US20040215182A1 - Gynecological ablation procedure and system using an ablation needle - Google Patents

Gynecological ablation procedure and system using an ablation needle Download PDF

Info

Publication number
US20040215182A1
US20040215182A1 US10/853,599 US85359904A US2004215182A1 US 20040215182 A1 US20040215182 A1 US 20040215182A1 US 85359904 A US85359904 A US 85359904A US 2004215182 A1 US2004215182 A1 US 2004215182A1
Authority
US
United States
Prior art keywords
ablation device
energy source
pelvic
surgical system
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/853,599
Inventor
Bruce Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acessa Health Inc
Original Assignee
Lee Bruce B
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Bruce B filed Critical Lee Bruce B
Priority to US10/853,599 priority Critical patent/US20040215182A1/en
Publication of US20040215182A1 publication Critical patent/US20040215182A1/en
Priority to US11/877,349 priority patent/US20080045939A1/en
Priority to US11/877,397 priority patent/US20080045940A1/en
Assigned to ACESSA HEALTH INC. reassignment ACESSA HEALTH INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALT MEDICAL, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1487Trocar-like, i.e. devices producing an enlarged transcutaneous opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/42Gynaecological or obstetrical instruments or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present invention relates to a procedure and system for treating gynecological disorders. More particularly, the present invention relates to the treatment of pelvic tumors.
  • Benign and malignant tumors can occur in the pelvis.
  • uterine leiomyomata are muscle cell tumors that occur in 77% of women in the reproductive years. Although uterine leiomyomata rarely (0.1%) progress to cancer, these tumors can cause excessive menstrual bleeding, irregular bleeding, pregnancy loss, infertility, urinary frequency, and pelvic pressure or pain with sexual activity, menses, or daily activities.
  • Women with uterine leiomyomata frequently incur surgical procedures (e.g., hysterectomy, dilatation and curettage, myomectomy, and hysteroscopy), medical and hormonal therapies, office visits, and a variety of radiologic procedures (e.g., ultrasounds, CAT scans, and MRIs), in an effort to treat these tumors.
  • surgical procedures e.g., hysterectomy, dilatation and curettage, myomectomy, and hysteroscopy
  • medical and hormonal therapies e.g., office visits, and a variety of radiologic procedures (e.g., ultrasounds, CAT scans, and MRIs), in an effort to treat these tumors.
  • Uterine leiomyomata account for approximately 200,000 hysterectomies per year in the United States alone, at a direct cost of well over $2 billion.
  • Hysterectomies carry a morbidity rate of 1%, with 2,000 deaths per year and 240,000 complications per year in
  • Uterine leiomyomata are most often multiple, and may be subserosal (i.e., bulging externally from the uterus), intramural (i.e., growing entirely within the wall of the uterus), submucosal (i.e., hidden within the uterine cavity), or pedunculated (i.e., growing outward with a stalk-like base). Because patients may have multiple uterine leiomyomata at different locations, conservative surgeries may involve both an abdominal and a vaginal (hysteroscopic) approach, thereby necessitating two procedures.
  • a single method which would relieve most or all symptoms of abdominal or pelvic pain/pressure, abnormal uterine bleeding, urinary frequency, infertility, and miscarriage, is also needed.
  • the present invention also referred to as “the Halt procedure,” is an innovative, outpatient procedure that utilizes electromagnetic energy to effectively ablate pelvic tumors.
  • the invention employs an ablation device that uses radio-frequency (RF) energy to treat pelvic tumors, while sparing the surrounding normal tissue.
  • RF radio-frequency
  • the ablation device utilized in the present invention has FDA approval for ablation of soft tissue tumors, no known reports exist in the medical literature of the ablation device's application to uterine leiomyomata or other pelvic tumors.
  • current results indicate that, compared to other conservative therapies, the present method is very effective.
  • the present invention has provided relief from all of the types of symptoms caused by pelvic tumors, such as uterine leiomyomata.
  • the present invention is versatile, safe, and well-accepted by patients. Advantages of the present invention include a quick recovery time, typically no more than a week, and significant cost savings. More importantly, the present invention provides a practical and efficient way to achieve uterine conservation on an out-patient basis.
  • a method of treating a pelvic tumor includes inserting an ablation device into a pelvic region and positioning the ablation device proximate the pelvic tumor, using a laparoscope and an imaging device to confirm placement of the ablation apparatus.
  • the ablation device may include no arms, a plurality of deployable arms, or separate needles that are inserted into the pelvic tumor.
  • the method further includes delivering energy through the ablation device to the pelvic tumor to ablate the tumor.
  • the method uses RF energy, however, other forms of energy, such as microwave, light (e.g., laser), or acoustic (e.g., ultrasound) energy may also be used to ablate the pelvic tumors.
  • a method of treating pelvic tumors includes providing a patient on an operating table, and at least one monitor for a laparoscope and an imaging device, with the at least one monitor located across the operating table from a surgeon and proximate the patient's waist.
  • the at least one monitor may be mounted on a tower located proximate the patient's waist.
  • An energy source and the imaging device are provided adjacent to the at least one monitor, with the energy source and imaging device being located proximate the patient's knees.
  • the method further includes inserting an ablation device into a pelvic region of the patient and positioning the device proximate a pelvic tumor.
  • the location and placement of the ablation device with respect to the pelvic tumor is confirmed using the laparoscope and the imaging device.
  • the method also includes delivering energy to the pelvic tumor to ablate the tumor.
  • the tumor may be maintained at a temperature in the range of approximately 65° C. and 100° C. for at least 7 minutes to ablate the tumor.
  • a surgical system for treating pelvic tumors in a patient lying on an operating table includes an ablation device, an energy source, a laparoscope, and an imaging device.
  • the energy source is coupled to the ablation device and provides energy to the device to ablate a pelvic tumor.
  • the laparoscope and the imaging device are connected to at least one monitor.
  • the at least one monitor is located the operating table from a surgeon and proximate the patient's waist, while the energy source and imaging device are located alongside the at least one monitor and proximate the patient's knees.
  • the present invention procedure may be performed by laparoscopy (i.e., open abdominal incision), percutaneously, or hysteroscopically.
  • the Halt procedure has most often utilized conventional laparoscopy with the additional placement of (1) a supra-pubic port or sleeve (10 mm) at the top of the uterus for an intra-abdominal ultrasound probe and (2) an ablation device, also usually in the lower abdominal region.
  • the Halt procedure has also been performed by a trans-abdominal technique, utilizing conventional trans-abdominal ultrasound and placement of the ablation device trans-abdominally with laparoscopic confirmation, as well as by a trans-cervical technique.
  • FIG. 1 is a perspective diagram of a surgical system for ablating pelvic tumors, in accordance with the present invention.
  • FIG. 2 is a top plan view of the surgical system of FIG. 1, illustrating an arrangement of certain equipment with respect to a patient lying on an operating table.
  • FIG. 3 is a flowchart illustrating a closed laparotomy method of ablating pelvic tumors in accordance with the present invention.
  • a surgical system 10 for ablating pelvic tumors includes a laparoscope 12 , a video monitor 14 associated with laparoscope 12 , an imaging device 16 , a video monitor 18 associated with imaging device 16 , an energy source 20 and an ablation device 22 .
  • Laparoscope 12 which is inserted into a patient P, is electrically connected to video monitor 14 , which displays an image from laparoscope 12 .
  • laparoscope 12 enables a surgeon to view the insertion and placement of ablation device 22 into a pelvic region of the patient.
  • Imaging device 16 is electrically connected to video monitor 18 and provides images of the patient's pelvic region. These images, which are displayed on video monitor 18 , enable the surgeon to determine the presence and location of any pelvic tumors.
  • Imaging device 16 shown in FIG. 1 is an ultrasound machine, and includes an intra-abdominal ultrasound probe 24 . Instead of intra-abdominal ultrasound probe 24 , a transducer (not shown) may be coupled to the ultrasound machine for trans-abdominal ultrasound imaging. In addition, other imaging devices, such as an MRI machine or a CT device, may also be used instead of an ultrasound machine.
  • Ablation device 22 is a sterile, electrosurgical device that may include a plurality of retractable arms 26 .
  • FIG. 1 shows arms 26 of ablation device 22 deployed in a pelvic tumor 28 .
  • the ablation device include the Model 30 Electrosurgical Device and the RITA® StarBurstTM XL, both available from RITA Medical Systems, Inc.
  • Each arm 26 of ablation device 22 is a retractable curved electrode for delivering energy and has a thermocouple (not shown) located at the distal end.
  • FIG. 1 shows ablation device 22 as including deployable arms, an ablation device without any arms may also be used.
  • the ablation device may include two or more needles that may be inserted into the tumor.
  • Ablation device 22 is coupled to energy source 20 , which supplies energy to each of the arms 26 of ablation device 22 .
  • Energy source 20 may be an RF generator, such as the Model 500 Generator or the RITA® Model 1500 RF Generator, both available from RITA Medical Systems, Inc.
  • the supply of RF energy from energy source 20 to ablation device 22 and to a dispersive electrode 30 is controlled by an operator control, such as by a foot pedal 32 .
  • the application of RF energy causes an increase in tumor temperature. At sufficiently high temperatures, cell death occurs, thereby destroying the tumor.
  • Energy source 20 may further include a mono-polar or bipolar energy source, which allows the ablation device 22 to utilize traditional mono-polar or bipolar cautery to treat very small, superficial tumors and to ablate the track formed during insertion of ablation device 22 .
  • Cauterizing the ablation device track reduces or prevents bleeding upon withdrawal of ablation device 22 from the patient.
  • FIG. 2 illustrates the patient P lying in a dorsal position on an operating table 34 .
  • a tower 36 which supports video monitor 14 for laparoscope 12 and imaging device monitor 18 , is located proximate the patient's waist, rather than at the foot of operating table 34 . Since the surgeon S is located on the other side of operating table 34 across from tower 36 , the surgeon S has a direct view of the monitors 14 and 18 .
  • Video monitors 14 and 18 need not be provided on tower 36 ; they may be suspended from the ceiling and located on the other side of operating table 34 across from the surgeon S. During longer surgical procedures, the placement of video monitors 14 and 18 directly across from the surgeon is more comfortable for the surgeon, as the surgeon need not turn his/her head toward the foot of operating table 34 to view monitors 14 and 18 .
  • FIGS. 1 and 2 show separate video monitors 14 and 18 for laparoscope 12 and imaging device 16 , respectively, a single monitor capable of simultaneously displaying multiple images from the laparoscope and the imaging device, such as a picture-in-picture monitor, may also be used.
  • the single monitor would be located across the table from the surgeon S and may be mounted on tower similar to tower 36 , suspended from the ceiling, or otherwise located across the patient from the surgeon for easy viewing by the surgeon.
  • Tower 36 may include additional equipment (not shown), such as an insufflation machine, a printer, and a light source. Tower 36 may be provided with wheels so that it may be easily moved about the operating room.
  • An additional monitor 37 for laparoscope 12 may also be provided across from a surgical assistant A, who is seated across the table from the surgeon S, at approximately the patient's chest level. Thus, additional monitor 37 would be located adjacent the surgeon S.
  • Additional monitor 37 may mounted on a movable tower (not shown), suspended from the ceiling, or otherwise appropriately located.
  • Imaging device 16 and energy source 20 which are not located on tower 36 , are positioned along operating table 34 , across from the surgeon S, and toward the foot of operating table 34 .
  • imaging device 16 and energy source 20 may be located proximate the patient's knees.
  • This method 50 employs a laparoscopic technique for ablating pelvic tumors.
  • the patient is prepared for laparoscopy by placing and properly adhering dispersive electrode 30 to the lower back of the patient.
  • the patient is then placed under general anesthesia, and the surgeon performs an examination of the pelvic region.
  • a manipulator 38 (FIG. 1), such as a tenaculum, is placed on the patient's cervix, and a 14 french foley catheter is inserted into the patient's bladder for emptying the bladder during the surgical procedure.
  • the patient is placed in a dorsal position with her arms at her sides, rather than extended out as an airplane, and a blanket and a surgical drape are placed over the patient.
  • This position provides the surgeon and surgical assistant with more room to move about.
  • the dorsal position is also a safer position for the patient than a frog-leg or lithotomy position, as the dorsal position reduces the instance of nerve injuries and provides better circulation.
  • the dorsal position does not require the use of custom drapes and stirrups.
  • the surgical drape contains pouches for at least one laparoscopic cord.
  • Serial compression devices (not shown) are placed on the patient's legs to improve circulation during the surgical procedure and reduce the possibility of thromboembolism.
  • the patient may be placed in a bear hugger system (not shown) to maintain the patient's body temperature while under general anesthesia.
  • the equipment is arranged about operating table 34 .
  • tower 36 which includes video monitors 14 and 18 , an insufflation machine, a printer and a light source, is placed proximate the patient's waist and across from the surgeon S.
  • the surgical assistant A is seated across the table from the surgeon at about the patient's chest level, with tower 34 located behind the assistant and further toward the foot of operating table 34 .
  • Imaging device 16 and energy source 20 are situated alongside operating table 34 on the same side as the assistant A and toward the foot of operating table 34 .
  • the additional monitor 37 is positioned across from the surgical assistant A at about the patient's chest level.
  • step 60 the patient P is placed in a trendelenburg position.
  • the surgeon then makes an infra-umbilical or sub-umbilical incision.
  • a verres needle is then inserted into the incision and into the peritoneal cavity.
  • the insufflation machine is then used to insufflate the abdomen with carbon dioxide gas until the abdominal pressure is approximately 15 mm Hg.
  • a 5 mm trocar and sleeve are inserted through the infra-umbilical or sub-umbilical incision.
  • the trocar is then removed and laparoscope 12 is inserted into the sleeve.
  • Laparosope 12 and monitor 14 are then used to verify correct placement of laparoscope 12 within the peritoneal cavity and the absence of any trauma.
  • the sleeve is attached to the carbon dioxide gas supply and includes a valve for controlling the abdominal pressure of the peritoneal cavity.
  • Steps 60 and 62 discussed above describe a closed laparoscopy procedure.
  • the surgeon would make an infra- or sub-umbilical incision and use a combination of blunt and sharp dissection through subcutaneous tissue. The surgeon would then retract the instruments for exposure.
  • the fascia is visualized, it is grasped with one or more clamps, elevated and incised. This provides a view of the peritoneum below, which may be bluntly or sharply incised.
  • An appropriate laparoscopic sleeve is then placed, and the abdomen is insufflated with carbon dioxide gas. The laparoscope is then inserted into the sleeve.
  • the surgeon then uses laparoscope 12 , while palpating a top of the uterine fundus, to determine an optimal location for an intra-abdominal ultrasound probe.
  • the optimal location is generally at the top of the uterus, rather than supra-pubic.
  • An incision is then made at this location and a 10 mm trocar and sleeve are inserted.
  • the trocar is removed and ultrasound probe 24 is inserted into the sleeve.
  • the ultrasound probe 24 may be an Aloka model no. UST-5526L-7.5 probe for use with an Aloka model no. SSD140U ultrasound machine.
  • Ultrasound probe 24 transmits an image of the pelvic region to ultrasound machine 16 .
  • the image is displayed on ultrasound video monitor 18 , which is located on tower 36 proximate video monitor 14 for laparoscope 12 .
  • the surgeon may simultaneously view the images on video monitors 14 and 18 .
  • a single monitor that simultaneously displays images from laparoscope 12 and imaging device 16 may be used instead of separate monitors 14 and 18 .
  • the surgeon examines the entire pelvis and abdomen to confirm the presence or absence of any pathologies.
  • the surgeon also uses laparoscope 12 and ultrasound probe 24 to visualize any tumors, such as uterine leiomyomata.
  • the surgeon takes note of the number of tumors, and the location and size of each, and compares that information with previously acquired data.
  • the surgeon determines an order for treating the tumors. This order is determined based on the locations of the various tumors, and whether or not the tumors are accessible from a single midline location or require different locations from which to access the tumors. For example, if two tumors are generally along the same track of ablation device 22 , the surgeon will first ablate the deeper tumor and, upon retraction of ablation device 22 , ablate the remaining tumor. In addition, the surgeon may choose to ablate first a portion of the tumor that is furthest away from the vasculature and work toward the vasculature, or vice versa.
  • step 70 the surgeon tests ablation device 22 to ensure that it is operating properly.
  • Ablation device 22 is connected to generator 20 , and proper feedback from the thermocouples, if any, is observed.
  • the surgeon operates foot pedal 32 , or any other appropriate operator control, to activate the supply of RF energy from generator 20 and notes an appropriate rise in temperature and any peaks.
  • step 72 if the surgeon decides that all of the tumors are approachable via a single midline location, the surgeon makes an incision, approximately 2.5 to 3.0 mm long, and inserts ablation device 22 . Entry of ablation device 22 is observed using laparoscope 12 . The surgeon uses ultrasound probe 24 to visualize the size and location of the tumors with respect to ablation device 22 .
  • step 74 the surgeon manipulates the patient's uterus using other techniques to stabilize the uterus.
  • the surgeon guides ablation device 22 into the uterus and the into a wall of the uterus.
  • the surgeon may guide ablation device 22 by changing the position of the uterus relative to ablation device 22 .
  • the surgeon may rotate the ablation device for better penetration of the uterine wall with less movement of the uterus.
  • Ablation device 22 has a plurality of markings (not shown) that enable the surgeon to note the depth of penetration of device 22 . Confirmation of the location and placement of ablation device 22 are provided by both laparoscope 12 and ultrasound probe 24 .
  • the surgeon advances the tip of ablation device 22 to an appropriate depth for treating a tumor.
  • the needle makes only a very small puncture.
  • an ablation device having a needle of 16 gauge may produce a puncture site of approximately 1 mm to 2 mm in diameter.
  • the appropriate depth depends on the size of the tumor.
  • arms 26 of ablation device 22 are deployed to the appropriate extent in the tumor 28 , as illustrated in FIG. 1.
  • a 30° scope is used to ensure that all of the arms 26 remain within the confines of the tumor and do not extend outside of the organ. Arms 26 may effectively anchor ablation device 22 in tumor 28 .
  • the surgeon then records a baseline starting temperature of the tumor.
  • the temperature of the tumor is obtained by the thermocouples located at the distal ends of arms 26 of ablation device 22 .
  • the surgeon then ablates the tumor by supplying RF energy from generator 20 to ablation device 22 . While generator 20 is activated, it is important to monitor the temperature or impedance of all parts of the ablation device. If the temperature or impedance for any part of ablation device 22 is abnormal, it could indicate that that part of the device is external to the organ.
  • RF energy is supplied to the tumor to raise the temperature of the tumor, such that it is in the range of between approximately 65° C. and 100° C., for about 14 minutes.
  • Cell death occurs at a temperature of about 65° C.
  • a preferred target temperature range for ablating pelvic tumors is between 85° C. and 100° C.
  • the target time may be between approximately 7 minutes and 14 minutes.
  • ablation times of less than 7 minutes may also be adequate.
  • the temperature of the tumor is monitored and recorded at least at a 7 minutes and a 14 minutes interval. Thus, at least a baseline starting temperature, half-time temperature, and end-of-ablation-period temperature are recorded for each tumor.
  • the surgeon keeps an eye on the monitors 14 and 18 to ensure that none of the arms 26 of ablation device 22 inadvertently extends through the tumor.
  • the uterus can contract as it is heated, causing arms 26 of ablation device 22 to project from the tumor and contact normal tissue, which may be damaged by the RF energy.
  • energy source 20 is turned off.
  • the uterus is irrigated with fluid.
  • the fluid prevents the serosa from drying out as a result of the carbon dioxide gas that is pumped into the abdomen.
  • the surgeon may need to reposition ablation device 22 within another part of the tumor and reapply RF energy, repeating steps 76 through 84 .
  • the tumors are greater in size than the ablation capacity of ablation device 22 , multiple applications of energy, of overlapping ablation areas, may be necessary to ablate the bulk of the tumor. For tumors less than 3 cm, however, a single application of the RF energy should be sufficient to ablate the tumor.
  • step 88 the surgeon then repositions ablation device 22 at the next tumor.
  • the surgeon may leave ablation device 22 in the same track, if the next tumor is along the same line of approach.
  • the surgeon would retract arms 26 and advance or withdraw ablation device 22 as needed for entry into another tumor.
  • the surgeon would then repeat the ablation sequence of step 76 through step 86 described above.
  • the surgeon may retract arms 26 of ablation device 22 and withdraw ablation device 22 , while applying a mono-polar cautery to reduce or prevent bleeding from the ablation device track.
  • the surgeon may withdraw ablation device 22 until it is only 0.5 cm to 1 cm deep and adjust the uterus until the desired angle of approach is obtained and properly locating ablation device 22 with ultrasound probe 24 or applying traction or pushing inward with uterine manipulator 38 .
  • Small, superficial, subserosal fibroids may be ablated with a mono-polar cautery at step 90 .
  • Bipolar paddles may also be used if the fibroid extends from the wall of the uterus.
  • the surgeon may treat or incise the stalk.
  • Mono-polar or bipolar cautery may be applied to subserosal, intramural, and submucuos leiomyomata. In addition, other pelvic pathologies are treated as appropriate.
  • the surgeon confirms hemostasis, withdraws ablation device 22 , and applies a mono-polar cautery with ablation device 22 to the puncture sites, if necessary.
  • a small amount of irrigation fluid may be left in the pelvis.
  • step 94 documentation, including videotapes, ultrasound photographs, and photographs from the laparoscope are obtained.
  • the sleeves are opened to allow the escape of the carbon dioxide gas.
  • the patient is then removed from the trendelenburg position, and a local anesthetic agent is injected into the incisions.
  • the surgeon then repairs the fascia of the 10 mm incision using an absorbable suture, S-retractors to facilitate visualization of the fascial edges.
  • AlisTM clamps are used to facilitate grasping for elevating the fascial edges for suturing, re-approximating the subcutaneous tissue with sutures, closing the skin, and placing SteristripTM bandages.
  • the surgeon then removes the dispersive electrode 30 and examines the surrounding skin.
  • a direct trans-abdominal insertion of ablation device 22 is performed with laparoscopic confirmation only (e.g., no intra-abdominal ultrasound confirmation).
  • the patient is prepared in the same manner as that described above at step 52 .
  • the surgeon also performs a pelvic examination, positions the patient, arranges the equipment, forms an infra-umbilical incision, insufflates the patient's abdomen, and inserts laparoscope 12 , as in step 54 through to step 62 above. Specifically, the surgeon inspects the abdomen and documents the presence or absence of bowel adhesions or other pathologic conditions that would render this method inappropriate.
  • a sterile cover drape over a transducer allows for trans-abdominal ultrasound imaging using a non-sterile transducer (not shown). The ultrasound is used to locate and measure the tumors.
  • ablation device 22 The surgeon then makes an incision for ablation device 22 and inserts ablation device 22 , using abdominal ultrasonography to guide its insertion.
  • Ablation device 22 may be inserted percutaneously, or trans-abdominally, into the tumor in the uterus.
  • Ablation device 22 is positioned at a tumor and arms 26 are deployed in the tumor, just as described above with respect to the laparoscopic method. Prior to applying RF energy to the tumor, the surgeon insufflates the abdomen and performs a laparoscopy to confirm that none of the arms 26 of ablation device 22 extend beyond the uterine tissue.
  • the surgeon then applies RF energy to the tumor, in the same manner as described at step 80 through step 84 above, including recording the baseline, half-time, and end-of-ablation-period temperatures.
  • the surgeon may use the same approach as described above to ablate multiple pelvic tumors.
  • the surgeon fulgurates the ablation device track with a mono-polar cautery.
  • remaining steps are the same as step 86 through step 94 described above.
  • the above-described methods enable the surgeon to ablate substantially all of a tumor from a single, ablation device puncture site. In addition, depending on the location of the tumors, multiple tumors may be ablated from a puncture site. The methods further enable the surgeon to treat all sizes of tumors in any area of the pelvic region.

Abstract

A method for treating pelvic tumors, such as uterine leiomyomata, includes inserting an ablation apparatus into a pelvic region and positioning the ablation apparatus either proximate or into a pelvic tumor. The method further includes using a laparoscope and an imaging device, such as an ultrasound machine, to confirm the location of the pelvic tumor and placement of the ablation apparatus. Various ablation apparatuses may be used, including those with multiple needles or deployable arms that are inserted into the pelvic tumor and those without arms. The method further includes delivering electromagnetic energy or other energy through the ablation apparatus to the pelvic tumor to ablate the tumor. A surgical system for ablating pelvic tumors is also provided.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a procedure and system for treating gynecological disorders. More particularly, the present invention relates to the treatment of pelvic tumors. [0001]
  • BACKGROUND OF THE INVENTION
  • Benign and malignant tumors can occur in the pelvis. For example, uterine leiomyomata, are muscle cell tumors that occur in 77% of women in the reproductive years. Although uterine leiomyomata rarely (0.1%) progress to cancer, these tumors can cause excessive menstrual bleeding, irregular bleeding, pregnancy loss, infertility, urinary frequency, and pelvic pressure or pain with sexual activity, menses, or daily activities. Women with uterine leiomyomata frequently incur surgical procedures (e.g., hysterectomy, dilatation and curettage, myomectomy, and hysteroscopy), medical and hormonal therapies, office visits, and a variety of radiologic procedures (e.g., ultrasounds, CAT scans, and MRIs), in an effort to treat these tumors. Uterine leiomyomata account for approximately 200,000 hysterectomies per year in the United States alone, at a direct cost of well over $2 billion. Hysterectomies carry a morbidity rate of 1%, with 2,000 deaths per year and 240,000 complications per year in North America. [0002]
  • Uterine leiomyomata are most often multiple, and may be subserosal (i.e., bulging externally from the uterus), intramural (i.e., growing entirely within the wall of the uterus), submucosal (i.e., hidden within the uterine cavity), or pedunculated (i.e., growing outward with a stalk-like base). Because patients may have multiple uterine leiomyomata at different locations, conservative surgeries may involve both an abdominal and a vaginal (hysteroscopic) approach, thereby necessitating two procedures. [0003]
  • Investigators have utilized a laser or bipolar cautery to perform myolysis or destruction of these tumors, although neither of these methods is performed in significant numbers today. These methods necessarily destroy normal overlying tissue in order to treat the underlying tumor. As a result, the integrity of the uterus is compromised, and harmful scar tissue (e.g., adhesions) may occur. Thus, there is a need for an improved method of treating benign and malignant pelvic tumors that does not damage the overlying tissue. Such an improved method could be used on women who wish to later conceive and subsequently deliver. There is also a need for a single method capable of treating all sizes of subserosal, intramural, submucuosal, and pedunculated tumors in all locations. A single method, which would relieve most or all symptoms of abdominal or pelvic pain/pressure, abnormal uterine bleeding, urinary frequency, infertility, and miscarriage, is also needed. In addition, it would be desirable for the method to be less invasive, cheaper, and safer than conventional methods of treating pelvic tumors, and also to allow for uterine preservation. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention, also referred to as “the Halt procedure,” is an innovative, outpatient procedure that utilizes electromagnetic energy to effectively ablate pelvic tumors. The invention employs an ablation device that uses radio-frequency (RF) energy to treat pelvic tumors, while sparing the surrounding normal tissue. Although the ablation device utilized in the present invention has FDA approval for ablation of soft tissue tumors, no known reports exist in the medical literature of the ablation device's application to uterine leiomyomata or other pelvic tumors. In addition, current results indicate that, compared to other conservative therapies, the present method is very effective. Thus far, the present invention has provided relief from all of the types of symptoms caused by pelvic tumors, such as uterine leiomyomata. Furthermore, the present invention is versatile, safe, and well-accepted by patients. Advantages of the present invention include a quick recovery time, typically no more than a week, and significant cost savings. More importantly, the present invention provides a practical and efficient way to achieve uterine conservation on an out-patient basis. [0005]
  • In accordance with one embodiment of the present invention, a method of treating a pelvic tumor includes inserting an ablation device into a pelvic region and positioning the ablation device proximate the pelvic tumor, using a laparoscope and an imaging device to confirm placement of the ablation apparatus. Various ablation devices may be used. For example, the ablation device may include no arms, a plurality of deployable arms, or separate needles that are inserted into the pelvic tumor. The method further includes delivering energy through the ablation device to the pelvic tumor to ablate the tumor. The method uses RF energy, however, other forms of energy, such as microwave, light (e.g., laser), or acoustic (e.g., ultrasound) energy may also be used to ablate the pelvic tumors. [0006]
  • In accordance with another embodiment of the present invention, a method of treating pelvic tumors includes providing a patient on an operating table, and at least one monitor for a laparoscope and an imaging device, with the at least one monitor located across the operating table from a surgeon and proximate the patient's waist. The at least one monitor may be mounted on a tower located proximate the patient's waist. An energy source and the imaging device are provided adjacent to the at least one monitor, with the energy source and imaging device being located proximate the patient's knees. The method further includes inserting an ablation device into a pelvic region of the patient and positioning the device proximate a pelvic tumor. The location and placement of the ablation device with respect to the pelvic tumor is confirmed using the laparoscope and the imaging device. The method also includes delivering energy to the pelvic tumor to ablate the tumor. The tumor may be maintained at a temperature in the range of approximately 65° C. and 100° C. for at least 7 minutes to ablate the tumor. [0007]
  • In accordance with still another embodiment of the present invention, a surgical system for treating pelvic tumors in a patient lying on an operating table includes an ablation device, an energy source, a laparoscope, and an imaging device. The energy source is coupled to the ablation device and provides energy to the device to ablate a pelvic tumor. The laparoscope and the imaging device are connected to at least one monitor. The at least one monitor is located the operating table from a surgeon and proximate the patient's waist, while the energy source and imaging device are located alongside the at least one monitor and proximate the patient's knees. [0008]
  • The present invention procedure may be performed by laparoscopy (i.e., open abdominal incision), percutaneously, or hysteroscopically. The Halt procedure has most often utilized conventional laparoscopy with the additional placement of (1) a supra-pubic port or sleeve (10 mm) at the top of the uterus for an intra-abdominal ultrasound probe and (2) an ablation device, also usually in the lower abdominal region. The Halt procedure has also been performed by a trans-abdominal technique, utilizing conventional trans-abdominal ultrasound and placement of the ablation device trans-abdominally with laparoscopic confirmation, as well as by a trans-cervical technique. [0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective diagram of a surgical system for ablating pelvic tumors, in accordance with the present invention. [0010]
  • FIG. 2 is a top plan view of the surgical system of FIG. 1, illustrating an arrangement of certain equipment with respect to a patient lying on an operating table. [0011]
  • FIG. 3 is a flowchart illustrating a closed laparotomy method of ablating pelvic tumors in accordance with the present invention.[0012]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring first to FIG. 1, a [0013] surgical system 10 for ablating pelvic tumors includes a laparoscope 12, a video monitor 14 associated with laparoscope 12, an imaging device 16, a video monitor 18 associated with imaging device 16, an energy source 20 and an ablation device 22. Laparoscope 12, which is inserted into a patient P, is electrically connected to video monitor 14, which displays an image from laparoscope 12. As will be explained in greater detail below, laparoscope 12 enables a surgeon to view the insertion and placement of ablation device 22 into a pelvic region of the patient.
  • [0014] Imaging device 16 is electrically connected to video monitor 18 and provides images of the patient's pelvic region. These images, which are displayed on video monitor 18, enable the surgeon to determine the presence and location of any pelvic tumors. Imaging device 16 shown in FIG. 1 is an ultrasound machine, and includes an intra-abdominal ultrasound probe 24. Instead of intra-abdominal ultrasound probe 24, a transducer (not shown) may be coupled to the ultrasound machine for trans-abdominal ultrasound imaging. In addition, other imaging devices, such as an MRI machine or a CT device, may also be used instead of an ultrasound machine.
  • [0015] Ablation device 22 is a sterile, electrosurgical device that may include a plurality of retractable arms 26. FIG. 1 shows arms 26 of ablation device 22 deployed in a pelvic tumor 28. Examples of the ablation device include the Model 30 Electrosurgical Device and the RITA® StarBurst™ XL, both available from RITA Medical Systems, Inc. Each arm 26 of ablation device 22 is a retractable curved electrode for delivering energy and has a thermocouple (not shown) located at the distal end. Although FIG. 1 shows ablation device 22 as including deployable arms, an ablation device without any arms may also be used. Alternatively, the ablation device may include two or more needles that may be inserted into the tumor.
  • [0016] Ablation device 22 is coupled to energy source 20, which supplies energy to each of the arms 26 of ablation device 22. Energy source 20 may be an RF generator, such as the Model 500 Generator or the RITA® Model 1500 RF Generator, both available from RITA Medical Systems, Inc. The supply of RF energy from energy source 20 to ablation device 22 and to a dispersive electrode 30 is controlled by an operator control, such as by a foot pedal 32. The application of RF energy causes an increase in tumor temperature. At sufficiently high temperatures, cell death occurs, thereby destroying the tumor.
  • [0017] Energy source 20 may further include a mono-polar or bipolar energy source, which allows the ablation device 22 to utilize traditional mono-polar or bipolar cautery to treat very small, superficial tumors and to ablate the track formed during insertion of ablation device 22. Cauterizing the ablation device track reduces or prevents bleeding upon withdrawal of ablation device 22 from the patient.
  • As better illustrated in FIG. 2, in accordance with the present invention, the equipment of [0018] surgical system 10 is set up about the patient in a non-traditional arrangement. FIG. 2 illustrates the patient P lying in a dorsal position on an operating table 34. A tower 36, which supports video monitor 14 for laparoscope 12 and imaging device monitor 18, is located proximate the patient's waist, rather than at the foot of operating table 34. Since the surgeon S is located on the other side of operating table 34 across from tower 36, the surgeon S has a direct view of the monitors 14 and 18. Video monitors 14 and 18 need not be provided on tower 36; they may be suspended from the ceiling and located on the other side of operating table 34 across from the surgeon S. During longer surgical procedures, the placement of video monitors 14 and 18 directly across from the surgeon is more comfortable for the surgeon, as the surgeon need not turn his/her head toward the foot of operating table 34 to view monitors 14 and 18.
  • Although FIGS. 1 and 2 show separate video monitors [0019] 14 and 18 for laparoscope 12 and imaging device 16, respectively, a single monitor capable of simultaneously displaying multiple images from the laparoscope and the imaging device, such as a picture-in-picture monitor, may also be used. The single monitor would be located across the table from the surgeon S and may be mounted on tower similar to tower 36, suspended from the ceiling, or otherwise located across the patient from the surgeon for easy viewing by the surgeon.
  • [0020] Tower 36 may include additional equipment (not shown), such as an insufflation machine, a printer, and a light source. Tower 36 may be provided with wheels so that it may be easily moved about the operating room. An additional monitor 37 for laparoscope 12 may also be provided across from a surgical assistant A, who is seated across the table from the surgeon S, at approximately the patient's chest level. Thus, additional monitor 37 would be located adjacent the surgeon S. Additional monitor 37 may mounted on a movable tower (not shown), suspended from the ceiling, or otherwise appropriately located.
  • [0021] Imaging device 16 and energy source 20, which are not located on tower 36, are positioned along operating table 34, across from the surgeon S, and toward the foot of operating table 34. For example, imaging device 16 and energy source 20 may be located proximate the patient's knees.
  • A method of treating pelvic tumors, in accordance with one embodiment of the present invention, will now be described, with reference to the flow chart illustrated in FIG. 3. This [0022] method 50 employs a laparoscopic technique for ablating pelvic tumors. First, at step 52, the patient is prepared for laparoscopy by placing and properly adhering dispersive electrode 30 to the lower back of the patient. At step 54, the patient is then placed under general anesthesia, and the surgeon performs an examination of the pelvic region. A manipulator 38 (FIG. 1), such as a tenaculum, is placed on the patient's cervix, and a 14 french foley catheter is inserted into the patient's bladder for emptying the bladder during the surgical procedure.
  • At [0023] step 56, the patient is placed in a dorsal position with her arms at her sides, rather than extended out as an airplane, and a blanket and a surgical drape are placed over the patient. This position provides the surgeon and surgical assistant with more room to move about. The dorsal position is also a safer position for the patient than a frog-leg or lithotomy position, as the dorsal position reduces the instance of nerve injuries and provides better circulation. In addition, the dorsal position does not require the use of custom drapes and stirrups. The surgical drape contains pouches for at least one laparoscopic cord. Serial compression devices (not shown) are placed on the patient's legs to improve circulation during the surgical procedure and reduce the possibility of thromboembolism. In addition, the patient may be placed in a bear hugger system (not shown) to maintain the patient's body temperature while under general anesthesia.
  • At [0024] step 58, the equipment is arranged about operating table 34. As illustrated in FIG. 2, tower 36, which includes video monitors 14 and 18, an insufflation machine, a printer and a light source, is placed proximate the patient's waist and across from the surgeon S. The surgical assistant A is seated across the table from the surgeon at about the patient's chest level, with tower 34 located behind the assistant and further toward the foot of operating table 34. Imaging device 16 and energy source 20 are situated alongside operating table 34 on the same side as the assistant A and toward the foot of operating table 34. The additional monitor 37 is positioned across from the surgical assistant A at about the patient's chest level.
  • At [0025] step 60, the patient P is placed in a trendelenburg position. The surgeon then makes an infra-umbilical or sub-umbilical incision. A verres needle is then inserted into the incision and into the peritoneal cavity. The insufflation machine is then used to insufflate the abdomen with carbon dioxide gas until the abdominal pressure is approximately 15 mm Hg.
  • Next, at [0026] step 62, a 5 mm trocar and sleeve are inserted through the infra-umbilical or sub-umbilical incision. The trocar is then removed and laparoscope 12 is inserted into the sleeve. Laparosope 12 and monitor 14 are then used to verify correct placement of laparoscope 12 within the peritoneal cavity and the absence of any trauma. The sleeve is attached to the carbon dioxide gas supply and includes a valve for controlling the abdominal pressure of the peritoneal cavity.
  • [0027] Steps 60 and 62 discussed above describe a closed laparoscopy procedure. For those patients, for whom the surgeon feels an open laparoscopy would be advantageous, the surgeon would make an infra- or sub-umbilical incision and use a combination of blunt and sharp dissection through subcutaneous tissue. The surgeon would then retract the instruments for exposure. When the fascia is visualized, it is grasped with one or more clamps, elevated and incised. This provides a view of the peritoneum below, which may be bluntly or sharply incised. An appropriate laparoscopic sleeve is then placed, and the abdomen is insufflated with carbon dioxide gas. The laparoscope is then inserted into the sleeve.
  • At [0028] step 64, the surgeon then uses laparoscope 12, while palpating a top of the uterine fundus, to determine an optimal location for an intra-abdominal ultrasound probe. The optimal location is generally at the top of the uterus, rather than supra-pubic. An incision is then made at this location and a 10 mm trocar and sleeve are inserted. The trocar is removed and ultrasound probe 24 is inserted into the sleeve. By way of example, the ultrasound probe 24 may be an Aloka model no. UST-5526L-7.5 probe for use with an Aloka model no. SSD140U ultrasound machine. Ultrasound probe 24 transmits an image of the pelvic region to ultrasound machine 16. The image is displayed on ultrasound video monitor 18, which is located on tower 36 proximate video monitor 14 for laparoscope 12. Thus, the surgeon may simultaneously view the images on video monitors 14 and 18. As discussed above, a single monitor that simultaneously displays images from laparoscope 12 and imaging device 16 may be used instead of separate monitors 14 and 18.
  • At [0029] step 66, the surgeon examines the entire pelvis and abdomen to confirm the presence or absence of any pathologies. The surgeon also uses laparoscope 12 and ultrasound probe 24 to visualize any tumors, such as uterine leiomyomata. In particular, the surgeon takes note of the number of tumors, and the location and size of each, and compares that information with previously acquired data.
  • At [0030] step 68, the surgeon determines an order for treating the tumors. This order is determined based on the locations of the various tumors, and whether or not the tumors are accessible from a single midline location or require different locations from which to access the tumors. For example, if two tumors are generally along the same track of ablation device 22, the surgeon will first ablate the deeper tumor and, upon retraction of ablation device 22, ablate the remaining tumor. In addition, the surgeon may choose to ablate first a portion of the tumor that is furthest away from the vasculature and work toward the vasculature, or vice versa.
  • At [0031] step 70, the surgeon tests ablation device 22 to ensure that it is operating properly. Ablation device 22 is connected to generator 20, and proper feedback from the thermocouples, if any, is observed. In particular, the surgeon operates foot pedal 32, or any other appropriate operator control, to activate the supply of RF energy from generator 20 and notes an appropriate rise in temperature and any peaks.
  • At [0032] step 72, if the surgeon decides that all of the tumors are approachable via a single midline location, the surgeon makes an incision, approximately 2.5 to 3.0 mm long, and inserts ablation device 22. Entry of ablation device 22 is observed using laparoscope 12. The surgeon uses ultrasound probe 24 to visualize the size and location of the tumors with respect to ablation device 22.
  • Next, at [0033] step 74, the surgeon manipulates the patient's uterus using other techniques to stabilize the uterus.
  • At [0034] step 76, after the surgeon has stabilized the uterus and located the tumors, the surgeon guides ablation device 22 into the uterus and the into a wall of the uterus. The surgeon may guide ablation device 22 by changing the position of the uterus relative to ablation device 22. In addition, the surgeon may rotate the ablation device for better penetration of the uterine wall with less movement of the uterus. Ablation device 22 has a plurality of markings (not shown) that enable the surgeon to note the depth of penetration of device 22. Confirmation of the location and placement of ablation device 22 are provided by both laparoscope 12 and ultrasound probe 24.
  • Next, at [0035] step 78, the surgeon advances the tip of ablation device 22 to an appropriate depth for treating a tumor. In doing so, the needle makes only a very small puncture. For example, an ablation device having a needle of 16 gauge may produce a puncture site of approximately 1 mm to 2 mm in diameter. The appropriate depth depends on the size of the tumor. When ablation device 22 has been inserted to the appropriate depth, arms 26 of ablation device 22 are deployed to the appropriate extent in the tumor 28, as illustrated in FIG. 1. A 30° scope is used to ensure that all of the arms 26 remain within the confines of the tumor and do not extend outside of the organ. Arms 26 may effectively anchor ablation device 22 in tumor 28.
  • At [0036] step 80, the surgeon then records a baseline starting temperature of the tumor. The temperature of the tumor is obtained by the thermocouples located at the distal ends of arms 26 of ablation device 22.
  • At [0037] step 82, the surgeon then ablates the tumor by supplying RF energy from generator 20 to ablation device 22. While generator 20 is activated, it is important to monitor the temperature or impedance of all parts of the ablation device. If the temperature or impedance for any part of ablation device 22 is abnormal, it could indicate that that part of the device is external to the organ.
  • RF energy is supplied to the tumor to raise the temperature of the tumor, such that it is in the range of between approximately 65° C. and 100° C., for about [0038] 14 minutes. Cell death occurs at a temperature of about 65° C. However, since these tumors are heterogeneous and, therefore, can differ in density, vasculature and content, a preferred target temperature range for ablating pelvic tumors is between 85° C. and 100° C. For small tumors the target time may be between approximately 7 minutes and 14 minutes. One of ordinary skill in the art, however, will appreciate that ablation times of less than 7 minutes may also be adequate.
  • The temperature of the tumor, as provided by the thermocouples, is monitored and recorded at least at a 7 minutes and a 14 minutes interval. Thus, at least a baseline starting temperature, half-time temperature, and end-of-ablation-period temperature are recorded for each tumor. While RF energy is being delivered to the tumor, the surgeon keeps an eye on the [0039] monitors 14 and 18 to ensure that none of the arms 26 of ablation device 22 inadvertently extends through the tumor. The uterus can contract as it is heated, causing arms 26 of ablation device 22 to project from the tumor and contact normal tissue, which may be damaged by the RF energy. When the tumor has been sufficiently ablated, energy source 20 is turned off.
  • After each ablation, at [0040] step 84 the uterus is irrigated with fluid. The fluid prevents the serosa from drying out as a result of the carbon dioxide gas that is pumped into the abdomen.
  • If the tumor is larger than the ablation field for the given ablation device, then at [0041] step 86, the surgeon may need to reposition ablation device 22 within another part of the tumor and reapply RF energy, repeating steps 76 through 84. Thus, if the tumors are greater in size than the ablation capacity of ablation device 22, multiple applications of energy, of overlapping ablation areas, may be necessary to ablate the bulk of the tumor. For tumors less than 3 cm, however, a single application of the RF energy should be sufficient to ablate the tumor.
  • At [0042] step 88, the surgeon then repositions ablation device 22 at the next tumor. The surgeon may leave ablation device 22 in the same track, if the next tumor is along the same line of approach. The surgeon would retract arms 26 and advance or withdraw ablation device 22 as needed for entry into another tumor. The surgeon would then repeat the ablation sequence of step 76 through step 86 described above.
  • If the subsequent tumor is in a different location, the surgeon may retract [0043] arms 26 of ablation device 22 and withdraw ablation device 22, while applying a mono-polar cautery to reduce or prevent bleeding from the ablation device track. Alternatively, rather than completely withdraw ablation device 22 and re-insert ablation device 22 through another incision, repeating steps 72 through 86, the surgeon may withdraw ablation device 22 until it is only 0.5 cm to 1 cm deep and adjust the uterus until the desired angle of approach is obtained and properly locating ablation device 22 with ultrasound probe 24 or applying traction or pushing inward with uterine manipulator 38.
  • Small, superficial, subserosal fibroids (e.g., less than 1 cm) may be ablated with a mono-polar cautery at [0044] step 90. Bipolar paddles may also be used if the fibroid extends from the wall of the uterus. Similarly, if the tumor is pedunculated, the surgeon may treat or incise the stalk. Mono-polar or bipolar cautery may be applied to subserosal, intramural, and submucuos leiomyomata. In addition, other pelvic pathologies are treated as appropriate.
  • After all of the tumors have been ablated, at [0045] step 92, the surgeon confirms hemostasis, withdraws ablation device 22, and applies a mono-polar cautery with ablation device 22 to the puncture sites, if necessary. A small amount of irrigation fluid may be left in the pelvis.
  • Finally, at [0046] step 94, documentation, including videotapes, ultrasound photographs, and photographs from the laparoscope are obtained. The sleeves are opened to allow the escape of the carbon dioxide gas. The patient is then removed from the trendelenburg position, and a local anesthetic agent is injected into the incisions. The surgeon then repairs the fascia of the 10 mm incision using an absorbable suture, S-retractors to facilitate visualization of the fascial edges. Alis™ clamps are used to facilitate grasping for elevating the fascial edges for suturing, re-approximating the subcutaneous tissue with sutures, closing the skin, and placing Steristrip™ bandages. The surgeon then removes the dispersive electrode 30 and examines the surrounding skin.
  • The patient is transported to a recovery room, where she will remain until she is tolerating liquids, ambulating with assistance, and voiding adequately. [0047]
  • If the patient's uterus is very large (e.g., 16 weeks or greater), the above-described laparoscopic technique may be less effective. Accordingly, a direct trans-abdominal insertion of [0048] ablation device 22 is performed with laparoscopic confirmation only (e.g., no intra-abdominal ultrasound confirmation). In this method the patient is prepared in the same manner as that described above at step 52. The surgeon also performs a pelvic examination, positions the patient, arranges the equipment, forms an infra-umbilical incision, insufflates the patient's abdomen, and inserts laparoscope 12, as in step 54 through to step 62 above. Specifically, the surgeon inspects the abdomen and documents the presence or absence of bowel adhesions or other pathologic conditions that would render this method inappropriate.
  • Next, the surgeon releases the gas from the patient's abdomen, allowing the abdominal wall to contact an anterior portion of the uterus. A sterile cover drape over a transducer allows for trans-abdominal ultrasound imaging using a non-sterile transducer (not shown). The ultrasound is used to locate and measure the tumors. [0049]
  • The surgeon then makes an incision for [0050] ablation device 22 and inserts ablation device 22, using abdominal ultrasonography to guide its insertion. Ablation device 22 may be inserted percutaneously, or trans-abdominally, into the tumor in the uterus.
  • [0051] Ablation device 22 is positioned at a tumor and arms 26 are deployed in the tumor, just as described above with respect to the laparoscopic method. Prior to applying RF energy to the tumor, the surgeon insufflates the abdomen and performs a laparoscopy to confirm that none of the arms 26 of ablation device 22 extend beyond the uterine tissue.
  • The surgeon then applies RF energy to the tumor, in the same manner as described at [0052] step 80 through step 84 above, including recording the baseline, half-time, and end-of-ablation-period temperatures. The surgeon may use the same approach as described above to ablate multiple pelvic tumors. Upon withdrawal of the ablation device 22, the surgeon fulgurates the ablation device track with a mono-polar cautery. Thus, remaining steps are the same as step 86 through step 94 described above.
  • The above-described methods enable the surgeon to ablate substantially all of a tumor from a single, ablation device puncture site. In addition, depending on the location of the tumors, multiple tumors may be ablated from a puncture site. The methods further enable the surgeon to treat all sizes of tumors in any area of the pelvic region. [0053]
  • The foregoing description of the preferred embodiments of the present invention have been provided for illustrative purposes only. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Various modifications may be made without departing from the spirit and scope of the inventions as set forth in the appended claims. For example, although the present invention has been described with respect to the treatment of uterine leiomyomata, the present invention may also be used to treat other pelvic tumors, such as those present in the ovaries. The present invention may be performed using a trans-cervical technique or a hysteroscopic technique, in addition to the laparoscopic and trans-abdominal techniques described above. The scope of the invention is defined by the following claims. [0054]

Claims (29)

1-26. (canceled)
27. A surgical system for ablating pelvic tumors in a patient, the system comprising:
an ablation device for insertion into a pelvic region of a patient;
an energy source coupled to the ablation device for providing energy to the ablation device;
a laparoscope for insertion into the patient; and
an intra-abdominal imaging probe for observing a location of the ablation device within the pelvic region of the patient.
28. The surgical system of claim 27, wherein the imaging probe is an intra-abdominal ultrasound probe.
29. The surgical system of claim 27, wherein the energy source is an RF energy source.
30. (canceled)
31. The surgical system of claim 27, wherein the imaging probe is for manipulating a location of the ablation device within the pelvic region of the patient.
32. The surgical system of claim 27, wherein the energy source is selected from the group consisting of a microwave energy source, a light energy source, and an acoustic energy source.
33. The surgical system of claim 27, wherein the laparoscope and the intra-abdominal imaging probe are operably coupled to at least one monitor.
34. The surgical system of claim 33, wherein the at least one monitor is located along a first side of an operating table, and wherein the energy source is located adjacent the at least one monitor along the first side of the operating table.
35. The surgical system of claim 34, further comprising a second monitor located along a second side of the operating table.
36. The surgical system of claim 34, further comprising an operator control operably coupled to the energy source and located along a second side of the operating table.
37. The surgical system of claim 36, wherein the operator control is a foot pedal.
38. A surgical system for ablating pelvic tumors in a patient, the system comprising:
an ablation device for insertion into a pelvic region of a patient, wherein the ablation device includes a plurality of electrodes;
an energy source coupled to the ablation device for providing energy to the ablation device;
a laparoscope for insertion of the plurality of electrodes within a pelvic tumor of the patient to avoid contact with normal tissue outside of the pelvic tumor; and
an intra-abdominal imaging probe for observing a location of the plurality of electrodes completely within the pelvic tumor of the patient.
39. The surgical system of claim 38, wherein the imaging probe is an intra-abdominal ultrasound probe.
40. The surgical system of claim 38, wherein the laparoscope and the intra-abdominal imaging probe are operably coupled to at least one monitor, the at least one monitor being located along a first side of an operating table, and wherein the energy source is located adjacent the at least one monitor along the first side of the operating table.
41. The surgical system of claim 38, wherein the energy source is selected from the group consisting of an RF energy source, a microwave energy source, a light energy source, and an acoustic energy source.
42. The surgical system of claim 40, further comprising a second monitor located along a second side of the operating table.
43. The surgical system of claim 40, further comprising an operator control operably coupled to the energy source and located along a second side of the operating table.
44. The surgical system of claim 43, wherein the operator control is a foot pedal.
45. A surgical system for ablating pelvic tumors in a patient, the system comprising:
an ablation device for insertion into a pelvic region of a patient, wherein the ablation device includes a tip and three or more electrodes deployable from the tip;
an energy source coupled to the ablation device for providing energy to the ablation device;
a laparoscope for insertion of the three or more electrodes within a pelvic tumor of the patient to avoid contact with normal tissue outside of the pelvic tumor; and
an intra-abdominal ultrasound probe separate from the ablation device for observing a location of the three or more electrodes completely within the pelvic tumor of the patient.
46. The surgical system of claim 45, wherein the laparoscope and the intra-abdominal ultrasound probe are operably coupled to at least one monitor, the at least one monitor being located along a first side of an operating table, and wherein the energy source is located adjacent the at least one monitor along the first side of the operating table.
47. The surgical system of claim 45, wherein the energy source is selected from the group consisting of an RF energy source, a microwave energy source, a light energy source, and an acoustic energy source.
48. A method of treating a pelvic tumor comprising:
inserting an ablation device into a pelvic region, wherein the ablation device includes at least one electrode;
providing the at least one electrode within a pelvic tumor;
confirming placement of the at least one electrode completely within the pelvic tumor with a laparoscope and an intra-abdominal imaging probe separate from the ablation device; and delivering energy through the at least one electrode to the pelvic tumor to ablate the tumor.
49. The method of claim 48, wherein the imaging probe is an intra-abdominal ultrasound probe.
50. The method of claim 48, wherein the pelvic tumor is a uterine fibroid.
51. The method of claim 48, wherein the ablation device includes a plurality of deployable arms.
52. The method of claim 48, wherein the delivered energy is selected from the group consisting of RF, microwave, light, and acoustic energy.
53. The method of claim 51, further comprising deploying the plurality of arms completely within the pelvic tumor.
54. The method of claim 48, further comprising manipulating the pelvic region with the intra-abdominal imaging probe to position and stabilize the pelvic region.
US10/853,599 2000-08-09 2004-05-24 Gynecological ablation procedure and system using an ablation needle Abandoned US20040215182A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/853,599 US20040215182A1 (en) 2000-08-09 2004-05-24 Gynecological ablation procedure and system using an ablation needle
US11/877,349 US20080045939A1 (en) 2000-08-09 2007-10-23 Gynecological ablation system with insufflation assisted imaging
US11/877,397 US20080045940A1 (en) 2000-08-09 2007-10-23 Gynecological ablation system with laparoscopic and ultrasound imaging

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22419100P 2000-08-09 2000-08-09
US09/920,425 US6840935B2 (en) 2000-08-09 2001-07-31 Gynecological ablation procedure and system using an ablation needle
US10/853,599 US20040215182A1 (en) 2000-08-09 2004-05-24 Gynecological ablation procedure and system using an ablation needle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/920,425 Continuation US6840935B2 (en) 2000-08-09 2001-07-31 Gynecological ablation procedure and system using an ablation needle

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/877,397 Division US20080045940A1 (en) 2000-08-09 2007-10-23 Gynecological ablation system with laparoscopic and ultrasound imaging
US11/877,349 Division US20080045939A1 (en) 2000-08-09 2007-10-23 Gynecological ablation system with insufflation assisted imaging

Publications (1)

Publication Number Publication Date
US20040215182A1 true US20040215182A1 (en) 2004-10-28

Family

ID=26918493

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/920,425 Expired - Lifetime US6840935B2 (en) 2000-08-09 2001-07-31 Gynecological ablation procedure and system using an ablation needle
US10/853,599 Abandoned US20040215182A1 (en) 2000-08-09 2004-05-24 Gynecological ablation procedure and system using an ablation needle
US11/877,349 Abandoned US20080045939A1 (en) 2000-08-09 2007-10-23 Gynecological ablation system with insufflation assisted imaging
US11/877,397 Abandoned US20080045940A1 (en) 2000-08-09 2007-10-23 Gynecological ablation system with laparoscopic and ultrasound imaging

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/920,425 Expired - Lifetime US6840935B2 (en) 2000-08-09 2001-07-31 Gynecological ablation procedure and system using an ablation needle

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/877,349 Abandoned US20080045939A1 (en) 2000-08-09 2007-10-23 Gynecological ablation system with insufflation assisted imaging
US11/877,397 Abandoned US20080045940A1 (en) 2000-08-09 2007-10-23 Gynecological ablation system with laparoscopic and ultrasound imaging

Country Status (9)

Country Link
US (4) US6840935B2 (en)
EP (1) EP1309286B1 (en)
JP (1) JP2004524865A (en)
KR (2) KR20090098922A (en)
AT (1) ATE481050T1 (en)
AU (1) AU2001281201A1 (en)
CA (1) CA2418896C (en)
DE (1) DE60143087D1 (en)
WO (1) WO2002011639A1 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006076181A1 (en) * 2005-01-10 2006-07-20 Halt Medical, Inc. Gynecological ablation procedure and system
US20080228180A1 (en) * 2007-03-13 2008-09-18 Halt Medical, Inc Ablation system and heat preventing electrodes therefor
US7645277B2 (en) 2000-09-22 2010-01-12 Salient Surgical Technologies, Inc. Fluid-assisted medical device
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US7815571B2 (en) 2006-04-20 2010-10-19 Gynesonics, Inc. Rigid delivery systems having inclined ultrasound and needle
US7815634B2 (en) 2000-03-06 2010-10-19 Salient Surgical Technologies, Inc. Fluid delivery system and controller for electrosurgical devices
US7874986B2 (en) 2006-04-20 2011-01-25 Gynesonics, Inc. Methods and devices for visualization and ablation of tissue
US7918795B2 (en) 2005-02-02 2011-04-05 Gynesonics, Inc. Method and device for uterine fibroid treatment
US7951148B2 (en) 2001-03-08 2011-05-31 Salient Surgical Technologies, Inc. Electrosurgical device having a tissue reduction sensor
US7998140B2 (en) 2002-02-12 2011-08-16 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US20110230874A1 (en) * 2005-07-01 2011-09-22 Halt Medical Inc. Ablation method
US8080009B2 (en) 2005-07-01 2011-12-20 Halt Medical Inc. Radio frequency ablation device for the destruction of tissue masses
US8088072B2 (en) 2007-10-12 2012-01-03 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US8152800B2 (en) 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
US8197476B2 (en) 2008-10-21 2012-06-12 Hermes Innovations Llc Tissue ablation systems
US8197477B2 (en) 2008-10-21 2012-06-12 Hermes Innovations Llc Tissue ablation methods
US8206300B2 (en) 2008-08-26 2012-06-26 Gynesonics, Inc. Ablation device with articulated imaging transducer
US8241276B2 (en) 2007-11-14 2012-08-14 Halt Medical Inc. RF ablation device with jam-preventing electrical coupling member
US8251991B2 (en) 2007-11-14 2012-08-28 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US8262574B2 (en) 2009-02-27 2012-09-11 Gynesonics, Inc. Needle and tine deployment mechanism
US8298223B2 (en) 2003-05-01 2012-10-30 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8372068B2 (en) 2008-10-21 2013-02-12 Hermes Innovations, LLC Tissue ablation systems
US20130116677A1 (en) * 2011-11-08 2013-05-09 Covidien Lp Systems and methods for treatment of premenstrual dysphoric disorders
US8475455B2 (en) 2002-10-29 2013-07-02 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical scissors and methods
US8500732B2 (en) 2008-10-21 2013-08-06 Hermes Innovations Llc Endometrial ablation devices and systems
US8512333B2 (en) 2005-07-01 2013-08-20 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US8529562B2 (en) 2009-11-13 2013-09-10 Minerva Surgical, Inc Systems and methods for endometrial ablation
US8540708B2 (en) 2008-10-21 2013-09-24 Hermes Innovations Llc Endometrial ablation method
US8715278B2 (en) 2009-11-11 2014-05-06 Minerva Surgical, Inc. System for endometrial ablation utilizing radio frequency
US8747398B2 (en) 2007-09-13 2014-06-10 Covidien Lp Frequency tuning in a microwave electrosurgical system
US8821486B2 (en) 2009-11-13 2014-09-02 Hermes Innovations, LLC Tissue ablation systems and methods
US8956348B2 (en) 2010-07-21 2015-02-17 Minerva Surgical, Inc. Methods and systems for endometrial ablation
US9289257B2 (en) 2009-11-13 2016-03-22 Minerva Surgical, Inc. Methods and systems for endometrial ablation utilizing radio frequency
US9357977B2 (en) 2006-01-12 2016-06-07 Gynesonics, Inc. Interventional deployment and imaging system
US9510897B2 (en) 2010-11-05 2016-12-06 Hermes Innovations Llc RF-electrode surface and method of fabrication
US9649125B2 (en) 2013-10-15 2017-05-16 Hermes Innovations Llc Laparoscopic device
US9662163B2 (en) 2008-10-21 2017-05-30 Hermes Innovations Llc Endometrial ablation devices and systems
US9861424B2 (en) 2007-07-11 2018-01-09 Covidien Lp Measurement and control systems and methods for electrosurgical procedures
US9901394B2 (en) 2013-04-04 2018-02-27 Hermes Innovations Llc Medical ablation system and method of making
US10058342B2 (en) 2006-01-12 2018-08-28 Gynesonics, Inc. Devices and methods for treatment of tissue
US10492856B2 (en) 2015-01-26 2019-12-03 Hermes Innovations Llc Surgical fluid management system and method of use
US10595819B2 (en) 2006-04-20 2020-03-24 Gynesonics, Inc. Ablation device with articulated imaging transducer
US10675087B2 (en) 2015-04-29 2020-06-09 Cirrus Technologies Ltd Medical ablation device and method of use
US10993770B2 (en) 2016-11-11 2021-05-04 Gynesonics, Inc. Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data
US11253311B2 (en) 2016-04-22 2022-02-22 RELIGN Corporation Arthroscopic devices and methods
US11259825B2 (en) 2006-01-12 2022-03-01 Gynesonics, Inc. Devices and methods for treatment of tissue
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system
US11576718B2 (en) 2016-01-20 2023-02-14 RELIGN Corporation Arthroscopic devices and methods
US11766291B2 (en) 2016-07-01 2023-09-26 RELIGN Corporation Arthroscopic devices and methods
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255039A1 (en) * 1998-06-26 2005-11-17 Pro Surg, Inc., A California Corporation Gel injection treatment of breast, fibroids & endometrial ablation
US6840935B2 (en) * 2000-08-09 2005-01-11 Bekl Corporation Gynecological ablation procedure and system using an ablation needle
US6706040B2 (en) 2001-11-23 2004-03-16 Medlennium Technologies, Inc. Invasive therapeutic probe
US7850683B2 (en) * 2005-05-20 2010-12-14 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7713266B2 (en) 2005-05-20 2010-05-11 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
GB2434314B (en) 2006-01-03 2011-06-15 Microsulis Ltd Microwave applicator with dipole antenna
US20070161905A1 (en) * 2006-01-12 2007-07-12 Gynesonics, Inc. Intrauterine ultrasound and method for use
US20100056926A1 (en) * 2008-08-26 2010-03-04 Gynesonics, Inc. Ablation device with articulated imaging transducer
US20100036378A1 (en) * 2006-10-24 2010-02-11 Koninklijke Philips Electronics N.V. Thermal imaging feedback for optimizing radio frequency ablation therapy
US9254162B2 (en) 2006-12-21 2016-02-09 Myoscience, Inc. Dermal and transdermal cryogenic microprobe systems
US8409185B2 (en) * 2007-02-16 2013-04-02 Myoscience, Inc. Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
US20090138011A1 (en) * 2007-03-13 2009-05-28 Gordon Epstein Intermittent ablation rf driving for moderating return electrode temperature
US20090187183A1 (en) * 2007-03-13 2009-07-23 Gordon Epstein Temperature responsive ablation rf driving for moderating return electrode temperature
DE102007032530B4 (en) * 2007-07-12 2011-08-25 Siemens AG, 80333 Method for creating a medical image and imaging device
US8419763B2 (en) * 2007-09-13 2013-04-16 Pivot Medical, Inc. Safety needle for accessing the interior of a hip joint
WO2009065061A1 (en) 2007-11-14 2009-05-22 Myoscience, Inc. Pain management using cryogenic remodeling
US20090287081A1 (en) * 2008-04-29 2009-11-19 Gynesonics , Inc Submucosal fibroid ablation for the treatment of menorrhagia
US20090318914A1 (en) * 2008-06-18 2009-12-24 Utley David S System and method for ablational treatment of uterine cervical neoplasia
EP2373239B1 (en) 2008-12-22 2013-08-14 Myoscience, Inc. Integrated cryosurgical system with refrigerant and electrical power source
JP5836964B2 (en) 2009-11-05 2015-12-24 ニンバス・コンセプツ・エルエルシー Method and system for spinal radiofrequency nerve cutting
US9173700B2 (en) 2010-04-26 2015-11-03 9234438 Canada Inc. Electrosurgical device and methods
EP2571439B1 (en) 2010-05-21 2020-06-24 Stratus Medical, LLC Systems for tissue ablation
EP2394600A1 (en) * 2010-06-11 2011-12-14 Usabcd A/S Interventional drape comprising a patient interventional drape and a barrier drape
US10874453B2 (en) * 2011-03-23 2020-12-29 Acessa Health Inc. Merged image user interface and navigational tool for remote control of surgical devices
CA2861116A1 (en) 2012-01-13 2013-07-18 Myoscience, Inc. Cryogenic probe filtration system
CN104159534B (en) 2012-01-13 2017-02-22 肌肉科技股份有限公司 Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
WO2013106859A1 (en) 2012-01-13 2013-07-18 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US9017318B2 (en) 2012-01-20 2015-04-28 Myoscience, Inc. Cryogenic probe system and method
US9877707B2 (en) * 2013-03-07 2018-01-30 Kyphon SÀRL Systems and methods for track coagulation
US9295512B2 (en) 2013-03-15 2016-03-29 Myoscience, Inc. Methods and devices for pain management
US20140276200A1 (en) * 2013-03-15 2014-09-18 Covidien Lp Microwave energy-delivery device and system
US9610112B2 (en) 2013-03-15 2017-04-04 Myoscience, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
CN105208954B (en) 2013-03-15 2019-06-04 肌肉科技股份有限公司 Low temperature Blunt dissection method and apparatus
US9668800B2 (en) 2013-03-15 2017-06-06 Myoscience, Inc. Methods and systems for treatment of spasticity
US9301723B2 (en) 2013-03-15 2016-04-05 Covidien Lp Microwave energy-delivery device and system
US10130409B2 (en) 2013-11-05 2018-11-20 Myoscience, Inc. Secure cryosurgical treatment system
TWI568405B (en) * 2015-01-09 2017-02-01 Rotary resection tool with burned hemostatic function
CN113331915A (en) 2015-06-17 2021-09-03 史赛克欧洲控股I有限责任公司 Surgical instrument with ultrasonic tip for fibrous tissue removal
US20170065249A1 (en) * 2015-09-08 2017-03-09 Advanced Tactile Imaging Inc. Methods and probes for vaginal tactile and ultrasound imaging
US10441339B2 (en) 2015-11-17 2019-10-15 Medtronic Holding Company Sárl Spinal tissue ablation apparatus, system, and method
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
WO2017197323A1 (en) 2016-05-13 2017-11-16 Lee Ann S Methods and systems for locating and treating with cold therapy
US11648062B2 (en) 2017-11-09 2023-05-16 Acessa Health Inc. System for controlling ablation treatment and visualization
WO2019099677A1 (en) 2017-11-15 2019-05-23 Myoscience, Inc. Integrated cold therapy and electrical stimulation systems for locating and treating nerves and associated methods
US11246644B2 (en) 2018-04-05 2022-02-15 Covidien Lp Surface ablation using bipolar RF electrode
US20200268440A1 (en) * 2019-02-25 2020-08-27 Acessa Health Inc. Automated ablation control systems
US11547471B2 (en) 2019-03-27 2023-01-10 Gyrus Acmi, Inc. Device with loop electrodes for treatment of menorrhagia
CN114008455A (en) * 2019-06-06 2022-02-01 得克萨斯大学体系董事会 Identification of endometriotic tissue using mass spectrometry
WO2023052939A1 (en) * 2021-09-29 2023-04-06 Cilag Gmbh International Surgical devices, systems, and methods using multi-source imaging

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085756A (en) * 1975-07-09 1978-04-25 Kenneth Weaver Method and apparatus for performing an electrosurgical procedure
US5234004A (en) * 1988-11-21 1993-08-10 Technomed International Method and apparatus for the surgical treatment of tissues by thermal effect, and in particular the prostate, using a urethral microwave-emitting probe means
US5293863A (en) * 1992-05-08 1994-03-15 Loma Linda University Medical Center Bladed endoscopic retractor
US5759162A (en) * 1992-03-10 1998-06-02 Siemens Aktiengesellschaft Method and apparatus for ultrasound tissue therapy
US5911036A (en) * 1995-09-15 1999-06-08 Computer Motion, Inc. Head cursor control interface for an automated endoscope system for optimal positioning
US5935123A (en) * 1993-11-08 1999-08-10 Rita Medical Systems, Inc. RF treatment apparatus
US5979453A (en) * 1995-11-09 1999-11-09 Femrx, Inc. Needle myolysis system for uterine fibriods
US6190383B1 (en) * 1998-10-21 2001-02-20 Sherwood Services Ag Rotatable electrode device
US6212433B1 (en) * 1998-07-28 2001-04-03 Radiotherapeutics Corporation Method for treating tumors near the surface of an organ
US6217518B1 (en) * 1998-10-01 2001-04-17 Situs Corporation Medical instrument sheath comprising a flexible ultrasound transducer
US6254601B1 (en) * 1998-12-08 2001-07-03 Hysterx, Inc. Methods for occlusion of the uterine arteries
US6355033B1 (en) * 1999-06-17 2002-03-12 Vivant Medical Track ablation device and methods of use
US6575969B1 (en) * 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US35330A (en) * 1862-05-20 Improved foot corn-planter
US4016886A (en) * 1974-11-26 1977-04-12 The United States Of America As Represented By The United States Energy Research And Development Administration Method for localizing heating in tumor tissue
US4230129A (en) * 1975-07-11 1980-10-28 Leveen Harry H Radio frequency, electromagnetic radiation device having orbital mount
US4119102A (en) * 1975-07-11 1978-10-10 Leveen Harry H Radio frequency treatment of tumors while inducing hypotension
US4074718A (en) * 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
US4080959A (en) * 1976-06-18 1978-03-28 Leveen Robert F Method for detection of tumors of the breast
US4095602A (en) * 1976-09-27 1978-06-20 Leveen Harry H Multi-portal radiofrequency generator
US4140130A (en) * 1977-05-31 1979-02-20 Storm Iii Frederick K Electrode structure for radio frequency localized heating of tumor bearing tissue
US4154246A (en) * 1977-07-25 1979-05-15 Leveen Harry H Field intensification in radio frequency thermotherapy
US4346715A (en) * 1978-07-12 1982-08-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hyperthermia heating apparatus
US4285346A (en) * 1979-03-14 1981-08-25 Harry V. LeVeen Electrode system
US4290435A (en) * 1979-09-07 1981-09-22 Thermatime A.G. Internally cooled electrode for hyperthermal treatment and method of use
US4375220A (en) * 1980-05-09 1983-03-01 Matvias Fredrick M Microwave applicator with cooling mechanism for intracavitary treatment of cancer
US4565200A (en) * 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
US5421819A (en) * 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US5385544A (en) * 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5435805A (en) * 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US5542915A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Thermal mapping catheter with ultrasound probe
CA1244889A (en) * 1983-01-24 1988-11-15 Kureha Chemical Ind Co Ltd Device for hyperthermia
US4545368A (en) * 1983-04-13 1985-10-08 Rand Robert W Induction heating method for use in causing necrosis of neoplasm
US5003991A (en) * 1987-03-31 1991-04-02 Olympus Optical Co., Ltd. Hyperthermia apparatus
US4823791A (en) * 1987-05-08 1989-04-25 Circon Acmi Division Of Circon Corporation Electrosurgical probe apparatus
US4773864A (en) * 1987-08-31 1988-09-27 Holt Byron B Apparatus for enhancing surgical skills
US4955884A (en) * 1988-06-02 1990-09-11 Circon Corporation System for reducing drag on the movement of an electrode in a resectoscope
US5151101A (en) * 1988-06-02 1992-09-29 Circon Corporation System for disconnectably mounting an endoscope sheath with an endoscope tool
US5010897A (en) * 1989-04-26 1991-04-30 Leveen Harry H Apparatus for deep heating of cancer
US5057104A (en) * 1989-05-30 1991-10-15 Cyrus Chess Method and apparatus for treating cutaneous vascular lesions
US5099756A (en) * 1989-06-01 1992-03-31 Harry H. Leveen Radio frequency thermotherapy
US5007908A (en) * 1989-09-29 1991-04-16 Everest Medical Corporation Electrosurgical instrument having needle cutting electrode and spot-coag electrode
US5190541A (en) * 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5409453A (en) * 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
EP0766533A1 (en) * 1991-05-17 1997-04-09 InnerDyne, Inc. Method and device for thermal ablation
US5542928A (en) * 1991-05-17 1996-08-06 Innerdyne, Inc. Method and device for thermal ablation having improved heat transfer
CA2109793A1 (en) * 1991-05-24 1992-12-10 Stuart D. Edwards Combination monophasic action potential/ablation catheter and high-performance filter system
US5190517A (en) * 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5383917A (en) * 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5662680A (en) * 1991-10-18 1997-09-02 Desai; Ashvin H. Endoscopic surgical instrument
US5322503A (en) * 1991-10-18 1994-06-21 Desai Ashvin H Endoscopic surgical instrument
US6730081B1 (en) * 1991-10-18 2004-05-04 Ashvin H. Desai Endoscopic surgical instrument
US5328467A (en) * 1991-11-08 1994-07-12 Ep Technologies, Inc. Catheter having a torque transmitting sleeve
EP0566731A4 (en) * 1991-11-08 1995-02-22 Ep Technologies Radiofrequency ablation with phase sensitive power detection.
US5275162A (en) * 1991-11-08 1994-01-04 Ep Technologies, Inc. Valve mapping catheter
US5314466A (en) * 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
US5423807A (en) * 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
JP3236070B2 (en) * 1992-06-04 2001-12-04 オリンパス光学工業株式会社 Scope holding device and scope device
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5542916A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
US5484400A (en) * 1992-08-12 1996-01-16 Vidamed, Inc. Dual channel RF delivery system
US5556377A (en) * 1992-08-12 1996-09-17 Vidamed, Inc. Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US5486161A (en) * 1993-02-02 1996-01-23 Zomed International Medical probe device and method
US5313943A (en) * 1992-09-25 1994-05-24 Ep Technologies, Inc. Catheters and methods for performing cardiac diagnosis and treatment
US5549108A (en) * 1992-09-25 1996-08-27 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5309910A (en) * 1992-09-25 1994-05-10 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5293869A (en) * 1992-09-25 1994-03-15 Ep Technologies, Inc. Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole
US5334193A (en) * 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5342357A (en) * 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5545161A (en) * 1992-12-01 1996-08-13 Cardiac Pathways Corporation Catheter for RF ablation having cooled electrode with electrically insulated sleeve
JPH08506259A (en) * 1993-02-02 1996-07-09 ヴィーダメッド インコーポレイテッド Transurethral needle excision device and method
US5403311A (en) * 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5545193A (en) * 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5507743A (en) * 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5536267A (en) * 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5728143A (en) * 1995-08-15 1998-03-17 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6071280A (en) * 1993-11-08 2000-06-06 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US5683384A (en) * 1993-11-08 1997-11-04 Zomed Multiple antenna ablation apparatus
US5505730A (en) * 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
US5545171A (en) * 1994-09-22 1996-08-13 Vidamed, Inc. Anastomosis catheter
US5558673A (en) * 1994-09-30 1996-09-24 Vidamed, Inc. Medical probe device and method having a flexible resilient tape stylet
US5514130A (en) * 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5546267A (en) * 1994-12-08 1996-08-13 Illinois Tool Works Inc. Communication circuit protector
US6837887B2 (en) * 1995-06-07 2005-01-04 Arthrocare Corporation Articulated electrosurgical probe and methods
US6235023B1 (en) * 1995-08-15 2001-05-22 Rita Medical Systems, Inc. Cell necrosis apparatus
US5672174A (en) * 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5782827A (en) * 1995-08-15 1998-07-21 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with multiple sensor feedback
US5672173A (en) * 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5868742A (en) * 1995-10-18 1999-02-09 Conmed Corporation Auxiliary reference electrode and potential referencing technique for endoscopic electrosurgical instruments
DE19713797A1 (en) * 1996-04-04 1997-10-09 Valleylab Inc Electrosurgical instrument for use in e.g. myoma necrosis
US6066139A (en) * 1996-05-14 2000-05-23 Sherwood Services Ag Apparatus and method for sterilization and embolization
DK174312B1 (en) * 1996-06-06 2002-12-02 Ole Pedersen Method for measuring flow rate and diffusivity, microsensor for use in the method and use of such microsensor
US5891134A (en) * 1996-09-24 1999-04-06 Goble; Colin System and method for applying thermal energy to tissue
IT1290866B1 (en) * 1996-12-24 1998-12-14 Francesco Garbagnati PROBE-CATHETER FOR THE TREATMENT OF TUMORS OF PARENCHYMATOUS ORGANS WITH RADIOFREQUENCY INDUCED INTERSTIZIAL HYPERTHERMIA
US5954717A (en) * 1997-09-25 1999-09-21 Radiotherapeutics Corporation Method and system for heating solid tissue
US6280441B1 (en) * 1997-12-15 2001-08-28 Sherwood Services Ag Apparatus and method for RF lesioning
US6036689A (en) * 1998-09-24 2000-03-14 Tu; Lily Chen Ablation device for treating atherosclerotic tissues
US6546935B2 (en) * 2000-04-27 2003-04-15 Atricure, Inc. Method for transmural ablation
US7678106B2 (en) * 2000-08-09 2010-03-16 Halt Medical, Inc. Gynecological ablation procedure and system
US6840935B2 (en) * 2000-08-09 2005-01-11 Bekl Corporation Gynecological ablation procedure and system using an ablation needle
DE60210111T2 (en) * 2001-09-28 2007-03-29 Rita Medical Systems, Inc., Mountain View IMPEDANCE-CONTROLLED DEVICE FOR THE ABLATION OF TISSUE
US7918795B2 (en) * 2005-02-02 2011-04-05 Gynesonics, Inc. Method and device for uterine fibroid treatment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085756A (en) * 1975-07-09 1978-04-25 Kenneth Weaver Method and apparatus for performing an electrosurgical procedure
US5234004A (en) * 1988-11-21 1993-08-10 Technomed International Method and apparatus for the surgical treatment of tissues by thermal effect, and in particular the prostate, using a urethral microwave-emitting probe means
US5759162A (en) * 1992-03-10 1998-06-02 Siemens Aktiengesellschaft Method and apparatus for ultrasound tissue therapy
US5293863A (en) * 1992-05-08 1994-03-15 Loma Linda University Medical Center Bladed endoscopic retractor
US5935123A (en) * 1993-11-08 1999-08-10 Rita Medical Systems, Inc. RF treatment apparatus
US6575969B1 (en) * 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
US5911036A (en) * 1995-09-15 1999-06-08 Computer Motion, Inc. Head cursor control interface for an automated endoscope system for optimal positioning
US5979453A (en) * 1995-11-09 1999-11-09 Femrx, Inc. Needle myolysis system for uterine fibriods
US6212433B1 (en) * 1998-07-28 2001-04-03 Radiotherapeutics Corporation Method for treating tumors near the surface of an organ
US6217518B1 (en) * 1998-10-01 2001-04-17 Situs Corporation Medical instrument sheath comprising a flexible ultrasound transducer
US6190383B1 (en) * 1998-10-21 2001-02-20 Sherwood Services Ag Rotatable electrode device
US6254601B1 (en) * 1998-12-08 2001-07-03 Hysterx, Inc. Methods for occlusion of the uterine arteries
US6355033B1 (en) * 1999-06-17 2002-03-12 Vivant Medical Track ablation device and methods of use

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361068B2 (en) 2000-03-06 2013-01-29 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US8038670B2 (en) 2000-03-06 2011-10-18 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US7815634B2 (en) 2000-03-06 2010-10-19 Salient Surgical Technologies, Inc. Fluid delivery system and controller for electrosurgical devices
US7678106B2 (en) 2000-08-09 2010-03-16 Halt Medical, Inc. Gynecological ablation procedure and system
US7645277B2 (en) 2000-09-22 2010-01-12 Salient Surgical Technologies, Inc. Fluid-assisted medical device
US7651494B2 (en) 2000-09-22 2010-01-26 Salient Surgical Technologies, Inc. Fluid-assisted medical device
US7951148B2 (en) 2001-03-08 2011-05-31 Salient Surgical Technologies, Inc. Electrosurgical device having a tissue reduction sensor
US7998140B2 (en) 2002-02-12 2011-08-16 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US8475455B2 (en) 2002-10-29 2013-07-02 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical scissors and methods
US8298223B2 (en) 2003-05-01 2012-10-30 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8075557B2 (en) 2004-02-04 2011-12-13 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
AU2006205199B2 (en) * 2005-01-10 2011-02-03 Halt Medical, Inc. Gynecological ablation procedure and system
WO2006076181A1 (en) * 2005-01-10 2006-07-20 Halt Medical, Inc. Gynecological ablation procedure and system
US9808310B2 (en) 2005-02-02 2017-11-07 Gynesonics, Inc. Method and device for uterine fibroid treatment
US9987080B2 (en) 2005-02-02 2018-06-05 Gynesonics, Inc. Method and device for uterine fibroid treatment
US7918795B2 (en) 2005-02-02 2011-04-05 Gynesonics, Inc. Method and device for uterine fibroid treatment
US11419668B2 (en) 2005-02-02 2022-08-23 Gynesonics, Inc. Method and device for uterine fibroid treatment
US10182862B2 (en) 2005-02-02 2019-01-22 Gynesonics, Inc. Method and device for uterine fibroid treatment
US20150066020A1 (en) * 2005-07-01 2015-03-05 Halt Medical Inc. Ablation method
US20110230874A1 (en) * 2005-07-01 2011-09-22 Halt Medical Inc. Ablation method
US9510898B2 (en) * 2005-07-01 2016-12-06 Halt Medical, Inc. Ablation method
US8512333B2 (en) 2005-07-01 2013-08-20 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US8512330B2 (en) * 2005-07-01 2013-08-20 Halt Medical Inc. Ablation method
US10828088B2 (en) 2005-07-01 2020-11-10 Acessa Health Inc. Radio frequency ablation device for the destruction of tissue masses
US8080009B2 (en) 2005-07-01 2011-12-20 Halt Medical Inc. Radio frequency ablation device for the destruction of tissue masses
US10058342B2 (en) 2006-01-12 2018-08-28 Gynesonics, Inc. Devices and methods for treatment of tissue
US9357977B2 (en) 2006-01-12 2016-06-07 Gynesonics, Inc. Interventional deployment and imaging system
US9517047B2 (en) 2006-01-12 2016-12-13 Gynesonics, Inc. Interventional deployment and imaging system
US11259825B2 (en) 2006-01-12 2022-03-01 Gynesonics, Inc. Devices and methods for treatment of tissue
US10610197B2 (en) 2006-04-20 2020-04-07 Gynesonics, Inc. Ablation device with articulated imaging transducer
US8506485B2 (en) 2006-04-20 2013-08-13 Gynesonics, Inc Devices and methods for treatment of tissue
US7815571B2 (en) 2006-04-20 2010-10-19 Gynesonics, Inc. Rigid delivery systems having inclined ultrasound and needle
US7874986B2 (en) 2006-04-20 2011-01-25 Gynesonics, Inc. Methods and devices for visualization and ablation of tissue
US10595819B2 (en) 2006-04-20 2020-03-24 Gynesonics, Inc. Ablation device with articulated imaging transducer
US20080228180A1 (en) * 2007-03-13 2008-09-18 Halt Medical, Inc Ablation system and heat preventing electrodes therefor
US9861424B2 (en) 2007-07-11 2018-01-09 Covidien Lp Measurement and control systems and methods for electrosurgical procedures
US8152800B2 (en) 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
US9190704B2 (en) 2007-07-30 2015-11-17 Covidien Lp Electrosurgical systems and printed circuit boards for use therewith
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US8747398B2 (en) 2007-09-13 2014-06-10 Covidien Lp Frequency tuning in a microwave electrosurgical system
US9498285B2 (en) 2007-09-13 2016-11-22 Covidien Lp Impedance matching in a microwave electrosurgical system
US11096760B2 (en) 2007-10-12 2021-08-24 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US11925512B2 (en) 2007-10-12 2024-03-12 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US11826207B2 (en) 2007-10-12 2023-11-28 Gynesonics, Inc Methods and systems for controlled deployment of needles in tissue
US8088072B2 (en) 2007-10-12 2012-01-03 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US8262577B2 (en) 2007-10-12 2012-09-11 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US11096761B2 (en) 2007-10-12 2021-08-24 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US8241276B2 (en) 2007-11-14 2012-08-14 Halt Medical Inc. RF ablation device with jam-preventing electrical coupling member
US8251991B2 (en) 2007-11-14 2012-08-28 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US8206300B2 (en) 2008-08-26 2012-06-26 Gynesonics, Inc. Ablation device with articulated imaging transducer
US8998901B2 (en) 2008-10-21 2015-04-07 Hermes Innovations Llc Endometrial ablation method
US8690873B2 (en) 2008-10-21 2014-04-08 Hermes Innovations Llc Endometrial ablation devices and systems
US8197476B2 (en) 2008-10-21 2012-06-12 Hermes Innovations Llc Tissue ablation systems
US11911086B2 (en) 2008-10-21 2024-02-27 Hermes Innovations Llc Endometrial ablation devices and systems
US8197477B2 (en) 2008-10-21 2012-06-12 Hermes Innovations Llc Tissue ablation methods
US9662163B2 (en) 2008-10-21 2017-05-30 Hermes Innovations Llc Endometrial ablation devices and systems
US10617461B2 (en) 2008-10-21 2020-04-14 Hermes Innovations Llc Endometrial ablation devices and system
US8540708B2 (en) 2008-10-21 2013-09-24 Hermes Innovations Llc Endometrial ablation method
US8372068B2 (en) 2008-10-21 2013-02-12 Hermes Innovations, LLC Tissue ablation systems
US8382753B2 (en) 2008-10-21 2013-02-26 Hermes Innovations, LLC Tissue ablation methods
US8500732B2 (en) 2008-10-21 2013-08-06 Hermes Innovations Llc Endometrial ablation devices and systems
US10912606B2 (en) 2008-10-21 2021-02-09 Hermes Innovations Llc Endometrial ablation method
US8262574B2 (en) 2009-02-27 2012-09-11 Gynesonics, Inc. Needle and tine deployment mechanism
US10321951B2 (en) 2009-02-27 2019-06-18 Gynesonics, Inc. Needle and tine deployment mechanism
US11564735B2 (en) 2009-02-27 2023-01-31 Gynesonics, Inc. Needle and fine deployment mechanism
US8715278B2 (en) 2009-11-11 2014-05-06 Minerva Surgical, Inc. System for endometrial ablation utilizing radio frequency
US10105176B2 (en) 2009-11-13 2018-10-23 Minerva Surgical, Inc. Methods and systems for endometrial ablation utilizing radio frequency
US11413088B2 (en) 2009-11-13 2022-08-16 Minerva Surgical, Inc. Methods and systems for endometrial ablation utilizing radio frequency
US8529562B2 (en) 2009-11-13 2013-09-10 Minerva Surgical, Inc Systems and methods for endometrial ablation
US9289257B2 (en) 2009-11-13 2016-03-22 Minerva Surgical, Inc. Methods and systems for endometrial ablation utilizing radio frequency
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method
US10213246B2 (en) 2009-11-13 2019-02-26 Hermes Innovations Llc Tissue ablation systems and method
US11857248B2 (en) 2009-11-13 2024-01-02 Minerva Surgical, Inc. Methods and systems for endometrial ablation utilizing radio frequency
US9636171B2 (en) 2009-11-13 2017-05-02 Minerva Surgical, Inc. Methods and systems for endometrial ablation utilizing radio frequency
US8821486B2 (en) 2009-11-13 2014-09-02 Hermes Innovations, LLC Tissue ablation systems and methods
US8956348B2 (en) 2010-07-21 2015-02-17 Minerva Surgical, Inc. Methods and systems for endometrial ablation
US9510897B2 (en) 2010-11-05 2016-12-06 Hermes Innovations Llc RF-electrode surface and method of fabrication
US20130116677A1 (en) * 2011-11-08 2013-05-09 Covidien Lp Systems and methods for treatment of premenstrual dysphoric disorders
US9486243B2 (en) * 2011-11-08 2016-11-08 Covidien Lp Systems and methods for treatment of premenstrual dysphoric disorders
US9901394B2 (en) 2013-04-04 2018-02-27 Hermes Innovations Llc Medical ablation system and method of making
US11259787B2 (en) 2013-10-15 2022-03-01 Hermes Innovations Llc Laparoscopic device
US10517578B2 (en) 2013-10-15 2019-12-31 Hermes Innovations Llc Laparoscopic device
US9649125B2 (en) 2013-10-15 2017-05-16 Hermes Innovations Llc Laparoscopic device
US10492856B2 (en) 2015-01-26 2019-12-03 Hermes Innovations Llc Surgical fluid management system and method of use
US10675087B2 (en) 2015-04-29 2020-06-09 Cirrus Technologies Ltd Medical ablation device and method of use
US11576718B2 (en) 2016-01-20 2023-02-14 RELIGN Corporation Arthroscopic devices and methods
US11253311B2 (en) 2016-04-22 2022-02-22 RELIGN Corporation Arthroscopic devices and methods
US11793563B2 (en) 2016-04-22 2023-10-24 RELIGN Corporation Arthroscopic devices and methods
US11766291B2 (en) 2016-07-01 2023-09-26 RELIGN Corporation Arthroscopic devices and methods
US11419682B2 (en) 2016-11-11 2022-08-23 Gynesonics, Inc. Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data
US10993770B2 (en) 2016-11-11 2021-05-04 Gynesonics, Inc. Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system

Also Published As

Publication number Publication date
JP2004524865A (en) 2004-08-19
WO2002011639A1 (en) 2002-02-14
EP1309286A1 (en) 2003-05-14
KR20090098922A (en) 2009-09-17
KR101092188B1 (en) 2011-12-13
US20020022835A1 (en) 2002-02-21
US20080045939A1 (en) 2008-02-21
AU2001281201A1 (en) 2002-02-18
US6840935B2 (en) 2005-01-11
ATE481050T1 (en) 2010-10-15
US20080045940A1 (en) 2008-02-21
CA2418896A1 (en) 2002-02-14
KR20040011417A (en) 2004-02-05
EP1309286B1 (en) 2010-09-15
CA2418896C (en) 2013-10-08
DE60143087D1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
US6840935B2 (en) Gynecological ablation procedure and system using an ablation needle
US7678106B2 (en) Gynecological ablation procedure and system
US20220346866A1 (en) Method and device for uterine fibroid treatment
US11793564B2 (en) Methods and systems for the treatment of polycystic ovary syndrome
Gill et al. Laparoscopic radical prostatectomy: technique
Sano et al. Laparoscopic myomectomy for the removal of large uterine myomas
ES2352874T3 (en) GYNECOLOGICAL ABLATION SYSTEM THAT USES AN ABLATION NEEDLE.
Sasaki et al. Robotic myomectomy
Sasaki et al. 34 CHAPTER ROBOTIC MYOMECTOMY
Solnik Laparoscopic Ovarian Wedge Resection or Diathermy

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ACESSA HEALTH INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALT MEDICAL, INC.;REEL/FRAME:043617/0931

Effective date: 20170621