732A (en) * 1976-10-26 1982-09-21 Foss Manufacturing Company, Inc. Reinforcing laminate
US4226232A (en) * 1979-04-09 1980-10-07 Spenco Medical Corporation Wound dressing
US4371577A (en) * 1981-05-22 1983-02-01 Mitsubishi Burlington Co., Ltd. Antimicrobial carpet containing amino acid type surfactant
US4401770A (en) * 1982-04-01 1983-08-30 Olin Corporation Shoe insole having antibacterial and antifungal properties
US4911898A (en) * 1983-01-21 1990-03-27 Kanebo Limited Zeolite particles retaining silver ions having antibacterial properties
US4775585A (en) * 1983-01-21 1988-10-04 Kanebo Ltd./Kanto Chemical Co. Polymer article having an antibacterial property containing zeolite particles therein and the processes for producing same
US4624679A (en) * 1985-01-03 1986-11-25 Morton Thiokol, Inc. Compositions containing antimicorbial agents in combination with stabilizers
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
US4864740A (en) * 1986-12-22 1989-09-12 Kimberly-Clark Corporation Disposable hygienic shoe insole and method for making the same
US5556699A (en) * 1987-06-30 1996-09-17 Shingawa Fuel Co. Ltd. Antibiotic zeolite-containing film
US5147339A (en) * 1987-09-22 1992-09-15 Coloplast A/S Dressing material for the treatment of wounds, and corpuscles for use in the production thereof
US4919998A (en) * 1988-03-04 1990-04-24 Precision Fabrics Group Woven medical fabric
US4923914A (en) * 1988-04-14 1990-05-08 Kimberly-Clark Corporation Surface-segregatable, melt-extrudable thermoplastic composition
US5071551A (en) * 1988-09-20 1991-12-10 Kabushiki Kaisha Aiaishi Water purifier
US5047448A (en) * 1988-09-27 1991-09-10 Kuraray Company Limited Antimicrobial-shaped article and a process for producing the same
US5094847A (en) * 1989-10-20 1992-03-10 Mitsubishi Petrochemical Co., Ltd. Method for producing an antibacterial molded article of polyolefin resin composition comprising a zeolite containing silver and subjecting the surface of the molded article to corona discharge
US5268203A (en) * 1989-10-30 1993-12-07 H. B. Fuller Company Method of introducing an integral thermo-bonded layer into the surface of a thermoformed substrate
US5104934A (en) * 1989-12-15 1992-04-14 Monsanto Company Polymer blends of polycarbonate, PETG and ABS
US5187230A (en) * 1989-12-15 1993-02-16 Monsanto Company Rubber-modified polymer blends of polycarbonate and PETG
US5106897A (en) * 1990-02-20 1992-04-21 Monsanto Company Method for improving the low temperature impact strength of polyblends of thermoplastic copolyesters and styrene acrylonitrile copolymers
US5244667A (en) * 1990-02-28 1993-09-14 Hagiwara Research Corp. Silica-gel based antimicrobial composition having an antimicrobial coat of aluminosilicate on the surface of silica gel
US5219325A (en) * 1990-03-02 1993-06-15 Duphar International, Research B.V. Wound dressing and method of preparing the same
US5098417A (en) * 1990-04-12 1992-03-24 Ricoh Kyosan, Inc. Cellulosic wound dressing with an active agent ionically absorbed thereon
US5494987A (en) * 1991-01-18 1996-02-27 Kuraray Co., Ltd. Antimicrobial polmerizable composition, the polymer and article obtained from the same
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
US5408022A (en) * 1991-10-18 1995-04-18 Kuraray Co., Ltd. Antimicrobial polymerizable composition, the polymer and article obtained from the same
US5134201A (en) * 1991-10-28 1992-07-28 The Dow Chemical Company Miscible polyester blends
US5300167A (en) * 1992-01-03 1994-04-05 Kimberly-Clark Method of preparing a nonwoven web having delayed antimicrobial activity
US5405644A (en) * 1992-11-17 1995-04-11 Toagosei Chemical Industry Co., Ltd. Process for producing antimicrobial fiber
US5525651A (en) * 1993-10-20 1996-06-11 The Dow Chemical Company Blends of polycarbonate and chlorinated polyethylene
US5733949A (en) * 1994-10-07 1998-03-31 Kuraray Co., Ltd. Antimicrobial adhesive composition for dental uses
US5709870A (en) * 1994-10-18 1998-01-20 Rengo Co., Ltd. Antimicrobial agent
US5756578A (en) * 1995-01-11 1998-05-26 Phillips Petroleum Company Blends of poly (ethylene terephthalate) and monovinylarene/conjugated diene block copolymers
US5876489A (en) * 1995-03-06 1999-03-02 Suntory Limited Germ-removing filter and apparatus for maintaining sterile room under sterile condition
US5783570A (en) * 1995-12-26 1998-07-21 Toyo Boseki Kabushiki Kaisha Organic solvent-soluble mucopolysaccharide, antibacterial antithrombogenic composition and medical material
US5900258A (en) * 1996-02-01 1999-05-04 Zeolitics Inc. Anti-bacterial compositions
US5985079A (en) * 1996-03-28 1999-11-16 Rexam Industries Corp. Flexible composite surfacing film and method for producing same
US5762650A (en) * 1996-08-23 1998-06-09 Olin Corporation Biocide plus surfactant for protecting carpets
US5958539A (en) * 1997-08-26 1999-09-28 Eastman Chemical Company Thermoplastic article having textile fiber fabric embedded therein
US6037057A (en) * 1998-02-13 2000-03-14 E. I. Du Pont De Nemours And Company Sheath-core polyester fiber including an antimicrobial agent
US6436422B1 (en) * 1998-11-23 2002-08-20 Agion Technologies L.L.C. Antibiotic hydrophilic polymer coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9440001B2 (en) 2013-03-06 2016-09-13 Specialty Fibres and Materials Limited Absorbent materials
CN111434227A (en) * 2019-01-11 2020-07-21 可成科技股份有限公司 Antimicrobial structure and method of making same

Also Published As

Publication number Publication date
US6723428B1 (en) 2004-04-20
US20040197553A1 (en) 2004-10-07
US20030170453A1 (en) 2003-09-11
CA2375567A1 (en) 2000-12-07
EP1212478A4 (en) 2005-08-17
WO2000073552A1 (en) 2000-12-07
US20040214495A1 (en) 2004-10-28
US20050019568A1 (en) 2005-01-27
MXPA01012196A (en) 2002-06-21
US20050101213A1 (en) 2005-05-12
US6946196B2 (en) 2005-09-20
AU5162800A (en) 2000-12-18
US20040202860A1 (en) 2004-10-14
US6841244B2 (en) 2005-01-11
EP1212478A1 (en) 2002-06-12
US20050106390A1 (en) 2005-05-19
US20050003728A1 (en) 2005-01-06
US20040209059A1 (en) 2004-10-21
CA2375567C (en) 2010-11-02

Similar Documents

Publication Publication Date Title
US20040191500A1 (en) Anti-microbial fiber and fibrous products
US7351368B2 (en) Flocked articles and methods of making same
US20080171068A1 (en) Antimicrobial, infection-control and odor-control film and film composite
US20050136100A1 (en) Hollow anti-microbial fibers and fibrous products
US6136730A (en) Fluid shield fabric
US20050191355A1 (en) Anti-microbial and antifungal fluid conduits and methods of manufacture thereof
KR100709599B1 (en) Resin composition and utilizing the same, furniture, electrical household appliance and molding
US20070092556A1 (en) Anti-microbial material and method of making the same
JP3374079B2 (en) Antifungal and antibacterial air filter
ZA200210205B (en) Fabrics having modified surface properties.
JP6626276B2 (en) Antibacterial laminate
KR102163253B1 (en) Fiber molded products with semi-permanent antibacterial and deodorizing properties
KR102163245B1 (en) Synthetic fiber with semi-permanent antibacterial and anti-fungal properties and uses thereof
JP2003079256A (en) Mulching film for agriculture
JP2000008222A (en) Thermoplastic fiber having antifungal effect
CN203449992U (en) Antibiosis carpet
CA1168424A (en) Antimicrobially treated fabric construction
DE3215134A1 (en) Antimicrobially treated textile article
MXPA01002466A (en) Antimicrobial acrylic material
JP2001123367A (en) Fiber structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOSS MANUFACTURING CO., INC., NEW HAMPSHIRE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOSS, STEPHEN W.;REEL/FRAME:015436/0690

Effective date: 20040525

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CAPITALSOURCE FINANCE LLC, MARYLAND

Free format text: SECURITY AGREEMENT;ASSIGNOR:FOSS MANUFACTURING COMPANY, LLC;REEL/FRAME:020031/0923

Effective date: 20060430

Owner name: FOSS MANUFACTURING COMPANY, LLC, NEW HAMPSHIRE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOSS MANUFACTURING COMPANY, INC.;REEL/FRAME:020031/0876

Effective date: 20060501