US20040225993A1 - Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device - Google Patents

Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device Download PDF

Info

Publication number
US20040225993A1
US20040225993A1 US10/870,934 US87093404A US2004225993A1 US 20040225993 A1 US20040225993 A1 US 20040225993A1 US 87093404 A US87093404 A US 87093404A US 2004225993 A1 US2004225993 A1 US 2004225993A1
Authority
US
United States
Prior art keywords
layout pattern
condition
simulation
design layout
lithography process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/870,934
Inventor
Hironobu Taoka
Akihiro Nakae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/870,934 priority Critical patent/US20040225993A1/en
Publication of US20040225993A1 publication Critical patent/US20040225993A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions

Definitions

  • the present invention relates to a lithography process margin evaluating apparatus, and more specifically to a lithography process margin evaluating apparatus simulating a layout pattern of a semiconductor device in manufacturing a semiconductor.
  • Lithography process is one of techniques to transfer a layout pattern of a semiconductor device to a semiconductor substrate.
  • a photosensitive resin hereinafter, referred to as a photoresist
  • a layout pattern hereinafter, referred to as a design layout pattern
  • an actual layout pattern is formed.
  • an actual layout pattern is formed on the semiconductor substrate.
  • FIG. 27 is a block diagram showing a configuration of a conventional lithography simulation apparatus.
  • a lithography simulation apparatus 10 includes a hard disk 11 , a simulation unit 15 and an input unit 16 .
  • Hard disk 11 includes a layout holding unit 12 , a simulation condition holding unit 13 and a simulation result holding unit 14 .
  • Layout holding unit 12 holds information of a design layout pattern input through input unit 16 .
  • Simulation condition holding unit holds a simulation condition entered through input unit 16 . Examples of simulation conditions are exposure wavelength, Numerical Aperture (hereinafter, referred to as “NA”) and the like.
  • Simulation result holding unit 14 holds a result from simulation performed at simulation unit 15 .
  • Simulation unit 15 simulates an actual layout pattern, using information of the design layout pattern held in layout holding unit 12 and the simulation condition held in simulation condition holding unit 13 .
  • Information of the simulated actual layout pattern is held in simulation result holding unit 14 .
  • FIG. 28 is a flow chart showing an operation of the conventional lithography simulation apparatus.
  • a user of lithography simulation apparatus 10 first enters information of the design layout pattern to lithography simulation apparatus 10 , using input unit 16 (step S 1 ).
  • Information of the entered design layout pattern is stored in layout holding unit 12 .
  • the user then enters the simulation condition, using input unit 16 (step S 2 ).
  • the entered simulation condition is stored in simulation condition holding unit 13 .
  • Simulation unit 15 within lithography simulation apparatus 10 simulates the actual layout pattern, using information of the design layout pattern and the simulation condition (step S 3 ).
  • the simulated actual layout pattern is stored in simulation result holding unit 14 (step S 4 ).
  • the user measures light intensity distribution within a photosensitive material and a shape of the actual layout pattern, using the simulation result stored in simulation result holding unit 14 (step S 5 ). Thereafter, the user analyzes, for example, a difference in shape from the design layout pattern (step S 6 ).
  • a conventional lithography process margin apparatus has performed a simulation of an actual layout pattern relative to a single design layout pattern.
  • OPC optical proximity correction
  • An object of the present invention is to provide a lithography process margin evaluating apparatus with high accuracy, capable of reducing operational burden.
  • a lithography process margin evaluating apparatus simulates, from a design layout pattern formed on a mask, a light intensity distribution within a photosensitive material on a semiconductor substrate and an actual layout pattern formed on the semiconductor substrate, and includes an analysis condition input unit, a layout pattern template holding unit, a simulation condition template unit, a measuring condition holding unit, a layout pattern generating unit, a simulation condition generating unit, a simulation unit, a measuring condition determining unit, and a measuring unit.
  • the analysis condition input unit is for entering an analysis condition for analyzing the actual layout pattern.
  • the layout pattern template holding unit stores a plurality of design layout pattern templates.
  • the simulation condition template holding unit stores a plurality of simulation condition templates.
  • the measuring condition holding unit stores a plurality of measuring conditions for measuring the actual layout pattern.
  • the layout pattern generating unit selects a design layout pattern template, and generates a plurality of design layout patterns based on the analysis condition and the selected design layout pattern template.
  • the simulation condition generating unit selects a simulation condition template, and generates a plurality of simulation conditions based on the entered analysis condition and the selected simulation condition template.
  • the simulation unit simulates the actual layout pattern transferred to the photosensitive material on the semiconductor substrate, using the plurality of design layout patterns and the plurality of simulation conditions.
  • the measuring condition determining unit determines a measuring condition among a plurality of measuring conditions based on the analysis condition.
  • the measuring unit measures the actual layout pattern with the determined measuring condition.
  • the lithography process margin evaluating apparatus can generate a plurality of design layout patterns in accordance with the analysis condition, and simulate a plurality of actual layout patterns corresponding to the plurality of design layout patterns.
  • the lithography process margin evaluating apparatus can measure each of the plurality of actual layout patterns. Consequently, operational burden will be reduced.
  • the lithography process margin evaluating apparatus can generate a plurality of design layout patterns, and simulate the same. Thus, operational burden of a user can be reduced.
  • FIG. 1 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 1 of the present invention.
  • FIG. 2A is a schematic diagram showing an example of a design layout pattern template held in a layout pattern template holding unit in FIG. 1.
  • FIG. 2B shows in the form of a graph the pattern in FIG. 2A.
  • FIG. 3 is a schematic block diagram showing a configuration of a computer.
  • FIG. 4 is a flow chart showing an operation of the lithography process margin evaluating apparatus in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of an analysis condition input image displayed in step S 1 in FIG. 4.
  • FIG. 6 is a schematic diagram of the analysis input image after entering.
  • FIG. 7A is a schematic diagram representing an actual layout pattern generated in step S 4 in FIG. 4.
  • FIG. 7B shows a light intensity distribution relative to a direction of width of the pattern in FIG. 7A.
  • FIG. 8 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 2 of the present invention.
  • FIG. 9 is a flow chart showing an operation of the lithography process margin evaluating apparatus in Embodiment 2 of the present invention.
  • FIG. 10 shows in a graph an analysis result obtained in step S 6 in FIG. 9.
  • FIG. 11 shows in a graph another example with regard to the analysis result obtained in step S 6 in FIG. 9.
  • FIG. 12A shows in a graph depth of focus, among the analysis results obtained in step S 6 in FIG. 9.
  • FIG. 12B shows a relation of depth of focus with pattern width of a design layout pattern.
  • FIG. 12C shows a relation of depth of focus, pitch and pattern width of the design layout pattern.
  • FIG. 13A is a diagram representing edge displacement of pattern width of the design layout pattern, among the analysis results obtained in step S 6 in FIG. 9.
  • FIG. 13B shows a change in pattern width of an actual layout pattern relative to an amount of edge displacement of pattern width of the design layout pattern.
  • FIG. 14 shows pattern width of the actual layout pattern relative to a varied amount of light exposure.
  • FIG. 15A shows a light intensity distribution when simulating the design layout pattern.
  • FIG. 15B shows a layout pattern when a dimple is produced.
  • FIG. 16 is a flow chart showing an operation of a lithography process margin evaluating apparatus in Embodiment 3 of the present invention.
  • FIG. 17 is a schematic diagram of an analysis condition input image displayed in step Si in FIG. 16.
  • FIG. 18 is a flow chart showing a detailed operation of step S 10 in FIG. 16.
  • FIG. 19 is a diagram representing an analysis method in step S 106 in FIG. 18.
  • FIG. 20A shows an actual layout pattern relative to a design layout pattern.
  • FIG. 20B is a schematic diagram representing OPC.
  • FIG. 21 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 4 of the present invention.
  • FIG. 22 is a flow chart showing an operation of the lithography process margin evaluating apparatus in Embodiment 4 of the present invention.
  • FIG. 23 is a flow chart showing an operation of a lithography process margin evaluating apparatus in Embodiment 5.
  • FIG. 24 is a diagram representing a design layout pattern and a corrected layout pattern in Embodiment 5 of the present invention.
  • FIG. 25 is a schematic diagram of an analysis condition input image displayed in step Si in FIG. 23.
  • FIG. 26 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 6 of the present invention.
  • FIG. 27 is a block diagram showing a configuration of a conventional lithography simulation apparatus.
  • FIG. 28 is a flow chart showing an operation of the conventional lithography simulation apparatus.
  • FIG. 1 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 1 of the present invention.
  • a lithography process margin evaluating apparatus 100 includes a master file 110 , a layout pattern generating unit 27 , a simulation condition generating unit 28 , a measuring condition determining unit 29 , a simulation unit 17 , a measuring unit 30 and an analysis condition input unit 31 .
  • Master file 110 includes a layout pattern template holding unit 22 , a simulation condition template holding unit 23 , a measuring condition holding unit 24 , a measurement result holding unit 25 and a simulation result holding unit 26 .
  • Layout pattern template holding unit 22 holds a plurality of design layout pattern templates. Each of the plurality of design layout pattern templates has an identification number.
  • FIG. 2 is a schematic diagram showing an example of the design layout pattern template held in the layout pattern template holding unit in FIG. 1.
  • the design layout pattern template is composed of a pattern 10 A and a pattern 10 B having identical shapes.
  • Pattern 10 A and pattern 10 B are rectangles having width L and length W, and line-and-space thereof has pitch S.
  • FIG. 2B shows in a graph pattern 10 A in FIG. 2A.
  • pattern 10 A is shown in a two-dimensional coordinate system having a center of pattern 10 A as an origin. Specifically, pattern 10 A is formed with coordinates of vertices of the rectangle, that is, (L/2, W/2), (L/2, ⁇ W/2), ( ⁇ L/2, ⁇ W/2) and ( ⁇ L/2, W/2).
  • simulation condition template holding unit 23 holds a plurality of simulation condition templates in a simulation condition table.
  • the simulation condition table includes a simulation optical condition table recording an optical condition in simulation, and a simulation etching condition table recording an etching condition in simulation.
  • the simulation optical condition table and the simulation etching table are shown respectively in Tables 1 and 2.
  • the simulation etching condition table has a light intensity I or a process model as an etching condition. Each etching condition is recorded as a fixed value or a variable value for each simulation etching condition.
  • Measuring condition holding unit 24 stores a plurality of measuring conditions for an actual layout pattern after simulation in a measuring condition table shown in Table 3.
  • Each measuring condition has a measuring condition “No.”.
  • Simulation result holding unit 26 holds information of the actual layout pattern simulated by simulation unit 17 .
  • Measurement result holding unit 25 stores a result from measurement using information of the actual layout pattern stored in simulation result holding unit 26 after simulation.
  • Analysis condition input unit 31 is provided for entering an analysis condition when a user makes an analysis with lithography process margin evaluating apparatus 100 .
  • Layout pattern generating unit 27 generates a plurality of design layout patterns, using a design layout pattern template stored in layout pattern template holding unit 22 and the analysis condition entered through analysis condition input unit 31 .
  • Simulation condition generating unit 28 generates a plurality of simulation conditions, using a plurality of simulation conditions stored in simulation condition template holding unit 23 and the analysis condition.
  • Measuring condition determining unit 29 selects a measuring condition suited for the analysis condition from a plurality of measuring conditions stored in the measuring condition holding unit.
  • Simulation unit 17 performs simulation using a plurality of design layout patterns and a plurality of simulation conditions, and generates a plurality of actual layout patterns.
  • Measuring unit 30 carries out a measurement, using the measuring condition determined by measuring condition determining unit 29 and based on information of the actual layout pattern.
  • FIG. 3 is a schematic block diagram showing a configuration of a computer.
  • a computer 500 includes a CPU 501 , a memory 502 , a display 504 , a hard disk 505 , a storage medium drive 506 , a keyboard 507 and a mouse 508 .
  • Memory 502 and hard disk 505 function as a memory
  • keyboard 507 and mouse 508 function as an input device
  • display 504 functions as an output device. These are connected to one another by a bus 509 .
  • a storage medium 510 is a computer-readable storage medium, and has a lithography process margin evaluating program stored in advance.
  • storage medium 510 is attached to storage medium drive 506 and the lithography process margin evaluating program is installed in hard disk 505 , computer 500 functions as lithography process margin evaluating apparatus 100 .
  • master file 110 in FIG. 1 corresponds to memory 502 and hard disk 505 in FIG. 3, and layout pattern generating unit 27 , simulation condition generating unit 28 , measuring condition determining unit 29 , simulation unit 17 and measuring unit 30 in FIG. 1 correspond to CPU 501 in FIG. 3.
  • analysis condition input unit 31 in FIG. 1 corresponds to keyboard 507 and mouse 508 in FIG. 3.
  • storage medium 510 refers to such storage media as a CD-ROM, a magneto-optical (MO) disk or a floppy disk.
  • an operating system (OS) for enabling an operation of the lithography process margin program is pre-installed in hard disk 505 .
  • OS operating system
  • FIG. 4 is a flow chart showing an operation of the lithography process margin evaluating apparatus in Embodiment 1 of the present invention.
  • a user initially enters an analysis condition, using analysis condition input unit 31 (step S 1 ).
  • an analysis condition input image is displayed on display 504 in FIG. 3.
  • FIG. 5 is a schematic diagram of the analysis condition input image displayed in step S 1 in FIG. 4.
  • an analysis condition input image 200 includes a selection layout pattern template No. input section 201 , a selection simulation condition template No. input section 202 , a layout pattern analysis condition input section 203 and a simulation analysis condition input section 204 .
  • the user enters into selection layout pattern template NO input section 201 an identification number of a design layout pattern template to be used for the present analysis.
  • the identification number of the design layout pattern template shown in FIG. 2A is “A001”
  • the user enters “A001” in selection layout pattern template NO input section 201 .
  • the user enters an identification number of a simulation template to be used for the present analysis from a plurality of simulation condition templates held in simulation condition template holding unit 23 .
  • the user enters into selection simulation condition template NO input section 202 “B001” from the simulation optical condition table in Table 1 and “C001” from the simulation etching condition table in Table 2.
  • the user then enters an analysis condition for the design layout pattern template into layout pattern analysis condition input section 203 .
  • the user is assumed to fix length W to be 1.0 ⁇ m, to vary width L from 0.1 ⁇ m to 2.0 ⁇ m in steps of 0.01 ⁇ m and to vary pitch S from 1.0 ⁇ m to 3.01 ⁇ m in steps of 0.01 ⁇ m.
  • the user enters “1.0” in a field of initial value and “fixed” in fields of pitch and final value, for length W of layout pattern analysis condition input section 203 .
  • the user enters “0.1” in the field of initial value, “0.01” in the field of pitch, and “2.0” in the field of final value, for width L.
  • the user also enters “1.0” in the field of initial value, “0.01” in the field of pitch, and “3.0” in the field of final value, for pitch S.
  • a defocus value X when the user performs a simulation with a condition of identification number “B001” shown in Table 1, is assumed to be varied from ⁇ 0.4 to 0.41 ⁇ m in steps of 0.1 ⁇ m.
  • the user enters “ ⁇ 0.4” in the field of initial value, “0.1” in the field of pitch and “0.4” in the field of final value, for defocus X in layout pattern analysis condition input unit 204 .
  • DOF condition for depth of focus
  • the present analysis target is entered in the field of “object to be analyzed”.
  • “CD” is entered in the field of “object to be analyzed”.
  • FIG. 6 is a schematic diagram of an analysis input image after entering.
  • layout pattern generating unit 27 in response to the analysis condition entered in step S 1 , selects a prescribed layout pattern template from layout pattern template holding unit 22 , and generates a plurality of design layout patterns based on the selected layout pattern template (step S 2 ).
  • layout pattern generating unit 27 in response to the identification number of the layout pattern template entered in step S 1 , selects a layout pattern template having the identification number “A001” from layout pattern template holding unit 22 . Thereafter, in accordance with the condition entered in layout pattern analysis condition input unit 203 in FIG. 6, a plurality of design layout patterns are generated based on the layout pattern template having the identification number “A001”.
  • Simulation condition generating unit 28 then generates a simulation condition (step S 3 ).
  • Simulation condition generating unit 28 in response to the identification number of the simulation condition template entered in step S 1 , selects a simulation optical condition having the identification number “B001” and a simulation etching condition having the identification number “C001” from simulation condition template holding unit 23 .
  • simulation condition generating unit 28 After selection, simulation condition generating unit 28 generates a plurality of simulation conditions in accordance with the condition of defocus value X entered in simulation analysis condition input section 204 in FIG. 6. Consequently, exposure wavelength, numerical aperture NA and degree of coherence ⁇ are fixed, and simulation conditions having 9 defocus values (from ⁇ 0.4 to 0.4 in steps of 0.1 pitch) are generated.
  • simulation unit 17 performs a simulation using the plurality of design layout patterns generated in step S 2 and the plurality of simulation conditions generated in step S 3 , and generates a plurality of actual layout patterns (step S 4 ).
  • FIG. 7A is a schematic diagram representing an actual layout pattern generated in step S 4 in FIG. 4.
  • patterns 10 A, 10 B in FIG. 7A represent design layout patterns.
  • Patterns 11 A and 11 B in FIG. 7A represent actual layout patterns.
  • Distribution of light intensity I with respect to the direction of width L here is as shown in FIG. 7B.
  • simulation result holding unit 25 information of a relation of light intensity with a position shown in FIG. 7B is stored for each actual layout pattern.
  • measuring condition determining unit 29 in response to the analysis condition entered in step S 2 , determines a measuring condition from measuring condition holding unit 24 (step S 5 ).
  • Measuring condition determining unit 29 referring to a content in a field of “object to be analyzed” in simulation analysis condition input section 204 in FIG. 6, selects an optimal measuring condition from the plurality of measuring conditions recorded in the measuring condition table shown in Table 3.
  • measuring condition determining unit 29 may select one or a plurality of measuring conditions.
  • a more detailed condition such as a measurement site can be entered in the field of “object to be analyzed” in simulation analysis condition input section 204 in FIG. 5.
  • measuring condition determining unit 29 is assumed to have selected an identification number “D001” in Table 3.
  • Measuring unit 30 measures information of a plurality of actual layout patterns stored in simulation result holding unit 25 , using one or more measuring conditions (step S 6 ).
  • a measurement result is stored in measurement result holding unit 26 .
  • a lithography process margin evaluating apparatus in Embodiment 1 of the present invention can simulate a plurality of design layout patterns and a plurality of simulation conditions, and measure a plurality of actual layout patterns after simulation. Therefore, a user does not have to enter again a new design layout pattern after simulating one design layout pattern as in a conventional example. Consequently, operational burden is reduced. In addition, since a plurality of measurement results can be easily obtained, analysis accuracy using those results will be improved.
  • FIG. 8 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 2 of the present invention.
  • an analysis result holding unit 32 and an analysis unit 33 are added to a lithography process margin evaluating apparatus 120 .
  • Analysis unit 33 performs an analysis according to an analysis condition, based on information stored in measurement result holding unit 26 .
  • Analysis result holding unit 32 stores a result analyzed by analysis unit 33 .
  • FIG. 9 is a flow chart showing an operation of the lithography process margin evaluating apparatus in Embodiment 2 of the present invention.
  • FIG. 9 similarly as in FIG. 8, an example will be described, in which a user analyzes width CD of an actual layout pattern relative to width L of a design layout pattern, using a design layout pattern template shown in FIG. 2A.
  • analysis unit 33 After measuring information of a plurality of actual layout patterns in step S 6 using one or more measuring conditions, analysis unit 33 performs an analysis using a measurement result stored in measurement result holding unit 26 (step S 7 ).
  • FIG. 10 shows in a graph an analysis result obtained in step S 6 in FIG. 9.
  • FIG. 11 shows in a graph another example with regard to the analysis result obtained in step S 6 in FIG. 9.
  • the graph shown in FIG. 11 illustrates a change in width CD of the actual layout pattern when pitch S of a layout pattern template in FIG. 2 as an analysis condition is varied.
  • a user will have to enter a layout pattern analysis condition to vary pitch S when entering the analysis condition in step S 1 in FIG. 9.
  • a method of analyzing depth of focus DOF will be described as another example of analysis method.
  • step S 6 Other operations up to step S 6 are similar to those in Embodiment 1.
  • FIG. 12A shows in a graph depth of focus DOF, among the analysis results obtained in step S 6 in FIG. 9.
  • FIG. 12A shows, further in detail in a graph, a relation of pattern width of the actual layout pattern with a defocus value when pattern width of the design layout pattern is 0.1 ⁇ m.
  • defocus value X 10 is found.
  • a value for depth of focus DOF is determined as shown in FIG. 12A.
  • FIG. 12C shows a relation of pattern width L, pitch S and DOF of the design layout pattern.
  • a DOF value is provided as a contour.
  • a graph representing a relation between pattern width L, pitch S and DOF of the design layout pattern as shown in FIG. 12C may be provided in three-dimension.
  • FIG. 13 shows another example of an analysis result obtained in step S 6 in FIG. 9.
  • FIG. 13 shows an example analyzing a change in pattern width CD of an actual layout pattern relative to an amount of edge displacement of pattern width L of the design layout pattern.
  • the analysis condition to be entered may be the same as in step S 1 shown in FIG. 4.
  • a design layout pattern 10 A has pattern width L 1 , of which actual layout pattern is provided as 11 A.
  • a design layout pattern 20 A has pattern width L 2 , of which actual layout pattern is provided as 21 A.
  • Difference between pattern widths of actual layout patterns 21 A and 11 A is provided as difference E of actual layout pattern width.
  • Analysis unit 33 finds difference E of actual layout pattern width relative to difference L 2 -L 1 in pattern width of each design layout pattern, and thus a graph shown in FIG. 13B can be found.
  • step S 1 a user have only to enter an analysis condition so as to vary the amount of exposure, that is, light intensity.
  • analysis unit 33 can also analyze a dimple.
  • FIG. 15 is a schematic diagram illustrating the dimple.
  • FIG. 15A shows distribution of light intensity when simulating a design layout pattern.
  • a side lobe 700 is produced in a position distant from a maximum value of light intensity.
  • the entire design layout pattern transmits light, and hence, overall light intensity will be greater.
  • the side lobes produced due to each design layout pattern overlap not only peak intensity becomes greater but also light intensity will be larger. Consequently, in the actual layout pattern, a pattern called “dimple” is produced in a unit outside the design layout pattern.
  • FIG. 15B shows a layout pattern when a dimple is produced.
  • a dimple 703 is formed along with actual layout pattern 702 , relative to design layout pattern 701 .
  • Analysis unit 33 can retrieve a maximum value for light intensity and a position thereof and analyze the dimple from a measurement result.
  • Analysis unit 33 can perform analysis in accordance with another analysis method in addition to those described above. Analysis result is stored in analysis result holding unit 32 .
  • a lithography process margin evaluating apparatus in Embodiment 2 of the present invention can analyze a plurality of design layout patterns in accordance with an analysis condition. Consequently, operational burden of a user is reduced. In addition, as a plurality of analysis results can easily be obtained, the user can determine a design layout pattern of higher accuracy.
  • FIG. 16 is a flow chart showing an operation of a lithography process margin evaluating apparatus in Embodiment 3 of the present invention.
  • a configuration of the lithography process margin evaluating apparatus in Embodiment 3 is similar to that of lithography process margin evaluating apparatus 120 shown in FIG. 8.
  • step S 10 an operation in a new step S 10 is inserted between steps S 1 and S 2 .
  • step S 1 reference light intensity Is is determined.
  • Other operations are similar to those in FIG. 9.
  • an analysis condition entered by a user in step S 1 is different from the one in FIG. 9.
  • FIG. 17 is a schematic diagram of an analysis condition input image displayed in step S 1 in FIG. 16.
  • an reference CD value input section 205 is additionally provided. A user enters a reference CD value, which will be discussed below, in reference CD value input section 205 .
  • FIG. 18 is a flow chart showing a detailed operation of step S 10 in FIG. 16.
  • layout pattern generating unit 27 of lithography process margin evaluating apparatus 120 selects a preset test design layout pattern from layout pattern template holding unit 22 (step S 101 ).
  • layout pattern generating unit 27 selects a fixed value for the test design layout pattern.
  • pattern width L is fixed at 0.21 ⁇ m.
  • step S 101 taking into account the fixed value for pattern width L of the test design layout pattern, the user enters a reference CD value in reference CD value input section 205 .
  • reference CD is assumed to be 0.22 ⁇ m.
  • Simulation condition generating unit 28 selects a preset test simulation condition from simulation condition template holding unit 23 (step S 102 ).
  • An example of the test simulation condition is shown in Table 5.
  • TABLE 5 Optical Condition Simulation Exposure Defocus Condition Wavelength NA ⁇ Value Test 248 nm 7.0 0.8 0 ⁇ m
  • test simulation conditions are provided as fixed values.
  • Simulation unit 17 then performs a simulation (step S 103 ). Obtained information of an actual layout pattern is stored in simulation result holding unit 25 .
  • Measuring condition determining unit 29 selects a test measuring condition from measuring condition holding unit 24 .
  • the test measuring condition is defined so as to measure an intensity distribution in a direction of pattern width CD of the actual layout pattern.
  • a result measured as described above is stored in measurement result holding unit 25 .
  • analysis unit 33 will make an analysis based on the measurement result (step S 106 ).
  • FIG. 19 is a diagram representing an analysis method in step S 106 in FIG. 18.
  • analysis unit 33 first provides, as a graph, a light intensity distribution in a direction of pattern width CD of the actual layout pattern. After plotting the graph, analysis unit 33 determines a light intensity value Is for which a value for pattern width CD attains 0.221 ⁇ m. The determined light intensity value Is is provided as a reference light intensity value.
  • a light intensity value can be initially determined easily when continuously simulating a plurality of design layout patterns.
  • operational burden of a user is reduced.
  • FIG. 20A shows an actual layout pattern relative to a design layout pattern.
  • Actual layout pattern 11 A is generated with respect to design layout pattern 10 A.
  • design layout pattern 10 A represents an ideal layout pattern
  • shape of actual layout pattern 11 A is desirably a close approximation to that of design layout pattern 10 A.
  • a technique devised therefor is OPC.
  • FIG. 20B is a schematic diagram representing OPC.
  • OPC refers to a technique in which, predicting light intensity and the like in exposure, a corrected layout pattern is generated, which pattern is modified in shape in advance of the design layout pattern so that actual layout pattern 11 A will have the same shape as design layout pattern 10 A.
  • An actual layout pattern 13 A can be obtained by performing a simulation using corrected layout pattern 12 A modified in shape of design layout pattern 10 A.
  • Actual layout pattern 13 A, compared with actual layout pattern 11 A has a shape closer to design layout pattern 10 A.
  • FIG. 21 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 4 of the present invention.
  • a lithography process margin evaluating apparatus 130 compared with lithography process margin evaluating apparatus 120 shown in FIG. 8, includes a normal pattern generating unit 271 and a corrected pattern generating unit 272 in layout pattern generating unit 27 .
  • Normal pattern generating unit 271 generates a plurality of design layout patterns.
  • Corrected pattern generating unit 272 generates a corrected layout pattern subjected to OPC, for each of the plurality of design layout patterns.
  • FIG. 22 is a flow chart showing an operation of the lithography process margin evaluating apparatus in Embodiment 4 of the present invention.
  • step S 2 an operation in step S 2 is divided into step S 20 and step S 21 .
  • step S 20 similarly as in step S 2 , a plurality of design layout patterns are generated.
  • step S 21 corresponding to the plurality of design layout patterns generated in step S 20 , a plurality of corrected layout patterns are formed.
  • the plurality of corrected layout patterns are generated by corrected pattern generating unit 272 .
  • Other steps are similar to those in FIG. 9. However, simulation, measurement and analysis are performed with respect to a design layout pattern and a corresponding corrected layout pattern in a similar manner.
  • Embodiment 4 With regard to a lithography process margin evaluating apparatus in Embodiment 4, an example has been described, in which an analysis operation accompanying OPC is possible. It is more desirable, however, to be able to select an optimal corrected layout pattern when a plurality of corrected layout patterns are generated for one design layout pattern.
  • the lithography process margin evaluating apparatus in Embodiment 5 of the present invention is of the same configuration as lithography process margin evaluating apparatus 130 in Embodiment 4.
  • Analysis unit 33 has a function to determine an optimal corrected layout pattern among a plurality of corrected layout patterns generated for one design layout pattern.
  • FIG. 23 is a flow chart showing an operation of the lithography process margin evaluating apparatus in Embodiment 5.
  • step S 8 is added to determine an optimal corrected layout pattern after analysis in step S 7 .
  • Other operations are similar to those in FIG. 22.
  • an OPC condition will be entered.
  • FIG. 24 is a diagram representing a design layout pattern and a corrected layout pattern in Embodiment 5 of the present invention.
  • design layout patterns 10 A, 10 B are the same as in FIG. 2.
  • Pattern width of a corrected layout pattern provided as a result of OPC for design layout pattern 10 A is assumed to be L+2Lopc.
  • line-and-space of the design layout pattern and the corrected layout pattern has the same pitch S.
  • FIG. 25 is a schematic diagram of an analysis condition input image displayed in step S 1 in FIG. 23.
  • an input section 206 is added for entering varied value Lopc for pattern width after OPC.
  • Lopc as an OPC condition from ⁇ 0.04 to 0.041 ⁇ m in 0.005 ⁇ m pitch respectively
  • the user will enter “ ⁇ 0.04” in “initial value” field, “0.005” in “pitch” field and “0.04” in “final value” field, of Lopc input section 206 respectively.
  • corrected layout patterns are generated in numbers in accordance with conditions entered in Lopc input section 206 with respect to one design layout pattern.
  • step S 20 a plurality of corrected layout patterns 1 AA-nAA (n is a natural number) are generated for design layout pattern 10 A. Corrected layout patterns 1 AA-nAA generated are simulated respectively in step S 4 . A plurality of actual layout patterns generated here are referred to as corrected actual layout patterns.
  • step S 6 pattern width CDopc and light intensity Iopc of a plurality of corrected actual layout patterns are measured.
  • Analysis unit 33 determines an optimal Lopc, using an evaluation function F(a,b).
  • evaluation function F(a,b) is shown below.
  • Evaluation function F (CDopc, Iopc) will attain a minimum value at an Lopc where Iopc ⁇ 0.1 is satisfied and pattern width CDopc is closest to pattern width L of the design layout pattern.
  • analysis unit 33 After calculating the optimal OPC condition for each design layout pattern, analysis unit 33 creates a table having pattern width L and pitch S of the design layout pattern as row and column respectively, and records a corresponding Lopc therein.
  • a lithography process margin evaluating apparatus can determine an optimal OPC condition for a design layout pattern. Thus, operational burden is reduced.
  • FIG. 26 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 6 of the present invention.
  • a data conversion unit 40 is added to a lithography process margin evaluating apparatus. 140 , compared with lithography process margin evaluating apparatus 120 .
  • Other configurations are the same as in FIG. 8.
  • Data conversion unit 40 converts data of a plurality of design layout patterns, which are generated by layout pattern generating unit 27 in lithography process margin evaluating apparatus 140 to manufacturing data.
  • Manufacturing data refers to data usable in a manufacturing apparatus such as a mask writing apparatus, a direct writing apparatus and a defect inspection apparatus.
  • Manufacturing data includes arrangement information, for example, of how to arrange a plurality of design layout patterns on a semiconductor substrate. Attribute information for respective design layout pattern is also included. Attribute information refers to, for example, a layer number corresponding to a semiconductor process step or an amount of exposure used in manufacturing.
  • the above-described lithography process margin evaluating apparatus is implemented by a program for attaining the function of the lithography process margin evaluating processing.
  • the present invention may include the program itself or a computer-readable storage medium storing the same.
  • the storage medium may be a memory (not shown), such as an ROM itself, necessary for processing in a lithography process margin evaluating apparatus in FIG. 1.
  • it may be implemented as a readable storage device, by providing a program-reading device (not shown) outside the lithography process margin evaluating apparatus and inserting therein a storage medium.
  • the program being stored may be accessed and executed by the lithography process margin evaluating apparatus; or in either case, the program may be read and the read program may be loaded to a program storage area (not shown) of the lithography process margin evaluating apparatus and then executed.
  • the program for loading is assumed to be stored in advance in the lithography process margin evaluating apparatus.
  • the above storage medium is adapted to be separable from the lithography process margin evaluating apparatus.
  • the storage medium may be a storage medium including tape-type such as a magnetic tape and a cassette tape; disk-type such as a magnetic disk including a floppy disk, a hard disk and the like as well as an optical disk including a CD-ROM, an MO, an MD, a DVD and the like; card-type such as an IC card, a memory card, an optical card and the like; or a semiconductor memory such as a mask ROM, an EPROM, an EEPROM, a flash ROM and the like.
  • the present invention includes a system having a configuration connectable to a network such as the Internet, and thus, may include a storage medium downloading and storing a program from the network.
  • a network such as the Internet
  • the program for downloading may be pre-installed in the lithography process margin evaluating apparatus, or may be installed from another storage medium.
  • Contents stored in the storage medium may include data, not limited to a program.
  • the present invention may be processing itself as a program executed in the lithography process margin evaluating apparatus shown in FIG. 1.
  • the program may be taken in, or may have been taken in, or may be sent out, by accessing a network including the Internet.

Abstract

A layout pattern generating unit within a lithography process margin evaluating apparatus generates a plurality of design layout patterns, using an analysis condition and information stored in a layout pattern template holding unit. In addition, a simulation condition generating unit generates a plurality of simulation conditions, using the analysis condition and information stored in a simulation condition template holding unit. A simulation unit generates a plurality of actual layout patterns, using a generated condition. Thus, the lithography process margin evaluating apparatus can reduce operational burden and improve accuracy.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a lithography process margin evaluating apparatus, and more specifically to a lithography process margin evaluating apparatus simulating a layout pattern of a semiconductor device in manufacturing a semiconductor. [0002]
  • 2. Description of the Background Art [0003]
  • Lithography process is one of techniques to transfer a layout pattern of a semiconductor device to a semiconductor substrate. In a lithography process, a photosensitive resin (hereinafter, referred to as a photoresist) is first applied to the semiconductor substrate. Using an exposure apparatus, a layout pattern (hereinafter, referred to as a design layout pattern) on a mask is then exposed onto the photoresist on the semiconductor substrate. When the exposed photoresist is developed, the layout pattern of the transferred resin (hereinafter, referred to as an actual layout pattern) is formed. Through etching or ion implantation using the resin pattern, an actual layout pattern is formed on the semiconductor substrate. [0004]
  • In the lithography process, a transfer margin to the semiconductor substrate considerably varies, depending on optical conditions and shapes of design layout patterns. Accordingly, an actual layout pattern relative to a design layout pattern has conventionally been predicted with simulations. [0005]
  • FIG. 27 is a block diagram showing a configuration of a conventional lithography simulation apparatus. [0006]
  • Referring to FIG. 27, a [0007] lithography simulation apparatus 10 includes a hard disk 11, a simulation unit 15 and an input unit 16. Hard disk 11 includes a layout holding unit 12, a simulation condition holding unit 13 and a simulation result holding unit 14.
  • [0008] Layout holding unit 12 holds information of a design layout pattern input through input unit 16. Simulation condition holding unit holds a simulation condition entered through input unit 16. Examples of simulation conditions are exposure wavelength, Numerical Aperture (hereinafter, referred to as “NA”) and the like. Simulation result holding unit 14 holds a result from simulation performed at simulation unit 15.
  • [0009] Simulation unit 15 simulates an actual layout pattern, using information of the design layout pattern held in layout holding unit 12 and the simulation condition held in simulation condition holding unit 13. Information of the simulated actual layout pattern is held in simulation result holding unit 14.
  • FIG. 28 is a flow chart showing an operation of the conventional lithography simulation apparatus. [0010]
  • Referring to FIG. 28, a user of [0011] lithography simulation apparatus 10 first enters information of the design layout pattern to lithography simulation apparatus 10, using input unit 16 (step S1). Information of the entered design layout pattern is stored in layout holding unit 12. The user then enters the simulation condition, using input unit 16 (step S2). The entered simulation condition is stored in simulation condition holding unit 13. Simulation unit 15 within lithography simulation apparatus 10 simulates the actual layout pattern, using information of the design layout pattern and the simulation condition (step S3). The simulated actual layout pattern is stored in simulation result holding unit 14 (step S4). The user measures light intensity distribution within a photosensitive material and a shape of the actual layout pattern, using the simulation result stored in simulation result holding unit 14 (step S5). Thereafter, the user analyzes, for example, a difference in shape from the design layout pattern (step S6).
  • As described above, a conventional lithography process margin apparatus has performed a simulation of an actual layout pattern relative to a single design layout pattern. [0012]
  • In present days, since a design rule for a semiconductor device has been made smaller than a light source wavelength of an exposure apparatus, resolution of a layout pattern of the semiconductor device after transfer is lowered. In order to improve resolution, a special transfer technique called “resolution enhancement technique” is utilized. [0013]
  • In addition, in the actual layout pattern based on the design layout pattern, a distortion is caused through a manufacturing process. In order to correct the distortion caused therein, optical proximity correction (hereinafter, referred to as OPC) is widely used. Here, OPC is considered to correct process-originated distortions in general. Recently, OPC has become more complex because of smaller size of a semiconductor device. In addition to simply biasing a size of a design layout pattern as in a conventional example, some OPC creates a dummy pattern outside the design layout pattern. Accordingly, in order to determine a specification for OPC, an evaluation should be made for multiple design layout patterns. [0014]
  • As described above, as a semiconductor device is made smaller, a manufacturing process thereof has been changed. As a result, also in simulating a lithography process as well, a need has grown for analysis of a single design layout pattern as well as for margin evaluation of a lithography process with respect to a plurality of design layout patterns. [0015]
  • In a conventional lithography simulation apparatus, however, only a simulation of an actual layout pattern relative to a single design layout pattern was possible. Consequently, in order to perform lithography process margin evaluation for a plurality of design layout patterns, a user had to input a plurality of design layout patterns, enter a plurality of simulation conditions, and measure a plurality of actual layout patterns. Thus, operational burden to the user was significant. [0016]
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a lithography process margin evaluating apparatus with high accuracy, capable of reducing operational burden. [0017]
  • A lithography process margin evaluating apparatus according to the present invention simulates, from a design layout pattern formed on a mask, a light intensity distribution within a photosensitive material on a semiconductor substrate and an actual layout pattern formed on the semiconductor substrate, and includes an analysis condition input unit, a layout pattern template holding unit, a simulation condition template unit, a measuring condition holding unit, a layout pattern generating unit, a simulation condition generating unit, a simulation unit, a measuring condition determining unit, and a measuring unit. The analysis condition input unit is for entering an analysis condition for analyzing the actual layout pattern. The layout pattern template holding unit stores a plurality of design layout pattern templates. The simulation condition template holding unit stores a plurality of simulation condition templates. The measuring condition holding unit stores a plurality of measuring conditions for measuring the actual layout pattern. The layout pattern generating unit selects a design layout pattern template, and generates a plurality of design layout patterns based on the analysis condition and the selected design layout pattern template. The simulation condition generating unit selects a simulation condition template, and generates a plurality of simulation conditions based on the entered analysis condition and the selected simulation condition template. The simulation unit simulates the actual layout pattern transferred to the photosensitive material on the semiconductor substrate, using the plurality of design layout patterns and the plurality of simulation conditions. The measuring condition determining unit determines a measuring condition among a plurality of measuring conditions based on the analysis condition. The measuring unit measures the actual layout pattern with the determined measuring condition. [0018]
  • Thus, the lithography process margin evaluating apparatus can generate a plurality of design layout patterns in accordance with the analysis condition, and simulate a plurality of actual layout patterns corresponding to the plurality of design layout patterns. In addition, the lithography process margin evaluating apparatus can measure each of the plurality of actual layout patterns. Consequently, operational burden will be reduced. [0019]
  • The lithography process margin evaluating apparatus according to the present invention can generate a plurality of design layout patterns, and simulate the same. Thus, operational burden of a user can be reduced. [0020]
  • The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.[0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in [0022] Embodiment 1 of the present invention.
  • FIG. 2A is a schematic diagram showing an example of a design layout pattern template held in a layout pattern template holding unit in FIG. 1. [0023]
  • FIG. 2B shows in the form of a graph the pattern in FIG. 2A. [0024]
  • FIG. 3 is a schematic block diagram showing a configuration of a computer. [0025]
  • FIG. 4 is a flow chart showing an operation of the lithography process margin evaluating apparatus in [0026] Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of an analysis condition input image displayed in step S[0027] 1 in FIG. 4.
  • FIG. 6 is a schematic diagram of the analysis input image after entering. [0028]
  • FIG. 7A is a schematic diagram representing an actual layout pattern generated in step S[0029] 4 in FIG. 4.
  • FIG. 7B shows a light intensity distribution relative to a direction of width of the pattern in FIG. 7A. [0030]
  • FIG. 8 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in [0031] Embodiment 2 of the present invention.
  • FIG. 9 is a flow chart showing an operation of the lithography process margin evaluating apparatus in [0032] Embodiment 2 of the present invention.
  • FIG. 10 shows in a graph an analysis result obtained in step S[0033] 6 in FIG. 9.
  • FIG. 11 shows in a graph another example with regard to the analysis result obtained in step S[0034] 6 in FIG. 9.
  • FIG. 12A shows in a graph depth of focus, among the analysis results obtained in step S[0035] 6 in FIG. 9.
  • FIG. 12B shows a relation of depth of focus with pattern width of a design layout pattern. [0036]
  • FIG. 12C shows a relation of depth of focus, pitch and pattern width of the design layout pattern. [0037]
  • FIG. 13A is a diagram representing edge displacement of pattern width of the design layout pattern, among the analysis results obtained in step S[0038] 6 in FIG. 9.
  • FIG. 13B shows a change in pattern width of an actual layout pattern relative to an amount of edge displacement of pattern width of the design layout pattern. [0039]
  • FIG. 14 shows pattern width of the actual layout pattern relative to a varied amount of light exposure. [0040]
  • FIG. 15A shows a light intensity distribution when simulating the design layout pattern. [0041]
  • FIG. 15B shows a layout pattern when a dimple is produced. [0042]
  • FIG. 16 is a flow chart showing an operation of a lithography process margin evaluating apparatus in Embodiment 3 of the present invention. [0043]
  • FIG. 17 is a schematic diagram of an analysis condition input image displayed in step Si in FIG. 16. [0044]
  • FIG. 18 is a flow chart showing a detailed operation of step S[0045] 10 in FIG. 16.
  • FIG. 19 is a diagram representing an analysis method in step S[0046] 106 in FIG. 18.
  • FIG. 20A shows an actual layout pattern relative to a design layout pattern. [0047]
  • FIG. 20B is a schematic diagram representing OPC. [0048]
  • FIG. 21 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in [0049] Embodiment 4 of the present invention.
  • FIG. 22 is a flow chart showing an operation of the lithography process margin evaluating apparatus in [0050] Embodiment 4 of the present invention.
  • FIG. 23 is a flow chart showing an operation of a lithography process margin evaluating apparatus in [0051] Embodiment 5.
  • FIG. 24 is a diagram representing a design layout pattern and a corrected layout pattern in [0052] Embodiment 5 of the present invention.
  • FIG. 25 is a schematic diagram of an analysis condition input image displayed in step Si in FIG. 23. [0053]
  • FIG. 26 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 6 of the present invention. [0054]
  • FIG. 27 is a block diagram showing a configuration of a conventional lithography simulation apparatus. [0055]
  • FIG. 28 is a flow chart showing an operation of the conventional lithography simulation apparatus.[0056]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the following, embodiments of the present invention will be described in detail with reference to the figures. It is noted that the same reference characters refer to the same or corresponding components in the figures, and description thereof is not repeated. [0057]
  • Embodiment 1
  • FIG. 1 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in [0058] Embodiment 1 of the present invention.
  • Referring to FIG. 1, a lithography process [0059] margin evaluating apparatus 100 includes a master file 110, a layout pattern generating unit 27, a simulation condition generating unit 28, a measuring condition determining unit 29, a simulation unit 17, a measuring unit 30 and an analysis condition input unit 31.
  • [0060] Master file 110 includes a layout pattern template holding unit 22, a simulation condition template holding unit 23, a measuring condition holding unit 24, a measurement result holding unit 25 and a simulation result holding unit 26.
  • Layout pattern [0061] template holding unit 22 holds a plurality of design layout pattern templates. Each of the plurality of design layout pattern templates has an identification number.
  • FIG. 2 is a schematic diagram showing an example of the design layout pattern template held in the layout pattern template holding unit in FIG. 1. [0062]
  • Referring to FIG. 2A, the design layout pattern template is composed of a [0063] pattern 10A and a pattern 10B having identical shapes. Pattern 10A and pattern 10B are rectangles having width L and length W, and line-and-space thereof has pitch S.
  • FIG. 2B shows in a [0064] graph pattern 10A in FIG. 2A.
  • Referring to FIG. 2B, [0065] pattern 10A is shown in a two-dimensional coordinate system having a center of pattern 10A as an origin. Specifically, pattern 10A is formed with coordinates of vertices of the rectangle, that is, (L/2, W/2), (L/2, −W/2), (−L/2, −W/2) and (−L/2, W/2).
  • Referring again to FIG. 1, simulation condition [0066] template holding unit 23 holds a plurality of simulation condition templates in a simulation condition table. The simulation condition table includes a simulation optical condition table recording an optical condition in simulation, and a simulation etching condition table recording an etching condition in simulation. The simulation optical condition table and the simulation etching table are shown respectively in Tables 1 and 2.
    TABLE 1
    Simulation Optical Condition
    Optical Exposure Defocus
    Condition Wavelength NA σ Value
    B001 248 nm 7.0 0.8 X μm
    B002
    B003
  • Referring to Table 1, in the simulation optical condition table, exposure wavelength, numerical apertures NA, degree of coherence a and defocus value are provided as optical conditions, and each optical condition will be recorded as a fixed value or a variable value for each simulation optical condition. [0067]
    TABLE 2
    Simulation Etching
    Condition Content of Condition
    C001 Light Intensity I
    C002 Process Model A1
    C003 Process Model A2
  • Referring to Table 2, the simulation etching condition table has a light intensity I or a process model as an etching condition. Each etching condition is recorded as a fixed value or a variable value for each simulation etching condition. [0068]
  • Measuring [0069] condition holding unit 24 stores a plurality of measuring conditions for an actual layout pattern after simulation in a measuring condition table shown in Table 3.
    TABLE 3
    Measurement
    Measuring Condition Content of Measurement Position
    D001 CD When Light (−L, 0) (L, 0)
    Intensity I = 0.3
    D002 CD When Light (−L, 1) (L, 1)
    Intensity I = 0.3
    D003 Light Intensity (−L, 0) (L, 0)
    Distribution
    D005 Pattern Width When (−S/2, 0) (S/2, 0)
    Light Intensity I = 0.3
    DTEST Light Intensity (S/2, 0) null
  • Referring to Table 3, a measurement content and a measurement position is recorded for each measuring condition. Each measuring condition has a measuring condition “No.”. [0070]
  • Simulation [0071] result holding unit 26 holds information of the actual layout pattern simulated by simulation unit 17.
  • Measurement [0072] result holding unit 25 stores a result from measurement using information of the actual layout pattern stored in simulation result holding unit 26 after simulation.
  • Analysis [0073] condition input unit 31 is provided for entering an analysis condition when a user makes an analysis with lithography process margin evaluating apparatus 100.
  • Layout [0074] pattern generating unit 27 generates a plurality of design layout patterns, using a design layout pattern template stored in layout pattern template holding unit 22 and the analysis condition entered through analysis condition input unit 31.
  • Simulation [0075] condition generating unit 28 generates a plurality of simulation conditions, using a plurality of simulation conditions stored in simulation condition template holding unit 23 and the analysis condition.
  • Measuring [0076] condition determining unit 29 selects a measuring condition suited for the analysis condition from a plurality of measuring conditions stored in the measuring condition holding unit.
  • [0077] Simulation unit 17 performs simulation using a plurality of design layout patterns and a plurality of simulation conditions, and generates a plurality of actual layout patterns.
  • [0078] Measuring unit 30 carries out a measurement, using the measuring condition determined by measuring condition determining unit 29 and based on information of the actual layout pattern.
  • FIG. 3 is a schematic block diagram showing a configuration of a computer. [0079]
  • An example of a computer is a personal computer. Referring to FIG. 3, a [0080] computer 500 includes a CPU 501, a memory 502, a display 504, a hard disk 505, a storage medium drive 506, a keyboard 507 and a mouse 508.
  • [0081] Memory 502 and hard disk 505 function as a memory, keyboard 507 and mouse 508 function as an input device, and display 504 functions as an output device. These are connected to one another by a bus 509.
  • A [0082] storage medium 510 is a computer-readable storage medium, and has a lithography process margin evaluating program stored in advance. When storage medium 510 is attached to storage medium drive 506 and the lithography process margin evaluating program is installed in hard disk 505, computer 500 functions as lithography process margin evaluating apparatus 100.
  • Here, [0083] master file 110 in FIG. 1 corresponds to memory 502 and hard disk 505 in FIG. 3, and layout pattern generating unit 27, simulation condition generating unit 28, measuring condition determining unit 29, simulation unit 17 and measuring unit 30 in FIG. 1 correspond to CPU 501 in FIG. 3. In addition, analysis condition input unit 31 in FIG. 1 corresponds to keyboard 507 and mouse 508 in FIG. 3. Here, storage medium 510 refers to such storage media as a CD-ROM, a magneto-optical (MO) disk or a floppy disk. Usually, an operating system (OS) for enabling an operation of the lithography process margin program is pre-installed in hard disk 505.
  • An operation of lithography process [0084] margin evaluating apparatus 100 having the above-mentioned circuitry will now be described.
  • An example is described, in which a user analyzes width CD of an actual layout pattern relative to width L of a design layout pattern, using a design layout pattern template shown in FIG. 2A. [0085]
  • FIG. 4 is a flow chart showing an operation of the lithography process margin evaluating apparatus in [0086] Embodiment 1 of the present invention.
  • Referring to FIG. 4, a user initially enters an analysis condition, using analysis condition input unit [0087] 31 (step S1). When entering the analysis condition, an analysis condition input image is displayed on display 504 in FIG. 3.
  • FIG. 5 is a schematic diagram of the analysis condition input image displayed in step S[0088] 1 in FIG. 4.
  • Referring to FIG. 5, an analysis [0089] condition input image 200 includes a selection layout pattern template No. input section 201, a selection simulation condition template No. input section 202, a layout pattern analysis condition input section 203 and a simulation analysis condition input section 204.
  • The user enters into selection layout pattern template NO [0090] input section 201 an identification number of a design layout pattern template to be used for the present analysis. When the identification number of the design layout pattern template shown in FIG. 2A is “A001”, the user enters “A001” in selection layout pattern template NO input section 201. Then the user enters an identification number of a simulation template to be used for the present analysis from a plurality of simulation condition templates held in simulation condition template holding unit 23. For example, the user enters into selection simulation condition template NO input section 202 “B001” from the simulation optical condition table in Table 1 and “C001” from the simulation etching condition table in Table 2.
  • The user then enters an analysis condition for the design layout pattern template into layout pattern analysis [0091] condition input section 203. Here, the user is assumed to fix length W to be 1.0 μm, to vary width L from 0.1 μm to 2.0 μm in steps of 0.01 μm and to vary pitch S from 1.0 μm to 3.01 μm in steps of 0.01 μm. Here, the user enters “1.0” in a field of initial value and “fixed” in fields of pitch and final value, for length W of layout pattern analysis condition input section 203. Similarly, the user enters “0.1” in the field of initial value, “0.01” in the field of pitch, and “2.0” in the field of final value, for width L. The user also enters “1.0” in the field of initial value, “0.01” in the field of pitch, and “3.0” in the field of final value, for pitch S.
  • Thereafter, the user enters a simulation condition and an object to be analyzed in simulation analysis [0092] condition input section 204.
  • A defocus value X, when the user performs a simulation with a condition of identification number “B001” shown in Table 1, is assumed to be varied from −0.4 to 0.41 μm in steps of 0.1 μm. Here, the user enters “−0.4” in the field of initial value, “0.1” in the field of pitch and “0.4” in the field of final value, for defocus X in layout pattern analysis [0093] condition input unit 204. When the user sets a condition for depth of focus (hereinafter, referred to as DOF), the condition therefor is entered in DOF setting field. If the user does not set DOF, “null” is entered therein.
  • The present analysis target is entered in the field of “object to be analyzed”. As the user analyzes width CD of the actual layout pattern in a present example, “CD” is entered in the field of “object to be analyzed”. [0094]
  • FIG. 6 is a schematic diagram of an analysis input image after entering. [0095]
  • Thereafter, layout [0096] pattern generating unit 27, in response to the analysis condition entered in step S1, selects a prescribed layout pattern template from layout pattern template holding unit 22, and generates a plurality of design layout patterns based on the selected layout pattern template (step S2).
  • Specifically, layout [0097] pattern generating unit 27, in response to the identification number of the layout pattern template entered in step S1, selects a layout pattern template having the identification number “A001” from layout pattern template holding unit 22. Thereafter, in accordance with the condition entered in layout pattern analysis condition input unit 203 in FIG. 6, a plurality of design layout patterns are generated based on the layout pattern template having the identification number “A001”.
  • Simulation [0098] condition generating unit 28 then generates a simulation condition (step S3). Simulation condition generating unit 28, in response to the identification number of the simulation condition template entered in step S1, selects a simulation optical condition having the identification number “B001” and a simulation etching condition having the identification number “C001” from simulation condition template holding unit 23. After selection, simulation condition generating unit 28 generates a plurality of simulation conditions in accordance with the condition of defocus value X entered in simulation analysis condition input section 204 in FIG. 6. Consequently, exposure wavelength, numerical aperture NA and degree of coherence σ are fixed, and simulation conditions having 9 defocus values (from −0.4 to 0.4 in steps of 0.1 pitch) are generated.
  • Thereafter, [0099] simulation unit 17 performs a simulation using the plurality of design layout patterns generated in step S2 and the plurality of simulation conditions generated in step S3, and generates a plurality of actual layout patterns (step S4).
  • FIG. 7A is a schematic diagram representing an actual layout pattern generated in step S[0100] 4 in FIG. 4.
  • Referring to FIG. 7A, [0101] patterns 10A, 10B in FIG. 7A represent design layout patterns. Patterns 11A and 11B in FIG. 7A represent actual layout patterns. Distribution of light intensity I with respect to the direction of width L here is as shown in FIG. 7B. In simulation result holding unit 25, information of a relation of light intensity with a position shown in FIG. 7B is stored for each actual layout pattern.
  • Next, measuring [0102] condition determining unit 29, in response to the analysis condition entered in step S2, determines a measuring condition from measuring condition holding unit 24 (step S5).
  • Measuring [0103] condition determining unit 29, referring to a content in a field of “object to be analyzed” in simulation analysis condition input section 204 in FIG. 6, selects an optimal measuring condition from the plurality of measuring conditions recorded in the measuring condition table shown in Table 3. Here, measuring condition determining unit 29 may select one or a plurality of measuring conditions. When selecting one measuring condition, a more detailed condition such as a measurement site can be entered in the field of “object to be analyzed” in simulation analysis condition input section 204 in FIG. 5.
  • In the present example, measuring [0104] condition determining unit 29 is assumed to have selected an identification number “D001” in Table 3.
  • [0105] Measuring unit 30 then measures information of a plurality of actual layout patterns stored in simulation result holding unit 25, using one or more measuring conditions (step S6).
  • Specifically, measuring [0106] unit 30 carries out a measurement based on the measuring condition of the identification number D001 shown in Table 3. According to the measuring condition thereof, width of an actual layout pattern when light intensity I=0.3 is determined to be the width CD. Therefore, measuring unit 30 carries out a measurement, assuming that the width when I=Is=0.3 in a graph of FIG. 7B is the width CD. Measuring unit 30 measures all widths CD of the plurality of actual layout patterns.
  • A measurement result is stored in measurement [0107] result holding unit 26.
  • Through the above-described operation, a lithography process margin evaluating apparatus in [0108] Embodiment 1 of the present invention can simulate a plurality of design layout patterns and a plurality of simulation conditions, and measure a plurality of actual layout patterns after simulation. Therefore, a user does not have to enter again a new design layout pattern after simulating one design layout pattern as in a conventional example. Consequently, operational burden is reduced. In addition, since a plurality of measurement results can be easily obtained, analysis accuracy using those results will be improved.
  • Embodiment 2
  • FIG. 8 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in [0109] Embodiment 2 of the present invention.
  • Referring to FIG. 8 and compared with FIG. 1, an analysis [0110] result holding unit 32 and an analysis unit 33 are added to a lithography process margin evaluating apparatus 120.
  • [0111] Analysis unit 33 performs an analysis according to an analysis condition, based on information stored in measurement result holding unit 26. Analysis result holding unit 32 stores a result analyzed by analysis unit 33.
  • As other configuration is the same as in FIG. 1, description thereof will not be repeated. [0112]
  • An operation of lithography process [0113] margin evaluating apparatus 120 having the afore-mentioned configuration will be described.
  • FIG. 9 is a flow chart showing an operation of the lithography process margin evaluating apparatus in [0114] Embodiment 2 of the present invention.
  • In FIG. 9, similarly as in FIG. 8, an example will be described, in which a user analyzes width CD of an actual layout pattern relative to width L of a design layout pattern, using a design layout pattern template shown in FIG. 2A. [0115]
  • Referring to FIG. 9, as operations of steps S[0116] 1 through S6 are similar to those in FIG. 4, description thereof will not be repeated.
  • After measuring information of a plurality of actual layout patterns in step S[0117] 6 using one or more measuring conditions, analysis unit 33 performs an analysis using a measurement result stored in measurement result holding unit 26 (step S7).
  • FIG. 10 shows in a graph an analysis result obtained in step S[0118] 6 in FIG. 9.
  • Referring to FIG. 10, the graph showing width CD of an actual layout pattern relative to width L of a design layout pattern is created for each simulation condition. Therefore, nine curves are shown in FIG. 10. [0119]
  • FIG. 11 shows in a graph another example with regard to the analysis result obtained in step S[0120] 6 in FIG. 9.
  • The graph shown in FIG. 11 illustrates a change in width CD of the actual layout pattern when pitch S of a layout pattern template in FIG. 2 as an analysis condition is varied. In order to obtain this graph, a user will have to enter a layout pattern analysis condition to vary pitch S when entering the analysis condition in step S[0121] 1 in FIG. 9.
  • A method of analyzing depth of focus DOF will be described as another example of analysis method. [0122]
  • First, in order to analyze depth of focus DOF, in step S[0123] 1, a condition for depth of focus DOF is entered in a field of DOF setting in simulation analysis condition input section 204 shown in FIG. 5. Assume that the defocus value X=0, and a deviation of pattern width CD of the actual layout pattern from pattern width CD of the actual layout pattern lies within 10%. In this situation, the user enters “10” in DOF setting field.
  • Other operations up to step S[0124] 6 are similar to those in Embodiment 1.
  • An operation of [0125] analysis unit 33 in step S7 will now be described.
  • FIG. 12A shows in a graph depth of focus DOF, among the analysis results obtained in step S[0126] 6 in FIG. 9.
  • FIG. 12A shows, further in detail in a graph, a relation of pattern width of the actual layout pattern with a defocus value when pattern width of the design layout pattern is 0.1 μm. Referring to FIG. 12A, when difference between [0127] pattern width CD 1 of the actual layout pattern when defocus value X=0 and pattern width CD 10 of the actual layout pattern when X=X10 is 10% of pattern width CD 1, defocus value X10 is found. When defocus value X10 is found, a value for depth of focus DOF is determined as shown in FIG. 12A.
  • Similarly, values for depth of focus DOF when pattern width of the design layout pattern is varied are respectively found. Consequently, a graph showing a relation of depth of focus DOF with pattern width L of the design layout pattern as shown in FIG. 12B is obtained. [0128]
  • FIG. 12C shows a relation of pattern width L, pitch S and DOF of the design layout pattern. In FIG. 12C, a DOF value is provided as a contour. A graph representing a relation between pattern width L, pitch S and DOF of the design layout pattern as shown in FIG. 12C may be provided in three-dimension. [0129]
  • FIG. 13 shows another example of an analysis result obtained in step S[0130] 6 in FIG. 9.
  • FIG. 13 shows an example analyzing a change in pattern width CD of an actual layout pattern relative to an amount of edge displacement of pattern width L of the design layout pattern. [0131]
  • The analysis condition to be entered may be the same as in step S[0132] 1 shown in FIG. 4.
  • As shown in FIG. 13A, a [0133] design layout pattern 10A has pattern width L1, of which actual layout pattern is provided as 11A. On the other hand, a design layout pattern 20A has pattern width L2, of which actual layout pattern is provided as 21A. Difference between pattern widths of actual layout patterns 21A and 11A is provided as difference E of actual layout pattern width. Analysis unit 33 finds difference E of actual layout pattern width relative to difference L2-L1 in pattern width of each design layout pattern, and thus a graph shown in FIG. 13B can be found.
  • By using [0134] analysis unit 33, pattern width CD of the actual layout pattern relative to a varied amount of exposure as shown in FIG. 14 can also be found. Here, in step S1, a user have only to enter an analysis condition so as to vary the amount of exposure, that is, light intensity.
  • Further, [0135] analysis unit 33 can also analyze a dimple.
  • FIG. 15 is a schematic diagram illustrating the dimple. [0136]
  • FIG. 15A shows distribution of light intensity when simulating a design layout pattern. As shown in FIG. 15A, a [0137] side lobe 700 is produced in a position distant from a maximum value of light intensity. When a halftone-type phase shift mask is used as a mask, the entire design layout pattern transmits light, and hence, overall light intensity will be greater. Here, as the side lobes produced due to each design layout pattern overlap, not only peak intensity becomes greater but also light intensity will be larger. Consequently, in the actual layout pattern, a pattern called “dimple” is produced in a unit outside the design layout pattern. FIG. 15B shows a layout pattern when a dimple is produced. A dimple 703 is formed along with actual layout pattern 702, relative to design layout pattern 701.
  • [0138] Analysis unit 33 can retrieve a maximum value for light intensity and a position thereof and analyze the dimple from a measurement result.
  • [0139] Analysis unit 33 can perform analysis in accordance with another analysis method in addition to those described above. Analysis result is stored in analysis result holding unit 32.
  • Through the above-described operation, a lithography process margin evaluating apparatus in [0140] Embodiment 2 of the present invention can analyze a plurality of design layout patterns in accordance with an analysis condition. Consequently, operational burden of a user is reduced. In addition, as a plurality of analysis results can easily be obtained, the user can determine a design layout pattern of higher accuracy.
  • Embodiment 3
  • It is important to determine reference light intensity Is beforehand when analyzing a plurality of design layout patterns, because a shape of each actual layout pattern will be different if reference light intensity Is is different every time a simulation is performed, even if design layout patterns having the same shape are simulated a plurality of times. [0141]
  • FIG. 16 is a flow chart showing an operation of a lithography process margin evaluating apparatus in Embodiment 3 of the present invention. Here, a configuration of the lithography process margin evaluating apparatus in Embodiment 3 is similar to that of lithography process [0142] margin evaluating apparatus 120 shown in FIG. 8.
  • Referring to FIG. 16 and compared to FIG. 9, in an operation in FIG. 16, an operation in a new step S[0143] 10 is inserted between steps S1 and S2. In step S1, reference light intensity Is is determined. Other operations are similar to those in FIG. 9. In FIG. 16, however, an analysis condition entered by a user in step S1 is different from the one in FIG. 9.
  • FIG. 17 is a schematic diagram of an analysis condition input image displayed in step S[0144] 1 in FIG. 16.
  • Referring to FIG. 17 and compared with FIG. 5, an reference CD [0145] value input section 205 is additionally provided. A user enters a reference CD value, which will be discussed below, in reference CD value input section 205.
  • FIG. 18 is a flow chart showing a detailed operation of step S[0146] 10 in FIG. 16.
  • Referring to FIG. 18, layout [0147] pattern generating unit 27 of lithography process margin evaluating apparatus 120 selects a preset test design layout pattern from layout pattern template holding unit 22 (step S101).
  • An example of a condition for the test design layout pattern is shown in Table 4. [0148]
    TABLE 4
    Layout
    Analy- Layout Pattern Analysis Condition
    sis W (μm) L (μm) S (μm)
    Con- Initial Final Initial Final Initial Final
    dition Value Pitch Value Value Pitch Value Value Pitch Value
    Test 1.0 Fixed Fixed 0.2 Fixed Fixed 0.2 Fixed Fixed
  • As shown in Table 4, when calculating reference light intensity Is, layout [0149] pattern generating unit 27 selects a fixed value for the test design layout pattern. Here, pattern width L is fixed at 0.21 μm.
  • In step S[0150] 101, taking into account the fixed value for pattern width L of the test design layout pattern, the user enters a reference CD value in reference CD value input section 205. Here, reference CD is assumed to be 0.22 μm.
  • Simulation [0151] condition generating unit 28 then selects a preset test simulation condition from simulation condition template holding unit 23 (step S102). An example of the test simulation condition is shown in Table 5.
    TABLE 5
    Optical Condition
    Simulation Exposure Defocus
    Condition Wavelength NA σ Value
    Test 248 nm 7.0 0.8 0 μm
  • As shown in Table 5, the test simulation conditions are provided as fixed values. [0152]
  • [0153] Simulation unit 17 then performs a simulation (step S103). Obtained information of an actual layout pattern is stored in simulation result holding unit 25.
  • Measuring [0154] condition determining unit 29 then selects a test measuring condition from measuring condition holding unit 24. The test measuring condition is defined so as to measure an intensity distribution in a direction of pattern width CD of the actual layout pattern.
  • A result measured as described above is stored in measurement [0155] result holding unit 25.
  • Thereafter, [0156] analysis unit 33 will make an analysis based on the measurement result (step S106).
  • FIG. 19 is a diagram representing an analysis method in step S[0157] 106 in FIG. 18.
  • Referring to FIG. 19, [0158] analysis unit 33 first provides, as a graph, a light intensity distribution in a direction of pattern width CD of the actual layout pattern. After plotting the graph, analysis unit 33 determines a light intensity value Is for which a value for pattern width CD attains 0.221 μm. The determined light intensity value Is is provided as a reference light intensity value.
  • Through the above-described operation, a light intensity value can be initially determined easily when continuously simulating a plurality of design layout patterns. Thus, operational burden of a user is reduced. [0159]
  • Embodiment 4
  • FIG. 20A shows an actual layout pattern relative to a design layout pattern. [0160] Actual layout pattern 11A is generated with respect to design layout pattern 10A. There is a difference, however, between shapes of the actual layout pattern and the design layout pattern, particularly in a tip end portion. Since design layout pattern 10A represents an ideal layout pattern, the shape of actual layout pattern 11A is desirably a close approximation to that of design layout pattern 10A. A technique devised therefor is OPC.
  • FIG. 20B is a schematic diagram representing OPC. OPC refers to a technique in which, predicting light intensity and the like in exposure, a corrected layout pattern is generated, which pattern is modified in shape in advance of the design layout pattern so that [0161] actual layout pattern 11A will have the same shape as design layout pattern 10A. An actual layout pattern 13A can be obtained by performing a simulation using corrected layout pattern 12A modified in shape of design layout pattern 10A. Actual layout pattern 13A, compared with actual layout pattern 11A, has a shape closer to design layout pattern 10A.
  • It is desirable for a lithography process margin evaluating apparatus to be able to generate a corrected layout pattern that has been subjected to above-described OPC. [0162]
  • FIG. 21 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in [0163] Embodiment 4 of the present invention.
  • Referring to FIG. 21, a lithography process [0164] margin evaluating apparatus 130, compared with lithography process margin evaluating apparatus 120 shown in FIG. 8, includes a normal pattern generating unit 271 and a corrected pattern generating unit 272 in layout pattern generating unit 27. Normal pattern generating unit 271 generates a plurality of design layout patterns. Corrected pattern generating unit 272 generates a corrected layout pattern subjected to OPC, for each of the plurality of design layout patterns.
  • As other configurations are similar to those in FIG. 8, description thereof will not be repeated. [0165]
  • An operation of lithography process [0166] margin evaluating apparatus 130 having the above-described configuration will now be described.
  • FIG. 22 is a flow chart showing an operation of the lithography process margin evaluating apparatus in [0167] Embodiment 4 of the present invention.
  • Referring to FIG. 22 and compared with FIG. 9, an operation in step S[0168] 2 is divided into step S20 and step S21. In step S20, similarly as in step S2, a plurality of design layout patterns are generated. In step S21, corresponding to the plurality of design layout patterns generated in step S20, a plurality of corrected layout patterns are formed. The plurality of corrected layout patterns are generated by corrected pattern generating unit 272. Other steps are similar to those in FIG. 9. However, simulation, measurement and analysis are performed with respect to a design layout pattern and a corresponding corrected layout pattern in a similar manner.
  • Through the above-described operation, operational burden in simulation and analysis accompanying OPC can be reduced. [0169]
  • Embodiment 5
  • With regard to a lithography process margin evaluating apparatus in [0170] Embodiment 4, an example has been described, in which an analysis operation accompanying OPC is possible. It is more desirable, however, to be able to select an optimal corrected layout pattern when a plurality of corrected layout patterns are generated for one design layout pattern.
  • The lithography process margin evaluating apparatus in [0171] Embodiment 5 of the present invention is of the same configuration as lithography process margin evaluating apparatus 130 in Embodiment 4. Analysis unit 33, however, has a function to determine an optimal corrected layout pattern among a plurality of corrected layout patterns generated for one design layout pattern.
  • FIG. 23 is a flow chart showing an operation of the lithography process margin evaluating apparatus in [0172] Embodiment 5.
  • Referring to FIG. 23 and compared to FIG. 22, step S[0173] 8 is added to determine an optimal corrected layout pattern after analysis in step S7. Other operations are similar to those in FIG. 22. When entering an analysis condition in step S1, however, an OPC condition will be entered.
  • FIG. 24 is a diagram representing a design layout pattern and a corrected layout pattern in [0174] Embodiment 5 of the present invention.
  • Referring to FIG. 24, [0175] design layout patterns 10A, 10B are the same as in FIG. 2. Pattern width of a corrected layout pattern provided as a result of OPC for design layout pattern 10A is assumed to be L+2Lopc. Here, line-and-space of the design layout pattern and the corrected layout pattern has the same pitch S.
  • FIG. 25 is a schematic diagram of an analysis condition input image displayed in step S[0176] 1 in FIG. 23.
  • Compared with the analysis input image shown in FIG. 5, an [0177] input section 206 is added for entering varied value Lopc for pattern width after OPC. For example, when a user varies Lopc as an OPC condition from −0.04 to 0.041 μm in 0.005 μm pitch respectively, the user will enter “−0.04” in “initial value” field, “0.005” in “pitch” field and “0.04” in “final value” field, of Lopc input section 206 respectively. Consequently, in step S20 in FIG. 23, corrected layout patterns are generated in numbers in accordance with conditions entered in Lopc input section 206 with respect to one design layout pattern.
  • An operation of [0178] analysis unit 33 in step S8 will now be described.
  • In step S[0179] 20, a plurality of corrected layout patterns 1AA-nAA (n is a natural number) are generated for design layout pattern 10A. Corrected layout patterns 1AA-nAA generated are simulated respectively in step S4. A plurality of actual layout patterns generated here are referred to as corrected actual layout patterns. In step S6, pattern width CDopc and light intensity Iopc of a plurality of corrected actual layout patterns are measured.
  • [0180] Analysis unit 33 determines an optimal Lopc, using an evaluation function F(a,b).
  • An example of evaluation function F(a,b) is shown below. [0181]
  • F(a,b)=|a−L|(b<0.1) [0182]
  • F(a,b)=999(b≦0.1) [0183]
  • [0184] Analysis unit 33 calculates evaluation function F(CDopc, Iopc) for the plurality of corrected layout patterns relative to each design layout pattern, as a=CDopc, b=Iopc.
  • As a result of calculation, an Lopc where evaluation function F (CDopc, Iopc) attains a minimum value is determined as an optimal OPC condition for the design layout pattern. [0185]
  • Evaluation function F (CDopc, Iopc) will attain a minimum value at an Lopc where Iopc<0.1 is satisfied and pattern width CDopc is closest to pattern width L of the design layout pattern. [0186]
  • After calculating the optimal OPC condition for each design layout pattern, [0187] analysis unit 33 creates a table having pattern width L and pitch S of the design layout pattern as row and column respectively, and records a corresponding Lopc therein.
  • Through the above-described operation, a lithography process margin evaluating apparatus can determine an optimal OPC condition for a design layout pattern. Thus, operational burden is reduced. [0188]
  • Embodiment 6
  • FIG. 26 is a block diagram showing a configuration of a lithography process margin evaluating apparatus in Embodiment 6 of the present invention. [0189]
  • Referring to FIG. 26, a [0190] data conversion unit 40 is added to a lithography process margin evaluating apparatus. 140, compared with lithography process margin evaluating apparatus 120. Other configurations are the same as in FIG. 8.
  • [0191] Data conversion unit 40 converts data of a plurality of design layout patterns, which are generated by layout pattern generating unit 27 in lithography process margin evaluating apparatus 140 to manufacturing data. Manufacturing data refers to data usable in a manufacturing apparatus such as a mask writing apparatus, a direct writing apparatus and a defect inspection apparatus.
  • Manufacturing data includes arrangement information, for example, of how to arrange a plurality of design layout patterns on a semiconductor substrate. Attribute information for respective design layout pattern is also included. Attribute information refers to, for example, a layer number corresponding to a semiconductor process step or an amount of exposure used in manufacturing. [0192]
  • Since the data of the design layout pattern can be converted to this manufacturing data, operational burden can be reduced when actually generating a design layout pattern as a trial. [0193]
  • The above-described lithography process margin evaluating apparatus is implemented by a program for attaining the function of the lithography process margin evaluating processing. [0194]
  • The present invention may include the program itself or a computer-readable storage medium storing the same. [0195]
  • In the present invention, the storage medium may be a memory (not shown), such as an ROM itself, necessary for processing in a lithography process margin evaluating apparatus in FIG. 1. Alternatively, it may be implemented as a readable storage device, by providing a program-reading device (not shown) outside the lithography process margin evaluating apparatus and inserting therein a storage medium. In either case, the program being stored may be accessed and executed by the lithography process margin evaluating apparatus; or in either case, the program may be read and the read program may be loaded to a program storage area (not shown) of the lithography process margin evaluating apparatus and then executed. The program for loading is assumed to be stored in advance in the lithography process margin evaluating apparatus. [0196]
  • Here, the above storage medium is adapted to be separable from the lithography process margin evaluating apparatus. The storage medium may be a storage medium including tape-type such as a magnetic tape and a cassette tape; disk-type such as a magnetic disk including a floppy disk, a hard disk and the like as well as an optical disk including a CD-ROM, an MO, an MD, a DVD and the like; card-type such as an IC card, a memory card, an optical card and the like; or a semiconductor memory such as a mask ROM, an EPROM, an EEPROM, a flash ROM and the like. [0197]
  • In addition, the present invention includes a system having a configuration connectable to a network such as the Internet, and thus, may include a storage medium downloading and storing a program from the network. When downloading the program from the network in such a manner, the program for downloading may be pre-installed in the lithography process margin evaluating apparatus, or may be installed from another storage medium. [0198]
  • Contents stored in the storage medium may include data, not limited to a program. [0199]
  • The present invention may be processing itself as a program executed in the lithography process margin evaluating apparatus shown in FIG. 1. The program may be taken in, or may have been taken in, or may be sent out, by accessing a network including the Internet. [0200]
  • Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims. [0201]

Claims (7)

1-6. (Canceled)
7. A lithography process margin evaluating program product to be executed by a computer used in a lithography process margin evaluating apparatus, simulating, a light intensity distribution within a photosensitive material on a semiconductor substrate and an actual layout pattern formed on said semiconductor substrate using a design layout pattern formed on a mask, comprising the steps of:
selecting a design layout pattern template from a layout pattern template holding unit storing a plurality of design layout pattern templates, and generating a plurality of design layout patterns based on an analysis condition entered for analyzing said actual layout pattern and said selected design layout pattern template;
selecting a simulation condition template from a simulation condition template holding unit storing a plurality of simulation condition templates, and generating a plurality of simulation conditions based on said analysis condition and said selected simulation condition template;
simulating an actual layout pattern transferred to the photosensitive material on the semiconductor substrate, using said plurality of design layout patterns and said plurality of simulation conditions;
determining a measuring condition from a measuring condition holding unit storing a plurality of measuring conditions for measuring said actual layout pattern based on said analysis condition; and
measuring said actual layout pattern with said determined measuring condition.
8. The lithography process margin evaluating program product according to claim 7, further comprising the step of
analyzing said actual layout pattern, using said analysis condition and a measurement result from said step of measuring.
9. The lithography process margin evaluating program product according to claim 8, wherein
in said step of simulating, a test layout pattern is simulated, using a prescribed design layout pattern and a prescribed simulation condition prior to simulation based on said analysis condition,
in said step of measuring, said test layout pattern is measured with a prescribed measuring condition, and
in said step of analyzing, a reference light intensity value is determined, using a measurement result from said measuring unit.
10. The lithography process margin evaluating program product according to claim 8, wherein
said step of generating a plurality of design layout patterns includes the steps of
generating a plurality of design layout patterns based on said analysis condition and said selected design layout pattern template, and
generating a plurality of corrected layout patterns by performing optical proximity correction of said plurality of design layout patterns.
11. The lithography process margin evaluating program product according to claim 10, wherein
in said step of generating a plurality of corrected layout patterns, said plurality of corrected layout patterns are generated for each design layout pattern, and
in said step of analyzing, one is selected from said plurality of corrected layout patterns for said each design layout pattern based on said analysis condition.
12. The lithography process margin evaluating program product according to claim 8, further comprising the step of
converting data of said design layout pattern generated in said step of generating a plurality of layout patterns to data usable in a manufacturing apparatus.
US10/870,934 2002-01-08 2004-06-21 Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device Abandoned US20040225993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/870,934 US20040225993A1 (en) 2002-01-08 2004-06-21 Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-001626(P) 2002-01-08
JP2002001626A JP4138318B2 (en) 2002-01-08 2002-01-08 Lithography process margin evaluation apparatus, lithography process margin evaluation method, and lithography process margin evaluation program
US10/183,394 US6760892B2 (en) 2002-01-08 2002-06-28 Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device
US10/870,934 US20040225993A1 (en) 2002-01-08 2004-06-21 Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/183,394 Continuation US6760892B2 (en) 2002-01-08 2002-06-28 Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device

Publications (1)

Publication Number Publication Date
US20040225993A1 true US20040225993A1 (en) 2004-11-11

Family

ID=27641705

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/183,394 Expired - Lifetime US6760892B2 (en) 2002-01-08 2002-06-28 Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device
US10/870,934 Abandoned US20040225993A1 (en) 2002-01-08 2004-06-21 Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/183,394 Expired - Lifetime US6760892B2 (en) 2002-01-08 2002-06-28 Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device

Country Status (4)

Country Link
US (2) US6760892B2 (en)
JP (1) JP4138318B2 (en)
KR (1) KR100494964B1 (en)
TW (1) TW556318B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080250380A1 (en) * 2007-04-04 2008-10-09 Hitachi High-Technologies Corporation Method of OPC Model Building, Information-Processing Apparatus, and Method of Determining Process Conditions of Semiconductor Device
US20120005634A1 (en) * 2010-06-30 2012-01-05 Globalfoundries Inc. Control of Critical Dimensions in Optical Imaging Processes for Semiconductor Production by Extracting Imaging Imperfections on the Basis of Imaging Tool Specific Intensity Measurements and Simulations

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468741B1 (en) * 2002-06-22 2005-01-29 삼성전자주식회사 Method and system of simulation for design of aperture in exposure apparatus and recording medium in which the simulation method is recorded
JP3699949B2 (en) * 2002-09-26 2005-09-28 株式会社東芝 PATTERN MEASURING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD USING THE PATTERN MEASURING METHOD, PROGRAM, COMPUTER-READABLE RECORDING MEDIUM, AND PATTERN MEASURING DEVICE
JP4202708B2 (en) * 2002-10-01 2008-12-24 株式会社東芝 Process margin evaluation method, measurement condition setting method, process margin evaluation program, and measurement condition setting program
US7131100B2 (en) * 2002-12-10 2006-10-31 Synopsys Inc. Identifying phantom images generated by side-lobes
US7269804B2 (en) * 2004-04-02 2007-09-11 Advanced Micro Devices, Inc. System and method for integrated circuit device design and manufacture using optical rule checking to screen resolution enhancement techniques
JP4635513B2 (en) * 2004-08-18 2011-02-23 日本電気株式会社 Reticle manufacturing system and method
US7562333B2 (en) * 2004-12-23 2009-07-14 Texas Instruments Incorporated Method and process for generating an optical proximity correction model based on layout density
KR100826655B1 (en) * 2007-05-21 2008-05-06 주식회사 하이닉스반도체 Method for correcting optical proximity effect
KR101296290B1 (en) * 2007-12-07 2013-08-14 삼성전자주식회사 Method of measuring MTT based on pattern area measurement and method of correcting photomask using the same
US7496876B1 (en) 2008-05-21 2009-02-24 International Business Machines Corporation Method for generating integrated functional testcases for multiple boolean algorithms from a single generic testcase template
US8234603B2 (en) 2010-07-14 2012-07-31 International Business Machines Corporation Method for fast estimation of lithographic binding patterns in an integrated circuit layout
DE112014000486B4 (en) * 2013-05-27 2021-08-19 International Business Machines Corporation Method and program product for designing a source and a mask for lithography
KR102227127B1 (en) 2014-02-12 2021-03-12 삼성전자주식회사 Design rule generating apparatus and method using lithography simulation
US9977325B2 (en) * 2015-10-20 2018-05-22 International Business Machines Corporation Modifying design layer of integrated circuit (IC)
JP2019194761A (en) * 2018-05-01 2019-11-07 株式会社フジクラ Correction data creation method and production method of circuit board

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835704A (en) * 1986-12-29 1989-05-30 General Electric Company Adaptive lithography system to provide high density interconnect
US5740068A (en) * 1996-05-30 1998-04-14 International Business Machines Corporation Fidelity enhancement of lithographic and reactive-ion-etched images by optical proximity correction
US5827623A (en) * 1995-10-31 1998-10-27 Nec Corporation Optical proximity correction halftone type phase shift photomask
US6289499B1 (en) * 1997-12-31 2001-09-11 Avant! Corporation Proximity correction software for wafer lithography
US20020188925A1 (en) * 2001-04-11 2002-12-12 Mizuho Higashi Pattern-creating method, pattern-processing apparatus and exposure mask
US6544699B1 (en) * 2001-02-07 2003-04-08 Advanced Micro Devices, Inc. Method to improve accuracy of model-based optical proximity correction
US6578188B1 (en) * 1997-09-17 2003-06-10 Numerical Technologies, Inc. Method and apparatus for a network-based mask defect printability analysis system
US6584609B1 (en) * 2000-02-28 2003-06-24 Numerical Technologies, Inc. Method and apparatus for mixed-mode optical proximity correction
US6609230B1 (en) * 1999-02-24 2003-08-19 Zhe Li Method for design verification using modular templates of test benches
US6757645B2 (en) * 1997-09-17 2004-06-29 Numerical Technologies, Inc. Visual inspection and verification system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100257710B1 (en) * 1996-12-27 2000-06-01 김영환 Simulation method of lithography process
EP1023641A4 (en) * 1997-09-17 2009-04-22 Synopsys Inc Design rule checking system and method
JPH11282151A (en) * 1998-03-27 1999-10-15 Mitsubishi Electric Corp Device and method for mask pattern verification and medium where its program is recorded
JP2001267238A (en) * 2000-03-15 2001-09-28 Nikon Corp Charged particle beam exposure system and method
KR20010094710A (en) * 2000-04-06 2001-11-01 윤종용 A Analysis System for Optimizing the Management of Photo Exposure Machines

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835704A (en) * 1986-12-29 1989-05-30 General Electric Company Adaptive lithography system to provide high density interconnect
US5827623A (en) * 1995-10-31 1998-10-27 Nec Corporation Optical proximity correction halftone type phase shift photomask
US5740068A (en) * 1996-05-30 1998-04-14 International Business Machines Corporation Fidelity enhancement of lithographic and reactive-ion-etched images by optical proximity correction
US6578188B1 (en) * 1997-09-17 2003-06-10 Numerical Technologies, Inc. Method and apparatus for a network-based mask defect printability analysis system
US20030126581A1 (en) * 1997-09-17 2003-07-03 Numerical Technologies, Inc. User interface for a network-based mask defect printability analysis system
US6757645B2 (en) * 1997-09-17 2004-06-29 Numerical Technologies, Inc. Visual inspection and verification system
US6289499B1 (en) * 1997-12-31 2001-09-11 Avant! Corporation Proximity correction software for wafer lithography
US6609230B1 (en) * 1999-02-24 2003-08-19 Zhe Li Method for design verification using modular templates of test benches
US6584609B1 (en) * 2000-02-28 2003-06-24 Numerical Technologies, Inc. Method and apparatus for mixed-mode optical proximity correction
US6544699B1 (en) * 2001-02-07 2003-04-08 Advanced Micro Devices, Inc. Method to improve accuracy of model-based optical proximity correction
US20020188925A1 (en) * 2001-04-11 2002-12-12 Mizuho Higashi Pattern-creating method, pattern-processing apparatus and exposure mask

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080250380A1 (en) * 2007-04-04 2008-10-09 Hitachi High-Technologies Corporation Method of OPC Model Building, Information-Processing Apparatus, and Method of Determining Process Conditions of Semiconductor Device
US8788981B2 (en) * 2007-04-04 2014-07-22 Hitachi High-Technologies Corporation Method of OPC model building, information-processing apparatus, and method of determining process conditions of semiconductor device
US20120005634A1 (en) * 2010-06-30 2012-01-05 Globalfoundries Inc. Control of Critical Dimensions in Optical Imaging Processes for Semiconductor Production by Extracting Imaging Imperfections on the Basis of Imaging Tool Specific Intensity Measurements and Simulations
US8332783B2 (en) * 2010-06-30 2012-12-11 Globalfoundries Inc. Control of critical dimensions in optical imaging processes for semiconductor production by extracting imaging imperfections on the basis of imaging tool specific intensity measurements and simulations

Also Published As

Publication number Publication date
JP4138318B2 (en) 2008-08-27
JP2003203849A (en) 2003-07-18
KR100494964B1 (en) 2005-06-14
US6760892B2 (en) 2004-07-06
KR20030060747A (en) 2003-07-16
US20030154460A1 (en) 2003-08-14
TW556318B (en) 2003-10-01

Similar Documents

Publication Publication Date Title
US6760892B2 (en) Apparatus for evaluating lithography process margin simulating layout pattern of semiconductor device
US6952818B2 (en) Method and system for optical proximity correction
US7873504B1 (en) Computer-implemented methods, carrier media, and systems for creating a metrology target structure design for a reticle layout
US7624369B2 (en) Closed-loop design for manufacturability process
US6128067A (en) Correcting method and correcting system for mask pattern
US7925486B2 (en) Computer-implemented methods, carrier media, and systems for creating a metrology target structure design for a reticle layout
US6581193B1 (en) Apparatus and methods for modeling process effects and imaging effects in scanning electron microscopy
US10210292B2 (en) Process-metrology reproducibility bands for lithographic photomasks
US6768958B2 (en) Automatic calibration of a masking process simulator
US7426712B2 (en) Lithography simulation method and recording medium
US6649309B2 (en) Method for correcting optical proximity effects in a lithographic process using the radius of curvature of shapes on a mask
US20060190875A1 (en) Pattern extracting system, method for extracting measuring points, method for extracting patterns, and computer program product for extracting patterns
US7533359B2 (en) Method and system for chip design using physically appropriate component models and extraction
KR100655428B1 (en) Optical proximity correction system and method thereof
TWI622079B (en) A method of performing dose modulation, in particular for electron beam lithography
US6536032B1 (en) Method of processing exposure mask-pattern data, simulation using this method, and recording medium
US20090100389A1 (en) Shape-based photolithographic model calibration
US7093226B2 (en) Method and apparatus of wafer print simulation using hybrid model with mask optical images
US8370773B2 (en) Method and apparatus for designing an integrated circuit using inverse lithography technology
US20100166289A1 (en) Feature-quantity extracting method, designed-circuit-pattern verifying method, and computer program product
US7100146B2 (en) Design system of alignment marks for semiconductor manufacture
US20220284166A1 (en) Machine learning based model builder and its applications for pattern transferring in semiconductor manufacturing
JP3583622B2 (en) Resist pattern prediction method
US20090162758A1 (en) Photomask having code pattern formed by coding data conversion process information, photomask formation method, and semiconductor device fabrication method
JP4343245B2 (en) PATTERN DATA GENERATION METHOD, PATTERN DATA GENERATION DEVICE, AND RECORDING MEDIUM CONTAINING PATTERN DATA GENERATION PROGRAM

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION