US20040212576A1 - Dynamic self-refresh display memory - Google Patents

Dynamic self-refresh display memory Download PDF

Info

Publication number
US20040212576A1
US20040212576A1 US10/423,517 US42351703A US2004212576A1 US 20040212576 A1 US20040212576 A1 US 20040212576A1 US 42351703 A US42351703 A US 42351703A US 2004212576 A1 US2004212576 A1 US 2004212576A1
Authority
US
United States
Prior art keywords
memory cell
data
signal
dynamic memory
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/423,517
Other versions
US7129925B2 (en
Inventor
Dennis Schloeman
Eugene Mar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Priority to US10/423,517 priority Critical patent/US7129925B2/en
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAR, EUGENE J., SCHLOEMAN, DENNIS J.
Priority to TW092129437A priority patent/TWI242773B/en
Priority to EP08019119A priority patent/EP2037440B1/en
Priority to EP03024960A priority patent/EP1471495B1/en
Priority to KR1020030085906A priority patent/KR100995235B1/en
Priority to CNA200310124722XA priority patent/CN1540621A/en
Priority to SG200400597A priority patent/SG118227A1/en
Priority to JP2004117893A priority patent/JP3996142B2/en
Publication of US20040212576A1 publication Critical patent/US20040212576A1/en
Publication of US7129925B2 publication Critical patent/US7129925B2/en
Application granted granted Critical
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMTED reassignment TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMTED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEWLETT-PACKARD COMPANY, HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
Adjusted expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0833Several active elements per pixel in active matrix panels forming a linear amplifier or follower
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor

Definitions

  • This invention relates to display memories and more particularly to a dynamic memory for storing data in a display having at least one MEMS device for each pixel.
  • DMD's Digital Micromirror Devices
  • SRAM static random-access memory
  • the DMD SRAM's have used memory cells having a single static memory cell per pixel.
  • each mirror in an array of mirrors is suspended above an individual SRAM cell in a corresponding array of memory cells.
  • Address electrodes are connected to the SRAM nodes at which “1” or “0” voltages are set.
  • Electrostatic forces applied between the address electrodes and the mirrors rotate the mirrors about an axis. The rotation is stopped at predetermined angles, limited by touching of an edge of the mirror at the substrate. Gray scale in images is accomplished by using pulse width modulation of the binary ON (1) and OFF (0) times of each mirror. Such digital operation of DMD's and other MEMS-based display arrays imposes bandwidth requirements on the display's circuitry for filling the array with data for each frame to be displayed.
  • Some DMD displays take advantage of mechanical latching of the mirrors and some DMD displays utilize architectures having SRAM's smaller than the micromirror array, in the sense of having a number of SRAM cells that is a fraction of the number of micromirrors in the micromirror array. In such architectures, the peak data rate can be made comparable to the average data rate. As faster and larger arrays of MEMS devices are developed for displays and other applications, further reduction of bandwidth is a very desirable goal, especially if it can be achieved in a way that does not depend on particular physical characteristics of the MEMS devices in the array.
  • FIG. 1 is a schematic diagram of an embodiment of a memory cell made in accordance with the invention.
  • FIG. 2 is a timing diagram of the memory cell embodiment shown in FIG. 1.
  • the MEMS device with which the invention is used may be considered to be a digital micromirror device (DMD), but the invention may be applied to any kind of MEMS device and to an array of any kind of MEMS devices.
  • DMD digital micromirror device
  • MEMS has its conventional meaning of a micro-electro-mechanical system. Where particular devices are designated as “P-channel” or “N-channel,” etc. for specificity of the description of a particular example embodiment, those skilled in the art will recognize that bipolar devices or other combinations of device types may be used with appropriate signals.
  • Embodiments made in accordance with the present invention have a dynamic memory cell for storing data in a display having at least one MEMS device for each pixel.
  • the dynamic memory cell has at least two dynamic memory elements per pixel, including first and second dynamic memory elements, each including at least one capacitor for storing charge. Both of the first and second memory elements are electrically coupled to the MEMS device of a single pixel.
  • a sense amplifier is configured to amplify the data signal and to latch data in response to a differential data signal and a clock signal, self-refreshing the data and loading data to the MEMS device as required. The same sense amplifier may be used to read the data stored (e.g., for testing), as is discussed in more detail hereinbelow.
  • the memory for a display device has a number of memory cells, at least one memory cell for each pixel of the display.
  • the memory cell or an entire array of memory cells may be incorporated into an integrated circuit, may be incorporated on a substrate carrying microelectronics, and may be incorporated into an electronic device.
  • FIG. 1 shows a schematic diagram of a simple embodiment of a memory cell 10 made in accordance with the invention.
  • a representative timing diagram of the memory cell embodiment of FIG. 1 is shown in FIG. 2.
  • the schematic diagram shows a two-memory-element dynamic memory cell with thirteen transistors and four capacitors driving a MEMS device 20 for a single pixel of a display or of an array of other MEMS devices.
  • Memory cell 10 may be used in a display of the type having at least one MEMS device 20 corresponding to each pixel. It will be understood that MEMS device 20 may be more complex than a simple micromirror and may, in fact, comprise more than one MEMS device, but for purposes of understanding the embodiment illustrated in FIGS. 1 and 2, MEMS device 20 may be considered to be a simple MEMS micromirror.
  • Memory cell 10 is used for storing data in response to a data signal provided as a differential signal including true and complementary data lines (true signal 60 and its complementary signal 70 ) and a clock signal 50 ( ⁇ S ).
  • This particular embodiment has exactly two dynamic memory elements per pixel.
  • Each of the two dynamic memory elements has a capacitor for charge storage.
  • the capacitors are designated as A or B capacitors, corresponding to the designation at the gates 80 or 90 of their associated transistors 130 .
  • Both of the two dynamic memory elements are electrically coupled to the MEMS device 20 of a single pixel, as shown in FIG. 1.
  • a sense amplifier (defined by devices 140 , 150 , and 160 as described hereinbelow) is configured to amplify the data signal and to latch data in response to the data signals 60 and 70 as timed by clock signal 50 .
  • VDD power supply line 30 is shown in FIG. 1 as supplying +5V; that supply voltage is chosen to be suitable for the application and for the active device types used.
  • One of the problems with implementing a dynamic memory approach is refreshing the charge-storage capacitors in the memory cells.
  • the same sense amplifier for each pixel is used to refresh the local charge-storage elements.
  • the dynamic memory cell 10 of FIG. 1 is a self-refreshing memory cell. Reading of the stored data does not have to be fast, since reading is required for test purposes only. For read operations, the sense amplifier is also used to drive the read data on the bit lines.
  • P-channel device 140 is enabled when ⁇ L is asserted low.
  • Device 140 allows signals Q and /Q (shown in the drawings with an overbar) to be attached to VDD through high impedance loads in order to amplify the Q and /Q signal value. Amplification can occur only after one of two storage capacitors is enabled by either device 130 or 135 and devices 125 and 150 are also enabled.
  • N-channel device 150 is enabled when ⁇ S is asserted high. Device 150 allows a signal path to ground for cross-coupled devices 160 so that Q and /Q can be amplified when device 140 is enabled.
  • N-channel devices 160 form the cross-coupled devices of the sense amplifier. Devices 160 are used for positive feedback of signals on Q and /Q so that those signals can be amplified when device 150 is enabled first and then device 140 is enabled second.
  • the dynamic memory cell with two memory elements per pixel requires at least two capacitors and requires fewer transistors than an SRAM memory cell would require. (A static SRAM approach with two memory elements per pixel would require about twenty transistors.)
  • the dynamic memory cell has one sense amplifier per pixel to latch the appropriate input data and to amplify the data signal to an amplitude voltage suitable for actuating the MEMS device. If the MEMS device is a micromirror, for example, the voltage level from the sense amplifier is suitable for actuating a micro-mirror device. For simplicity, it is assumed in this description that the MEMS device holds a binary value loaded into it for at least a suitable predetermined time after the value is loaded.
  • FIG. 1 the charge-storage capacitors are identified as A or B capacitors by the reference letter A or B shown at the gate of each corresponding FET device 130 or 135 respectively.
  • the bit line of the memory consists of a conventional complementary signal pair, DATA and its complement /DATA (shown in the drawings with an overbar), represented by vertical lines 60 and 70 in FIG. 1. As indicated at the lower ends of the DATA and /DATA lines in FIG. 1, these may extend to other memory cells of an array. Other elements in FIG. 1 are described in more detail below.
  • FIG. 2 shows the DATA and /DATA signals ( 200 and 210 respectively) and their values 310 and 360 at different times, the STORE signal 220 and its value 320 when asserted, the LOAD signal 230 and its value 370 when asserted, the A or B selection signal 240 and its values 330 for a STORE operation and 380 for a LOAD operation, the capacitor stored values 250 and 260 with representative value 340 , STORE clock signal ⁇ S ( 270 ) and its value 390 at a certain time, and LOAD clock signal ⁇ L ( 280 ) and its value 400 at a later time.
  • FIG. 2 also shows the MEMS-device value Q ( 290 ) and its value 350 at a particular time before loading a new value into the MEMS device 20
  • FIG. 2 shows its complement /Q ( 300 ) and the value 410 of /Q at another time after loading the new value into the MEMS device 20
  • Reference numeral 420 denotes a transition time interval during which the values of Q and /Q are indeterminate.
  • N-channel FET devices 120 are enabled when the STORE signal is asserted high.
  • Devices 120 allow storage of the value of DATA and its complement /DATA when either the A or B capacitor select signal is asserted high. Storing a pixel value is done by asserting the STORE signal 220 at a high value and by also selecting 330 either the A or B storage capacitors with gates 80 or 90 (line 240 in FIG. 2). The bit line is driven differentially with DATA 200 and complementary /DATA 210 values, and the corresponding data value is stored into one of selected capacitors (A or B) on either side.
  • Devices 120 also allow reading of stored charge on a selected one of the two capacitor storage cells after the stored charge is loaded into the sense amplifier.
  • Reading is then done by enabling device 125 and either device 130 or 135 , and then enabling device 120 after the sense amplifier has amplified the storage-node charge signal.
  • N-channel FET devices 125 are enabled when LOAD signal 230 (terminals 110 in FIG. 1) is asserted high.
  • N-channel FET device 130 is enabled when signal A is asserted high.
  • Device 130 allows signals on DATA and /DATA to be stored on the respective capacitors when device 120 is also enabled at the same time.
  • Device 130 also allows the storage capacitor value to be amplified and refreshed when devices 125 and 130 are enabled.
  • N-channel FET device 135 is enabled when signal B is asserted high.
  • Device 135 allows signals on DATA and /DATA to be stored on the respective capacitors when device 120 is also enabled at the same time.
  • Device 135 also allows storage capacitor value to be amplified and refreshed by the sense amplifier when devices 125 and 135 are enabled.
  • Loading the stored memory elements in the MEMS latch is done by first de-asserting the two sense-amplifier clock signals 270 ( ⁇ S ) and 280 ( ⁇ L ), asserting the LOAD signal 230 at a high value, and selecting one of two stored values: A or B ( 330 ).
  • N-channel FET devices 125 allow charged signal in one of two storage capacitors to be amplified by the sense amplifier when either A or B signal is asserted high and LOAD signal 230 (terminals 110 in FIG. 1) is asserted high.
  • FET devices 125 also allow reading of stored charge on one of two capacitor storage cells. Reading is done by enabling device 125 and either device 130 or 135 to select the A or B capacitor, and by then also enabling device 120 after the sense amplifier has amplified the storage node charge signal.
  • the clock signal 50 ( ⁇ S ) for the N-channel devices 160 is asserted at a high value to resolve the differential input signal.
  • both P-channel devices 140 are turned on, which pulls the high input side to VDD.
  • the P-channel devices 140 are turned off once the required voltage is attained.
  • the LOAD signal remains asserted ( 370 in FIG. 2) until after the P-channel devices 140 are turned on. This allows the sense amplifier to refresh the selected A or B memory capacitor.
  • the same sense amplifier is also used to drive the data on the bit lines for read operations. Reading the stored pixel value requires the selection of one of two pixel values to be loaded into the sense amplifier and latched. Once the value is latched, the STORE line 220 is asserted high ( 320 in FIG. 2) to allow the data to be driven on the bit lines. The end of the bit line has another sense amplifier (not shown) to sense the data and to provide sufficient gain to latch the read data quickly.
  • the first dynamic memory element includes a first storage capacitor A
  • the second dynamic memory element includes a second storage capacitor B
  • data is stored selectively in a selected storage capacitor A or B in accordance with a capacitor selection signal.
  • the sense amplifier refreshes data stored in the selected capacitor in accordance with the capacitor selection signal.
  • data is loaded to the MEMS device selectively from a selected one of the storage capacitors A or B in accordance with the capacitor selection signal.
  • the sense amplifier is adapted to read data stored in a selected one of the storage capacitors A or B in accordance with a read signal.
  • the read signal is sent by enabling device 125 and either device 130 or 135 to select the A or B capacitor, and by then also enabling device 120 after the sense amplifier has amplified the storage node charge signal.
  • a display using the present invention and having a desired number of pixels arranged in an array may be made by providing a substrate and forming an array of MEMS devices on the substrate, at least one MEMS device corresponding to each pixel.
  • Each MEMS device of the array is configured to be actuated by an electrical signal on at least one actuation electrode.
  • the fabrication also includes forming on the substrate a dynamic memory cell for each pixel, each dynamic memory cell including first and second dynamic memory elements, each including at least one capacitor, both of the first and second memory elements being electrically coupled to the actuation electrode of the MEMS device corresponding to a single pixel.
  • Each dynamic memory cell that is formed also includes a sense amplifier configured to amplify the data signal and to latch data in response to a data signal and a clock signal.
  • Forming the MEMS devices is accomplished using conventional MEMS processes well known to those skilled in the art, selecting those unit processes that are compatible with semiconductor processing of the dynamic memory elements.
  • An example of such MEMS processes is the fabrication on the substrate of an array of digital micro-mirror devices, one or more digital micromirror devices corresponding to each pixel.
  • the dynamic memory elements are formed by conventional semiconductor fabrication processes, such as conventional CMOS processes. Again, unit processes are chosen to be compatible with MEMS processing.
  • Dynamic self-refreshing memory cells made in accordance with the present invention may be used for a variety of MEMS arrays, including arrays of digital micromirror display devices. Having more than one memory element per pixel reduces data bandwidth required for the MEMS devices, and the dynamic approach requires fewer transistors and thus smaller area than an equivalent two-memory conventional static approach. A local sense amplifier for each pixel allows refreshing of the selected pixel value and also allows driving the bit lines in read operations.
  • a method for using a dynamic memory cell in a display of the type having at least one MEMS device corresponding to each pixel a dynamic memory cell is provided for each pixel, each dynamic memory cell including first and second dynamic memory elements, each of the first and second dynamic memory elements including at least one capacitor. Both of the first and second memory elements are electrically coupled to the MEMS device corresponding to a single pixel.
  • a differential data signal, a clock signal, and a capacitor selection signal are provided to each dynamic memory cell. In response to the differential data signal, the capacitor selection signal, and a first phase of the clock signal, data is stored in at least one capacitor of a selected one of the dynamic memory elements.
  • Data is stored in at least one capacitor, refreshed, and amplified.
  • selected data is loaded to the MEMS device corresponding to each pixel to display information in accordance with the differential data signal.
  • this method can also include reading the data stored. This method can reduce the bandwidth required for a memory cell having one memory element per pixel by about half if just two memory elements are used per pixel. If a number N of memory elements per pixel larger than two is used, the bandwidth requirement can be further reduced.
  • MEMS devices including both display devices and other (non-display) MEMS devices may be used with memory cells made in accordance with the invention, either individually or arranged in arrays, and other MOS or bipolar transistors or other active devices may be used in place of the CMOS devices used in the illustrated embodiments.

Abstract

A dynamic memory cell for storing data in a display having at least one MEMS device for each pixel has at least two dynamic memory elements per pixel, including first and second dynamic memory elements, each including at least one capacitor, both of the first and second memory elements being electrically coupled to the MEMS device of a single pixel. A sense amplifier is configured to amplify the data signal and to latch data in response to a differential data signal and a clock signal, self-refreshing the data and loading data to the MEMS device as required.

Description

    TECHNICAL FIELD
  • This invention relates to display memories and more particularly to a dynamic memory for storing data in a display having at least one MEMS device for each pixel. [0001]
  • BACKGROUND
  • Displays and light-projectors using arrays of MEMS devices such as the micromirrors of Digital Micromirror Devices™ (DMD's) have been developed for a number of applications. (“Digital Micromirror Device™” is a trademark of Texas Instruments.) For some applications, DMD's include a static random-access memory (SRAM) for storing image data and addressing the array of micromirrors. Thus, the DMD SRAM's have used memory cells having a single static memory cell per pixel. Typically, each mirror in an array of mirrors is suspended above an individual SRAM cell in a corresponding array of memory cells. Address electrodes are connected to the SRAM nodes at which “1” or “0” voltages are set. [0002]
  • Electrostatic forces applied between the address electrodes and the mirrors rotate the mirrors about an axis. The rotation is stopped at predetermined angles, limited by touching of an edge of the mirror at the substrate. Gray scale in images is accomplished by using pulse width modulation of the binary ON (1) and OFF (0) times of each mirror. Such digital operation of DMD's and other MEMS-based display arrays imposes bandwidth requirements on the display's circuitry for filling the array with data for each frame to be displayed. [0003]
  • Some DMD displays take advantage of mechanical latching of the mirrors and some DMD displays utilize architectures having SRAM's smaller than the micromirror array, in the sense of having a number of SRAM cells that is a fraction of the number of micromirrors in the micromirror array. In such architectures, the peak data rate can be made comparable to the average data rate. As faster and larger arrays of MEMS devices are developed for displays and other applications, further reduction of bandwidth is a very desirable goal, especially if it can be achieved in a way that does not depend on particular physical characteristics of the MEMS devices in the array.[0004]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features and advantages of the invention will be readily appreciated by persons skilled in the art from the following detailed description when read in conjunction with the drawings, wherein: [0005]
  • FIG. 1 is a schematic diagram of an embodiment of a memory cell made in accordance with the invention. [0006]
  • FIG. 2 is a timing diagram of the memory cell embodiment shown in FIG. 1.[0007]
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • For clarity, the following detailed description focuses on a particular simple embodiment of a dynamic self-refreshing memory cell for a MEMS device of an array of MEMS devices. Those skilled in the art will recognize that the invention may be readily implemented in other similar embodiments. For specificity, the MEMS device with which the invention is used may be considered to be a digital micromirror device (DMD), but the invention may be applied to any kind of MEMS device and to an array of any kind of MEMS devices. [0008]
  • Throughout this specification and the appended claims, the term “MEMS” has its conventional meaning of a micro-electro-mechanical system. Where particular devices are designated as “P-channel” or “N-channel,” etc. for specificity of the description of a particular example embodiment, those skilled in the art will recognize that bipolar devices or other combinations of device types may be used with appropriate signals. [0009]
  • Embodiments made in accordance with the present invention have a dynamic memory cell for storing data in a display having at least one MEMS device for each pixel. The dynamic memory cell has at least two dynamic memory elements per pixel, including first and second dynamic memory elements, each including at least one capacitor for storing charge. Both of the first and second memory elements are electrically coupled to the MEMS device of a single pixel. A sense amplifier is configured to amplify the data signal and to latch data in response to a differential data signal and a clock signal, self-refreshing the data and loading data to the MEMS device as required. The same sense amplifier may be used to read the data stored (e.g., for testing), as is discussed in more detail hereinbelow. [0010]
  • Other embodiments made in accordance with the present invention have a number N of dynamic memory elements per pixel, where N is greater than two. Embodiments with exactly two dynamic memory elements per pixel reduce the data bandwidth by a factor of two. Those skilled in the art will recognize that, similarly, embodiments with N dynamic memory elements per pixel can reduce the data bandwidth by about a factor of 2[0011] (N−1). It is convenient for many such applications to make N an even number. Of course, larger values of the number N require larger numbers of transistors or other active devices, and there are costs associated with the additional active devices, including fabrication costs, yield-related costs, and reliability-related costs. Thus, in practical applications there are tradeoffs among bandwidth reduction, device fabrication costs, and various other cost factors which are familiar to those skilled in the art.
  • The memory for a display device has a number of memory cells, at least one memory cell for each pixel of the display. The memory cell or an entire array of memory cells may be incorporated into an integrated circuit, may be incorporated on a substrate carrying microelectronics, and may be incorporated into an electronic device. [0012]
  • FIG. 1 shows a schematic diagram of a simple embodiment of a [0013] memory cell 10 made in accordance with the invention. A representative timing diagram of the memory cell embodiment of FIG. 1 is shown in FIG. 2. The schematic diagram shows a two-memory-element dynamic memory cell with thirteen transistors and four capacitors driving a MEMS device 20 for a single pixel of a display or of an array of other MEMS devices.
  • [0014] Memory cell 10 may be used in a display of the type having at least one MEMS device 20 corresponding to each pixel. It will be understood that MEMS device 20 may be more complex than a simple micromirror and may, in fact, comprise more than one MEMS device, but for purposes of understanding the embodiment illustrated in FIGS. 1 and 2, MEMS device 20 may be considered to be a simple MEMS micromirror.
  • [0015] Memory cell 10 is used for storing data in response to a data signal provided as a differential signal including true and complementary data lines (true signal 60 and its complementary signal 70) and a clock signal 50S). This particular embodiment has exactly two dynamic memory elements per pixel. Each of the two dynamic memory elements has a capacitor for charge storage. (In FIG. 1, the capacitors are designated as A or B capacitors, corresponding to the designation at the gates 80 or 90 of their associated transistors 130.) Both of the two dynamic memory elements are electrically coupled to the MEMS device 20 of a single pixel, as shown in FIG. 1. A sense amplifier (defined by devices 140, 150, and 160 as described hereinbelow) is configured to amplify the data signal and to latch data in response to the data signals 60 and 70 as timed by clock signal 50. For illustrative purposes, VDD power supply line 30 is shown in FIG. 1 as supplying +5V; that supply voltage is chosen to be suitable for the application and for the active device types used.
  • One of the problems with implementing a dynamic memory approach is refreshing the charge-storage capacitors in the memory cells. The same sense amplifier for each pixel is used to refresh the local charge-storage elements. Thus, the [0016] dynamic memory cell 10 of FIG. 1 is a self-refreshing memory cell. Reading of the stored data does not have to be fast, since reading is required for test purposes only. For read operations, the sense amplifier is also used to drive the read data on the bit lines.
  • In the sense amplifier, P-[0017] channel device 140 is enabled when φL is asserted low. Device 140 allows signals Q and /Q (shown in the drawings with an overbar) to be attached to VDD through high impedance loads in order to amplify the Q and /Q signal value. Amplification can occur only after one of two storage capacitors is enabled by either device 130 or 135 and devices 125 and 150 are also enabled. N-channel device 150 is enabled when φS is asserted high. Device 150 allows a signal path to ground for cross-coupled devices 160 so that Q and /Q can be amplified when device 140 is enabled. N-channel devices 160 form the cross-coupled devices of the sense amplifier. Devices 160 are used for positive feedback of signals on Q and /Q so that those signals can be amplified when device 150 is enabled first and then device 140 is enabled second.
  • The dynamic memory cell with two memory elements per pixel requires at least two capacitors and requires fewer transistors than an SRAM memory cell would require. (A static SRAM approach with two memory elements per pixel would require about twenty transistors.) The dynamic memory cell has one sense amplifier per pixel to latch the appropriate input data and to amplify the data signal to an amplitude voltage suitable for actuating the MEMS device. If the MEMS device is a micromirror, for example, the voltage level from the sense amplifier is suitable for actuating a micro-mirror device. For simplicity, it is assumed in this description that the MEMS device holds a binary value loaded into it for at least a suitable predetermined time after the value is loaded. [0018]
  • The following description will be more readily understood by reference to the timing diagram in FIG. 2 in conjunction with the schematic diagram of FIG. 1. In FIG. 1, the charge-storage capacitors are identified as A or B capacitors by the reference letter A or B shown at the gate of each [0019] corresponding FET device 130 or 135 respectively. The bit line of the memory consists of a conventional complementary signal pair, DATA and its complement /DATA (shown in the drawings with an overbar), represented by vertical lines 60 and 70 in FIG. 1. As indicated at the lower ends of the DATA and /DATA lines in FIG. 1, these may extend to other memory cells of an array. Other elements in FIG. 1 are described in more detail below.
  • In the timing diagram, FIG. 2, the vertical dashed line divides the time to distinguish the STORE portion (left) from the LOAD portion (right). FIG. 2 shows the DATA and /DATA signals ([0020] 200 and 210 respectively) and their values 310 and 360 at different times, the STORE signal 220 and its value 320 when asserted, the LOAD signal 230 and its value 370 when asserted, the A or B selection signal 240 and its values 330 for a STORE operation and 380 for a LOAD operation, the capacitor stored values 250 and 260 with representative value 340, STORE clock signal φS (270) and its value 390 at a certain time, and LOAD clock signal φL (280) and its value 400 at a later time. FIG. 2 also shows the MEMS-device value Q (290) and its value 350 at a particular time before loading a new value into the MEMS device 20, and FIG. 2 shows its complement /Q (300) and the value 410 of /Q at another time after loading the new value into the MEMS device 20. Reference numeral 420 denotes a transition time interval during which the values of Q and /Q are indeterminate.
  • N-[0021] channel FET devices 120 are enabled when the STORE signal is asserted high. Devices 120 allow storage of the value of DATA and its complement /DATA when either the A or B capacitor select signal is asserted high. Storing a pixel value is done by asserting the STORE signal 220 at a high value and by also selecting 330 either the A or B storage capacitors with gates 80 or 90 (line 240 in FIG. 2). The bit line is driven differentially with DATA 200 and complementary /DATA 210 values, and the corresponding data value is stored into one of selected capacitors (A or B) on either side. Devices 120 also allow reading of stored charge on a selected one of the two capacitor storage cells after the stored charge is loaded into the sense amplifier. Reading is then done by enabling device 125 and either device 130 or 135, and then enabling device 120 after the sense amplifier has amplified the storage-node charge signal. N-channel FET devices 125 are enabled when LOAD signal 230 (terminals 110 in FIG. 1) is asserted high.
  • N-[0022] channel FET device 130 is enabled when signal A is asserted high. Device 130 allows signals on DATA and /DATA to be stored on the respective capacitors when device 120 is also enabled at the same time. Device 130 also allows the storage capacitor value to be amplified and refreshed when devices 125 and 130 are enabled.
  • N-[0023] channel FET device 135 is enabled when signal B is asserted high. Device 135 allows signals on DATA and /DATA to be stored on the respective capacitors when device 120 is also enabled at the same time. Device 135 also allows storage capacitor value to be amplified and refreshed by the sense amplifier when devices 125 and 135 are enabled.
  • Loading the stored memory elements in the MEMS latch is done by first de-asserting the two sense-amplifier clock signals [0024] 270S) and 280L), asserting the LOAD signal 230 at a high value, and selecting one of two stored values: A or B (330).
  • N-[0025] channel FET devices 125 allow charged signal in one of two storage capacitors to be amplified by the sense amplifier when either A or B signal is asserted high and LOAD signal 230 (terminals 110 in FIG. 1) is asserted high.
  • [0026] FET devices 125 also allow reading of stored charge on one of two capacitor storage cells. Reading is done by enabling device 125 and either device 130 or 135 to select the A or B capacitor, and by then also enabling device 120 after the sense amplifier has amplified the storage node charge signal.
  • Once the cross-couple sense-amplifier has had sufficient time to differentiate the signal, the clock signal [0027] 50S) for the N-channel devices 160 is asserted at a high value to resolve the differential input signal. At a later time, both P-channel devices 140 are turned on, which pulls the high input side to VDD. To reduce power dissipation, the P-channel devices 140 are turned off once the required voltage is attained. The LOAD signal remains asserted (370 in FIG. 2) until after the P-channel devices 140 are turned on. This allows the sense amplifier to refresh the selected A or B memory capacitor.
  • The same sense amplifier is also used to drive the data on the bit lines for read operations. Reading the stored pixel value requires the selection of one of two pixel values to be loaded into the sense amplifier and latched. Once the value is latched, the [0028] STORE line 220 is asserted high (320 in FIG. 2) to allow the data to be driven on the bit lines. The end of the bit line has another sense amplifier (not shown) to sense the data and to provide sufficient gain to latch the read data quickly.
  • Thus, in the embodiment of FIGS. 1 and 2, the first dynamic memory element includes a first storage capacitor A, the second dynamic memory element includes a second storage capacitor B, and data is stored selectively in a selected storage capacitor A or B in accordance with a capacitor selection signal. The sense amplifier refreshes data stored in the selected capacitor in accordance with the capacitor selection signal. Similarly, data is loaded to the MEMS device selectively from a selected one of the storage capacitors A or B in accordance with the capacitor selection signal. Thus, the sense amplifier is adapted to read data stored in a selected one of the storage capacitors A or B in accordance with a read signal. As described above, the read signal is sent by enabling [0029] device 125 and either device 130 or 135 to select the A or B capacitor, and by then also enabling device 120 after the sense amplifier has amplified the storage node charge signal.
  • Fabrication [0030]
  • A display using the present invention and having a desired number of pixels arranged in an array may be made by providing a substrate and forming an array of MEMS devices on the substrate, at least one MEMS device corresponding to each pixel. Each MEMS device of the array is configured to be actuated by an electrical signal on at least one actuation electrode. The fabrication also includes forming on the substrate a dynamic memory cell for each pixel, each dynamic memory cell including first and second dynamic memory elements, each including at least one capacitor, both of the first and second memory elements being electrically coupled to the actuation electrode of the MEMS device corresponding to a single pixel. Each dynamic memory cell that is formed also includes a sense amplifier configured to amplify the data signal and to latch data in response to a data signal and a clock signal. Forming the MEMS devices is accomplished using conventional MEMS processes well known to those skilled in the art, selecting those unit processes that are compatible with semiconductor processing of the dynamic memory elements. An example of such MEMS processes is the fabrication on the substrate of an array of digital micro-mirror devices, one or more digital micromirror devices corresponding to each pixel. The dynamic memory elements are formed by conventional semiconductor fabrication processes, such as conventional CMOS processes. Again, unit processes are chosen to be compatible with MEMS processing. [0031]
  • Industrial Applicability [0032]
  • Dynamic self-refreshing memory cells made in accordance with the present invention may be used for a variety of MEMS arrays, including arrays of digital micromirror display devices. Having more than one memory element per pixel reduces data bandwidth required for the MEMS devices, and the dynamic approach requires fewer transistors and thus smaller area than an equivalent two-memory conventional static approach. A local sense amplifier for each pixel allows refreshing of the selected pixel value and also allows driving the bit lines in read operations. [0033]
  • In accordance with a useful-aspect of the invention, a method is provided for using a dynamic memory cell in a display of the type having at least one MEMS device corresponding to each pixel: a dynamic memory cell is provided for each pixel, each dynamic memory cell including first and second dynamic memory elements, each of the first and second dynamic memory elements including at least one capacitor. Both of the first and second memory elements are electrically coupled to the MEMS device corresponding to a single pixel. A differential data signal, a clock signal, and a capacitor selection signal are provided to each dynamic memory cell. In response to the differential data signal, the capacitor selection signal, and a first phase of the clock signal, data is stored in at least one capacitor of a selected one of the dynamic memory elements. Data is stored in at least one capacitor, refreshed, and amplified. In response to the capacitor selection signal and a second phase of the clock signal, selected data is loaded to the MEMS device corresponding to each pixel to display information in accordance with the differential data signal. If desired, this method can also include reading the data stored. This method can reduce the bandwidth required for a memory cell having one memory element per pixel by about half if just two memory elements are used per pixel. If a number N of memory elements per pixel larger than two is used, the bandwidth requirement can be further reduced. [0034]
  • Although the foregoing has been a description and illustration of specific embodiments of the invention, various modifications and changes thereto can be made by persons skilled in the art without departing from the scope and spirit of the invention as defined by the following claims. For example, various MEMS devices, including both display devices and other (non-display) MEMS devices may be used with memory cells made in accordance with the invention, either individually or arranged in arrays, and other MOS or bipolar transistors or other active devices may be used in place of the CMOS devices used in the illustrated embodiments. [0035]

Claims (33)

What is claimed is:
1. A memory cell for a display of the type having at least one MEMS device corresponding to each pixel, the memory cell storing data in response to a data signal and a clock signal, the memory cell comprising:
at least two dynamic memory elements per pixel, including first and second dynamic memory elements, each of the first and second dynamic memory elements including at least one capacitor, both of the first and second memory elements being electrically coupled to the MEMS device of a single pixel; and
a sense amplifier configured to amplify the data signal and to latch data in response to the data signal and the clock signal.
2. The memory cell of claim 1, wherein the at least two dynamic memory elements comprise N dynamic memory elements per pixel, where N is an integer equal to or greater than two.
3. The memory cell of claim 2, wherein N is an even number.
4. The memory cell of claim 2, wherein N equals two.
5. A memory for a display, the memory comprising a plurality of memory cells, at least one memory cell as recited in claim 1 for each pixel of the display.
6. A display device comprising the memory cell of claim 1.
7. An integrated circuit comprising the memory cell of claim 1.
8. A substrate carrying microelectronics comprising the memory cell of claim 1.
9. An electronic device comprising the memory cell of claim 1.
10. The memory cell of claim 1, wherein the at least one MEMS device comprises a micro-mirror device.
11. The memory cell of claim 1, wherein the data signal is provided as a differential signal including true and complementary data lines.
12. The memory cell of claim 1, wherein the sense amplifier amplifies the data signal to a predetermined level suitable for actuating the at least one MEMS device.
13. The memory cell of claim 12, wherein the predetermined level is suitable for actuating a micro-mirror device.
14. The memory cell of claim 1, wherein the first dynamic memory element includes a first storage capacitor, the second dynamic memory element includes a second storage capacitor, and data is stored selectively in a selected one of the first and second storage capacitors in accordance with a capacitor selection signal.
15. The memory cell of claim 14, wherein the sense amplifier is further configured to refresh data stored in a selected one of the first and second capacitors in accordance with the capacitor selection signal.
16. The memory cell of claim 1, wherein the first dynamic memory element includes a first storage capacitor, the second dynamic memory element includes a second storage capacitor, and data is loaded to the MEMS device selectively from a selected one of the first and second storage capacitors in accordance with a capacitor selection signal.
17. The memory cell of claim 1, wherein the sense amplifier is adapted to read data stored in a selected one of the first and second capacitors in accordance with a read signal.
18. A memory cell for a display of the type having at least one MEMS device corresponding to each pixel, the memory cell storing data in response to a differential data signal and a clock signal, the memory cell comprising:
first and second dynamic memory elements, both of the first and second memory elements being electrically coupled to a MEMS device corresponding to a single pixel, the first dynamic memory element including a first storage capacitor and the second dynamic memory element including a second storage capacitor, data being stored selectively in a selected one of the first and second storage capacitors in accordance with a capacitor selection signal at a first phase of the clock signal, and data being loaded to the MEMS device selectively from a selected one of the first and second storage capacitors in accordance with a capacitor selection signal at a second phase of the clock signal; and
a sense amplifier configured to amplify the differential data signal to a predetermined level suitable for actuating the at least one MEMS device and to latch data in response to the differential data signal and the clock signal.
19. The memory cell of claim 18, wherein the sense amplifier is further configured to read, in response to a read signal, data stored in a selected one of the first and second capacitors.
20. The memory cell of claim 18, wherein the at least one MEMS device comprises a micro-mirror device and the predetermined level is suitable for actuating a micro-mirror device.
21. A memory cell for a display of the type having at least one MEMS device corresponding to each pixel, the memory cell comprising:
first and second means for dynamically storing data in response to a data signal and a clock signal, each of the first and second means for dynamically storing data including at least one capacitor, both of the first and second means for dynamically storing data being electrically coupled to the at least one MEMS device corresponding to a single pixel; and
amplifying means configured to amplify the data signal and to latch data in response to the data signal and the clock signal.
22. The memory cell of claim 21, wherein the amplifying means is further configured to read data stored in a selected capacitor.
23. A method of making a display having a plurality of pixels, the method comprising the steps of:
providing a substrate;
forming an array of MEMS devices on the substrate, at least one MEMS device corresponding to each pixel, each MEMS device of the array being configured to be actuated by an electrical signal on at least one actuation electrode; and
forming on the substrate a dynamic memory cell for each pixel, each dynamic memory cell including first and second dynamic memory elements, each of the first and second dynamic memory elements including at least one capacitor, both of the first and second memory elements being electrically coupled to the actuation electrode of the at least one MEMS device corresponding to a single pixel, and each dynamic memory cell including a sense amplifier configured to amplify the data signal and to latch data in response to a data signal and a clock signal.
24. The method of claim 23, wherein the sense amplifier is further configured to read data stored in a selected capacitor.
25. The method of claim 23, wherein the step of forming an array of MEMS devices on the substrate includes forming a digital micro-mirror device corresponding to each pixel.
26. A display made in accordance with the method of claim 25.
27. A display made in accordance with the method of claim 23.
28. A method of using a dynamic memory cell in a display of the type having at least one MEMS device corresponding to each pixel, the method comprising the steps of:
a) providing a dynamic memory cell for each pixel, each dynamic memory cell having at least two dynamic memory elements per pixel, including first and second dynamic memory elements, each of the first and second dynamic memory elements including at least one capacitor;
b) electrically coupling both of the first and second memory elements to the at least one MEMS device corresponding to a single pixel;
c) providing a differential data signal, a clock signal, and a capacitor selection signal to each dynamic memory cell;
d) in response to the differential data signal, the capacitor selection signal, and a first phase of the clock signal, storing data in at least one capacitor of a selected one of the first and second dynamic memory elements;
e) refreshing and amplifying data stored in the at least one capacitor; and
f) in response to the capacitor selection signal and a second phase of the clock signal, loading selected data to the at least one MEMS device corresponding to each pixel to display information in accordance with the differential data signal.
29. The method of claim 28, wherein the at least one MEMS device comprises a micro-mirror device.
30. The method of claim 28, further comprising the step of:
g) reading data stored in data-storing step d).
31. The method of claim 28, wherein the data-storing step d) is characterized by a required bandwidth and the required bandwidth is about half of that required for a memory cell having one memory element per pixel.
32. The method of claim 28, wherein each dynamic memory cell has a number N of dynamic memory elements per pixel, where N is an integer equal to or greater than two, and wherein the data-storing step d) is characterized by a required bandwidth and the required bandwidth is about 1/2(N−1) of the bandwidth required for a memory cell having one memory element per pixel.
33. A display made in accordance with the method of claim 28.
US10/423,517 2003-04-24 2003-04-24 Dynamic self-refresh display memory Active 2024-04-19 US7129925B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/423,517 US7129925B2 (en) 2003-04-24 2003-04-24 Dynamic self-refresh display memory
TW092129437A TWI242773B (en) 2003-04-24 2003-10-23 Dynamic self-refresh display memory
EP08019119A EP2037440B1 (en) 2003-04-24 2003-10-29 Dynamic self-refresh display memory
EP03024960A EP1471495B1 (en) 2003-04-24 2003-10-29 Dynamic self-refresh display memory
KR1020030085906A KR100995235B1 (en) 2003-04-24 2003-11-29 Dynamic self-refresh display memory
CNA200310124722XA CN1540621A (en) 2003-04-24 2003-12-24 Dynamic self-refreshing display memorage
SG200400597A SG118227A1 (en) 2003-04-24 2004-01-20 Dynamic self-refresh display memory
JP2004117893A JP3996142B2 (en) 2003-04-24 2004-04-13 Dynamic self-refresh display memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/423,517 US7129925B2 (en) 2003-04-24 2003-04-24 Dynamic self-refresh display memory

Publications (2)

Publication Number Publication Date
US20040212576A1 true US20040212576A1 (en) 2004-10-28
US7129925B2 US7129925B2 (en) 2006-10-31

Family

ID=32962464

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/423,517 Active 2024-04-19 US7129925B2 (en) 2003-04-24 2003-04-24 Dynamic self-refresh display memory

Country Status (7)

Country Link
US (1) US7129925B2 (en)
EP (2) EP2037440B1 (en)
JP (1) JP3996142B2 (en)
KR (1) KR100995235B1 (en)
CN (1) CN1540621A (en)
SG (1) SG118227A1 (en)
TW (1) TWI242773B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037926A2 (en) * 2005-09-23 2007-04-05 Sharp Laboratories Of America, Inc. Mems pixel sensor
US20110032237A1 (en) * 2009-08-04 2011-02-10 Cheng-Nan Lin Circuit structure
US20220059041A1 (en) * 2019-01-07 2022-02-24 Sony Group Corporation Spatial light modulator system, spatial light modulator device, and display apparatus

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2817647A1 (en) * 2005-02-23 2006-08-31 Pixtronix, Inc. A display utilizing a control matrix to control movement of mems-based light modulators
US7755582B2 (en) 2005-02-23 2010-07-13 Pixtronix, Incorporated Display methods and apparatus
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US8159428B2 (en) 2005-02-23 2012-04-17 Pixtronix, Inc. Display methods and apparatus
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US8482496B2 (en) 2006-01-06 2013-07-09 Pixtronix, Inc. Circuits for controlling MEMS display apparatus on a transparent substrate
US20070205969A1 (en) 2005-02-23 2007-09-06 Pixtronix, Incorporated Direct-view MEMS display devices and methods for generating images thereon
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US8310442B2 (en) 2005-02-23 2012-11-13 Pixtronix, Inc. Circuits for controlling display apparatus
US7999994B2 (en) 2005-02-23 2011-08-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US7742016B2 (en) 2005-02-23 2010-06-22 Pixtronix, Incorporated Display methods and apparatus
US8519945B2 (en) 2006-01-06 2013-08-27 Pixtronix, Inc. Circuits for controlling display apparatus
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
EP2527903A1 (en) * 2006-06-05 2012-11-28 Pixtronix Inc. Circuits for controlling display apparatus
US20080001934A1 (en) * 2006-06-28 2008-01-03 David Anthony Wyatt Apparatus and method for self-refresh in a display device
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US8169679B2 (en) 2008-10-27 2012-05-01 Pixtronix, Inc. MEMS anchors
CN104916258B (en) 2010-02-02 2018-02-16 追踪有限公司 For controlling the circuit of display device
KR20120132680A (en) 2010-02-02 2012-12-07 픽스트로닉스 인코포레이티드 Methods for manufacturing cold seal fluid-filled display apparatus
US9235047B2 (en) 2011-06-01 2016-01-12 Pixtronix, Inc. MEMS display pixel control circuits and methods
US8611137B2 (en) 2011-11-23 2013-12-17 Altera Corporation Memory elements with relay devices
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
US9135867B2 (en) 2013-04-01 2015-09-15 Pixtronix, Inc. Display element pixel circuit with voltage equalization
JP6586102B2 (en) * 2014-10-29 2019-10-02 株式会社半導体エネルギー研究所 Display device or electronic device
US9703208B2 (en) 2014-12-08 2017-07-11 Samsung Electronics Co., Ltd. MQW devices and methods for semiconductor patterning systems

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910708A (en) * 1987-07-02 1990-03-20 Ramtron Corporation Dram with programmable capacitance divider
US5079544A (en) * 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US5285407A (en) * 1991-12-31 1994-02-08 Texas Instruments Incorporated Memory circuit for spatial light modulator
US5307056A (en) * 1991-09-06 1994-04-26 Texas Instruments Incorporated Dynamic memory allocation for frame buffer for spatial light modulator
US5442588A (en) * 1994-08-16 1995-08-15 Cirrus Logic, Inc. Circuits and methods for refreshing a dual bank memory
US5519450A (en) * 1994-11-14 1996-05-21 Texas Instruments Incorporated Graphics subsystem for digital television
US5612713A (en) * 1995-01-06 1997-03-18 Texas Instruments Incorporated Digital micro-mirror device with block data loading
US5670977A (en) * 1995-02-16 1997-09-23 Texas Instruments Incorporated Spatial light modulator having single bit-line dual-latch memory cells
US5677703A (en) * 1995-01-06 1997-10-14 Texas Instruments Incorporated Data loading circuit for digital micro-mirror device
US5686939A (en) * 1990-11-16 1997-11-11 Rank Brimar Limited Spatial light modulators
US5751264A (en) * 1995-06-27 1998-05-12 Philips Electronics North America Corporation Distributed duty-cycle operation of digital light-modulators
US6175351B1 (en) * 1993-08-10 2001-01-16 Sharp Kabushiki Kaisha Image display apparatus and a method for driving the same
US6191883B1 (en) * 1998-12-30 2001-02-20 Texas Instruments Incorporated Five transistor SRAM cell for small micromirror elements
US6300924B1 (en) * 1994-01-03 2001-10-09 Texas Instruments Incorporated Displaying video data on a spatial light modulator
US6349065B1 (en) * 1995-06-27 2002-02-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device allowing acceleration testing, and a semi-finished product for an integrated semiconductor device that allows acceleration testing
US20020036611A1 (en) * 2000-09-06 2002-03-28 Seiko Epson Corporation Method and circuit for driving electro-optical device, electro-optical device, and electronic apparatus
US20020085437A1 (en) * 2000-12-28 2002-07-04 Huffman James D. Memory architecture for micromirror cell
US20020097136A1 (en) * 2000-12-31 2002-07-25 Coleman Donald J. Micromechanical memory element
US6812669B2 (en) * 2002-06-14 2004-11-02 Texas Instruments Incorporated Resonant scanning mirror driver circuit
US6865100B2 (en) * 2002-08-12 2005-03-08 Micron Technology, Inc. 6F2 architecture ROM embedded DRAM
US6937222B2 (en) * 2001-01-18 2005-08-30 Sharp Kabushiki Kaisha Display, portable device, and substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466358B2 (en) * 1999-12-30 2002-10-15 Texas Instruments Incorporated Analog pulse width modulation cell for digital micromechanical device
JP2002100748A (en) 2000-09-25 2002-04-05 Thine Electronics Inc Dynamic storage device for matrix image displaying device
JP2002351430A (en) * 2001-05-30 2002-12-06 Mitsubishi Electric Corp Display device
US7230597B2 (en) * 2001-07-13 2007-06-12 Tpo Hong Kong Holding Limited Active matrix array devices
US6545899B1 (en) * 2001-12-12 2003-04-08 Micron Technology, Inc. ROM embedded DRAM with bias sensing

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910708A (en) * 1987-07-02 1990-03-20 Ramtron Corporation Dram with programmable capacitance divider
US5079544A (en) * 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US5686939A (en) * 1990-11-16 1997-11-11 Rank Brimar Limited Spatial light modulators
US5307056A (en) * 1991-09-06 1994-04-26 Texas Instruments Incorporated Dynamic memory allocation for frame buffer for spatial light modulator
US5285407A (en) * 1991-12-31 1994-02-08 Texas Instruments Incorporated Memory circuit for spatial light modulator
US6175351B1 (en) * 1993-08-10 2001-01-16 Sharp Kabushiki Kaisha Image display apparatus and a method for driving the same
US6300924B1 (en) * 1994-01-03 2001-10-09 Texas Instruments Incorporated Displaying video data on a spatial light modulator
US5442588A (en) * 1994-08-16 1995-08-15 Cirrus Logic, Inc. Circuits and methods for refreshing a dual bank memory
US5519450A (en) * 1994-11-14 1996-05-21 Texas Instruments Incorporated Graphics subsystem for digital television
US5612713A (en) * 1995-01-06 1997-03-18 Texas Instruments Incorporated Digital micro-mirror device with block data loading
US5677703A (en) * 1995-01-06 1997-10-14 Texas Instruments Incorporated Data loading circuit for digital micro-mirror device
US5670977A (en) * 1995-02-16 1997-09-23 Texas Instruments Incorporated Spatial light modulator having single bit-line dual-latch memory cells
US5751264A (en) * 1995-06-27 1998-05-12 Philips Electronics North America Corporation Distributed duty-cycle operation of digital light-modulators
US6349065B1 (en) * 1995-06-27 2002-02-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device allowing acceleration testing, and a semi-finished product for an integrated semiconductor device that allows acceleration testing
US6191883B1 (en) * 1998-12-30 2001-02-20 Texas Instruments Incorporated Five transistor SRAM cell for small micromirror elements
US20020036611A1 (en) * 2000-09-06 2002-03-28 Seiko Epson Corporation Method and circuit for driving electro-optical device, electro-optical device, and electronic apparatus
US20020085437A1 (en) * 2000-12-28 2002-07-04 Huffman James D. Memory architecture for micromirror cell
US20020097136A1 (en) * 2000-12-31 2002-07-25 Coleman Donald J. Micromechanical memory element
US6937222B2 (en) * 2001-01-18 2005-08-30 Sharp Kabushiki Kaisha Display, portable device, and substrate
US6812669B2 (en) * 2002-06-14 2004-11-02 Texas Instruments Incorporated Resonant scanning mirror driver circuit
US6865100B2 (en) * 2002-08-12 2005-03-08 Micron Technology, Inc. 6F2 architecture ROM embedded DRAM

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425749B2 (en) 2002-04-23 2008-09-16 Sharp Laboratories Of America, Inc. MEMS pixel sensor
WO2007037926A2 (en) * 2005-09-23 2007-04-05 Sharp Laboratories Of America, Inc. Mems pixel sensor
WO2007037926A3 (en) * 2005-09-23 2009-04-16 Sharp Lab Of America Inc Mems pixel sensor
US20110032237A1 (en) * 2009-08-04 2011-02-10 Cheng-Nan Lin Circuit structure
US20220059041A1 (en) * 2019-01-07 2022-02-24 Sony Group Corporation Spatial light modulator system, spatial light modulator device, and display apparatus
US11676550B2 (en) * 2019-01-07 2023-06-13 Sony Group Corporation Spatial light modulator system, spatial light modulator device, and display apparatus for preventing influences of mechanical operations of a light modulation unit

Also Published As

Publication number Publication date
TWI242773B (en) 2005-11-01
TW200423127A (en) 2004-11-01
KR20040092370A (en) 2004-11-03
EP2037440A3 (en) 2009-09-02
SG118227A1 (en) 2006-01-27
KR100995235B1 (en) 2010-11-17
EP2037440A2 (en) 2009-03-18
EP2037440B1 (en) 2011-10-26
JP3996142B2 (en) 2007-10-24
EP1471495A2 (en) 2004-10-27
CN1540621A (en) 2004-10-27
EP1471495B1 (en) 2012-01-18
EP1471495A3 (en) 2007-08-08
JP2004327025A (en) 2004-11-18
US7129925B2 (en) 2006-10-31

Similar Documents

Publication Publication Date Title
US7129925B2 (en) Dynamic self-refresh display memory
US6246386B1 (en) Integrated micro-display system
JP2892887B2 (en) Non-destructive reading of ferroelectric capacitors
JP3465911B2 (en) Electronic matrix array device
JPH06124341A (en) Memory circuit for space light modulator array, space light modulator system and method for addressing memory-cell array
JPH05242684A (en) Dynamically adjusting reference voltage for ferroelectric circuit
JP3226433B2 (en) Ferroelectric memory device
US6115019A (en) Register pixel for liquid crystal displays
US6625056B1 (en) Semiconductor memory device having memory cells requiring no refresh operations
JP2004531019A (en) Integrated circuit memory
US5553028A (en) Single P-sense AMP circuit using depletion isolation devices
JPH11510300A (en) Driving method of SRAM-MOS transistor memory cell
US7719877B2 (en) Memory cell array and method of controlling the same
US5511030A (en) Semiconductor memory device and method of driving same
US7663952B2 (en) Capacitor supported precharging of memory digit lines
US6885597B2 (en) Sensing test circuit
JP3585374B2 (en) Semiconductor storage device
JP2002208273A (en) Device and method for pumping memory cell in memory
JPS63282994A (en) Semiconductor dynamic random access memory
JP2000200492A (en) Semiconductor memory
KR100218305B1 (en) Dram having distributed sense amplifier
JPH052871A (en) Semiconductor memory device
JPS63894A (en) Memory
JPS60258794A (en) Dynamic type semiconductor memory
JP2004071106A (en) Semiconductor memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHLOEMAN, DENNIS J.;MAR, EUGENE J.;REEL/FRAME:014360/0598

Effective date: 20030804

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMTED,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.;HEWLETT-PACKARD COMPANY;REEL/FRAME:021794/0331

Effective date: 20081016

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12