US20050026437A1 - Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same - Google Patents

Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same Download PDF

Info

Publication number
US20050026437A1
US20050026437A1 US10/935,412 US93541204A US2005026437A1 US 20050026437 A1 US20050026437 A1 US 20050026437A1 US 93541204 A US93541204 A US 93541204A US 2005026437 A1 US2005026437 A1 US 2005026437A1
Authority
US
United States
Prior art keywords
polishing method
acid
formulation
tetramethylammonium
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/935,412
Inventor
Ying Ma
Michael Jones
Thomas Baum
Deepak Verma
David Bernhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Technology Materials Inc
Original Assignee
Advanced Technology Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Technology Materials Inc filed Critical Advanced Technology Materials Inc
Priority to US10/935,412 priority Critical patent/US20050026437A1/en
Publication of US20050026437A1 publication Critical patent/US20050026437A1/en
Assigned to ADVANCED TECHNOLOGY MATERIALS, INC. reassignment ADVANCED TECHNOLOGY MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JONES, MICHAEL, VERMA, DEEPAK, BAUM, THOMAS H., BERNHARD, DAVID, MA, YING
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • C23F3/06Heavy metals with acidic solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates generally to the chemical mechanical polishing of semiconductor devices systems and methods, and more particularly, to a formulation and method for use in polishing metal films in semiconductor interconnection processes.
  • the present invention relates to a polishing formulation for surfaces of a semiconductor wafer, and more particularly, to a polishing formulation and a method for using the polishing formulation to remove and polish metal containing materials layered on semiconductor wafer surfaces.
  • the semiconductor wafer typically includes a substrate, such as silicon, upon which dielectric materials, barrier materials, and metal conductors and interconnects are layered. These different materials have insulating, conductive or semi-conductive properties.
  • Integrated circuits are formed by patterning regions into the substrate and depositing thereon multiple layers of dielectric material, barrier material, and metals.
  • a layer of metal and a layer of a masking material called photoresist are deposited on a silicon wafer. Unwanted metal is then etched away with an appropriate chemical, leaving the desired pattern of wires or vias. Next, the spaces between the wires or vias are filled with silicon dioxide or other low k dielectric as insulator, and finally the entire wafer surface is polished to provide a planar surface and/or remove excess insulator.
  • the damascene method is used wherein the pattern of wires or vias is first formed by etching the silicon dioxide or other suitable insulator such as fluorinated silica glass, Silk®), or methylsilsesquioxane etc. The metal is then deposited second.
  • the layers that are removed and polished consist of a copper layer (about 1-1.5 ⁇ m thick) on top of a thin copper seed layer (about 0.05-0.15 ⁇ m thick). These copper layers are separated from the dielectric material surface by a layer of barrier material (about 50-300 ⁇ thick).
  • CMP Chemical Mechanical Polishing or Planarization
  • a chemical process such as oxidation or chelation.
  • CMP involves applying slurry, a solution of an abrasive and an active chemistry, to a polishing pad that buffs the surface of a semiconductor wafer to achieve the removal, planarization, and polishing process.
  • Copper CMP often employs a two-step slurry approach.
  • the slurry used in the first step has a high copper removal rate and a comparatively low barrier material removal rate.
  • the slurry used in the second step has a relatively high barrier material removal rate, comparable removal rate for copper and low or comparable removal rate on the dielectric material.
  • step coverage problems may arise.
  • Step coverage is defined as a measure of how well a film conforms over an underlying step and is expressed by the ratio of the minimum thickness of a film as it crosses a step to the nominal thickness of the film over horizontal regions.
  • stringers or fences may arise from incomplete etching, polishing, or redeposition of metal.
  • One key to obtaining good uniformity across the wafer surface is by using a polishing formulation that has a higher removal selectivity for copper than the underlying barrier layer. If such selectivity is not maintained, unwanted dishing of copper and/or erosion of the dielectric material may occur.
  • Typical commercial CMP slurries used to remove overfill material and polish semiconductor wafer surfaces have a barrier material removal rate below 500 ⁇ /min. Further, these slurries have a copper to barrier material removal rate selectivity of greater than 4:1. This disparity in removal rates during the removal and polishing of the barrier material results in significant dishing of copper on the surface of the semiconductor wafer and/or poor removal of the barrier material.
  • CMP slurries Another problem with conventional CMP slurries is that the removal chemistry of the slurry is compositionally unstable. CMP slurries using ceria, alumina, or fumed silica must be continuously agitated or the abrasive particles will rapidly settle out. Further, many of the colloidal and fumed abrasives agglomerate after relatively short time frames following addition to the supporting chemistry. Both of these problems lead to significant operational obstacles such as the need for an expensive continuously recirculating distribution system equipped with filtration, chemistry monitoring, chemical addition equipment, and on-line particle monitors.
  • a further problem in commercial CMP slurries is that the abrasive materials in the slurries produce defects in the form of micro scratches.
  • the scratches and other defects occur due to the solid abrasive, in particular alumina, which is the main material used as a metal polishing abrasive. Slurry remains behind in the micro-scratches causing the semiconductor device to fail. Micro scratches and poor planarization efficiency result in integrated circuits with increased defects and a lower yield.
  • abrasive particles remain behind on the substrate surface after CMP. Cleaning machines or scrubbers using mechanical cleaning must be employed to remove the excess material.
  • Still another problem of commercial CMP slurries is that the chemicals that make up the slurries produce a copper surface that has a high corrosion tendency post polish.
  • a further problem that occurs in commercial CMP relates to the peeling of the metal film surface from the substrate due to frictional force between the polishing abrasive and the metal film surface.
  • a still further problem that exists for semiconductor manufacturers in commercial CMP is the cost of abrasives, polishing pads, slurry feeders, processor for slurry containing waste and stirrers to prevent sedimentation of the abrasive in the slurry feeder.
  • An object of this invention is to provide an abrasive free polishing formulation having a high copper removal rate; high uniformity of the planarized surface and a comparatively low barrier material removal rate with minimal dishing and/or erosion.
  • the present invention relates to an abrasive free polishing formulation for removing at least a portion of a metal film deposited during a semiconductor-processing step.
  • the present invention eliminates or reduces disadvantages associated with chemical mechanical polishing processes comprising abrasive components and provides an important technical advantage by eliminating the abrasive component of the slurry thereby reducing the cost of ownership to semiconductor manufacturing facilities.
  • the present invention is directed to an abrasive-free polishing formulation, which has a high removal rate on copper and a low removal rate on barrier material and a method of polishing a metal containing material using the abrasive free polishing formulation.
  • the present invention is directed to a non-abrasive polishing formulation comprising a first slurry, which has a high removal rate on copper and a low removal rate on barrier material and a chemical mechanical polishing method of using the non-abrasive polishing formulation.
  • the present invention relates to an abrasive free polishing formulation for removing at least a portion of a metal film, comprising an oxidizing agent and a corrosion inhibitor said formulation having a pH in the range of from about 0.1 to 6.9.
  • the present invention relates to a polishing method for removing at least a portion of a metal film, comprising mechanically rubbing a metal film surface using a solution comprising an oxidizing agent and a corrosion inhibitor said formulation having a pH in the range of from about 0.1 to 6.9.
  • the stable abrasive free formulation and method of using said formulation provide for removal of material and polishing of semiconductor wafer surfaces with significantly no dishing or oxide erosion, with significantly no surface defects and good planarization efficiency, and produce a copper surface with minimal corrosion tendency post-polish.
  • FIG. 1 is a cross sectional view of a semiconductor wafer prior to chemical mechanical polishing with the abrasive free formulation of the present invention.
  • FIG. 2 is a cross sectional view of the semiconductor wafer of FIG. 1 following chemical mechanical polishing with the abrasive free formulation of the present invention.
  • FIG. 3 is a cross sectional view of a semiconductor wafer illustrating copper dishing.
  • FIG. 4 is a cross sectional view of a semiconductor wafer illustrating oxide or dielectric erosion.
  • FIG. 5 is a plot showing planarization performance and step height reduction at room temperature of one abrasive free slurry formulation of the present invention.
  • FIG. 6 is a plot showing planarization performance and array recess at room temperature of one abrasive free slurry formulation of the present invention.
  • FIG. 7 is a plot showing planarization performance and step height reduction at 45° C. of one abrasive free slurry formulation of the present invention.
  • FIG. 8 is a plot showing planarization performance and array recess at 45° C. of one abrasive free slurry formulation of the present invention.
  • FIG. 9 is a plot showing planarization performance and step height reduction at room temperature of a second abrasive free formulation of the present invention.
  • FIG. 10 is a plot showing planarization performance and array recess at room temperature of a second abrasive free slurry formulation of the present invention.
  • the present invention provides an abrasive free chemical mechanical polishing formulation and method of using such formulation for removing and polishing the bulk copper layer of a damascene processing step in the manufacturing of an integrated circuit.
  • Applicants' co pending U.S. patent application Ser. No. 09/562,298 discloses a first and second slurry wherein the first slurry is used to remove bulk copper down to a barrier layer.
  • the first slurry has a high removal rate on copper and a low removal rate on barrier material and comprises silica particles, an oxidizing agent, a corrosion inhibitor, and a cleaning agent.
  • the first slurry is preferentially comprised of 1-10% colloidal silica with particle size range of from 3 to 100 nm, or 1-5% fumed silica with mean particle size of less than about 700 nm, about 1-12% potassium iodate (KIO 3 , formed by reaction of HIO 3 with KOH), which is used as the oxidizing agent for the copper, about 0-5% concentrated inorganic acid as a copper activating agent, and 0-2% iminodiacetic acid (IDA) as the copper corrosion inhibitor and cleaning agent.
  • KIO 3 potassium iodate
  • IDA iminodiacetic acid
  • the present invention presents a novel abrasive free chemical mechanical polishing formulation that overcomes the deficiencies in the prior art while providing a manufacturable process that may be implemented in the semiconductor-manufacturing arena with little or no alterations to the current CMP systems and footprints.
  • the stable abrasive free CMP formulation and method of using such formulation of the present invention provide for removal of material and polishing of semiconductor wafer surfaces with significantly no dishing or oxide erosion, with significantly no surface defects and good planarization efficiency.
  • 09/562,298 further comprises either precipitated spherical silica particles in the size range of 3 to 100 nm, or fumed silica with mean particle size less than about 700 nm.
  • Abrasive free polishing formulation Abrasive free polishing formulation
  • the present invention is directed to an aqueous abrasive free polishing formulation comprising an oxidizing agent and a copper corrosion inhibitor agent having a pH in a range of from about 0.1 to 6.9. More preferably the pH of the formulation is in the range from about 2 to 5 and most preferably, the pH of the polishing formulation is in the range of from about 3 to 4.
  • the present invention is directed to an aqueous abrasive free polishing formulation comprising 0.1 to 20 weight percent oxidizing agent and 0 to 5 weight percent copper corrosion inhibitor agent and 0-5 weight percent activating agent, said formulation having a pH in a range of from about 0.1 to 6.9. More preferably the pH of the formulation is in the range from about 2 to 5 and most preferably, the pH of the polishing formulation is in the range of from about 3 to 4.
  • oxidizing agent is defined as any substance which removes metal electrons and raises the atomic valence and includes but is not limited to hydrogen peroxide (H 2 O 2 ), ferric nitrate (Fe(NO 3 ) 3 ) and potassium iodate (KIO 3 ), nitric acid (HNO 3 ), ammonium chlorite (NH 4 CIO 2 ), ammonium chlorate (NH 4 CIO 3 ), ammonium iodate (NH 4 IO 3 ), ammonium perborate (NH 4 BO 3 ), ammonium perchlorate (NH 4 CIO 4 ), ammonium periodate (NH 4 IO 3 ), ammonium persulfate ((NH 4 ) 2 S 2 O 8 ), tetramethylammonium chlorite ((N(CH 3 ) 4 )CIO 2 ), tetramethylammonium chlorate ((N(CH 3 ) 4 )CIO 3 ), tetramethylammonium chlorite ((N(
  • the oxidizing agent may comprise an amine N-oxide having the formula (R 1 R 2 R 3 N ⁇ O), wherein R 1 R 2 R 3 are independently selected from the group consisting of: H and C 1 -C 8 alkyl.
  • amine N-oxides include but are not limited to 4-methylmorpholine N-oxide (C 5 H 11 NO 2 ) and pyridine N-oxide (C 5 H 5 NO).
  • copper-activating agent is defined as any substance that in the presence of a water containing solution solubilizes or etches the oxidized copper material.
  • Copper activating agents useful in the present invention include but are not limited to mineral acids (i.e. hydrochloric acid, nitric acid), inorganic acids (i.e. phosphoric acid, fluoroboric acid) and organic acids (i.e. oxalic acid, malonic acid, malic acid, citric acid, acetic acid and pivalic acid).
  • the abrasive free CMP formulation of the present invention may comprise, an oxidizing agent, an activating agent, a corrosion inhibitor and optionally a cleaning agent.
  • the chemistry of the formulation should be stable and have a pH in the range of about 0.1 to 6.9 and more preferably between about 2 to 5. More preferably, the abrasive free polishing formulation comprises from about 1-13% potassium iodate (KIO 3 , formed by reaction of HIO 3 with KOH), which is used as the oxidizing agent for the copper, about 0-5% concentrated inorganic acid as the copper activating agent, and 0-2% iminodiacetic acid (IDA) as the copper corrosion inhibitor agent.
  • KIO 3 potassium iodate
  • IDA iminodiacetic acid
  • the formulation may further comprise potassium hydroxide, tetramethylammonium hydroxide (or related quaternary ammonium hydroxide) or ammonium hydroxide in such amounts as to adjust the pH to the desired level.
  • potassium hydroxide tetramethylammonium hydroxide (or related quaternary ammonium hydroxide) or ammonium hydroxide in such amounts as to adjust the pH to the desired level.
  • a buffering solution of suitable identity could also be used to adjust the pH value.
  • the copper corrosion inhibitor is defined as a substance that reacts with the oxidized copper thin film to passivate the copper layer and prevent excessive etching of the copper surface during CMP and the cleaning agent is defined as a substance that chelates to the copper, leading to soluble copper complexes that can be readily removed during polishing.
  • the corrosion inhibitor and cleaning agent for the abrasive free formulation are preferably a carboxylic acid. More specifically, the carboxylic acid may be chosen from, but not limited to glycine, oxalic acid, malonic acid, succinic acid, citric acid, and nitrilotriacetic acid. Alternatively, the carboxylic acid may be a dicarboxylic acid that preferentially has a nitrogen containing functional group. In the most preferred form, the corrosion inhibitor and the cleaning agent are iminodiacetic acid.
  • the present invention includes a method for chemical mechanical polishing of a copper containing material 14 , preferably a copper containing material from a damascene processing step, comprising the following steps: (1) providing an abrasive free first chemical mechanical polishing slurry that has a high removal rate on copper 14 and a low removal rate on barrier material 13 ; (2) chemical mechanically polishing a semiconductor wafer surface 10 with the abrasive free slurry, wherein the abrasive free chemical mechanical polishing formulation comprises an oxidizing agent and an activating agent and said formulation having a pH in a range from about 0.1 to 6.9.
  • the method of the present invention overcomes the problems associated with the abrasive component of the first slurry chemical mechanical processing step in that:
  • polishing instrument parameters such as down force (DF), flow rate (FR), table speed (TS), quill speed (QS), and pad type can be adjusted to effect the results of the CMP slurry. These parameters are important in obtaining efficient planarization results and limiting dishing and erosion. Although these parameters may be altered, when used with the CMP slurry of the present invention, the standard conditions used are DF in a range of from about 3-6 psi, FR in a range of from about 100-200 mL/min, TS in a range of from about 80 to 150 rpm, QS in a range of from about 50 to 130 rpm, and the IC 1000 pad type. Preferably the conditions used in the present invention include DF of 4 psi, FR of 160 mL/min, TS of 125 rpm, QS of 116 rpm, and the Rodel IC 1000 pad type.
  • DF down force
  • FR flow rate
  • TS table speed
  • QS quill speed
  • pad type
  • FIG. 2 illustrates the semiconductor wafer 10 of FIG. 1 , after steps (1) and (2) of the present method for CMP have been carried out, and the semiconductor wafer surface has been polished with the abrasive free chemical mechanical polishing formulation of the present invention.
  • FIG. 2 is compared to FIG. 1 , the top copper layer 14 in FIG. 1 has been preferentially removed, and only the copper in the trenches ( FIG. 2 ) 18 a , 18 b , and 18 c is left.
  • the barrier material layer 17 is substantially intact, and the dielectric material 16 based on substrate 15 is still unexposed.
  • FIG. 3 shows a semiconductor wafer to which a CMP slurry has been applied, which had a higher selectivity for copper 26 a , 26 b , 26 c than for the barrier material 25 a , 25 b , 25 c or dielectric material 24 .
  • the barrier material 25 a , 25 b , 25 c or dielectric material 24 As a result, disparate amounts of copper are removed from the surface of the semiconductor wafer.
  • FIG. 4 shows a semiconductor wafer to which a CMP slurry has been applied, which has a higher selectivity for the dielectric material 29 than for the barrier material 30 a , 30 b , 30 c , or copper 31 a , 31 b , 31 c .
  • disparate amounts of dielectric material are removed from the surface of the semiconductor wafer. This is known as oxide erosion or dielectric erosion and is shown by the indentions and/or reduction of the dielectric material 29 a , 29 b .
  • the abrasive free CMP formulation of the present invention and method of using such formulation greatly reduces oxide erosion or dielectric erosion.
  • step coverage problems may arise. Step coverage is defined as a measure of how well a film conforms over an underlying step and is expressed by the ratio of the minimum thickness of a film as it crosses a step to the nominal thickness of the film over horizontal regions. Also, stringers may arise from incomplete etching, polishing, or redeposition of metal.
  • the present invention provides a method for planarizing and polishing at least a portion of a surface of a semiconductor wafer onto which has been deposited a metal containing layer.
  • the method comprising the steps of:
  • the formulation of the present invention oxidizes the copper metal layer, to form a thin metal oxide layer on the substrate surface.
  • the activating agent solubilizes and/or etches the thin oxide layer and under CMP conditions, the removal of the thin oxide layer is accelerated by the friction imposed on the oxide layer by the polishing pad. Because the pad, contacts only the projections on the wafer surface, the polishing occurs more slowly in the lower level topography regions, resulting in a wafer surface having improved planarization.
  • the present invention is directed to removal of copper and copper containing materials, it is not this limited to such.
  • the present invention is also useful for polishing and planarizing other materials useful as interconnects in semiconductor related applications including but not limited to aluminum, aluminum alloys, aluminum compounds having aluminum as its principal component, tungsten, tungsten alloys, tungsten compounds having tungsten as its principal component, (i.e., tungsten nitride), tantalum, tantalum nitride, silicon doped tantalum nitride, titanium, titanium alloys and titanium compounds having titanium as its principal component (i.e., titanium nitride and silicon doped titanium nitride).
  • the copper containing material removed in the present invention may be deposited in any number of ways and as such is not limited to the examples provided herein. Specific methods for depositing copper containing thin films include CVD, PVD, electroplating, and electroless deposition.
  • the formulation of the present invention is useful for removal and planarization of the bulk copper layer deposited in a damascene process step, but is not limited to such.
  • the present invention may be useful for removing copper and copper containing materials from any substrate comprising same.
  • abrasive free formulation of the present invention may be useful in processes relating to: cleaning semiconductor wafer surfaces; bulk metal removal; planarization; first step underpolishing; first step overpolishing, and neutral or intermediate first step polishing.
  • the present invention may further comprise a second polishing step comprising a formulation having a high removal rate on barrier material a low or comparable removal rate on copper and a low removal rate on the dielectric material.
  • Table 2 provides a summary of the composition of two abrasive free slurries for polish performance comparison and Table 3 provides actual experimental results for the abrasive free polishing formulation as used on 8′′ blanket films wafers of the following composition and thickness: copper wafer (5,000 ⁇ thermal oxide, 300 ⁇ tantalum, 1,500 ⁇ PVD copper seed layer and 15,000 ⁇ electroplated copper), tantalum nitride wafer (5,000 ⁇ thermal oxide and 3,000 ⁇ tantalum nitride), tantalum wafer (5,000 ⁇ thermal oxide and 3,000 ⁇ tantalum), and plasma enhanced tetraethyl orthosilicate (9,000 ⁇ PETEOS).
  • copper wafer 5,000 ⁇ thermal oxide, 300 ⁇ tantalum, 1,500 ⁇ PVD copper seed layer and 15,000 ⁇ electroplated copper
  • tantalum nitride wafer 5,000 ⁇ thermal oxide and 3,000 ⁇ tantalum nitride
  • tantalum wafer 5,000 ⁇ thermal oxide and 3,000 ⁇
  • FIGS. 5 and 7 are plots showing the step height remaining verses different copper/dielectric pattern densities on a Sematech 854 CMP AZ mask test wafer after underpolishing with an abrasive free polishing formulation for a bulk copper-polishing step according to one embodiment of the present invention.
  • the initial step height before polishing was approximately 6000 ⁇ .
  • the data plotted in FIG. 5 is based on room temperature experimental conditions and the data plotted in FIG. 7 , 45° C.
  • the substantial step height reduction on the patterned wafers while underpolishing evidences the commercial viability of the present invention.
  • FIGS. 6 and 8 are plots showing the array recess verses different copper/dielectric pattern densities based on using the same abrasive free polishing formulation and substrate as in the previous step height reduction experimental.
  • the data plotted in FIG. 6 is based on room temperature experimental conditions and the data plotted in FIG. 8 , 45° C.
  • the low levels of array recess are further evidence of the commercial viability of the abrasive free polishing formulation.

Abstract

An abrasive free formulation for chemical mechanical polishing and method for using the formulation for polishing copper and related materials. The abrasive free formulation has a high removal rate on copper and a low removal rate on barrier material. The abrasive free formulation comprises at least an oxidizing agent and an activating agent.

Description

  • This application is a divisional of U.S. application Ser. No. 09/9535,805, filed on Aug. 23, 2001, now allowed.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates generally to the chemical mechanical polishing of semiconductor devices systems and methods, and more particularly, to a formulation and method for use in polishing metal films in semiconductor interconnection processes.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a polishing formulation for surfaces of a semiconductor wafer, and more particularly, to a polishing formulation and a method for using the polishing formulation to remove and polish metal containing materials layered on semiconductor wafer surfaces.
  • Semiconductor wafers are used to form integrated circuits. The semiconductor wafer typically includes a substrate, such as silicon, upon which dielectric materials, barrier materials, and metal conductors and interconnects are layered. These different materials have insulating, conductive or semi-conductive properties. Integrated circuits are formed by patterning regions into the substrate and depositing thereon multiple layers of dielectric material, barrier material, and metals.
  • In order to meet the higher speeds required in large scale integration (LSI), semiconductor manufacturers are looking to copper and its alloys for interconnections due to its decreased resistivity. Copper is also less vulnerable to electromigration than aluminum and less likely to fracture under stress.
  • In conventional deposition, a layer of metal and a layer of a masking material called photoresist are deposited on a silicon wafer. Unwanted metal is then etched away with an appropriate chemical, leaving the desired pattern of wires or vias. Next, the spaces between the wires or vias are filled with silicon dioxide or other low k dielectric as insulator, and finally the entire wafer surface is polished to provide a planar surface and/or remove excess insulator. In copper deposition the damascene method is used wherein the pattern of wires or vias is first formed by etching the silicon dioxide or other suitable insulator such as fluorinated silica glass, Silk®), or methylsilsesquioxane etc. The metal is then deposited second.
  • Typically for copper technology, the layers that are removed and polished consist of a copper layer (about 1-1.5 μm thick) on top of a thin copper seed layer (about 0.05-0.15 μm thick). These copper layers are separated from the dielectric material surface by a layer of barrier material (about 50-300 Å thick).
  • In order to obtain the correct patterning, excess material used to form the layers on the substrate must be removed. Further, to obtain efficient circuits, it is important to have a flat or planar semiconductor wafer surface. Thus, it is necessary to polish certain surfaces of a semiconductor wafer.
  • Chemical Mechanical Polishing or Planarization (“CMP”) is a process in which material is removed from a surface of a semiconductor wafer, and the surface is polished (planarized) by coupling a physical process such as abrasion with a chemical process such as oxidation or chelation. In its most rudimentary form, CMP involves applying slurry, a solution of an abrasive and an active chemistry, to a polishing pad that buffs the surface of a semiconductor wafer to achieve the removal, planarization, and polishing process.
  • Copper CMP often employs a two-step slurry approach. The slurry used in the first step has a high copper removal rate and a comparatively low barrier material removal rate. The slurry used in the second step has a relatively high barrier material removal rate, comparable removal rate for copper and low or comparable removal rate on the dielectric material.
  • As successive layers are deposited across previously patterned layers of an integrated circuit, elevational disparity develops across the surface of each layer. If left unattended, the elevational disparities in each level of an integrated circuit can lead to various problems. For example, when dielectric, conductive, or semiconductive material is deposited over a topological surface having elevationally raised and recessed regions, step coverage problems may arise. Step coverage is defined as a measure of how well a film conforms over an underlying step and is expressed by the ratio of the minimum thickness of a film as it crosses a step to the nominal thickness of the film over horizontal regions. Also, stringers or fences may arise from incomplete etching, polishing, or redeposition of metal.
  • One key to obtaining good uniformity across the wafer surface is by using a polishing formulation that has a higher removal selectivity for copper than the underlying barrier layer. If such selectivity is not maintained, unwanted dishing of copper and/or erosion of the dielectric material may occur.
  • Typical commercial CMP slurries used to remove overfill material and polish semiconductor wafer surfaces have a barrier material removal rate below 500 Å/min. Further, these slurries have a copper to barrier material removal rate selectivity of greater than 4:1. This disparity in removal rates during the removal and polishing of the barrier material results in significant dishing of copper on the surface of the semiconductor wafer and/or poor removal of the barrier material.
  • Another problem with conventional CMP slurries is that the removal chemistry of the slurry is compositionally unstable. CMP slurries using ceria, alumina, or fumed silica must be continuously agitated or the abrasive particles will rapidly settle out. Further, many of the colloidal and fumed abrasives agglomerate after relatively short time frames following addition to the supporting chemistry. Both of these problems lead to significant operational obstacles such as the need for an expensive continuously recirculating distribution system equipped with filtration, chemistry monitoring, chemical addition equipment, and on-line particle monitors.
  • A further problem in commercial CMP slurries is that the abrasive materials in the slurries produce defects in the form of micro scratches. The scratches and other defects occur due to the solid abrasive, in particular alumina, which is the main material used as a metal polishing abrasive. Slurry remains behind in the micro-scratches causing the semiconductor device to fail. Micro scratches and poor planarization efficiency result in integrated circuits with increased defects and a lower yield.
  • Further, abrasive particles remain behind on the substrate surface after CMP. Cleaning machines or scrubbers using mechanical cleaning must be employed to remove the excess material.
  • Still another problem of commercial CMP slurries is that the chemicals that make up the slurries produce a copper surface that has a high corrosion tendency post polish.
  • A further problem that occurs in commercial CMP relates to the peeling of the metal film surface from the substrate due to frictional force between the polishing abrasive and the metal film surface.
  • A still further problem that exists for semiconductor manufacturers in commercial CMP is the cost of abrasives, polishing pads, slurry feeders, processor for slurry containing waste and stirrers to prevent sedimentation of the abrasive in the slurry feeder.
  • Further, since CMP machines are set up in cleanroom environments, the dust generated by the solid abrasive material must be kept to a minimum This requires expensive systems to be installed to suppress dust in the exhaust duct of the CMP machine;
  • Therefore, it is an object of this invention, to provide an abrasive free polishing formulation for the removal of copper and other metal interconnects that overcomes the current problems in CMP processing.
  • An object of this invention, therefore, is to provide an abrasive free polishing formulation having a high copper removal rate; high uniformity of the planarized surface and a comparatively low barrier material removal rate with minimal dishing and/or erosion.
  • These and other objects and advantages of the invention will be apparent to those skilled in the art upon reading the following detailed description and upon reference to the drawings.
  • SUMMARY OF THE INVENTION
  • The present invention relates to an abrasive free polishing formulation for removing at least a portion of a metal film deposited during a semiconductor-processing step. The present invention eliminates or reduces disadvantages associated with chemical mechanical polishing processes comprising abrasive components and provides an important technical advantage by eliminating the abrasive component of the slurry thereby reducing the cost of ownership to semiconductor manufacturing facilities.
  • The present invention is directed to an abrasive-free polishing formulation, which has a high removal rate on copper and a low removal rate on barrier material and a method of polishing a metal containing material using the abrasive free polishing formulation.
  • The present invention is directed to a non-abrasive polishing formulation comprising a first slurry, which has a high removal rate on copper and a low removal rate on barrier material and a chemical mechanical polishing method of using the non-abrasive polishing formulation.
  • More specifically, in one aspect, the present invention relates to an abrasive free polishing formulation for removing at least a portion of a metal film, comprising an oxidizing agent and a corrosion inhibitor said formulation having a pH in the range of from about 0.1 to 6.9.
  • In a further aspect, the present invention relates to a polishing method for removing at least a portion of a metal film, comprising mechanically rubbing a metal film surface using a solution comprising an oxidizing agent and a corrosion inhibitor said formulation having a pH in the range of from about 0.1 to 6.9.
  • As will become apparent from the discussion that follows, the stable abrasive free formulation and method of using said formulation provide for removal of material and polishing of semiconductor wafer surfaces with significantly no dishing or oxide erosion, with significantly no surface defects and good planarization efficiency, and produce a copper surface with minimal corrosion tendency post-polish.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of a semiconductor wafer prior to chemical mechanical polishing with the abrasive free formulation of the present invention.
  • FIG. 2 is a cross sectional view of the semiconductor wafer of FIG. 1 following chemical mechanical polishing with the abrasive free formulation of the present invention.
  • FIG. 3 is a cross sectional view of a semiconductor wafer illustrating copper dishing.
  • FIG. 4 is a cross sectional view of a semiconductor wafer illustrating oxide or dielectric erosion.
  • FIG. 5 is a plot showing planarization performance and step height reduction at room temperature of one abrasive free slurry formulation of the present invention.
  • FIG. 6 is a plot showing planarization performance and array recess at room temperature of one abrasive free slurry formulation of the present invention.
  • FIG. 7 is a plot showing planarization performance and step height reduction at 45° C. of one abrasive free slurry formulation of the present invention.
  • FIG. 8 is a plot showing planarization performance and array recess at 45° C. of one abrasive free slurry formulation of the present invention.
  • FIG. 9 is a plot showing planarization performance and step height reduction at room temperature of a second abrasive free formulation of the present invention.
  • FIG. 10 is a plot showing planarization performance and array recess at room temperature of a second abrasive free slurry formulation of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS THEREOF
  • The disclosure of the following United States patent application, which is commonly owned by assignee of the present application is hereby incorporated herein by reference in its entirety:
  • U.S. patent application Ser. No. 09/562,298 filed on May 1, 2000 in the names of Thomas H. Baum, et al.
  • The present invention provides an abrasive free chemical mechanical polishing formulation and method of using such formulation for removing and polishing the bulk copper layer of a damascene processing step in the manufacturing of an integrated circuit.
  • Applicants' co pending U.S. patent application Ser. No. 09/562,298 discloses a first and second slurry wherein the first slurry is used to remove bulk copper down to a barrier layer. The first slurry has a high removal rate on copper and a low removal rate on barrier material and comprises silica particles, an oxidizing agent, a corrosion inhibitor, and a cleaning agent. More particularly the first slurry is preferentially comprised of 1-10% colloidal silica with particle size range of from 3 to 100 nm, or 1-5% fumed silica with mean particle size of less than about 700 nm, about 1-12% potassium iodate (KIO3, formed by reaction of HIO3 with KOH), which is used as the oxidizing agent for the copper, about 0-5% concentrated inorganic acid as a copper activating agent, and 0-2% iminodiacetic acid (IDA) as the copper corrosion inhibitor and cleaning agent.
  • In an effort to solve the aforementioned problems relating to the abrasive portion of the CMP slurry, which are summarized below:
      • reduction of scratches caused by the solid abrasive;
      • peeling due to frictional force between the polishing abrasive and the metal film surface during CMP;
      • mechanical cleaning step to remove polishing abrasive left behind after the polishing step;
      • cost of abrasives, polishing pads, slurry feeders, processor for slurry containing waste and pumps, filters, monitoring equipment, and stirrers to prevent sedimentation of the abrasive in the slurry distribution system; and
      • a system to suppress dust in the exhaust duct of the CMP machine, the inventors of the present invention experimentally removed the abrasive component of the CMP slurry, and used the abrasive free formulation to chemical mechanically polish a wafer having deposited thereon a bulk copper layer from a damascene processing step. The inventors unexpectedly discovered that the particular combination of potassium iodate, inorganic acid, and iminodiacetic acid removed the bulk copper layer at a rate >3100 Å/min and as high as 4000 Å/min in preliminary testing. Such removal rates are not significantly different from the same formulation comprising abrasive.
  • The present invention presents a novel abrasive free chemical mechanical polishing formulation that overcomes the deficiencies in the prior art while providing a manufacturable process that may be implemented in the semiconductor-manufacturing arena with little or no alterations to the current CMP systems and footprints. As will become apparent from the examples that follow, the stable abrasive free CMP formulation and method of using such formulation of the present invention provide for removal of material and polishing of semiconductor wafer surfaces with significantly no dishing or oxide erosion, with significantly no surface defects and good planarization efficiency.
  • Table 1, below outlines a comparison between the first slurry formulation of U.S. patent application Ser. No. 09/562,298 and one formulation of the abrasive free first slurry of the present invention. Both formulations comprise about 1-12% potassium iodate (KIO3, formed by reaction of HIO3 with KOH), which is used as the oxidizing agent for the copper, about 0-5% concentrated inorganic acid as a copper activating agent, and 0-2% iminodiacetic acid (IDA) as a copper corrosion inhibitor and cleaning agent. Additionally, the First Slurry of U.S. patent application Ser. No. 09/562,298 further comprises either precipitated spherical silica particles in the size range of 3 to 100 nm, or fumed silica with mean particle size less than about 700 nm.
    TABLE 1
    Comparison of Removal Rates of First Slurries on Different Materials based on the
    preferred embodiment of U.S. Patent Application No. 09/562,298 as compared to the abrasive
    free polishing formulation (AFS) of the present invention.
    First Slurry Selectivity First Slurry Selectivity
    Removal Rates* Material:Cu Removal Rates** Material:Cu
    (Å/min) First Slurry (Å/min) First Slurry
    LAYER (U.S. Pat. No. 09/562,298) (U.S. Pat. No. 09/562,298) (AFS) (AFS)
    Copper >5000 >3500
    Tantalum <500 1:10 <8 1:500
    Tantalum <500 1:10 <60 1:61 
    Nitride
    Thermal Oxide <150 1:50 <5 1:730

    *(Down Force = 5 psi, Flow Rate = 200 mL/min, Table Speed = 90 rpm, Quill Speed = 50 rpm, Pad Type = IC 1000)

    **(Down Force = 4 psi, Flow Rate = 160 mL/min, Table Speed = 125 rpm, Quill Speed = 116 rpm, Pad Type = IC 1000)
  • In one embodiment, the present invention is directed to an aqueous abrasive free polishing formulation comprising an oxidizing agent and a copper corrosion inhibitor agent having a pH in a range of from about 0.1 to 6.9. More preferably the pH of the formulation is in the range from about 2 to 5 and most preferably, the pH of the polishing formulation is in the range of from about 3 to 4.
  • In a further embodiment, the present invention is directed to an aqueous abrasive free polishing formulation comprising 0.1 to 20 weight percent oxidizing agent and 0 to 5 weight percent copper corrosion inhibitor agent and 0-5 weight percent activating agent, said formulation having a pH in a range of from about 0.1 to 6.9. More preferably the pH of the formulation is in the range from about 2 to 5 and most preferably, the pH of the polishing formulation is in the range of from about 3 to 4.
  • As used herein, the term oxidizing agent is defined as any substance which removes metal electrons and raises the atomic valence and includes but is not limited to hydrogen peroxide (H2O2), ferric nitrate (Fe(NO3)3) and potassium iodate (KIO3), nitric acid (HNO3), ammonium chlorite (NH4CIO2), ammonium chlorate (NH4CIO3), ammonium iodate (NH4IO3), ammonium perborate (NH4BO3), ammonium perchlorate (NH4CIO4), ammonium periodate (NH4IO3), ammonium persulfate ((NH4)2S2O8), tetramethylammonium chlorite ((N(CH3)4)CIO2), tetramethylammonium chlorate ((N(CH3)4)CIO3), tetramethylammonium iodate ((N(CH3)4)IO3), tetramethylammonium perborate ((N(CH3)4)BO3), tetramethylammonium perchlorate ((N(CH3)4)CIO4), tetramethylammonium periodate ((N(CH3)4)IO4), tetramethylammonium persulfate ((N(CH3)4)S2O8), urea hydrogen peroxide ((CO(NH2)2)H2O2). The preferred oxidizing agent for the abrasive free formulation of the instant invention is potassium iodate formed by reaction of HIO3 with KOH. Preferably, the oxidizing agent of the present invention is potassium iodate.
  • Alternatively, the oxidizing agent may comprise an amine N-oxide having the formula (R1R2R3N→O), wherein R1R2R3 are independently selected from the group consisting of: H and C1-C8 alkyl. Specific examples of amine N-oxides include but are not limited to 4-methylmorpholine N-oxide (C5H11NO2) and pyridine N-oxide (C5H5NO).
  • Further, as used herein, the term copper-activating agent is defined as any substance that in the presence of a water containing solution solubilizes or etches the oxidized copper material. Copper activating agents useful in the present invention include but are not limited to mineral acids (i.e. hydrochloric acid, nitric acid), inorganic acids (i.e. phosphoric acid, fluoroboric acid) and organic acids (i.e. oxalic acid, malonic acid, malic acid, citric acid, acetic acid and pivalic acid).
  • In a further embodiment, the abrasive free CMP formulation of the present invention, may comprise, an oxidizing agent, an activating agent, a corrosion inhibitor and optionally a cleaning agent. The chemistry of the formulation should be stable and have a pH in the range of about 0.1 to 6.9 and more preferably between about 2 to 5. More preferably, the abrasive free polishing formulation comprises from about 1-13% potassium iodate (KIO3, formed by reaction of HIO3 with KOH), which is used as the oxidizing agent for the copper, about 0-5% concentrated inorganic acid as the copper activating agent, and 0-2% iminodiacetic acid (IDA) as the copper corrosion inhibitor agent.
  • The formulation may further comprise potassium hydroxide, tetramethylammonium hydroxide (or related quaternary ammonium hydroxide) or ammonium hydroxide in such amounts as to adjust the pH to the desired level. A buffering solution of suitable identity could also be used to adjust the pH value.
  • As used herein the copper corrosion inhibitor is defined as a substance that reacts with the oxidized copper thin film to passivate the copper layer and prevent excessive etching of the copper surface during CMP and the cleaning agent is defined as a substance that chelates to the copper, leading to soluble copper complexes that can be readily removed during polishing. The corrosion inhibitor and cleaning agent for the abrasive free formulation are preferably a carboxylic acid. More specifically, the carboxylic acid may be chosen from, but not limited to glycine, oxalic acid, malonic acid, succinic acid, citric acid, and nitrilotriacetic acid. Alternatively, the carboxylic acid may be a dicarboxylic acid that preferentially has a nitrogen containing functional group. In the most preferred form, the corrosion inhibitor and the cleaning agent are iminodiacetic acid.
  • Referring to FIG. 1, the present invention includes a method for chemical mechanical polishing of a copper containing material 14, preferably a copper containing material from a damascene processing step, comprising the following steps: (1) providing an abrasive free first chemical mechanical polishing slurry that has a high removal rate on copper 14 and a low removal rate on barrier material 13; (2) chemical mechanically polishing a semiconductor wafer surface 10 with the abrasive free slurry, wherein the abrasive free chemical mechanical polishing formulation comprises an oxidizing agent and an activating agent and said formulation having a pH in a range from about 0.1 to 6.9.
  • The method of the present invention, overcomes the problems associated with the abrasive component of the first slurry chemical mechanical processing step in that:
      • scratches caused by the solid abrasive are eliminated;
      • peeling due to frictional force between the polishing abrasive and the metal film surface during CMP are eliminated;
      • mechanical cleaning step to remove polishing abrasive left behind after the polishing step is eliminated;
      • cost of abrasives, polishing pads, slurry feeders, processor for slurry containing waste and pumps, filters, monitoring equipment, and stirrers to prevent sedimentation of the abrasive in the slurry distribution system are reduced or eliminated; and
      • a system to suppress dust in the exhaust duct of the CMP machine is eliminated.
  • Generally, the slurry is applied to a pad contained on a polishing instrument. Polishing instrument parameters such as down force (DF), flow rate (FR), table speed (TS), quill speed (QS), and pad type can be adjusted to effect the results of the CMP slurry. These parameters are important in obtaining efficient planarization results and limiting dishing and erosion. Although these parameters may be altered, when used with the CMP slurry of the present invention, the standard conditions used are DF in a range of from about 3-6 psi, FR in a range of from about 100-200 mL/min, TS in a range of from about 80 to 150 rpm, QS in a range of from about 50 to 130 rpm, and the IC 1000 pad type. Preferably the conditions used in the present invention include DF of 4 psi, FR of 160 mL/min, TS of 125 rpm, QS of 116 rpm, and the Rodel IC 1000 pad type.
  • FIG. 2 illustrates the semiconductor wafer 10 of FIG. 1, after steps (1) and (2) of the present method for CMP have been carried out, and the semiconductor wafer surface has been polished with the abrasive free chemical mechanical polishing formulation of the present invention. When FIG. 2 is compared to FIG. 1, the top copper layer 14 in FIG. 1 has been preferentially removed, and only the copper in the trenches (FIG. 2) 18 a, 18 b, and 18 c is left. As shown in FIG. 2 the barrier material layer 17 is substantially intact, and the dielectric material 16 based on substrate 15 is still unexposed.
  • By using the abrasive free polishing formulation of the present invention, with the selectivities described in Table 1, and following the described method, copper dishing (FIG. 3) and oxide erosion (FIG. 4) can be reduced. FIG. 3 shows a semiconductor wafer to which a CMP slurry has been applied, which had a higher selectivity for copper 26 a, 26 b, 26 c than for the barrier material 25 a, 25 b, 25 c or dielectric material 24. As a result, disparate amounts of copper are removed from the surface of the semiconductor wafer. This is known as copper dishing and is shown by the dish- like troughs 27 a, 27 b, and 27 c in the trenches of copper 26 a, 26 b, 26 c. The abrasive free CMP formulation of the present invention and method of using this formulation greatly reduces copper dishing.
  • FIG. 4 shows a semiconductor wafer to which a CMP slurry has been applied, which has a higher selectivity for the dielectric material 29 than for the barrier material 30 a, 30 b, 30 c, or copper 31 a, 31 b, 31 c. As a result, disparate amounts of dielectric material are removed from the surface of the semiconductor wafer. This is known as oxide erosion or dielectric erosion and is shown by the indentions and/or reduction of the dielectric material 29 a, 29 b. The abrasive free CMP formulation of the present invention and method of using such formulation greatly reduces oxide erosion or dielectric erosion.
  • During the damascene process, grooves are dry etched into an insulating thin film to form an interconnect pattern. Copper or copper alloy is deposited over the entire wafer surface, reflecting the groove which is the interconnect pattern. If left unattended, the elevational disparities in each level of an integrated circuit can lead to various problems. For example, when dielectric, conductive, or semiconductive material is deposited over a topological surface having elevationally raised and recessed regions, step coverage problems may arise. Step coverage is defined as a measure of how well a film conforms over an underlying step and is expressed by the ratio of the minimum thickness of a film as it crosses a step to the nominal thickness of the film over horizontal regions. Also, stringers may arise from incomplete etching, polishing, or redeposition of metal.
  • The present invention provides a method for planarizing and polishing at least a portion of a surface of a semiconductor wafer onto which has been deposited a metal containing layer. The method comprising the steps of:
      • providing an aqueous polishing formulation comprising an oxidizing agent, and an activating agent, said polishing formulation having a pH in a range of from about 0.1 to 6.9; and
      • chemical mechanically polishing a semiconductor wafer surface with said formulation.
  • The formulation of the present invention oxidizes the copper metal layer, to form a thin metal oxide layer on the substrate surface. The activating agent solubilizes and/or etches the thin oxide layer and under CMP conditions, the removal of the thin oxide layer is accelerated by the friction imposed on the oxide layer by the polishing pad. Because the pad, contacts only the projections on the wafer surface, the polishing occurs more slowly in the lower level topography regions, resulting in a wafer surface having improved planarization.
  • Although the present invention is directed to removal of copper and copper containing materials, it is not this limited to such. The present invention is also useful for polishing and planarizing other materials useful as interconnects in semiconductor related applications including but not limited to aluminum, aluminum alloys, aluminum compounds having aluminum as its principal component, tungsten, tungsten alloys, tungsten compounds having tungsten as its principal component, (i.e., tungsten nitride), tantalum, tantalum nitride, silicon doped tantalum nitride, titanium, titanium alloys and titanium compounds having titanium as its principal component (i.e., titanium nitride and silicon doped titanium nitride).
  • The copper containing material removed in the present invention may be deposited in any number of ways and as such is not limited to the examples provided herein. Specific methods for depositing copper containing thin films include CVD, PVD, electroplating, and electroless deposition.
  • The formulation of the present invention is useful for removal and planarization of the bulk copper layer deposited in a damascene process step, but is not limited to such. The present invention may be useful for removing copper and copper containing materials from any substrate comprising same.
  • Further, the abrasive free formulation of the present invention may be useful in processes relating to: cleaning semiconductor wafer surfaces; bulk metal removal; planarization; first step underpolishing; first step overpolishing, and neutral or intermediate first step polishing.
  • Further, the present invention may further comprise a second polishing step comprising a formulation having a high removal rate on barrier material a low or comparable removal rate on copper and a low removal rate on the dielectric material.
  • The features, aspects and advantages of the present invention are further shown with reference to the following non-limiting examples relating to the invention.
  • EXAMPLES Example 1 Polishing Performance Comparison of Abrasive Free Slurry Formulations (AFS) 1 and 2.
  • Table 2 provides a summary of the composition of two abrasive free slurries for polish performance comparison and Table 3 provides actual experimental results for the abrasive free polishing formulation as used on 8″ blanket films wafers of the following composition and thickness: copper wafer (5,000 Å thermal oxide, 300 Å tantalum, 1,500 Å PVD copper seed layer and 15,000 Å electroplated copper), tantalum nitride wafer (5,000 Å thermal oxide and 3,000 Å tantalum nitride), tantalum wafer (5,000 Å thermal oxide and 3,000 Å tantalum), and plasma enhanced tetraethyl orthosilicate (9,000 Å PETEOS).
    TABLE 2
    Abrasive Free Slurry (AFS) Formulations AFS 1 and AFS 2
    AFS 1 Final Weight AFS 2 Final Weight
    Component Percent Component Percent
    HIO3 4.00 HIO3 4.00
    IDA 0.20 IDA 0.20
    H3PO4 0.75 Citric Acid 0.20
    KOH 1.73 KOH 1.37
    H2O Balance H2O balance
  • TABLE 3
    Polishing Performance Comparison AFS 1 vs. AFS 2
    AFS 1** AFS 2
    Room Temp. 45° C. Room Temp. 45° C.
    Cu RR* (Å/min) 3166 3421 3513 3926
    TaN RR (Å/min) 34.76 1 (neg)* 57.65 N/A
    Ta RR (Å/min)  0.6383 1 (neg)* 7.03 N/A
    PETEOS (Å/min)  4.85  24 4.81 N/A
    Selec. Cu:TaN 91.11 3400 600 N/A
    Selec. Cu:Ta  4960 3400 61 N/A
    Selec: Cu:PETEOS   653 1425 730 N/A

    *RR represents removal rate

    **For AFS 1 & 2 (Down Force = 4 psi, Flow Rate = 160 mL/min, Table Speed = 125 rpm, Quill Speed = 116 rpm, Pad Type = IC 1000)
  • Example 2 Planarization Performance and Step Height Reduction
  • One object of CMP processing is to produce a uniform surface on the semiconductor wafer. The uniformity of the planarized surface is a function of several factors. FIGS. 5 and 7 are plots showing the step height remaining verses different copper/dielectric pattern densities on a Sematech 854 CMP AZ mask test wafer after underpolishing with an abrasive free polishing formulation for a bulk copper-polishing step according to one embodiment of the present invention. The initial step height before polishing was approximately 6000 Å. The data plotted in FIG. 5 is based on room temperature experimental conditions and the data plotted in FIG. 7, 45° C. The substantial step height reduction on the patterned wafers while underpolishing evidences the commercial viability of the present invention.
  • Example 3 Planarization Performance and Array Recess
  • FIGS. 6 and 8 are plots showing the array recess verses different copper/dielectric pattern densities based on using the same abrasive free polishing formulation and substrate as in the previous step height reduction experimental. The data plotted in FIG. 6 is based on room temperature experimental conditions and the data plotted in FIG. 8, 45° C. The low levels of array recess are further evidence of the commercial viability of the abrasive free polishing formulation.

Claims (38)

1-38. (canceled)
39. A polishing method for removing at least a portion of a metal film, comprising mechanically rubbing a metal film surface using a chemical mechanical polishing formulation comprising an oxidizing agent and a corrosion inhibitor said formulation having a pH in the range of from about 0.1 to 6.9.
40. The polishing method according to claim 39, wherein the oxidizing agent is an iodate salt.
41. The polishing method according to claim 39, wherein the oxidizing agent is selected from the group consisting of hydrogen peroxide, potassium iodate, ferric nitrate, ammonium chlorite, ammonium chlorate, ammonium iodate, ammonium perborate, ammonium perchlorate, ammonium periodate ammonium persulfate, tetramethylammonium chlorite, tetramethylammonium chlorate, tetramethylammonium iodate, tetramethylammonium perborate, tetramethylammonium perchlorate, tetramethylammonium periodate, tetramethylammonium persulfate, urea hydrogen peroxide, 4-methylmorpholine N-oxide (C5H11NO2) and pyridine N-oxide (C5H5NO).
42. The polishing method according to claim 39, wherein the corrosion inhibitor is a carboxylic acid.
43. The polishing method according to claim 39, wherein the corrosion inhibitor is selected from the group consisting of glycine, oxalic acid, malonic acid, succinic acid and nitrilotriacetic acid.
44. The polishing method according to claim 39, wherein the corrosion inhibitor is a dicarboxylic acid.
45. The polishing method according to claim 44, wherein the dicarboxylic acid has a nitrogen containing functional group.
46. The polishing method according to claim 44, wherein the dicarboxylic acid is iminodiacetic acid.
47. The polishing method according to claim 46, wherein the dicarboxylic acid is iminodiacetic acid.
48. The polishing method according to claim 39, wherein the metal film comprises copper, a copper alloy or a copper compound having copper as its principal component.
49. The polishing method according to claim 39, wherein the metal film comprises aluminum, an aluminum alloy or an aluminum compound having aluminum as its principal component.
50. The polishing method according to claim 39, wherein the metal film comprises tungsten, a tungsten alloy or a tungsten compound having tungsten as its principal component.
51. The polishing method according to claim 50, wherein the tungsten compound is a tungsten nitride., tantalum, tantalum nitride, silicon doped tantalum nitride, titanium nitride and silicon doped titanium nitride
52. The polishing method according to claim 39, wherein the metal film is selected from the group consisting of titanium, a titanium alloy, or a titanium compound having titanium as its principal component.
53. The polishing method according to claim 52, wherein the titanium compound is selected from the group consisting of titanium nitride and silicon doped titanium nitride.
54. The polishing method according to claim 39, wherein the metal film is selected tantalum, a tantalum alloy or a tantalum compound having tantalum as its principal component.
55. The polishing method according to claim 54, wherein the tantalum compound is selected from the group consisting of tantalum nitride and silicon doped tantalum nitride.
56. The polishing method according to claim 39, wherein said formulation, further comprises an activating agent.
57. The polishing method according to claim 56, wherein the activating agent is selected from the group consisting of inorganic and organic acids.
58. The polishing method according to claim 57, wherein the inorganic acid is selected from the group consisting of phosphoric acid, fluoroboric acid, and iodic acid.
59. The polishing method according to claim 57, wherein the organic acid is selected from the group consisting of citric acid, malic acid,
60. The polishing method according to claim 39, further comprising a pH modifier in such amounts to modify the pH to a region of about 0.1 to 6.9, wherein said pH modifier is selected from the group consisting of: potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, or quaternary ammonium hydroxide.
61. The polishing method according to claim 39, wherein said formulation further comprises a cleaning agent.
62. The polishing method according to claim 61, wherein the cleaning agent is a carboxylic acid.
63. The polishing method according to claim 61, wherein the cleaning agent is selected from the group consisting of glycine, oxalic acid, malonic acid, succinic acid, citric acid and nitrilotriacetic acid.
64. The polishing method according to claim 61, wherein the cleaning agent is a dicarboxylic acid.
65. The polishing method according to claim 64, wherein the dicarboxylic acid has a nitrogen containing functional group.
66. The polishing method according to claim 65, wherein the dicarboxylic acid is iminodiacetic acid.
67. The polishing method according to claim 39, wherein said formulation further comprises an activating agent and a cleaning agent.
68. The polishing method according to claim 67, wherein said formulation comprises:
a Oxidizer 0.1 to 20% by weight b. Corrosion inhibitor   0 to 5% by weight c. Activating agent   0 to 5% by weight d. Cleaning agent   0 to 5% by weight
69. The polishing method according to claim 68, further comprising a pH modifier in such amounts to modify the pH to a region of about 0.1 to 6.9, wherein said pH modifier is selected from the group consisting of: potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, or quaternary ammonium hydroxide.
70. The polishing method according to claim 68, wherein the cleaning agent is an inorganic acid.
71. The polishing method according to claim 68, wherein the corrosion inhibitor is iminodiacetic acid.
72. The polishing method according to claim 39, wherein the formulation comprises:
a. HIO3   4% by weight b. IDA  0.2% by weight C. H3PO4 0.75% by weight d. KOH 1.73% by weight e. Water balance
73. The polishing method according to claim 72, wherein the pH of the formulation is in the range of from about 0.1 to 6.9.
74. The abrasive free polishing formulation according to claim 72, wherein the pH of the formulation is about 3.5.
75. The polishing method according to claim 68, wherein the oxidizing agent is selected from the group consisting of: hydrogen peroxide, potassium iodate, ferric nitrate, ammonium chlorite, ammonium chlorate, ammonium iodate, ammonium perborate, ammonium perchlorate, ammonium periodate ammonium persulfate, tetramethylammonium chlorite, tetramethylammonium chlorate, tetramethylammonium iodate, tetramethylammonium perborate, tetramethylammonium perchlorate, tetramethylammonium periodate, tetramethylammonium persulfate, urea hydrogen peroxide, 4-methylmorpholine N-oxide (C5H11NO2) and pyridine N-oxide (C5H5NO).
US10/935,412 2001-08-23 2004-09-07 Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same Abandoned US20050026437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/935,412 US20050026437A1 (en) 2001-08-23 2004-09-07 Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/935,805 US6800218B2 (en) 2001-08-23 2001-08-23 Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same
US10/935,412 US20050026437A1 (en) 2001-08-23 2004-09-07 Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/935,805 Division US6800218B2 (en) 2001-08-23 2001-08-23 Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same

Publications (1)

Publication Number Publication Date
US20050026437A1 true US20050026437A1 (en) 2005-02-03

Family

ID=25467684

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/935,805 Expired - Lifetime US6800218B2 (en) 2001-08-23 2001-08-23 Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same
US10/935,412 Abandoned US20050026437A1 (en) 2001-08-23 2004-09-07 Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/935,805 Expired - Lifetime US6800218B2 (en) 2001-08-23 2001-08-23 Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same

Country Status (2)

Country Link
US (2) US6800218B2 (en)
WO (1) WO2003018714A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180300A1 (en) * 2002-12-20 2004-09-16 Minsek David W. Photoresist removal
US20060223320A1 (en) * 2005-03-30 2006-10-05 Cooper Kevin E Polishing technique to minimize abrasive removal of material and composition therefor
US20070039926A1 (en) * 2005-08-17 2007-02-22 Cabot Microelectronics Corporation Abrasive-free polishing system
US20110159687A1 (en) * 2009-12-30 2011-06-30 Hae-Jung Lee Method for fabricating semiconductor device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040077295A1 (en) * 2002-08-05 2004-04-22 Hellring Stuart D. Process for reducing dishing and erosion during chemical mechanical planarization
KR100536593B1 (en) * 2002-12-05 2005-12-14 삼성전자주식회사 Cleaning solution for selectively removing a layer and method for selectively removing the layer in silicide process using the cleaning solution
JP4209212B2 (en) * 2003-01-30 2009-01-14 Necエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2004235548A (en) * 2003-01-31 2004-08-19 Nec Electronics Corp Semiconductor device and its fabricating method
JP4026573B2 (en) * 2003-09-24 2007-12-26 株式会社デンソー Method for manufacturing package for storing electronic device
US7419911B2 (en) * 2003-11-10 2008-09-02 Ekc Technology, Inc. Compositions and methods for rapidly removing overfilled substrates
EP1847880A3 (en) * 2004-02-11 2010-02-17 Mallinckrodt Baker, Inc. Composition for cleaning microelectronic substrates containing halogen oxygen acids and derivatives thereof
CA2584421C (en) * 2004-11-05 2013-05-14 Virox Technologies Inc. Cleaning and disinfectant compositions
US20060124026A1 (en) * 2004-12-10 2006-06-15 3M Innovative Properties Company Polishing solutions
US20060208046A1 (en) * 2005-03-18 2006-09-21 Pizza Hut, Inc. Food product container
TWI434957B (en) * 2005-06-06 2014-04-21 Advanced Tech Materials Integrated chemical mechanical polishing composition and process for single platen processing
WO2007019342A2 (en) * 2005-08-05 2007-02-15 Advanced Technology Materials, Inc. High throughput chemical mechanical polishing composition for metal film planarization
US20070117497A1 (en) * 2005-11-22 2007-05-24 Cabot Microelectronics Corporation Friction reducing aid for CMP
CN101605869B (en) 2006-12-21 2014-03-05 高级技术材料公司 Compositions and methods for selective removal of silicon nitride
TWI516573B (en) * 2007-02-06 2016-01-11 安堤格里斯公司 Composition and process for the selective removal of tisin
US20100112728A1 (en) * 2007-03-31 2010-05-06 Advanced Technology Materials, Inc. Methods for stripping material for wafer reclamation
TW200842970A (en) * 2007-04-26 2008-11-01 Mallinckrodt Baker Inc Polysilicon planarization solution for planarizing low temperature poly-silicon thin filim panels
US20090124173A1 (en) * 2007-11-09 2009-05-14 Cabot Microelectronics Corporation Compositions and methods for ruthenium and tantalum barrier cmp
JP6101421B2 (en) 2010-08-16 2017-03-22 インテグリス・インコーポレーテッド Etching solution for copper or copper alloy
BR112013003854A2 (en) 2010-08-20 2016-06-07 Advanced Tech Materials sustainable process for claiming precious metals and base metals from waste and
SG10201508015RA (en) 2010-10-06 2015-10-29 Entegris Inc Composition and process for selectively etching metal nitrides
WO2012051380A2 (en) 2010-10-13 2012-04-19 Advanced Technology Materials, Inc. Composition for and method of suppressing titanium nitride corrosion
WO2012097143A2 (en) 2011-01-13 2012-07-19 Advanced Technology Materials, Inc. Formulations for the removal of particles generated by cerium- containing solutions
JP5933950B2 (en) 2011-09-30 2016-06-15 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Etching solution for copper or copper alloy
WO2014089196A1 (en) 2012-12-05 2014-06-12 Advanced Technology Materials, Inc. Compositions for cleaning iii-v semiconductor materials and methods of using same
SG10201706443QA (en) 2013-03-04 2017-09-28 Entegris Inc Compositions and methods for selectively etching titanium nitride
KR102338550B1 (en) 2013-06-06 2021-12-14 엔테그리스, 아이엔씨. Compositions and methods for selectively etching titanium nitride
KR102338526B1 (en) 2013-07-31 2021-12-14 엔테그리스, 아이엔씨. AQUEOUS FORMULATIONS FOR REMOVING METAL HARD MASK AND POST-ETCH RESIDUE WITH Cu/W COMPATIBILITY
KR102340516B1 (en) 2013-08-30 2021-12-21 엔테그리스, 아이엔씨. Compositions and methods for selectively etching titanium nitride
US10340150B2 (en) 2013-12-16 2019-07-02 Entegris, Inc. Ni:NiGe:Ge selective etch formulations and method of using same
WO2015095726A1 (en) 2013-12-20 2015-06-25 Entegris, Inc. Use of non-oxidizing strong acids for the removal of ion-implanted resist
KR102290209B1 (en) 2013-12-31 2021-08-20 엔테그리스, 아이엔씨. Formulations to selectively etch silicon and germanium
WO2015116818A1 (en) 2014-01-29 2015-08-06 Advanced Technology Materials, Inc. Post chemical mechanical polishing formulations and method of use
WO2015119925A1 (en) 2014-02-05 2015-08-13 Advanced Technology Materials, Inc. Non-amine post-cmp compositions and method of use
CN108682650B (en) * 2018-04-02 2019-06-14 长江存储科技有限责任公司 Method for planarizing surface and multilayered semiconductor interconnection structure

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770095A (en) * 1994-07-12 1998-06-23 Kabushiki Kaisha Toshiba Polishing agent and polishing method using the same
US5800577A (en) * 1996-08-06 1998-09-01 Showa Denko K.K. Polishing composition for chemical mechanical polishing
US5858813A (en) * 1996-05-10 1999-01-12 Cabot Corporation Chemical mechanical polishing slurry for metal layers and films
US5866031A (en) * 1996-06-19 1999-02-02 Sematech, Inc. Slurry formulation for chemical mechanical polishing of metals
US5922091A (en) * 1997-05-16 1999-07-13 National Science Council Of Republic Of China Chemical mechanical polishing slurry for metallic thin film
US5972792A (en) * 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US5985748A (en) * 1997-12-01 1999-11-16 Motorola, Inc. Method of making a semiconductor device using chemical-mechanical polishing having a combination-step process
US6117775A (en) * 1997-10-31 2000-09-12 Hitachi, Ltd. Polishing method
US6221774B1 (en) * 1998-04-10 2001-04-24 Silicon Genesis Corporation Method for surface treatment of substrates
US6232231B1 (en) * 1998-08-31 2001-05-15 Cypress Semiconductor Corporation Planarized semiconductor interconnect topography and method for polishing a metal layer to form interconnect
US6238592B1 (en) * 1999-03-10 2001-05-29 3M Innovative Properties Company Working liquids and methods for modifying structured wafers suited for semiconductor fabrication
US20010004538A1 (en) * 1999-12-21 2001-06-21 Applied Materials, Inc. High through-put copper CMP with reduced erosion and dishing
US20020016073A1 (en) * 2000-08-04 2002-02-07 Hitachi, Ltd. Methods of polishing, interconnect-fabrication, and producing semiconductor devices
US6355075B1 (en) * 2000-02-11 2002-03-12 Fujimi Incorporated Polishing composition
US6409781B1 (en) * 2000-05-01 2002-06-25 Advanced Technology Materials, Inc. Polishing slurries for copper and associated materials
US6451697B1 (en) * 2000-04-06 2002-09-17 Applied Materials, Inc. Method for abrasive-free metal CMP in passivation domain
US20020148169A1 (en) * 2000-04-05 2002-10-17 Applied Materials, Inc. Composition for metal CMP with low dishing and overpolish insensitivity
US6468137B1 (en) * 2000-09-07 2002-10-22 Cabot Microelectronics Corporation Method for polishing a memory or rigid disk with an oxidized halide-containing polishing system
US20020173221A1 (en) * 2001-03-14 2002-11-21 Applied Materials, Inc. Method and apparatus for two-step polishing
US6855266B1 (en) * 1999-08-13 2005-02-15 Cabot Microelectronics Corporation Polishing system with stopping compound and method of its use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303506B1 (en) 1999-09-30 2001-10-16 Infineon Technologies Ag Compositions for and method of reducing/eliminating scratches and defects in silicon dioxide during CMP process

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770095A (en) * 1994-07-12 1998-06-23 Kabushiki Kaisha Toshiba Polishing agent and polishing method using the same
US5858813A (en) * 1996-05-10 1999-01-12 Cabot Corporation Chemical mechanical polishing slurry for metal layers and films
US5866031A (en) * 1996-06-19 1999-02-02 Sematech, Inc. Slurry formulation for chemical mechanical polishing of metals
US5800577A (en) * 1996-08-06 1998-09-01 Showa Denko K.K. Polishing composition for chemical mechanical polishing
US5972792A (en) * 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US5922091A (en) * 1997-05-16 1999-07-13 National Science Council Of Republic Of China Chemical mechanical polishing slurry for metallic thin film
US6117775A (en) * 1997-10-31 2000-09-12 Hitachi, Ltd. Polishing method
US5985748A (en) * 1997-12-01 1999-11-16 Motorola, Inc. Method of making a semiconductor device using chemical-mechanical polishing having a combination-step process
US6221774B1 (en) * 1998-04-10 2001-04-24 Silicon Genesis Corporation Method for surface treatment of substrates
US6232231B1 (en) * 1998-08-31 2001-05-15 Cypress Semiconductor Corporation Planarized semiconductor interconnect topography and method for polishing a metal layer to form interconnect
US6238592B1 (en) * 1999-03-10 2001-05-29 3M Innovative Properties Company Working liquids and methods for modifying structured wafers suited for semiconductor fabrication
US6855266B1 (en) * 1999-08-13 2005-02-15 Cabot Microelectronics Corporation Polishing system with stopping compound and method of its use
US20010004538A1 (en) * 1999-12-21 2001-06-21 Applied Materials, Inc. High through-put copper CMP with reduced erosion and dishing
US6355075B1 (en) * 2000-02-11 2002-03-12 Fujimi Incorporated Polishing composition
US20020148169A1 (en) * 2000-04-05 2002-10-17 Applied Materials, Inc. Composition for metal CMP with low dishing and overpolish insensitivity
US6451697B1 (en) * 2000-04-06 2002-09-17 Applied Materials, Inc. Method for abrasive-free metal CMP in passivation domain
US6409781B1 (en) * 2000-05-01 2002-06-25 Advanced Technology Materials, Inc. Polishing slurries for copper and associated materials
US6936542B2 (en) * 2000-05-01 2005-08-30 Advanced Technology Materials, Inc. Polishing slurries for copper and associated materials
US20020016073A1 (en) * 2000-08-04 2002-02-07 Hitachi, Ltd. Methods of polishing, interconnect-fabrication, and producing semiconductor devices
US6468137B1 (en) * 2000-09-07 2002-10-22 Cabot Microelectronics Corporation Method for polishing a memory or rigid disk with an oxidized halide-containing polishing system
US20020173221A1 (en) * 2001-03-14 2002-11-21 Applied Materials, Inc. Method and apparatus for two-step polishing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180300A1 (en) * 2002-12-20 2004-09-16 Minsek David W. Photoresist removal
US8236485B2 (en) * 2002-12-20 2012-08-07 Advanced Technology Materials, Inc. Photoresist removal
US8679734B2 (en) 2002-12-20 2014-03-25 Advanced Technology Materials, Inc. Photoresist removal
US9256134B2 (en) 2002-12-20 2016-02-09 Advanced Technology Materials, Inc. Photoresist removal
US20060223320A1 (en) * 2005-03-30 2006-10-05 Cooper Kevin E Polishing technique to minimize abrasive removal of material and composition therefor
US20070039926A1 (en) * 2005-08-17 2007-02-22 Cabot Microelectronics Corporation Abrasive-free polishing system
US20110159687A1 (en) * 2009-12-30 2011-06-30 Hae-Jung Lee Method for fabricating semiconductor device
US8268726B2 (en) * 2009-12-30 2012-09-18 Hynix Semiconductor Inc. Method for fabricating semiconductor device

Also Published As

Publication number Publication date
US6800218B2 (en) 2004-10-05
WO2003018714A1 (en) 2003-03-06
US20030047539A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
US6800218B2 (en) Abrasive free formulations for chemical mechanical polishing of copper and associated materials and method of using same
US7029373B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
US6692546B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
US7427567B2 (en) Polishing slurries for copper and associated materials
US7319072B2 (en) Polishing medium for chemical-mechanical polishing, and method of polishing substrate member
US7153335B2 (en) Tunable composition and method for chemical-mechanical planarization with aspartic acid/tolyltriazole
US6303049B1 (en) Chemical mechanical abrasive composition for use in semiconductor processing
US20050194563A1 (en) Bicine/tricine containing composition and method for chemical-mechanical planarization
US7052625B2 (en) Slurry and use thereof for polishing
US20020061635A1 (en) Solution for chemical mechanical polishing and method of manufacturing copper metal interconnection layer using the same
JP2007150341A (en) Chemical mechanical polishing slurry useful for copper substrate
US6838383B2 (en) Copper polish slurry for reduced interlayer dielectric erosion and method of using same
US8841216B2 (en) Method and composition for chemical mechanical planarization of a metal
US20080148652A1 (en) Compositions for chemical mechanical planarization of copper
US6530824B2 (en) Method and composition for polishing by CMP
US20090061630A1 (en) Method for Chemical Mechanical Planarization of A Metal-containing Substrate
CN100468647C (en) Polishing agent and polishing method
JP2001031950A (en) Polishing agent for metallic film
US6616510B2 (en) Chemical mechanical polishing method for copper
US20220277964A1 (en) Chemical mechanical planarization slurries and processes for platinum group metals

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED TECHNOLOGY MATERIALS, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MA, YING;JONES, MICHAEL;BAUM, THOMAS H.;AND OTHERS;REEL/FRAME:017649/0383;SIGNING DATES FROM 20010907 TO 20011015

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION