US20050031795A1 - Method for creating adhesion during fabrication of electronic devices - Google Patents

Method for creating adhesion during fabrication of electronic devices Download PDF

Info

Publication number
US20050031795A1
US20050031795A1 US10/909,892 US90989204A US2005031795A1 US 20050031795 A1 US20050031795 A1 US 20050031795A1 US 90989204 A US90989204 A US 90989204A US 2005031795 A1 US2005031795 A1 US 2005031795A1
Authority
US
United States
Prior art keywords
polymeric material
carried out
plasma
adherend
plasma treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/909,892
Inventor
Manoj Chaudhury
Andrew Goodwin
Yeong Lee
Bhukandas Parbhoo
Geoffrey Gardner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Priority to US10/909,892 priority Critical patent/US20050031795A1/en
Assigned to DOW CORNING CORPORATION reassignment DOW CORNING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GARDNER, GEOFFREY BRUCE, PARBHOO, BHUKANDAS, CHAUDHURY, MANOJ KUMAR, LEE, YEONG JOO, GOODWIN, ANDREW JAMES
Publication of US20050031795A1 publication Critical patent/US20050031795A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/481Insulating layers on insulating parts, with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/22Presence of unspecified polymer
    • C09J2400/226Presence of unspecified polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • C09J2483/006Presence of polysiloxane in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • H01L2224/29191The principal constituent being an elastomer, e.g. silicones, isoprene, neoprene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0101Neon [Ne]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Definitions

  • This invention relates to a method for creating adhesion of materials that do not ordinarily exhibit adherent properties.
  • the materials include a polymeric material and a substrate.
  • the polymeric material can be used to connect two components of an electronic device together, such as an integrated circuit chip and a chip carrier.
  • Plasma treatment is one means of modifying polymer surfaces to improve adhesion while maintaining the desirable properties of the bulk material.
  • Adhesion of polymeric materials to similar materials can be improved by plasma, corona, dielectric discharge barrier, or flame treatment with or without assistance of a subsequent thermal treatment during joining process.
  • Examples are films of polyethyleneterephthalate or polyethylene that were bonded to themselves or to each other by lamination under heat and pressure treatment.
  • the mechanisms of adhesion were of the physisorption nature of London dispersion forces and hydrogen bonds. These adhesive joints are susceptible to the effect of external agents such as water or organic solvents and durability can be poor.
  • Other systems related to plasma-treated surfaces have been focused on surface chemistry changes after plasma treatment of less wettable surfaces such as poly vinyl chloride and polymer fabrics.
  • One method for improving adhesion is plasma treatment of a substrate, applying a wet or adhesive formulation in an uncured state to the treated surface, and thereafter curing the formulation.
  • one method for bonding two layers of siloxane-polyimide polymers includes bonding by etching (or cleaning) the first layer by using plasma before applying the second layer by spin coating. This method suffers from the drawback of not providing dry adhesion.
  • Plasma treatment is used as an alternative method of surface treating a substrate in a similar manner as a chemical treatment like a hydrochloric or sulfo chromic acid solution.
  • Surface chemical treatment has also been proposed for improved bonding. Treating cured silicone rubber with bromine water etches the low energy surface to produce a high energy surface to which various curable polymeric systems may be directly cured on and bonded. This process has many disadvantages related to handling and disposal of dangerous and toxic chemicals.
  • one method for improving adhesion between an encapsulant and an IC chip, and between the encapsulant and the chip carrier employs plasma treatment of either the IC chip or the chip carrier.
  • Another method employs plasma surface modification of a thermoplastic substrate to improve adhesion to an addition curable silicone adhesive. These are both wet applications (i.e., an uncured encapsulant composition is applied to the plasma-modified surface and then cured).
  • Another method discloses that corona or plasma treatment of a tackifier layer in a liquid crystal display improves adhesion between the tackifier and the polarizing sheet or the phase shift sheet.
  • none of these methods create adhesion between nonadhesive surfaces.
  • Plasma surface treatment has also been used in metal deposition or lamination.
  • One method discloses that plasma treatment of fluoro-polymers can improve metal deposition by thermal evaporation, electroless deposition or thermal beam evaporation.
  • Another method discloses that a laminate composed of an insulated base film of a synthetic resin, a metal foil and a silicone adhesive layer, can be made by applying plasma surface treatment of the base film prior to adhesive bonding. These methods suffer from the drawback of not creating adhesion between two dry surfaces by using plasma.
  • This invention relates to a method for creating adhesion.
  • the method can be used during fabrication of an electronic device or an electronic device package.
  • the method includes a plasma treatment step for creating adhesion of a polymeric material and an adherend.
  • “Cured” means substantial completion of a chemical process by which molecules are joined together by crosslinking into larger molecules to restrict molecular movements.
  • Nonadhesive means that a polymeric material would not normally adhere to a substrate without treatment.
  • Plasma treatment means exposing a substrate to a gaseous state activated by a form of energy externally applied and includes, but is not limited to, plasma jet, corona discharge, dielectric barrier discharge, flame, low pressure glow discharge, and atmospheric glow discharge treatment.
  • the gas used in plasma treatment can be air, ammonia, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, neon, nitrogen, nitrous oxide, oxygen, ozone, water vapor, and combinations thereof.
  • This invention relates to a method for creating adhesion of a polymeric material and a substrate.
  • the method can be used during fabrication of electronic devices and electronic device packages.
  • the method comprises:
  • steps a, b, c, d, and e can be carried out in any of the following orders: abcde, acbde, abced, acbed, bacde, baced, bcade, bcaed, cabde, cabed, cbade, cbaed, abdce, badce, acebd, caebd, abdace, badace, abdcae, badcae, aceabd, caeabd, acebad, or caebad.
  • plasma treatment of the polymeric material may be carried out more than once, i.e.
  • step a may be repeated.
  • plasma treatment is carried out on the polymeric material and the substrate, and the polymeric material and the substrate are contacted.
  • Plasma treatment is then carried out separately on the semiconductor and on a different surface of the polymeric material than that contacted with the substrate.
  • the polymeric material and the substrate are then contacted.
  • Plasma treatment can be carried out on all or a portion of the surface of the polymeric material, the substrate, or the semiconductor.
  • steps a, b, and c can be carried out concurrently and thereafter steps d and e are carried out in any order.
  • steps a, b, and c are carried out in any order, and thereafter steps d and e are carried out concurrently.
  • steps a, b, and c are carried out concurrently, and thereafter steps d and e are carried out concurrently.
  • the polymeric material is contacted with the substrate and optionally the semiconductor as soon as practicable after plasma treatment.
  • the polymeric material, the substrate, and optionally the semiconductor may optionally each be stored independently before contacting in step d, step e, or both.
  • the polymeric material can be stored for at least about 0, alternatively at least about 1, alternatively at least about 2 hours after plasma treatment.
  • the polymeric material can be stored for up to about 48, alternatively up to about 24, alternatively up to about 8, alternatively up to about 4 hours after plasma treatment. The same storage conditions can be used independently for the substrate and the semiconductor.
  • adhesion can be obtained by carrying out steps d and e for a few seconds at about room temperature.
  • step d, step e, or both are carried out at elevated temperature, elevated pressure, or both.
  • the exact conditions selected for step d, step e, or both, will depend on various factors including the specific use of the method. However, temperature during the contacting steps can be at least about 15° C., alternatively at least about 20° C., alternatively at least about 100° C. Temperature during contacting can be up to about 400° C., alternatively up to about 220° C. Pressure during contacting can be up to about 10 megaPascals, alternatively up to about 1 megaPascal.
  • Pressure during contacting is at least about 0.1 megaPascal.
  • Contact time can be at least about 0.1 second, alternatively at least about 1 second, alternatively at least about 5 seconds, alternatively at least about 20 seconds.
  • Contact time can be up to about 24 hours, alternatively up to about 12 hours, alternatively up to about 30 minutes, alternatively up to about 30 seconds.
  • the method comprises:
  • the adherend can be either a semiconductor or a substrate.
  • the method may optionally further comprise: storing the polymeric material after step A) and before step C), or storing the adherend after step B) and before step C), or both.
  • Steps A) and B) may be carried out in any order, and the same plasma treatment conditions, contact conditions, and optional storage conditions as above may be applied.
  • steps A) and B) can be carried out concurrently or sequentially in any order.
  • steps A), B), and C) may optionally be repeated one or more times.
  • This method can be used during fabrication of an electronic device or an electronic device package, or this method can be used more broadly for other purposes. Use of this method is not specifically restricted.
  • the method comprises:
  • adhesion e.g., the adherend does not fall off the polymeric material when subjected to about 0.1 megaPascal of force in the die shear strength test of Reference Example 5, below.
  • the exact amount of adhesion will vary depending on the polymeric material and adherend chosen, the plasma treatment conditions chosen, and the contacting conditions chosen.
  • adhesion, as measured by die shear strength according to Reference Example 6, below can be at least about 0.2 megaPascal (MPa), alternatively at least about 0.3 MPa, alternatively at least about 0.5 MPa, alternatively at least about 1 MPa, alternatively at least about 1.5 MPa, alternatively at least about 2 MPa, alternatively at least about 2.5 MPa, alternatively at least about 5 MPa.
  • the polymeric material used in this invention is nonadhesive when used in this method, e.g., immediately before plasma treatment.
  • the polymeric material has a relatively low modulus (e.g., lower modulus than the substrate or semiconductor).
  • the modulus will vary depending on various factors including the exact polymeric material chosen, and the adherend to which the polymeric material will be adhered. However, modulus can be at least about 0.1 megaPascal, alternatively at least about 1 megaPascal. Modulus can be up to about 300 megaPascals, alternatively up to about 400 megaPascals, alternatively up to about 1 gigaPascal, alternatively up to about 5 gigaPascals.
  • the polymeric material is a thermoset or a thermoplastic material.
  • the polymeric material can be a silicone, an organic, a silicone-organic copolymer, or combinations thereof.
  • Thermoset materials include flexibilized epoxies, which are organic, and elastomers which can be silicones, organics, or silicone organic-copolymers.
  • Thermoplastic materials include phase change materials such as silicone-organic copolymer waxes and organic materials such as polyolefins (e.g., polyethylene), polyimides, phenolics, and combinations thereof.
  • the polymeric material is a cured silicone, such as a cured silicone resin, a cured silicone elastomer, a cured silicone rubber, and combinations thereof.
  • Suitable cured silicone resins include T, DT, MT, MQ resins, and combinations thereof.
  • Cured silicone rubbers and methods for their fabrication are known in the art, see for example, W. Lynch, Handbook of Silicone Rubber Fabrication , Van Nostrand Reinhold Company, New York, 1978. Cured silicone elastomers are known in the art. For example, U.S. Pat. Nos. 4,753,978 and 5,110,845 disclose cured silicone elastomers and methods for their preparation.
  • the cured silicone can be prepared by curing a curable silicone composition.
  • Curable silicone compositions are known in the art. Examples of curable silicone compositions and methods for their cure include the compositions set forth and described in U.S. Pat. Nos. 4,766,176; 5,017,654; and 5,977,226.
  • the cured silicone can be prepared from a silicone composition formulated with an adhesion promoter, however, an adhesion promoter is not required.
  • the mode of cure of the compositions is not critical, and can include cure mechanisms such as condensation reactions; addition reactions; ultraviolet radiation initiated reactions, and free radical initiated reactions.
  • the polymeric material is a cured organic such as a cured organic resin, a cured organic elastomer, a cured organic polymer, and combinations thereof.
  • Suitable cured organic resins include cured epoxy resins.
  • Suitable cured organic elastomers include polyurethane.
  • Suitable cured organic polymers include epoxy, polyimide, polyimide copolymers, and combinations thereof.
  • Suitable cured organic polymers are known in the art, see for example, “Chip Scale Packaging for Memory Devices,” Y. Akiyama, A. Nishimura, I. Anjoh and A. Nagai, IEEE Electronic Components and Technology Conference, 1999.
  • Suitable silicone-organic copolymers include silarylene, Lead-on-Chip (LOC) tape using polydimethylsiloxane-modified polyimide or polyamide. Silicone-organic copolymers are known in the art, see for example, “Advances in Materials Research in Japan,” Phase IV, Report 2 . Polymer materials for Advanced Microelectronics Technology , June 2000, Techno Alliance Corporation, Tokyo, Japan.
  • LOC Lead-on-Chip
  • Polymeric materials that are cured can be used in this invention.
  • this method can create adhesion of cured silicones, cured organics, and cured silicone-organic copolymers to various adherends.
  • the polymeric material can have a variety of forms.
  • the polymeric material may be continuous, such as a sheet or film.
  • the polymeric material may be discontinuous, such as a plurality of flat pads or hemispherical nubbins or bumps.
  • the substrate used in this method is not specifically restricted.
  • the substrate selected will depend on the various factors including the use of the method described above, e.g., the type of electronic device or electronic device package to be fabricated.
  • the substrate can be any material used in the fabrication of an electronic device or an electronic device package.
  • the substrate can be, for example a ceramic substrate, a flexible substrate, or a rigid substrate commonly used in electronic device packaging. Examples of suitable substrates include a ceramic, a metal, a metal-coated surface, a polymer (i.e., other than the polymeric material described above), and combinations thereof.
  • Metals and metal coatings include aluminum, chromium, copper, gold, lead, nickel, platinum, solder, stainless steel, tin, titanium, alloys thereof, and combinations thereof.
  • Ceramics include aluminum nitride, aluminum oxide, silicon carbide, silicon oxide, silicon oxynitride, and combinations thereof; alternatively aluminum nitride, aluminum oxide, silicon carbide, silicon oxynitride, and combinations thereof.
  • Polymers include benzocyclobutene, bismaleimide, cyanate, epoxy, polybenzoxazole, polycarbonate, polyimide, polymethylmethacrylate, polyphenylene ether, polyvinylidene chloride, and combinations thereof.
  • Semiconductors are known in the art and commercially available, for example, see J. Kroschwitz, ed., “Electronic Materials,” Kirk - Othmer Encyclopedia of Chemical Technology, 4th ed., vol. 9, pp. 219-229, John Wiley & Sons, New York, 1994. Common semiconductors include silicon, silicon alloys, and gallium arsenide. The semiconductor can have any convenient form, such as a bare die, a chip such as an IC chip, or a wafer.
  • Plasma treatment of a nonadhesive material converts the surface properties of the nonadhesive material from being nonadhesive to adhesive.
  • Various types of plasma treatment can be used in the method of this invention, including plasma jet, corona discharge treatment, dielectric barrier discharge treatment, and glow discharge treatment.
  • Glow discharge treatment can be carried out using plasma selected from low pressure glow discharge or atmospheric pressure glow discharge.
  • plasma treatment is carried out by low pressure glow discharge plasma in either continuous or pulsed modes. This is essentially a batch process. Alternatively, plasma treatment can be performed at atmospheric pressure in a continuous process using appropriate atmospheric plasma apparatuses. Other plasma treatments can also be used. One skilled in the art would be able to select appropriate plasma treatments without undue experimentation. Plasma treatments are known in the art. For example, U.S. Pat. Nos. 4,933,060 and 5,357,005 and T. S. Sudarshan, ed., Surface Modification Technologies, An Engineer's Guide , Marcel Dekker, Inc., New York, 1989, Chapter 5, pp. 318-332 and 345-362, disclose plasma treatments.
  • plasma treatment can be carried out at a pressure of up to about atmospheric pressure.
  • Plasma treatment can be carried out at a pressure of at least about 0.05 torr, alternatively at least about 0.78 torr, alternatively at least about 1.5 torr.
  • Plasma treatment can be carried out at a pressure of up to about 10 torr, alternatively up to about 3 torr. If pressure is too high, plasma treatment may not initiate.
  • Time of plasma treatment depends on various factors including the material to be treated, the contact conditions selected, the mode of plasma treatment (e.g., batch vs. continuous), and the design of the plasma apparatus.
  • Plasma treatment is carried out for a time sufficient to render the surface of the material to be treated sufficiently reactive to form an adhesive bond.
  • Plasma treatment is carried out for a time of at least about 1 millisecond, alternatively at least about 0.002 second, alternatively at least about 0.1 second, alternatively at least about 1 second, alternatively at least about 5 seconds.
  • Plasma treatment is carried out for up to about 30 minutes, alternatively up to about 1 minute, alternatively up to about 30 seconds. It may be desirable to minimize plasma treatment time for commercial scale process efficiency. Treatment times that are too long may render some treated materials nonadhesive or less adhesive.
  • the gas used in plasma treatment can be, for example, air, ammonia, argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, nitrous oxide, oxygen, ozone, water vapor, and combinations thereof.
  • the gas can be selected from air, argon, carbon dioxide, carbon monoxide, helium, nitrogen, nitrous oxide, ozone, water vapor, and combinations thereof.
  • the gas can be selected from air, argon, carbon dioxide, helium, nitrogen, ozone, and combinations thereof.
  • other more reactive organic gases or vapors can be used, either in their normal state of gases at the process application pressure or vaporized with a suitable device from otherwise liquid states, such as hexamethyldisiloxane, cyclopolydimethylsiloxane, cyclopolyhydrogenmethylsiloxanes, cyclopolyhydrogenmethyl-co-dimethylsiloxanes, reactive silanes, and combinations thereof.
  • the method described above can be used to prepare adhesive bonds that resist either thermal treatment in absence or presence of water in the form of vapor or liquid, or mechanical stress.
  • the adhesion property can be used to hold dissimilar parts together, that might otherwise require adhesive technologies applied in multiple steps.
  • the method can also be used during fabrication of electronic devices and electronic device packages.
  • Electronic devices and methods for their fabrication are known in the art.
  • the electronic device can be a chip on board (COB), wherein the semiconductor is an IC chip, which is mounted directly on a substrate, such as a printed wiring board (PWB) or printed circuit board (PCB).
  • COBs and methods for their fabrication are known in the art, for example, see Basic Integrated Circuit Technology Reference Manual , R. D. Skinner, ed., Integrated Circuit Engineering Corporation, Scottsdale, Arizona, Chapter 3.
  • the method can be used in fabricating any electronic device package in which a semiconductor such as an IC chip is attached to a substrate such as a chip carrier.
  • the method can be used to bond the chip carrier to a polymeric material, thereby forming an interposer.
  • the method can also be used to bond the IC chip to the polymeric material either before or after the polymeric material is bonded to the chip carrier.
  • the method can be used to bond the IC chip to the polymeric material only, and an alternative method can be used to bond the polymeric material to the chip carrier.
  • an uncured material can be applied to a chip carrier by conventional means such as stencil or screen printing, or spin coating. The uncured material can then be cured to form a polymeric material.
  • the polymeric material and IC chip may then be bonded by the method of this invention.
  • the method can be used on a polymeric material in the form of a flat pad, tape, film, or the like.
  • a composition can be cured to form the polymeric material.
  • the polymeric material and an adherend are plasma treated and contacted according to the method described above.
  • Area array packages include ball grid arrays, pin grid arrays, and chip scale packages.
  • Leadframe packages include chip scale packages.
  • Area array packages and leadframe packages, and methods for their fabrication, are known in the art, for example, see U.S. Pat. No. 5,858,815.
  • Chip scale packages and methods for their fabrication, are known in the art, for example, see U.S. Pat. No. 5,858,815.
  • This invention can be used in the fabrication of single chip modules (SCM), multichip modules (MCM), or stacked chip modules.
  • SCM, MCM, and stacked chip modules, and methods for their fabrication are known in the art, see, for example, Basic Integrated Circuit Technology Reference Manual , R. D. Skinner, ed., Integrated Circuit Engineering Corporation, Scottsdale, Arizona, Chapter 3.
  • One wafer-level packaging method comprises the following steps.
  • a die attach material polymeric material
  • a substrate such as a tape used in tape automated bonding (TAB) or a PCB.
  • the die attach material can be adhered to the substrate using the method described above.
  • the method employs cured die attach materials in the fabrication process instead of uncured materials and allows confinement of the die attach materials to exactly defined and targeted positions.
  • Converted tapes where a silicone elastomer is applied by the method of this invention can be made and supplied to assembler for ease of manufacturing, since the assembler does not need to deal with a wet (uncured) die attach adhesive, and adhesion can be created on demand.
  • the die attach material can be adhered to the substrate by conventional methods.
  • Such conventional methods include applying an uncured die attach material to the substrate and thereafter curing the uncured die attach material.
  • the uncured die attach material can be applied by, for example, a printing method, a dam and fill method, or a spin coating method.
  • the substrate with the die attach material attached is hereinafter referred to as a converted substrate.
  • Bond windows can be fabricated in the converted tape by, for example, punching, sawing, or laser cutting. Center-bond or edge-bonds can be applied.
  • a semiconductor in the form of a wafer is then attached to the die attach material using the method described above.
  • the wafer can be wire bonded by conventional means using, for example, a conventional wire bonder or gang wire-bond.
  • Optional plasma cleaning may be carried out before each wire bond.
  • encapsulation to protect the wires is carried out.
  • Plasma cleaning may optionally be carried out prior to encapsulation.
  • an uncured encapsulant is dispensed, injection molded, or printed and then cured.
  • a protective coating may be applied to the back side of the wafer.
  • Solder balls can then be attached to the bottom side of the converted substrate.
  • wafer level testing, or marking, or both are then carried out.
  • Singulation of the packaged wafer can then be carried out by conventional means such as sawing or cutting.
  • Wafer level packaging methods are known in the art, for example, see U.S. Pat. No. 5,858,815. However, one skilled in the art would recognize that the method of this invention is not limited to use in wafer level packaging may be used in other packaging methods, such as chip level packaging, as well.
  • the method can be used to make micro devices.
  • One such micro device is a bonded composite wherein the polymeric material can be, for example, cured silicone and a substrate can be, for example, cured silicone, other materials, and combinations thereof.
  • These composites can have various forms including laminates or three-dimensional (3-D) objects.
  • a composite structure comprising a cured silicone as a polymeric material and a solid material as a substrate is prepared, wherein only a part of the surface of the solid material is coated with the cured silicone, and the surroundings are not stained with a low molecular weight organopolysiloxane.
  • the 3-D objects can have added functionality like thermal or electrical transfer by means of adding special fillers.
  • the method may be used as to pretreat components of composites prior to or during assembly or to create fiber interphase adhesion, such as for optical fibers.
  • the thin bondline created by plasma treatment should allow adhesion and electrical and thermal conductivity.
  • the method can be used in optoelectronics and photonics applications.
  • the method will adhere optical components with low reflective losses.
  • the optical components can comprise a wide range of materials, the majority of which have low optical transmission losses.
  • Optical materials include silicone elastomers, silica optical fibers, silicone gels, silicone resin lenses, and silicon. These materials can be used in photonics devices, such as telecommunications systems.
  • the method provides the ability to adhere a range of materials in situ, and with low reflective losses. Such plasma adhered interfaces may be less prone to thermally induced stresses, leading to improved reliability during temperature cycling (i.e., reduced stress build up and de-lamination). Plasma treatment can provide a uniform bond over complex surfaces.
  • the method could also be used to improve light efficiency in Flat Panel Displays (bonding of color filter assembly).
  • the method of this invention is advantageous in these applications because it avoids the need for adhesives, which may introduce a separate refractive index, introduce reflective interfaces, and increased absorption.
  • the polymeric material is a cured silicone elastomer that can be made transparent to light.
  • the plasma treatment not only creates adhesion between the cured silicone elastomer and the substrate, but also creates an interface region between the cured silicone elastomer and the substrate that is transparent to light. This may result in low loss of light energy in a wide range of wavelengths.
  • This embodiment is useful in optoelectronics communication and transducer devices. Without wishing to be bound by theory, it is thought that the interface will have a different refractive index than the bulk of the cured silicone elastomer. In some instances, the adhesive interface region or bond line created by the plasma treatment is about 10 to about 100 nanometers thick.
  • This range of thickness is less than the wavelength of light useful in optoelectronics applications.
  • the interface can be functionalized or plasma modified to have designed refractive indices useful in optoelectronics applications.
  • the method described above is useful in the health care industry.
  • the polymeric material used in this embodiment is a cured silicone.
  • the resulting plasma treated cured silicone has adherent properties that can be applied to various adherends in various products for medical applications.
  • the plasma treatment provides biological surface cleaning.
  • the method described above can be used for die bonding.
  • Die bonding is used in electronics packaging applications, in a method comprising placing a semiconductor die on a die attach material or (placing the die attach material) on the semiconductor die using, for example, conventional equipment such as a die bonder or chip shooter.
  • the die attach material is a polymeric material in a form such as a cured pad.
  • One convenient method for generating adhesion between the semiconductor die and the die attach material comprises surface modification of the die attach material with plasma. In this method, both a surface of the die attach material and a surface of the semiconductor die may be treated with plasma.
  • this invention further relates to a method comprising plasma treatment of one or both bonding surfaces using a plasma jet (a forced gas plasma for spot or area plasma treatment).
  • a plasma jet a forced gas plasma for spot or area plasma treatment.
  • the die attach material on a substrate may be pretreated with plasma (by, for example, high vacuum plasma, atmospheric plasma, or plasma jet).
  • the die attach material may be mounted into a die bonder equipped with a plasma jet.
  • the die bonder tool or collet removes an unactivated die from the holder (such as dicing tape on a frame).
  • the side of the die to be bonded is passed through the plasma jet, activating this surface.
  • the bonding surface of the semiconductor die may be plasma treated without transferring the semiconductor die to a separate holder or requiring the die bonder to re-orient the semiconductor die.
  • FIGS. 1-5 show an example of a die bonding process.
  • a semiconductor die 101 is picked of dicing tape 103 by a die bonder (not shown) through a die bonder collet 104 .
  • FIG. 2 shows plasma treatment of the back side 102 of the semiconductor die 101 using a plasma jet 105 .
  • FIG. 3 shows a pad 106 of die attach material on a substrate 107 .
  • FIG. 4 shows plasma treatment of the pad 106 in a chamber 108 using, for example high vacuum or atmospheric plasma.
  • FIG. 5 shows contacting the back side 102 of the semiconductor die 101 with the plasma treated surface of the pad 106 to bond the semiconductor die 101 with the pad 106 .
  • a Branson/IPC Plasma Unit generates a low pressure (0.05 to 3.0 torr), radio frequency (RF) cold plasma.
  • This unit operates either with or without continuous gas flow into the reactor throughout the capacitatively coupled plasma treatment process.
  • the system has a control unit, plasma chamber (24,500 cubic centimeters) with quartz grid shelf, RF generator (operates at 13.56 megahertz with output power in the range of 0-500 watts with continuous control), and a vacuum pump.
  • the chamber diameter is 25 centimeters.
  • the chamber length is 50 centimeters.
  • the system has model #: IPC54005-11020ST, comprising PM119 RF Generator, PM11020 Reactor Center, and PM4000C Controller. This unit is commercially available from Branson International Plasma Corporation, 31172 Huntwood Avenue, P.O. Box 4136, Hayward, Calif. 94544.
  • a Harrick PDC-32G Plasma Cleaner generates a low pressure, radio frequency cold plasma. This cleaner operates either with or without continuous gas flow into the reactor throughout the inductively coupled plasma treatment process.
  • the system has a cylindrical plasma chamber (800 cubic centimeters), radio frequency (RF) generator (operates between 8 to 12 megahertz with output power at three settings of 40, 60 and 100 watts), and a vacuum pump.
  • the chamber diameter is 7.5 centimeters.
  • the chamber length is 18 centimeters.
  • An Atmospheric Pressure Glow Discharge (APGD) Plasma unit operates at atmospheric or near atmospheric pressure is used to treat the surfaces. Plasmas are generated at a base pressure of 1020 millibar from He, He/O 2 (99%/1%) and He/N 2 (99%/1%) gases. The treatments are carried out with various treatment times of 1 second to 8 minutes. The inter-electrode gap is selected between 6 to 10 millimeters depending on the thickness of the substrates.
  • a Stud (Die) Pull Test is performed by adhering a flat head screw (#1032-11 ⁇ 4 thread) to the top surface of the die, threading the screw into the stud which attaches to the analyzer, and pulling on the stud until failure occurs.
  • a flat head screw #1032-11 ⁇ 4 thread
  • the flat head screws are washed with toluene/acetone to rid of oils that may prevent adhesion of the screw to the die. BondiniTM(*) (Everything Gel) household super glue is used for this purpose.
  • a Die Shear Test is performed by placing the shear tool (Royce 552®) against the edge of the die, and the force required to shear the die from the adherend is recorded. Note that the size of the sample (polyimide (PI) sheet which the die is attached) is adjusted (cut) to span across the sample holder framework (10 millimeters by 10 millimeters) to be properly secured.
  • a ROYCE 552® Die Shear Tester is a precision universal strength testing system for evaluating microelectronic structures that measures die bond strength by performing a shear test on the die.
  • Material A is a curable silicone elastomer composition having a modulus of 0.30 megaPascal after cure.
  • the modulus is a secant modulus at 100% strain using a dumbbell-shaped specimen measured by Instron's universal tester at a cross-head speed 20 inches per minute as described in ASTM D638.
  • Material B is a curable silicone elastomer composition having a secant modulus at 100% strain of 0.36 megaPascal after cure.
  • the secant modulus is measured by the same method as for Material A.
  • a simplified test vehicle (TV-46) IC chip without a passivation layer has dimensions 7.4 millimeters by 5.3 millimeters.
  • a chip scale spacer is printed on the 1 milli-inch thick Upilex S-25 polyimide sheet using a 4 milli-inch thickness stencil with 18 milli-inch diameter apertures. Modulus of the chip scale spacer is 5 megaPascals measured by ASTM D638.
  • a pitch of the array of apertures is 0.75 millimeters.
  • the resulting printed nubbins are cured at 150° C. for 30 minutes.
  • a die attach adhesive is printed on top of the cured spacer using a 5 milli-inch thickness stencil with 16 milli-inch diameter apertures. Modulus of the die attach adhesive is 5 megaPascals measured by ASTM D638.
  • Material A is drawn at thickness of five milli-inch on a Upilex 25 S polyimide (PI) sheet and cured at 150° C. for 30 min. Air is used as a plasma gas, treatment time is 70 seconds, pressure is 0.78 torr, RF power is 187.5 Watts, and RF frequency is 13.56 megahertz using a large Branson/IPC plasma. Both the adhesive pad and TV-46 are treated by the plasma.
  • PI polyimide
  • Example 1 The products of Example 1 and Comparative Example 1 are evaluated according to the method of Reference Example 5. The results are in Table 1. TABLE 1 Die shear strength Material (Kg-force) Comparative Example 1 wet-based process 3.0 Example 1 Material A >10 (*) (*) The PI sheet failed, not the adhesion.
  • a 10 mil film of Material A is printed on polyimide Upilex 25 S and is cured at 150° C. for 30 minutes to form a silicone pad.
  • a surface of TV-46 silicon die and the silicone pad are treated by air plasma conditions of 0.05 torr, 100 watts, and 30 second treatment time using the Branson Plasma chamber. The treated die and pad are put into intimate contact for adhesion bonding.
  • the resulting products are described in Table 2 and are evaluated by the method of Reference Example 4. The results are in Table 2.
  • TABLE 2 Die Pull Strength (grams-force) Comparative Example 2 Plasma treating silicone pad 152 only Comparative Example 3 Plasma treating TV-46 only 34 Comparative Example 4 No plasma treatment Die falls off pad
  • Example 2 and Comparative Examples 2-4 show a synergistic effect in that much stronger adhesion is created by plasma treatment of both the polymeric material and the adherend, rather than plasma treatment of only one of the two, in this test protocol.
  • Material A is drawn at thickness of five milli-inch on a one milli-inch Upilex 25 S polyimide sheet and is cured at 150° C. for 30 minutes to form a silicone pad.
  • a surface of TV-46 silicon die and the silicone pad are plasma treated.
  • Examples 3-36 are carried out with various plasma process conditions, i.e., varying treatment pressure, treatment time, and RF power using air or oxygen using a Branson plasma chamber. The samples are tested according to Reference Example 5. The conditions are in Table 3.
  • Examples 3-36 show that a variety of plasma treatment conditions effectively create adhesion of the silicone elastomer and the die used in this method.
  • PIX 3400-8 Bare silicon wafers and silicon wafers coated with a polyimide coating (PIX 3400-8 from HD MicroSystems) are singulated into 5 millimeter (mm) by 5 mm dies. The singulated dies are washed with deionized water at 800 pounds per square inch (psi) after dicing.
  • Bare silicon dies and polyimide-coated dies are attached on the silicone elastomer pads after both surfaces are treated by plasma.
  • the plasma gas is air.
  • die shear strength is measured for 5 samples and the average is recorded.
  • the die size is 5 mm by 5 mm and contact area of the die on the silicone pad is about 20 square millimeters.
  • Material B is printed on a 3 milli-inch KAPTON polyimide sheet using a 4 milli-inch thickness stencil where many a pair of 6 millimeter ⁇ 13 millimeter rectangular apertures are patterned, and there is a 1.19 millimeter spacing between two apertures. A pitch of the pair of apertures is 5 millimeters.
  • the printed pads are cured at 150° C. for 30 minutes. Both the silicone pads and bare or PI-coated dice prepared in Reference Example 8 are treated by plasma using the Harrick PDC-32G. Plasma conditions are: air as gas, 60 watts, 5 seconds treatment time, and 0.3 torr pressure. Each die is attached to the pad after the plasma treatment for 5 seconds under 1.25 kilograms at 220° C.
  • Example 37 The same pad and dies used in Example 37 are used. To show how long plasma-activated surfaces are effective for adhesion, die attach is done after 1, 4, 8 and 24 hours after plasma treatment of the surfaces. Plasma conditions and die attach processes are the same as in Example 37. The results are in Table 6. TABLE 6 Die Shear Strength Die Shear Strength (Kg-force) (Kg-force) Example Elapsed time (hr) with PI-coated Die with Bare Si Die 44 1 1.8 2.2 45 4 1.8 1.8 46 8 2.0 1.2 47 24 1.8 0.5
  • Example 37 The PI-coated die and printed Material B as in Example 37 are used. Various plasma conditions and die attach temperatures are applied otherwise the same as in Example 37. Untreated assemblies are also tested to show effects of plasma for the strong adhesion. The conditions and results are shown in Table 7. TABLE 7 Treatment Die Attach Die Shear Time Temperature Strength Examples Plasma Type (second) (C.) (Kg-force) Comparative 5 No treatment — 220 0.1 (*) 48 compressed air 5 220 3.1 49 O 2 5 220 3.3 50 Ar 5 220 2.7 51 He 5 220 2.2 52 CO 2 5 220 1.9 53 N 2 5 220 2.9 Comparative 6 No Treatment — RT 0.2 (*) 54 comp air 5 RT 1.1 55 O 2 5 RT 1.5 56 Ar 5 RT 1.1 57 He 5 RT 0.3 58 CO 2 5 RT 0.4 59 N 2 5 RT 0.3 60 comp air 20 220 2.5 61 O 2 20 220 2.5 62 Ar 20 220 3.4 63 He 20 220 3.0 64 CO 2 20 220
  • Examples 48-71 show that routine experimentation may be required to optimize the plasma treatment conditions, contact conditions, or both of the method of this invention for some adherends.
  • Example 37 The bare silicon die and printed Material B as in Example 37 are used. Various plasma conditions and die attach temperatures are applied otherwise the same as in Example 37. Untreated assemblies are also tested to show effects of plasma for the strong adhesion. The conditions and results are shown in Table 8. TABLE 8 Treatment Die Attach Die Shear Plasma Gas Time Temperature Strength Example Type (second) (C.) (Kg-force) Comparative 7 No treatment — 220 0.1 (*) 72 compressed air 5 220 4.1 73 O 2 5 220 3.8 74 Ar 5 220 4.2 75 He 5 220 2.9 76 CO 2 5 220 2.4 77 N 2 5 220 3.2 Comparative 8 No Treatment — RT 0.1 (*) 78 comp air 5 RT 2.7 79 O 2 5 RT 3.8 80 Ar 5 RT 0.8 81 He 5 RT 1.1 82 CO 2 5 RT 0.5 83 N 2 5 RT 0.6 84 comp air 20 220 4.3 85 O 2 20 220 4.2 86 Ar 20 220 4.7 87 He 20 220
  • Young's modulus is about 10 megaPascals, 300 megaPascals and 1.1 gigaPascals respectively. Young's modulus is measured by ASTM D4065- 95 tensile mode using Dynamic Mechanical Analyzer (DMA) made by TA Instruments. Plasma conditions are air, 5 seconds treatment time and 60 watts RF power using Harrick PDC-32G. Dies (5 mm ⁇ 5 mm) are attached on the cured silicone for 5 seconds at 190° C. under 1.25 Kgf. The results are in Table 10.
  • Examples 99-104 are repeated except no plasma treatment is carried out. No adhesion was found without the plasma treatment. TABLE 10 Young's Modulus of Silicone coating (megaPascal) Die Surface Adhesion Example 99 10 PI-coated Strong Example 100 10 Bare Si Strong Example 101 300 PI-coated Strong Example 102 300 Bare Si Strong Example 103 1100 PI-coated Strong Example 104 1100 Bare Si Strong
  • Examples 99-104 show that strong adhesion can be created with polymeric materials having wide modulus ranges according to this test protocol.
  • Cured Material A as in Example 37 and various substrates are treated by various plasma conditions otherwise the same as in Example 99.
  • Die attach conditions are the same as Example 99.
  • the substrates, plasma treatment conditions, and results are in Table 11.
  • Examples 105-109 are repeated except no plasma treatment is carried out. No adhesion was found without the plasma treatment. TABLE 11 Treatment RF time power Substrate Gas (seconds) (watts) Adhesion Example 105 Silicon oxide Air 5 60 Strong passivated wafer Example 106 Silicon nitride Air 5 60 Strong passivated wafer Example 107 FR-4 board Air 5 60 Strong Example 108 Solder Mask Air 5 60 Strong Example 109 Plated Au on Oxygen 20 60 Strong PI tape
  • Examples 105-109 show that strong adhesion can be created using a variety of substrates using this test protocol.
  • a silicone elastomer with a modulus of less than 1 megaPascal and a and flat piece of silicone resin with a modulus of 0.5-1.5 gigaPascals are plasma treated for 30 seconds using high purity compressed air as the plasma gas in a Harrick PDC-002 Plasma Cleaner at 29.6 Watts.
  • Contact time is 1 minute under a force of 2 Kg.
  • Fracture energy is calculated according to the modified JKR model of Reference Example 6. The results are in Table 12.
  • Comparative Example 16 is repeated except that contact time is 12 hours. Die shear strength is measured according to the method of Reference Example 5. The results are in Table 12. TABLE 12 Joules per square meter Comparative Example 16 0 Example 110 30 0 means no adhesion.
  • Comparative Example 16 and Example 110 show that adhesion can take more time to develop using some adherends over others.
  • Example 110 also shows that adhesion can be created with relatively high modulus resins.
  • FIGS. 1-5 show an example of a die bonding process.

Abstract

A method for creating adhesion includes plasma treating two substrates and thereafter contacting the substrates. The method can be used on a variety of dry surfaces. The method is used to adhere nonadhesive surfaces such as a cured silicone with a ceramic or semiconductor.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part, which claims priority under 35 U.S.C. §120, from U.S. patent application Ser. No. 09/973,498 filed on Oct. 9, 2001.
  • FIELD OF THE INVENTION
  • This invention relates to a method for creating adhesion of materials that do not ordinarily exhibit adherent properties. The materials include a polymeric material and a substrate. The polymeric material can be used to connect two components of an electronic device together, such as an integrated circuit chip and a chip carrier.
  • BACKGROUND
  • Polymers have found applications in a wide range of technologies but not all polymer materials possess the required physical and chemical properties for good adhesion. Plasma treatment is one means of modifying polymer surfaces to improve adhesion while maintaining the desirable properties of the bulk material.
  • Adhesion of polymeric materials to similar materials can be improved by plasma, corona, dielectric discharge barrier, or flame treatment with or without assistance of a subsequent thermal treatment during joining process. Examples are films of polyethyleneterephthalate or polyethylene that were bonded to themselves or to each other by lamination under heat and pressure treatment. The mechanisms of adhesion were of the physisorption nature of London dispersion forces and hydrogen bonds. These adhesive joints are susceptible to the effect of external agents such as water or organic solvents and durability can be poor. Other systems related to plasma-treated surfaces, have been focused on surface chemistry changes after plasma treatment of less wettable surfaces such as poly vinyl chloride and polymer fabrics.
  • One method for improving adhesion is plasma treatment of a substrate, applying a wet or adhesive formulation in an uncured state to the treated surface, and thereafter curing the formulation. For example, one method for bonding two layers of siloxane-polyimide polymers includes bonding by etching (or cleaning) the first layer by using plasma before applying the second layer by spin coating. This method suffers from the drawback of not providing dry adhesion. Plasma treatment is used as an alternative method of surface treating a substrate in a similar manner as a chemical treatment like a hydrochloric or sulfo chromic acid solution. Surface chemical treatment has also been proposed for improved bonding. Treating cured silicone rubber with bromine water etches the low energy surface to produce a high energy surface to which various curable polymeric systems may be directly cured on and bonded. This process has many disadvantages related to handling and disposal of dangerous and toxic chemicals.
  • Methods for improving adhesion using plasma treatment in electronics applications have been disclosed. For example, one method for improving adhesion between an encapsulant and an IC chip, and between the encapsulant and the chip carrier, employs plasma treatment of either the IC chip or the chip carrier. Another method employs plasma surface modification of a thermoplastic substrate to improve adhesion to an addition curable silicone adhesive. These are both wet applications (i.e., an uncured encapsulant composition is applied to the plasma-modified surface and then cured). Another method discloses that corona or plasma treatment of a tackifier layer in a liquid crystal display improves adhesion between the tackifier and the polarizing sheet or the phase shift sheet. However, none of these methods create adhesion between nonadhesive surfaces.
  • Plasma surface treatment has also been used in metal deposition or lamination. One method discloses that plasma treatment of fluoro-polymers can improve metal deposition by thermal evaporation, electroless deposition or thermal beam evaporation. Another method discloses that a laminate composed of an insulated base film of a synthetic resin, a metal foil and a silicone adhesive layer, can be made by applying plasma surface treatment of the base film prior to adhesive bonding. These methods suffer from the drawback of not creating adhesion between two dry surfaces by using plasma.
  • SUMMARY OF THE INVENTION
  • This invention relates to a method for creating adhesion. The method can be used during fabrication of an electronic device or an electronic device package. The method includes a plasma treatment step for creating adhesion of a polymeric material and an adherend.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • All amounts, ratios, and percentages are by weight unless otherwise indicated. The following is a list of definitions, as used herein.
  • Definitions
  • “A” and “an” each mean one or more.
  • “Combination” means two or more items put together by any means or method.
  • “Cured” means substantial completion of a chemical process by which molecules are joined together by crosslinking into larger molecules to restrict molecular movements.
  • “Nonadhesive” means that a polymeric material would not normally adhere to a substrate without treatment.
  • “Plasma treatment” means exposing a substrate to a gaseous state activated by a form of energy externally applied and includes, but is not limited to, plasma jet, corona discharge, dielectric barrier discharge, flame, low pressure glow discharge, and atmospheric glow discharge treatment. The gas used in plasma treatment can be air, ammonia, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, neon, nitrogen, nitrous oxide, oxygen, ozone, water vapor, and combinations thereof. Alternatively, other more reactive gases or vapors can be used, either in their normal state of gases at the process application pressure or vaporized with a suitable device from otherwise liquid states, such as hexamethyldisiloxane, cyclopolydimethylsiloxane, cyclopolyhydrogenmethylsiloxanes, cyclopolyhydrogenmethyl-co-dimethylsiloxanes, reactive silanes, and combinations thereof.
  • Methods
  • This invention relates to a method for creating adhesion of a polymeric material and a substrate. The method can be used during fabrication of electronic devices and electronic device packages. In one embodiment of the invention, the method comprises:
      • a) plasma treatment of a polymeric material,
      • b) plasma treatment of a substrate,
      • c) plasma treatment of a semiconductor,
      • d) contacting the polymeric material and the substrate, and
      • e) contacting the semiconductor and the polymeric material.
  • In one embodiment of the invention, steps a, b, c, d, and e can be carried out in any of the following orders: abcde, acbde, abced, acbed, bacde, baced, bcade, bcaed, cabde, cabed, cbade, cbaed, abdce, badce, acebd, caebd, abdace, badace, abdcae, badcae, aceabd, caeabd, acebad, or caebad. One skilled in the art would recognize that when a semiconductor and a substrate are both bonded to the polymeric material, plasma treatment of the polymeric material may be carried out more than once, i.e. step a may be repeated. For example, in one embodiment, plasma treatment is carried out on the polymeric material and the substrate, and the polymeric material and the substrate are contacted. Plasma treatment is then carried out separately on the semiconductor and on a different surface of the polymeric material than that contacted with the substrate. The polymeric material and the substrate are then contacted. Plasma treatment can be carried out on all or a portion of the surface of the polymeric material, the substrate, or the semiconductor.
  • Alternatively, steps a, b, and c can be carried out concurrently and thereafter steps d and e are carried out in any order. Alternatively, steps a, b, and c are carried out in any order, and thereafter steps d and e are carried out concurrently. Alternatively, steps a, b, and c are carried out concurrently, and thereafter steps d and e are carried out concurrently.
  • In one embodiment of the invention, the polymeric material is contacted with the substrate and optionally the semiconductor as soon as practicable after plasma treatment. In an alternative embodiment, the polymeric material, the substrate, and optionally the semiconductor may optionally each be stored independently before contacting in step d, step e, or both. In one embodiment of this invention, the polymeric material can be stored for at least about 0, alternatively at least about 1, alternatively at least about 2 hours after plasma treatment. The polymeric material can be stored for up to about 48, alternatively up to about 24, alternatively up to about 8, alternatively up to about 4 hours after plasma treatment. The same storage conditions can be used independently for the substrate and the semiconductor.
  • In one embodiment of this invention, adhesion can be obtained by carrying out steps d and e for a few seconds at about room temperature. In an alternative embodiment of the invention, step d, step e, or both, are carried out at elevated temperature, elevated pressure, or both. The exact conditions selected for step d, step e, or both, will depend on various factors including the specific use of the method. However, temperature during the contacting steps can be at least about 15° C., alternatively at least about 20° C., alternatively at least about 100° C. Temperature during contacting can be up to about 400° C., alternatively up to about 220° C. Pressure during contacting can be up to about 10 megaPascals, alternatively up to about 1 megaPascal. Pressure during contacting is at least about 0.1 megaPascal. Contact time can be at least about 0.1 second, alternatively at least about 1 second, alternatively at least about 5 seconds, alternatively at least about 20 seconds. Contact time can be up to about 24 hours, alternatively up to about 12 hours, alternatively up to about 30 minutes, alternatively up to about 30 seconds.
  • In an alternative embodiment of the invention, the method comprises:
      • A) plasma treatment of a polymeric material,
      • B) plasma treatment of an adherend, and
      • C) thereafter contacting the polymeric material and the adherend;
  • thereby creating adhesion of the polymeric material and the adherend. In this embodiment, the adherend can be either a semiconductor or a substrate. In this embodiment, the method may optionally further comprise: storing the polymeric material after step A) and before step C), or storing the adherend after step B) and before step C), or both.
  • Steps A) and B) may be carried out in any order, and the same plasma treatment conditions, contact conditions, and optional storage conditions as above may be applied.
  • In this embodiment, steps A) and B) can be carried out concurrently or sequentially in any order. In this embodiment, steps A), B), and C) may optionally be repeated one or more times. This method can be used during fabrication of an electronic device or an electronic device package, or this method can be used more broadly for other purposes. Use of this method is not specifically restricted.
  • In an alternative embodiment of this invention, the method comprises:
      • A) plasma treatment of a polymeric material or plasma treatment of an adherend, or both, wherein plasma treatment of the polymeric material or plasma treatment of the adherend, or both is performed using a plasma jet; and
      • B) thereafter contacting the polymeric material and the adherend; thereby creating adhesion of the polymeric material and the adherend.
  • The method of this invention creates adhesion, e.g., the adherend does not fall off the polymeric material when subjected to about 0.1 megaPascal of force in the die shear strength test of Reference Example 5, below. The exact amount of adhesion will vary depending on the polymeric material and adherend chosen, the plasma treatment conditions chosen, and the contacting conditions chosen. However, adhesion, as measured by die shear strength according to Reference Example 6, below, can be at least about 0.2 megaPascal (MPa), alternatively at least about 0.3 MPa, alternatively at least about 0.5 MPa, alternatively at least about 1 MPa, alternatively at least about 1.5 MPa, alternatively at least about 2 MPa, alternatively at least about 2.5 MPa, alternatively at least about 5 MPa.
  • Polymeric Material
  • The polymeric material used in this invention is nonadhesive when used in this method, e.g., immediately before plasma treatment. The polymeric material has a relatively low modulus (e.g., lower modulus than the substrate or semiconductor). The modulus will vary depending on various factors including the exact polymeric material chosen, and the adherend to which the polymeric material will be adhered. However, modulus can be at least about 0.1 megaPascal, alternatively at least about 1 megaPascal. Modulus can be up to about 300 megaPascals, alternatively up to about 400 megaPascals, alternatively up to about 1 gigaPascal, alternatively up to about 5 gigaPascals.
  • In one embodiment of the invention, the polymeric material is a thermoset or a thermoplastic material. The polymeric material can be a silicone, an organic, a silicone-organic copolymer, or combinations thereof. Thermoset materials include flexibilized epoxies, which are organic, and elastomers which can be silicones, organics, or silicone organic-copolymers. Thermoplastic materials include phase change materials such as silicone-organic copolymer waxes and organic materials such as polyolefins (e.g., polyethylene), polyimides, phenolics, and combinations thereof.
  • In one embodiment of the invention, the polymeric material is a cured silicone, such as a cured silicone resin, a cured silicone elastomer, a cured silicone rubber, and combinations thereof. Suitable cured silicone resins include T, DT, MT, MQ resins, and combinations thereof. Cured silicone rubbers and methods for their fabrication are known in the art, see for example, W. Lynch, Handbook of Silicone Rubber Fabrication, Van Nostrand Reinhold Company, New York, 1978. Cured silicone elastomers are known in the art. For example, U.S. Pat. Nos. 4,753,978 and 5,110,845 disclose cured silicone elastomers and methods for their preparation.
  • The cured silicone can be prepared by curing a curable silicone composition. Curable silicone compositions are known in the art. Examples of curable silicone compositions and methods for their cure include the compositions set forth and described in U.S. Pat. Nos. 4,766,176; 5,017,654; and 5,977,226. The cured silicone can be prepared from a silicone composition formulated with an adhesion promoter, however, an adhesion promoter is not required.
  • It should be noted by those skilled in the art that the mode of cure of the compositions is not critical, and can include cure mechanisms such as condensation reactions; addition reactions; ultraviolet radiation initiated reactions, and free radical initiated reactions.
  • In an alternative embodiment of the invention, the polymeric material is a cured organic such as a cured organic resin, a cured organic elastomer, a cured organic polymer, and combinations thereof. Suitable cured organic resins include cured epoxy resins. Suitable cured organic elastomers include polyurethane. Suitable cured organic polymers include epoxy, polyimide, polyimide copolymers, and combinations thereof. Suitable cured organic polymers are known in the art, see for example, “Chip Scale Packaging for Memory Devices,” Y. Akiyama, A. Nishimura, I. Anjoh and A. Nagai, IEEE Electronic Components and Technology Conference, 1999.
  • Suitable silicone-organic copolymers include silarylene, Lead-on-Chip (LOC) tape using polydimethylsiloxane-modified polyimide or polyamide. Silicone-organic copolymers are known in the art, see for example, “Advances in Materials Research in Japan,” Phase IV, Report 2. Polymer materials for Advanced Microelectronics Technology, June 2000, Techno Alliance Corporation, Tokyo, Japan.
  • Polymeric materials that are cured can be used in this invention. In contrast to methods that use wet (uncured) or partially-cured (e.g., B-staged) materials, this method can create adhesion of cured silicones, cured organics, and cured silicone-organic copolymers to various adherends.
  • The polymeric material can have a variety of forms. The polymeric material may be continuous, such as a sheet or film. Alternatively, the polymeric material may be discontinuous, such as a plurality of flat pads or hemispherical nubbins or bumps.
  • Substrate
  • The substrate used in this method is not specifically restricted. The substrate selected will depend on the various factors including the use of the method described above, e.g., the type of electronic device or electronic device package to be fabricated. The substrate can be any material used in the fabrication of an electronic device or an electronic device package. The substrate can be, for example a ceramic substrate, a flexible substrate, or a rigid substrate commonly used in electronic device packaging. Examples of suitable substrates include a ceramic, a metal, a metal-coated surface, a polymer (i.e., other than the polymeric material described above), and combinations thereof.
  • Metals and metal coatings include aluminum, chromium, copper, gold, lead, nickel, platinum, solder, stainless steel, tin, titanium, alloys thereof, and combinations thereof.
  • Ceramics include aluminum nitride, aluminum oxide, silicon carbide, silicon oxide, silicon oxynitride, and combinations thereof; alternatively aluminum nitride, aluminum oxide, silicon carbide, silicon oxynitride, and combinations thereof.
  • Polymers include benzocyclobutene, bismaleimide, cyanate, epoxy, polybenzoxazole, polycarbonate, polyimide, polymethylmethacrylate, polyphenylene ether, polyvinylidene chloride, and combinations thereof.
  • Semiconductor
  • Semiconductors are known in the art and commercially available, for example, see J. Kroschwitz, ed., “Electronic Materials,” Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., vol. 9, pp. 219-229, John Wiley & Sons, New York, 1994. Common semiconductors include silicon, silicon alloys, and gallium arsenide. The semiconductor can have any convenient form, such as a bare die, a chip such as an IC chip, or a wafer.
  • Plasma Treatment
  • Plasma treatment of a nonadhesive material converts the surface properties of the nonadhesive material from being nonadhesive to adhesive. Various types of plasma treatment can be used in the method of this invention, including plasma jet, corona discharge treatment, dielectric barrier discharge treatment, and glow discharge treatment. Glow discharge treatment can be carried out using plasma selected from low pressure glow discharge or atmospheric pressure glow discharge.
  • In one embodiment of the invention, plasma treatment is carried out by low pressure glow discharge plasma in either continuous or pulsed modes. This is essentially a batch process. Alternatively, plasma treatment can be performed at atmospheric pressure in a continuous process using appropriate atmospheric plasma apparatuses. Other plasma treatments can also be used. One skilled in the art would be able to select appropriate plasma treatments without undue experimentation. Plasma treatments are known in the art. For example, U.S. Pat. Nos. 4,933,060 and 5,357,005 and T. S. Sudarshan, ed., Surface Modification Technologies, An Engineer's Guide, Marcel Dekker, Inc., New York, 1989, Chapter 5, pp. 318-332 and 345-362, disclose plasma treatments.
  • The exact conditions for plasma treatment will vary depending on various factors including the choice of polymeric material, substrate, and semiconductor; the storage time between plasma treatment and contacting; the type and method of plasma treatment used; and design of the plasma chamber used. However, plasma treatment can be carried out at a pressure of up to about atmospheric pressure. Plasma treatment can be carried out at a pressure of at least about 0.05 torr, alternatively at least about 0.78 torr, alternatively at least about 1.5 torr. Plasma treatment can be carried out at a pressure of up to about 10 torr, alternatively up to about 3 torr. If pressure is too high, plasma treatment may not initiate.
  • Time of plasma treatment depends on various factors including the material to be treated, the contact conditions selected, the mode of plasma treatment (e.g., batch vs. continuous), and the design of the plasma apparatus. Plasma treatment is carried out for a time sufficient to render the surface of the material to be treated sufficiently reactive to form an adhesive bond. Plasma treatment is carried out for a time of at least about 1 millisecond, alternatively at least about 0.002 second, alternatively at least about 0.1 second, alternatively at least about 1 second, alternatively at least about 5 seconds. Plasma treatment is carried out for up to about 30 minutes, alternatively up to about 1 minute, alternatively up to about 30 seconds. It may be desirable to minimize plasma treatment time for commercial scale process efficiency. Treatment times that are too long may render some treated materials nonadhesive or less adhesive.
  • The gas used in plasma treatment can be, for example, air, ammonia, argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, nitrous oxide, oxygen, ozone, water vapor, and combinations thereof. Alternatively, the gas can be selected from air, argon, carbon dioxide, carbon monoxide, helium, nitrogen, nitrous oxide, ozone, water vapor, and combinations thereof. Alternatively, the gas can be selected from air, argon, carbon dioxide, helium, nitrogen, ozone, and combinations thereof. Alternatively, other more reactive organic gases or vapors can be used, either in their normal state of gases at the process application pressure or vaporized with a suitable device from otherwise liquid states, such as hexamethyldisiloxane, cyclopolydimethylsiloxane, cyclopolyhydrogenmethylsiloxanes, cyclopolyhydrogenmethyl-co-dimethylsiloxanes, reactive silanes, and combinations thereof.
  • One skilled in the art would be able to select appropriate plasma treatment conditions without undue experimentation using the above guidelines and the examples set forth below.
  • Methods of Use
  • The method described above can be used to prepare adhesive bonds that resist either thermal treatment in absence or presence of water in the form of vapor or liquid, or mechanical stress. The adhesion property can be used to hold dissimilar parts together, that might otherwise require adhesive technologies applied in multiple steps.
  • The method can also be used during fabrication of electronic devices and electronic device packages. Electronic devices and methods for their fabrication are known in the art. For example, the electronic device can be a chip on board (COB), wherein the semiconductor is an IC chip, which is mounted directly on a substrate, such as a printed wiring board (PWB) or printed circuit board (PCB). COBs and methods for their fabrication are known in the art, for example, see Basic Integrated Circuit Technology Reference Manual, R. D. Skinner, ed., Integrated Circuit Engineering Corporation, Scottsdale, Arizona, Chapter 3.
  • In one embodiment of this invention, the method can be used in fabricating any electronic device package in which a semiconductor such as an IC chip is attached to a substrate such as a chip carrier. For example, the method can be used to bond the chip carrier to a polymeric material, thereby forming an interposer. The method can also be used to bond the IC chip to the polymeric material either before or after the polymeric material is bonded to the chip carrier. Alternatively, the method can be used to bond the IC chip to the polymeric material only, and an alternative method can be used to bond the polymeric material to the chip carrier. For example, an uncured material can be applied to a chip carrier by conventional means such as stencil or screen printing, or spin coating. The uncured material can then be cured to form a polymeric material. The polymeric material and IC chip may then be bonded by the method of this invention.
  • In an alternative embodiment of this invention, the method can be used on a polymeric material in the form of a flat pad, tape, film, or the like. For example, a composition can be cured to form the polymeric material. Thereafter, the polymeric material and an adherend are plasma treated and contacted according to the method described above.
  • Electronic device packages and methods for their fabrication are known in the art. For example, the method described above can be used in the fabrication of area array packages and leadframe packages. Area array packages include ball grid arrays, pin grid arrays, and chip scale packages. Leadframe packages include chip scale packages. Area array packages and leadframe packages, and methods for their fabrication, are known in the art, for example, see U.S. Pat. No. 5,858,815.
  • The method described above can be used in the fabrication of chip scale packages. Chip scale packages, and methods for their fabrication, are known in the art, for example, see U.S. Pat. No. 5,858,815.
  • This invention can be used in the fabrication of single chip modules (SCM), multichip modules (MCM), or stacked chip modules. SCM, MCM, and stacked chip modules, and methods for their fabrication, are known in the art, see, for example, Basic Integrated Circuit Technology Reference Manual, R. D. Skinner, ed., Integrated Circuit Engineering Corporation, Scottsdale, Arizona, Chapter 3.
  • The method described above can also be used in wafer-level packaging methods. This invention will be exemplified by reference to its use in wafer-level packaging methods. One wafer-level packaging method comprises the following steps.
  • Adhering a die attach material (polymeric material) to a substrate such as a tape used in tape automated bonding (TAB) or a PCB. The die attach material can be adhered to the substrate using the method described above. The method employs cured die attach materials in the fabrication process instead of uncured materials and allows confinement of the die attach materials to exactly defined and targeted positions. Converted tapes where a silicone elastomer is applied by the method of this invention can be made and supplied to assembler for ease of manufacturing, since the assembler does not need to deal with a wet (uncured) die attach adhesive, and adhesion can be created on demand.
  • Alternatively, the die attach material can be adhered to the substrate by conventional methods. Such conventional methods include applying an uncured die attach material to the substrate and thereafter curing the uncured die attach material. The uncured die attach material can be applied by, for example, a printing method, a dam and fill method, or a spin coating method. The substrate with the die attach material attached is hereinafter referred to as a converted substrate.
  • Bond windows can be fabricated in the converted tape by, for example, punching, sawing, or laser cutting. Center-bond or edge-bonds can be applied.
  • A semiconductor in the form of a wafer is then attached to the die attach material using the method described above.
  • The wafer can be wire bonded by conventional means using, for example, a conventional wire bonder or gang wire-bond. Optional plasma cleaning may be carried out before each wire bond.
  • After wire bonding, encapsulation to protect the wires is carried out. Plasma cleaning may optionally be carried out prior to encapsulation. Typically, an uncured encapsulant is dispensed, injection molded, or printed and then cured.
  • Optionally, a protective coating may be applied to the back side of the wafer.
  • Solder balls can then be attached to the bottom side of the converted substrate.
  • Typically, wafer level testing, or marking, or both are then carried out.
  • Singulation of the packaged wafer can then be carried out by conventional means such as sawing or cutting.
  • Wafer level packaging methods are known in the art, for example, see U.S. Pat. No. 5,858,815. However, one skilled in the art would recognize that the method of this invention is not limited to use in wafer level packaging may be used in other packaging methods, such as chip level packaging, as well.
  • In an alternative embodiment of this invention, the method can be used to make micro devices. One such micro device is a bonded composite wherein the polymeric material can be, for example, cured silicone and a substrate can be, for example, cured silicone, other materials, and combinations thereof. These composites can have various forms including laminates or three-dimensional (3-D) objects. In one embodiment, a composite structure comprising a cured silicone as a polymeric material and a solid material as a substrate is prepared, wherein only a part of the surface of the solid material is coated with the cured silicone, and the surroundings are not stained with a low molecular weight organopolysiloxane. The 3-D objects can have added functionality like thermal or electrical transfer by means of adding special fillers. The method may be used as to pretreat components of composites prior to or during assembly or to create fiber interphase adhesion, such as for optical fibers. The thin bondline created by plasma treatment should allow adhesion and electrical and thermal conductivity.
  • In an alternative embodiment of the invention, the method can be used in optoelectronics and photonics applications. The method will adhere optical components with low reflective losses. The optical components can comprise a wide range of materials, the majority of which have low optical transmission losses. Optical materials include silicone elastomers, silica optical fibers, silicone gels, silicone resin lenses, and silicon. These materials can be used in photonics devices, such as telecommunications systems. The method provides the ability to adhere a range of materials in situ, and with low reflective losses. Such plasma adhered interfaces may be less prone to thermally induced stresses, leading to improved reliability during temperature cycling (i.e., reduced stress build up and de-lamination). Plasma treatment can provide a uniform bond over complex surfaces. The method could also be used to improve light efficiency in Flat Panel Displays (bonding of color filter assembly). The method of this invention is advantageous in these applications because it avoids the need for adhesives, which may introduce a separate refractive index, introduce reflective interfaces, and increased absorption.
  • In an alternative embodiment of the invention, the polymeric material is a cured silicone elastomer that can be made transparent to light. The plasma treatment not only creates adhesion between the cured silicone elastomer and the substrate, but also creates an interface region between the cured silicone elastomer and the substrate that is transparent to light. This may result in low loss of light energy in a wide range of wavelengths. This embodiment is useful in optoelectronics communication and transducer devices. Without wishing to be bound by theory, it is thought that the interface will have a different refractive index than the bulk of the cured silicone elastomer. In some instances, the adhesive interface region or bond line created by the plasma treatment is about 10 to about 100 nanometers thick. This range of thickness is less than the wavelength of light useful in optoelectronics applications. Without wishing to be bound by theory, it is thought that the interface can be functionalized or plasma modified to have designed refractive indices useful in optoelectronics applications.
  • In an alternative embodiment of the invention, the method described above is useful in the health care industry. The polymeric material used in this embodiment is a cured silicone. The resulting plasma treated cured silicone has adherent properties that can be applied to various adherends in various products for medical applications. The plasma treatment provides biological surface cleaning.
  • In an alternative embodiment of this invention, the method described above can be used for die bonding. Die bonding is used in electronics packaging applications, in a method comprising placing a semiconductor die on a die attach material or (placing the die attach material) on the semiconductor die using, for example, conventional equipment such as a die bonder or chip shooter. The die attach material is a polymeric material in a form such as a cured pad. One convenient method for generating adhesion between the semiconductor die and the die attach material comprises surface modification of the die attach material with plasma. In this method, both a surface of the die attach material and a surface of the semiconductor die may be treated with plasma.
  • However, plasma treatment of both surfaces may be difficult to perform with some conventional semiconductor equipment. In some processes, one or both of the bonding surfaces will be in contact with a film (such as dicing tape) or holder (such as waffle pack) that prevents easy exposure to plasma. Therefore, this invention further relates to a method comprising plasma treatment of one or both bonding surfaces using a plasma jet (a forced gas plasma for spot or area plasma treatment). In one embodiment, the die attach material on a substrate (with bonding side exposed) may be pretreated with plasma (by, for example, high vacuum plasma, atmospheric plasma, or plasma jet). The die attach material may be mounted into a die bonder equipped with a plasma jet. The die bonder tool or collet removes an unactivated die from the holder (such as dicing tape on a frame). In the action of translating the die and placing it on the adhesive for bonding, the side of the die to be bonded is passed through the plasma jet, activating this surface. Using this method, the bonding surface of the semiconductor die may be plasma treated without transferring the semiconductor die to a separate holder or requiring the die bonder to re-orient the semiconductor die.
  • FIGS. 1-5 show an example of a die bonding process. In FIG. 1, a semiconductor die 101 is picked of dicing tape 103 by a die bonder (not shown) through a die bonder collet 104. FIG. 2 shows plasma treatment of the back side 102 of the semiconductor die 101 using a plasma jet 105. FIG. 3 shows a pad 106 of die attach material on a substrate 107. FIG. 4 shows plasma treatment of the pad 106 in a chamber 108 using, for example high vacuum or atmospheric plasma. FIG. 5 shows contacting the back side 102 of the semiconductor die 101 with the plasma treated surface of the pad 106 to bond the semiconductor die 101 with the pad 106.
  • EXAMPLES
  • These examples are intended to illustrate the invention to one skilled in the art and should not be interpreted as limiting the scope of the invention set forth in the claims.
  • Reference Example 1 Low Pressure Glow Discharge Plasma (LPGD)
  • A Branson/IPC Plasma Unit generates a low pressure (0.05 to 3.0 torr), radio frequency (RF) cold plasma. This unit operates either with or without continuous gas flow into the reactor throughout the capacitatively coupled plasma treatment process. The system has a control unit, plasma chamber (24,500 cubic centimeters) with quartz grid shelf, RF generator (operates at 13.56 megahertz with output power in the range of 0-500 watts with continuous control), and a vacuum pump. The chamber diameter is 25 centimeters. The chamber length is 50 centimeters. The system has model #: IPC54005-11020ST, comprising PM119 RF Generator, PM11020 Reactor Center, and PM4000C Controller. This unit is commercially available from Branson International Plasma Corporation, 31172 Huntwood Avenue, P.O. Box 4136, Hayward, Calif. 94544.
  • Reference Example 2 Low Pressure Glow Discharge Plasma (LPGD)
  • A Harrick PDC-32G Plasma Cleaner generates a low pressure, radio frequency cold plasma. This cleaner operates either with or without continuous gas flow into the reactor throughout the inductively coupled plasma treatment process. The system has a cylindrical plasma chamber (800 cubic centimeters), radio frequency (RF) generator (operates between 8 to 12 megahertz with output power at three settings of 40, 60 and 100 watts), and a vacuum pump. The chamber diameter is 7.5 centimeters. The chamber length is 18 centimeters.
  • Reference Example 3 Atmospheric Pressure Glow Discharge (APGD) Plasma
  • An Atmospheric Pressure Glow Discharge (APGD) Plasma unit operates at atmospheric or near atmospheric pressure is used to treat the surfaces. Plasmas are generated at a base pressure of 1020 millibar from He, He/O2 (99%/1%) and He/N2 (99%/1%) gases. The treatments are carried out with various treatment times of 1 second to 8 minutes. The inter-electrode gap is selected between 6 to 10 millimeters depending on the thickness of the substrates.
  • Reference Example 4 Stud Die Pull Test
  • A Stud (Die) Pull Test is performed by adhering a flat head screw (#1032-1¼ thread) to the top surface of the die, threading the screw into the stud which attaches to the analyzer, and pulling on the stud until failure occurs. When preparing the sample, note that if adhesive ‘flows’ over the top edge of the die, the sample is unusable for testing due to direct adhesion of the screw to the substrate. The flat head screws are washed with toluene/acetone to rid of oils that may prevent adhesion of the screw to the die. Bondini™(*) (Everything Gel) household super glue is used for this purpose.
  • Reference Example 5 Die Shear Strength Test
  • A Die Shear Test is performed by placing the shear tool (Royce 552®) against the edge of the die, and the force required to shear the die from the adherend is recorded. Note that the size of the sample (polyimide (PI) sheet which the die is attached) is adjusted (cut) to span across the sample holder framework (10 millimeters by 10 millimeters) to be properly secured. A ROYCE 552® Die Shear Tester is a precision universal strength testing system for evaluating microelectronic structures that measures die bond strength by performing a shear test on the die.
  • Reference Example 6 Modified JKR Test
  • The concept of using a hemispherical silicone lens and flat adherend system based on the Johnson Kendall Roberts (JKR) study is used to measure the adhesive strength of adhesion imparted by a plasma treatment. A high elastic modulus silicone lens (SYLGARD® 184 commercially available from Dow Corning Corporation of Midland, Mich.) and the adherend are plasma treated in a selected gaseous atmosphere. The treated lens and adherend are brought together into intimate contact under load. The lens tends to recover its original shape and thus exerts stress on the circular bond line. At equilibrium a finite circular area of contact between the lens and the adherend is obtained and leads to the energy of fracture expressed in Joules per square meter.
  • Reference Example 7 Stock Materials
  • Material A is a curable silicone elastomer composition having a modulus of 0.30 megaPascal after cure. The modulus is a secant modulus at 100% strain using a dumbbell-shaped specimen measured by Instron's universal tester at a cross-head speed 20 inches per minute as described in ASTM D638.
  • Material B is a curable silicone elastomer composition having a secant modulus at 100% strain of 0.36 megaPascal after cure. The secant modulus is measured by the same method as for Material A.
  • Comparative Example 1
  • A simplified test vehicle (TV-46) IC chip without a passivation layer has dimensions 7.4 millimeters by 5.3 millimeters.
  • A chip scale spacer is printed on the 1 milli-inch thick Upilex S-25 polyimide sheet using a 4 milli-inch thickness stencil with 18 milli-inch diameter apertures. Modulus of the chip scale spacer is 5 megaPascals measured by ASTM D638.
  • A pitch of the array of apertures is 0.75 millimeters. The resulting printed nubbins are cured at 150° C. for 30 minutes. A die attach adhesive is printed on top of the cured spacer using a 5 milli-inch thickness stencil with 16 milli-inch diameter apertures. Modulus of the die attach adhesive is 5 megaPascals measured by ASTM D638.
  • Example 1
  • Material A is drawn at thickness of five milli-inch on a Upilex 25S polyimide (PI) sheet and cured at 150° C. for 30 min. Air is used as a plasma gas, treatment time is 70 seconds, pressure is 0.78 torr, RF power is 187.5 Watts, and RF frequency is 13.56 megahertz using a large Branson/IPC plasma. Both the adhesive pad and TV-46 are treated by the plasma.
  • The products of Example 1 and Comparative Example 1 are evaluated according to the method of Reference Example 5. The results are in Table 1.
    TABLE 1
    Die shear strength
    Material (Kg-force)
    Comparative Example 1 wet-based process    3.0
    Example 1 Material A >10 (*)

    (*) The PI sheet failed, not the adhesion.
  • Example 2 and Comparative Examples 2-4
  • A 10 mil film of Material A is printed on polyimide Upilex 25S and is cured at 150° C. for 30 minutes to form a silicone pad. A surface of TV-46 silicon die and the silicone pad are treated by air plasma conditions of 0.05 torr, 100 watts, and 30 second treatment time using the Branson Plasma chamber. The treated die and pad are put into intimate contact for adhesion bonding. The resulting products are described in Table 2 and are evaluated by the method of Reference Example 4. The results are in Table 2.
    TABLE 2
    Die Pull Strength
    (grams-force)
    Comparative Example 2 Plasma treating silicone pad  152
    only
    Comparative Example 3 Plasma treating TV-46 only   34
    Comparative Example 4 No plasma treatment Die falls off pad
    Example 2 Treating both TV-46 and >1000
    silicone pad
  • Example 2 and Comparative Examples 2-4 show a synergistic effect in that much stronger adhesion is created by plasma treatment of both the polymeric material and the adherend, rather than plasma treatment of only one of the two, in this test protocol.
  • Examples 3-36
  • Material A is drawn at thickness of five milli-inch on a one milli-inch Upilex 25S polyimide sheet and is cured at 150° C. for 30 minutes to form a silicone pad. A surface of TV-46 silicon die and the silicone pad are plasma treated. Examples 3-36 are carried out with various plasma process conditions, i.e., varying treatment pressure, treatment time, and RF power using air or oxygen using a Branson plasma chamber. The samples are tested according to Reference Example 5. The conditions are in Table 3.
    TABLE 3
    RF Power
    EXAMPLES GAS Pressure(torr) Time(second) (Watts)
    3 Air 1.5 70 75
    4 Air 0.05 20 187.5
    5 Air 1.5 120 187.5
    6 Air 0.78 20 75
    7 Air 0.78 120 300
    8 Air 0.78 120 75
    9 Air 1.5 70 300
    10 Air 0.05 70 75
    11 Air 0.05 70 300
    12 Air 0.78 70 187.5
    13 Air 0.78 70 187.5
    14 Air 0.05 120 187.5
    15 Air 0.78 20 300
    16 Air 1.5 20 187.5
    17 Air 0.78 70 187.5
    18 Air 0.78 70 187.5
    19 Air 0.78 70 187.5
    20 Oxygen 1.5 70 75
    21 Oxygen 0.05 20 187.5
    22 Oxygen 1.5 120 187.5
    23 Oxygen 0.78 20 75
    24 Oxygen 0.78 120 300
    25 Oxygen 0.78 120 75
    26 Oxygen 1.5 70 300
    27 Oxygen 0.05 70 75
    28 Oxygen 0.05 70 300
    29 Oxygen 0.78 70 187.5
    30 Oxygen 0.78 70 187.5
    31 Oxygen 0.05 120 187.5
    32 Oxygen 0.78 20 300
    33 Oxygen 1.5 20 187.5
    34 Oxygen 0.78 70 187.5
    35 Oxygen 0.78 70 187.5
    36 Oxygen 0.78 70 187.5
  • In each of Examples 3-36, the polyimide sheet failed, not the adhesion. Examples 3-36 show that a variety of plasma treatment conditions effectively create adhesion of the silicone elastomer and the die used in this method.
  • Reference Example 8
  • Bare silicon wafers and silicon wafers coated with a polyimide coating (PIX 3400-8 from HD MicroSystems) are singulated into 5 millimeter (mm) by 5 mm dies. The singulated dies are washed with deionized water at 800 pounds per square inch (psi) after dicing.
  • Bare silicon dies and polyimide-coated dies are attached on the silicone elastomer pads after both surfaces are treated by plasma. The plasma gas is air. Using the ROYCE 552® instrument, die shear strength is measured for 5 samples and the average is recorded. The die size is 5 mm by 5 mm and contact area of the die on the silicone pad is about 20 square millimeters.
  • Examples 37-40
  • Material B is printed on a 3 milli-inch KAPTON polyimide sheet using a 4 milli-inch thickness stencil where many a pair of 6 millimeter×13 millimeter rectangular apertures are patterned, and there is a 1.19 millimeter spacing between two apertures. A pitch of the pair of apertures is 5 millimeters. The printed pads are cured at 150° C. for 30 minutes. Both the silicone pads and bare or PI-coated dice prepared in Reference Example 8 are treated by plasma using the Harrick PDC-32G. Plasma conditions are: air as gas, 60 watts, 5 seconds treatment time, and 0.3 torr pressure. Each die is attached to the pad after the plasma treatment for 5 seconds under 1.25 kilograms at 220° C. The die bonded to the silicone pad by plasma are located in a 85° C./85% relative humidity (RH) chamber to show adhesion against moisture after 1, 2 and 3 weeks. The samples are tested by the method of Reference Example 5. The conditions and results are in Table 4.
    TABLE 4
    Die Shear Strength Die Shear Strength
    Average (Kg-force) (Kg-force)
    Example Weeks PI-coated Bare Si
    37 0 1.8 2.2
    38 1 2.5 1.9
    39 2 2.3 1.6
    40 3 2.4 2.3
  • These examples show that durable adhesion (e.g., adhesion that lasts for at least several weeks without significant decrease in strength) can be created using the method of this invention in this test protocol.
  • Examples 41-43
  • The same die bonded to the pad in Example 37 is stored in the 150° C. convection oven to show effects of high temperature storage on the adhesion. The samples are tested by the method of Reference Example 5. The conditions and results are in Table 5.
    TABLE 5
    Die Shear Strength Die Shear Strength
    (Kg-force) (Kg-force)
    Example Weeks for PI-coated for Bare Si
    41 1 3.8 2.6
    42 2 3.5 4.2
    43 3 4.8 3.4
  • These examples show that adhesion created by the method of this invention can be maintained after storage of a device prepared as described above is stored at relatively high temperature for up to 3 weeks using this test protocol.
  • Examples 44-47
  • The same pad and dies used in Example 37 are used. To show how long plasma-activated surfaces are effective for adhesion, die attach is done after 1, 4, 8 and 24 hours after plasma treatment of the surfaces. Plasma conditions and die attach processes are the same as in Example 37. The results are in Table 6.
    TABLE 6
    Die Shear Strength Die Shear Strength
    (Kg-force) (Kg-force)
    Example Elapsed time (hr) with PI-coated Die with Bare Si Die
    44 1 1.8 2.2
    45 4 1.8 1.8
    46 8 2.0 1.2
    47 24  1.8 0.5
  • These examples show that some semiconductors can be stored for at least about 24 hours after plasma treatment and before contacting with a silicone die attach material, and adhesion is still created using this test protocol.
  • Examples 48-71 and Comparative Examples 5-6
  • The PI-coated die and printed Material B as in Example 37 are used. Various plasma conditions and die attach temperatures are applied otherwise the same as in Example 37. Untreated assemblies are also tested to show effects of plasma for the strong adhesion. The conditions and results are shown in Table 7.
    TABLE 7
    Treatment Die Attach Die Shear
    Time Temperature Strength
    Examples Plasma Type (second) (C.) (Kg-force)
    Comparative 5 No treatment 220 0.1 (*)
    48 compressed air 5 220 3.1
    49 O2 5 220 3.3
    50 Ar 5 220 2.7
    51 He 5 220 2.2
    52 CO2 5 220 1.9
    53 N2 5 220 2.9
    Comparative 6 No Treatment RT 0.2 (*)
    54 comp air 5 RT 1.1
    55 O2 5 RT 1.5
    56 Ar 5 RT 1.1
    57 He 5 RT 0.3
    58 CO2 5 RT 0.4
    59 N2 5 RT 0.3
    60 comp air 20 220 2.5
    61 O2 20 220 2.5
    62 Ar 20 220 3.4
    63 He 20 220 3.0
    64 CO2 20 220 3.3
    65 N2 20 220 3.1
    66 comp air 20 RT 2.1
    67 O2 20 RT 1.9
    68 Ar 20 RT 0.1 (*)
    69 He 20 RT 0.3
    70 CO2 20 RT 0.6
    71 N2 20 RT 0.7

    (*) die falls off the pad
  • Examples 48-71 show that routine experimentation may be required to optimize the plasma treatment conditions, contact conditions, or both of the method of this invention for some adherends.
  • Examples 72-95 and Comparative Examples 7-8
  • The bare silicon die and printed Material B as in Example 37 are used. Various plasma conditions and die attach temperatures are applied otherwise the same as in Example 37. Untreated assemblies are also tested to show effects of plasma for the strong adhesion. The conditions and results are shown in Table 8.
    TABLE 8
    Treatment Die Attach Die Shear
    Plasma Gas Time Temperature Strength
    Example Type (second) (C.) (Kg-force)
    Comparative 7 No treatment 220 0.1 (*)
    72 compressed air 5 220 4.1
    73 O2 5 220 3.8
    74 Ar 5 220 4.2
    75 He 5 220 2.9
    76 CO2 5 220 2.4
    77 N2 5 220 3.2
    Comparative 8 No Treatment RT 0.1 (*)
    78 comp air 5 RT 2.7
    79 O2 5 RT 3.8
    80 Ar 5 RT 0.8
    81 He 5 RT 1.1
    82 CO2 5 RT 0.5
    83 N2 5 RT 0.6
    84 comp air 20 220 4.3
    85 O2 20 220 4.2
    86 Ar 20 220 4.7
    87 He 20 220 4.1
    88 CO2 20 220 4.4
    89 N2 20 220 4.3
    90 comp air 20 RT 3.7
    91 O2 20 RT 3.9
    92 Ar 20 RT 3.5
    93 He 20 RT 3.5
    94 CO2 20 RT 4.0
    95 N2 20 RT 1.0

    (*) die falls off the pad
  • Examples 96-97—(APGD 1% Oxygen/Helium: adhesion)
  • The surfaces of both a silicone lens and a glass slide are treated by an O2/He (1%/99%) ma lit at atmospheric pressure for 30 seconds. The silicone lens and the glass slide are ght into intimate contact under a force of 2 kilograms for 60 seconds at room temperature. The contact diameter reached 6 to 8 millimeters. On releasing the load fracture naturally occurs driven by the elastic modulus of the elastomeric silicone lens to reach an equilibrium. Fracture is cohesive in the silicone phase. The diameter of the contact area between the silicone elastomer and the glass is around 4 to 6 millimeters. Fracture energy is calculated according to the modified JKR model. The results are in Table 9.
    TABLE 9
    Substrate
    Example 97 Glass strong adhesion
    Example 98 Silicone strong adhesion
  • Examples 99-104
  • Three curable silicone materials with three different Young's moduli are spun on a wafer and cured. Young's modulus is about 10 megaPascals, 300 megaPascals and 1.1 gigaPascals respectively. Young's modulus is measured by ASTM D4065-95 tensile mode using Dynamic Mechanical Analyzer (DMA) made by TA Instruments. Plasma conditions are air, 5 seconds treatment time and 60 watts RF power using Harrick PDC-32G. Dies (5 mm×5 mm) are attached on the cured silicone for 5 seconds at 190° C. under 1.25 Kgf. The results are in Table 10.
  • Comparative Examples 9-14
  • Examples 99-104 are repeated except no plasma treatment is carried out. No adhesion was found without the plasma treatment.
    TABLE 10
    Young's
    Modulus of
    Silicone coating
    (megaPascal) Die Surface Adhesion
    Example 99  10 PI-coated Strong
    Example 100  10 Bare Si Strong
    Example 101  300 PI-coated Strong
    Example 102  300 Bare Si Strong
    Example 103 1100 PI-coated Strong
    Example 104 1100 Bare Si Strong
  • Examples 99-104 show that strong adhesion can be created with polymeric materials having wide modulus ranges according to this test protocol.
  • Examples 105-109
  • Cured Material A as in Example 37 and various substrates are treated by various plasma conditions otherwise the same as in Example 99. Die attach conditions are the same as Example 99. The substrates, plasma treatment conditions, and results are in Table 11.
  • Comparative Examples 15-19
  • Examples 105-109 are repeated except no plasma treatment is carried out. No adhesion was found without the plasma treatment.
    TABLE 11
    Treatment RF
    time power
    Substrate Gas (seconds) (watts) Adhesion
    Example 105 Silicon oxide Air 5 60 Strong
    passivated
    wafer
    Example 106 Silicon nitride Air 5 60 Strong
    passivated
    wafer
    Example 107 FR-4 board Air 5 60 Strong
    Example 108 Solder Mask Air 5 60 Strong
    Example 109 Plated Au on Oxygen 20  60 Strong
    PI tape
  • Examples 105-109 show that strong adhesion can be created using a variety of substrates using this test protocol.
  • Comparative Example 16
  • A silicone elastomer with a modulus of less than 1 megaPascal and a and flat piece of silicone resin with a modulus of 0.5-1.5 gigaPascals are plasma treated for 30 seconds using high purity compressed air as the plasma gas in a Harrick PDC-002 Plasma Cleaner at 29.6 Watts. Contact time is 1 minute under a force of 2 Kg. Fracture energy is calculated according to the modified JKR model of Reference Example 6. The results are in Table 12.
  • Example 110
  • Comparative Example 16 is repeated except that contact time is 12 hours. Die shear strength is measured according to the method of Reference Example 5. The results are in Table 12.
    TABLE 12
    Joules per square meter
    Comparative Example 16  0
    Example 110 30

    0 means no adhesion.
  • Comparative Example 16 and Example 110 show that adhesion can take more time to develop using some adherends over others. Example 110 also shows that adhesion can be created with relatively high modulus resins.
  • DRAWINGS
  • FIGS. 1-5 show an example of a die bonding process.
    • 101 semiconductor die
    • 102 back side of semiconductor die
    • 103 dicing tape
    • 104 die bonder collet
    • 105 plasma jet
    • 106 a pad of die attach material
    • 107 substrate
    • 108 plasma chamber

Claims (40)

1. A method comprising:
A) plasma treatment of a polymeric material, where the polymeric material comprises a silicone organic copolymer,
b) plasma treatment of an adherend, and
c) thereafter contacting the polymeric material and the adherend;
thereby creating adhesion of the polymeric material and the adherend;
where the method is carried out during fabrication of an electronic device, an electronic device package, a photonic device, or an optoelectronic device.
2. The method of claim 1, where steps A) and B) are carried out concurrently.
3. The method of claim 1, where steps A) and B) are carried out sequentially in any order.
4. The method of claim 1, further comprising: storing the polymeric material after step A) and before step C), or storing the adherend after step B) and before step C), or both.
5. The method of claim 1, further comprising repeating steps A), B), and C) one or more times.
6. The method of claim 5, wherein steps A), B), and C) are repeated once to add a second adherend to the polymeric material.
7. The method of claim 1, wherein the polymeric material has a modulus of at least about 0.1 megaPascal.
8. The method of claim 1, wherein the polymeric material has a modulus of up to about 5 gigaPascals.
9. The method of claim 8, wherein the polymeric material has a modulus of up to about 1 gigaPascal.
10. The method of claim 9, wherein the polymeric material has a modulus of up to about 300 megaPascals.
11. The method of claim 1, wherein step A) and step B) are each independently carried out using a plasma treatment selected from corona discharge treatment, dielectric barrier discharge treatment, and glow discharge treatment.
12. The method of claim 11, wherein the glow discharge treatment is carried out using plasma selected from low pressure glow discharge or atmospheric pressure glow discharge.
13. The method of claim 1, wherein step A) and step B) are each independently carried out at a pressure of up to about atmospheric pressure.
14. The method of claim 1, wherein step A) and step B) are each independently carried out for a time of at least about 1 millisecond.
15. The method of claim 1, wherein step A) and step B) are each independently carried out for a time of up to about 30 minutes.
16. The method of claim 1, wherein step C) is carried out at a temperature of at least about 15° C.
17. The method of claim 1, wherein step C) is carried out at a temperature of up to about 400° C.
18. The method of claim 1, wherein step C) is carried out by applying pressure for a time of at least about 0.1 second.
19. The method of claim 1, wherein step C) is carried out by applying pressure for a time of up to about 12 hours.
20. A method comprising:
A) plasma treatment of a polymeric material;
B) plasma treatment of an adherend;
wherein steps A) and B) are carried out using a gas comprising air oxygen, helium, argon carbon dioxide, or combinations thereof; and
C) thereafter contacting the polymeric material and the adherend;
thereby creating adhesion of the polymeric material and the adherend.
21. The method of claim 20, where steps A) and B) are carried out concurrently.
22. The method of claim 20, where steps A) and B) are carried out sequentially in any order.
23. The method of claim 20, further comprising: storing the polymeric material after step A) and before step C), or storing the adherend after step B) and before step C), or both.
24. The method of claim 20, further comprising repeating steps A), B), and C) one or more times.
25. The method of claim 24, wherein steps A), B), and C) are repeated once to add a second adherend to the polymeric material.
26. The method of claim 20, wherein the polymeric material has a modulus of at least about 0.1 megaPascal.
27. The method of claim 20, wherein the polymeric material has a modulus of up to about 5 gigaPascals.
28. The method of claim 27, wherein the polymeric material has a modulus of up to about 1 gigaPascal.
29. The method of claim 28, wherein the polymeric material has a modulus of up to about 300 megaPascals.
30. The method of claim 20, wherein step A) and step B) are each independently carried out using a plasma treatment selected from corona discharge treatment, dielectric barrier discharge treatment, and glow discharge treatment.
31. The method of claim 30, wherein the glow discharge treatment is carried out using plasma selected from low pressure glow discharge or atmospheric pressure glow discharge.
32. The method of claim 20, wherein step A) and step B) are each independently carried out at a pressure of up to about atmospheric pressure.
33. The method of claim 20, wherein step A) and step B) are each independently carried out for a time of at least about 1 millisecond.
34. The method of claim 20, wherein step A) and step B) are each independently carried out for a time of up to about 30 minutes.
35. The method of claim 20, wherein step C) is carried out at a temperature of at least about 15° C.
36. The method of claim 20, wherein step C) is carried out at a temperature of up to about 400° C.
37. The method of claim 20, wherein step C) is carried out by applying pressure for a time of at least about 0.1 second.
38. The method of claim 20, wherein step C) is carried out by applying pressure for a time of up to about 12 hours.
39. A method comprising:
A) plasma treatment of a polymeric material or plasma treatment of an adherend, or both, where plasma treatment of the polymeric material or plasma treatment of the adherend, or both, is performed using a plasma jet; and
B) thereafter contacting the polymeric material and the adherend;
thereby creating adhesion of the polymeric material and the adherend.
40. A method comprising:
A) plasma treatment of a side of a semiconductor die using a plasma jet,
B) plasma treatment of a polymeric die attach material, and
C) contacting the plasma treated side of the semiconductor die with the plasma treated surface of the polymeric die attach material thereby bonding the semiconductor die with the polymeric die attach material.
US10/909,892 2001-10-09 2004-08-02 Method for creating adhesion during fabrication of electronic devices Abandoned US20050031795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/909,892 US20050031795A1 (en) 2001-10-09 2004-08-02 Method for creating adhesion during fabrication of electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/973,498 US6793759B2 (en) 2001-10-09 2001-10-09 Method for creating adhesion during fabrication of electronic devices
US10/909,892 US20050031795A1 (en) 2001-10-09 2004-08-02 Method for creating adhesion during fabrication of electronic devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/973,498 Continuation-In-Part US6793759B2 (en) 2001-10-09 2001-10-09 Method for creating adhesion during fabrication of electronic devices

Publications (1)

Publication Number Publication Date
US20050031795A1 true US20050031795A1 (en) 2005-02-10

Family

ID=25520968

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/973,498 Expired - Fee Related US6793759B2 (en) 2001-10-09 2001-10-09 Method for creating adhesion during fabrication of electronic devices
US10/909,892 Abandoned US20050031795A1 (en) 2001-10-09 2004-08-02 Method for creating adhesion during fabrication of electronic devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/973,498 Expired - Fee Related US6793759B2 (en) 2001-10-09 2001-10-09 Method for creating adhesion during fabrication of electronic devices

Country Status (7)

Country Link
US (2) US6793759B2 (en)
EP (1) EP1435109A2 (en)
JP (1) JP4256260B2 (en)
KR (1) KR100895779B1 (en)
AU (1) AU2002339981A1 (en)
TW (1) TW569300B (en)
WO (1) WO2003041130A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067682A1 (en) * 2003-09-30 2005-03-31 Ryosuke Usui Semiconductor device containing stacked semiconductor chips and manufacturing method thereof
US20070148916A1 (en) * 2003-11-12 2007-06-28 3M Innovative Properties Company Semiconductor surface protecting sheet and method
US20090140029A1 (en) * 2007-11-29 2009-06-04 Ernst Wandke Method and device for wire bonding
US20090227089A1 (en) * 2008-03-07 2009-09-10 Plaut David J Dicing tape and die attach adhesive with patterned backing
US20090311442A1 (en) * 2006-08-23 2009-12-17 Europlasma Nv Method for pre-treating fibre reinforced composite plastic materials prior to painting and method for applying a painting layer on fibre reinforced composite plastic materials
CN101647323A (en) * 2007-02-23 2010-02-10 米兰-比可卡大学 Atmospheric -plasma processing method for processing materials
CN101932638A (en) * 2007-12-27 2010-12-29 蓝星有机硅法国简易股份有限公司 Silicone-self-adhesives, method for the production thereof, complexes using same and uses
US20110151176A1 (en) * 2008-09-02 2011-06-23 Ryota Akiyama Method of manufacturing wafer laminated body, device of manufacturing wafer laminated body, wafer laminated body, method of peeling support body, and method of manufacturing wafer
US20140087359A1 (en) * 2012-09-21 2014-03-27 California Institute Of Technology Methods and devices for sample lysis
WO2019160690A1 (en) * 2018-02-15 2019-08-22 Invensas Bonding Technologies, Inc. Techniques for processing devices
WO2022094579A1 (en) * 2020-10-29 2022-05-05 Invensas Bonding Technologies, Inc. Direct bonding methods and structures
US11742315B2 (en) 2017-04-21 2023-08-29 Adeia Semiconductor Bonding Technologies Inc. Die processing
US11742314B2 (en) 2020-03-31 2023-08-29 Adeia Semiconductor Bonding Technologies Inc. Reliable hybrid bonded apparatus

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8949902B1 (en) * 2001-02-06 2015-02-03 Rovi Guides, Inc. Systems and methods for providing audio-based guidance
US20030232450A1 (en) * 2002-06-13 2003-12-18 Yoshikazu Yoshida Microfluidic device and method for producing the same
US7248062B1 (en) 2002-11-04 2007-07-24 Kla-Tencor Technologies Corp. Contactless charge measurement of product wafers and control of corona generation and deposition
US20040258850A1 (en) * 2003-06-18 2004-12-23 Ann Straccia Environmentally friendly reactive fixture to allow localized surface engineering for improved adhesion to coated and non-coated substrates
US8586149B2 (en) * 2003-06-18 2013-11-19 Ford Global Technologies, Llc Environmentally friendly reactive fixture to allow localized surface engineering for improved adhesion to coated and non-coated substrates
EP1636653B1 (en) * 2003-06-23 2011-12-28 Dow Corning Corporation Adhesion method using gray-scale photolithography
JP2007502020A (en) * 2003-08-08 2007-02-01 ダウ・コーニング・コーポレイション Manufacturing method of electronic parts using liquid injection molding
US20050065438A1 (en) * 2003-09-08 2005-03-24 Miller Landon C.G. System and method of capturing and managing information during a medical diagnostic imaging procedure
US7722808B2 (en) 2003-09-12 2010-05-25 Novartis Ag Method and kits for sterilizing and storing soft contact lenses
JP2007510306A (en) * 2003-10-28 2007-04-19 ダウ・コーニング・コーポレイション Method for manufacturing a pad having a flat upper surface
US7422384B2 (en) * 2004-03-17 2008-09-09 Hewlett-Packard Development, L.P. System and a method for printing small print jobs
US20050238816A1 (en) * 2004-04-23 2005-10-27 Li Hou Method and apparatus of depositing low temperature inorganic films on plastic substrates
US7261793B2 (en) * 2004-08-13 2007-08-28 Hewlett-Packard Development Company, L.P. System and method for low temperature plasma-enhanced bonding
CN101048285B (en) * 2004-10-26 2011-06-08 惠普开发有限公司 Method for plasma enhanced bonding and bonded structures formed by plasma enhanced bonding
US7563691B2 (en) * 2004-10-29 2009-07-21 Hewlett-Packard Development Company, L.P. Method for plasma enhanced bonding and bonded structures formed by plasma enhanced bonding
US8702892B2 (en) * 2005-02-11 2014-04-22 Sika Technology Ag Bonding of air-plasma treated thermoplastics
US20060182939A1 (en) * 2005-02-11 2006-08-17 Motorola, Inc. Method and arrangement forming a solder mask on a ceramic module
JP2006258958A (en) * 2005-03-15 2006-09-28 Shibaura Mechatronics Corp Method and device for bonding substrate
DE102005031606A1 (en) * 2005-07-06 2007-01-11 Robert Bosch Gmbh Process for producing a coated component
US20070109003A1 (en) * 2005-08-19 2007-05-17 Kla-Tencor Technologies Corp. Test Pads, Methods and Systems for Measuring Properties of a Wafer
US7517561B2 (en) * 2005-09-21 2009-04-14 Ford Global Technologies, Llc Method of coating a substrate for adhesive bonding
DE102005052932A1 (en) * 2005-11-03 2007-05-10 Basf Ag Article containing rubber, thermoplastic polyurethane and engineering plastic
US7744984B2 (en) * 2006-06-28 2010-06-29 Ford Global Technologies, Llc Method of treating substrates for bonding
KR100791557B1 (en) * 2006-11-03 2008-01-04 선우에이엠씨주식회사 Plastic-metal film and method for preparing the same
US20080179286A1 (en) 2007-01-29 2008-07-31 Igor Murokh Dielectric plasma chamber apparatus and method with exterior electrodes
EP1978038A1 (en) * 2007-04-02 2008-10-08 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) A method for producing a coating by atmospheric pressure plasma technology
US9231239B2 (en) 2007-05-30 2016-01-05 Prologium Holding Inc. Electricity supply element and ceramic separator thereof
US20100327211A1 (en) * 2007-11-02 2010-12-30 Ikerlan Centro De Investigaciones Tecnológicas, S. Method for the production of micro/nanofluidic devices for flow control and resulting device
JP2009132749A (en) * 2007-11-28 2009-06-18 Seiko Epson Corp Bonding method and bonded body
DE102008009171B4 (en) * 2008-02-14 2014-07-17 Maschinenfabrik Reinhausen Gmbh Method for bonding silicone and elastomer components
JP4497218B2 (en) 2008-03-06 2010-07-07 セイコーエプソン株式会社 Joining method and joined body
DE102008036518A1 (en) * 2008-08-06 2010-02-11 Tesa Se Use of an organopolysiloxane / polyurea block copolymer as a coating on plastic surfaces
JP2010095594A (en) * 2008-10-15 2010-04-30 Seiko Epson Corp Bonding method and bonded body
JP2010095595A (en) * 2008-10-15 2010-04-30 Seiko Epson Corp Bonding method and bonded body
KR20110090996A (en) 2008-10-31 2011-08-10 다우 코닝 코포레이션 Photovoltaic cell module and method of forming
US20100151236A1 (en) * 2008-12-11 2010-06-17 Ford Global Technologies, Llc Surface treatment for polymeric part adhesion
US20100230044A1 (en) * 2009-03-12 2010-09-16 Shih-Kang Fan Bubbleless packaging method
JP5499514B2 (en) * 2009-05-08 2014-05-21 セイコーエプソン株式会社 Joining method and joined body
KR20120120241A (en) * 2010-01-19 2012-11-01 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining
JP5589576B2 (en) * 2010-06-10 2014-09-17 富士通セミコンダクター株式会社 Semiconductor device manufacturing method and semiconductor substrate
US9089745B2 (en) * 2010-12-23 2015-07-28 Taylor Made Golf Company, Inc. Plasma treatment of golf club components and bonding thereof
JP2013105973A (en) * 2011-11-16 2013-05-30 Seiko Epson Corp Light-emitting device, method for manufacturing the same, and projector
TWI437931B (en) * 2011-12-16 2014-05-11 Prologium Technology Co Ltd Pcb structure
US11089693B2 (en) 2011-12-16 2021-08-10 Prologium Technology Co., Ltd. PCB structure with a silicone layer as adhesive
US9449933B2 (en) 2012-03-29 2016-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. Packaging device and method of making the same
JP5935751B2 (en) * 2012-05-08 2016-06-15 信越化学工業株式会社 Heat dissipation board and manufacturing method thereof
DE102012220286A1 (en) * 2012-11-07 2014-05-08 Tesa Se Increasing adhesion between pressure-sensitive adhesive layer comprising surface facing opposite to substrate and surface facing substrate, and surface of substrate, comprises treating substrate facing surface of adhesive layer with plasma
WO2014075076A1 (en) 2012-11-12 2014-05-15 Dow Corning Corporation Photovoltaic cell module
US9674965B1 (en) * 2014-06-16 2017-06-06 Amazon Technologies, Inc. Hybrid bonding techniques for electronic devices
DE102014211720A1 (en) * 2014-06-18 2015-12-24 Robert Bosch Gmbh Optics carrier, method for producing an optics carrier, apparatus for producing an optics carrier and camera system
US20160317068A1 (en) * 2015-04-30 2016-11-03 Verily Life Sciences Llc Electronic devices with encapsulating silicone based adhesive
BR202015026038Y1 (en) * 2015-10-14 2018-03-06 Jeffrey Arippol Giuseppe ARRANGEMENT IN APPLIER OF LABELS OR SIMILAR SELF-TYPE TYPE WITHOUT SUPPORT AND PROTECTIVE TAPE
FR3043679B1 (en) * 2015-11-12 2021-07-23 Aptar Stelmi Sas PROCESS FOR TREATING AN ELASTOMERIC PACKAGING ELEMENT, AND PACKAGING ELEMENT THUS TREATED.
CN110582529B (en) * 2017-03-03 2022-05-31 汉阳大学校产学协力团埃丽卡校区 Method for modifying the surface of a polymer substrate and polymer substrate having a surface modified thereby
EP4070364A1 (en) * 2019-12-04 2022-10-12 3M Innovative Properties Company Circuits including micropatterns and using partial curing to adhere dies
CN114156026A (en) * 2021-11-30 2022-03-08 中铁第一勘察设计院集团有限公司 Processing method of high-voltage capacitive dry-type sleeve

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629084A (en) * 1969-06-19 1971-12-21 Union Carbide Corp Method of improving the tack of rubbers
US4639285A (en) * 1985-02-13 1987-01-27 Shin-Etsu Chemical Co. Ltd. Heat-resistant flexible laminate for substrate of printed circuit board and a method for the preparation thereof
US4753978A (en) * 1987-08-25 1988-06-28 Dow Corning Corporation Curable organosiloxane compositions
US4766176A (en) * 1987-07-20 1988-08-23 Dow Corning Corporation Storage stable heat curable organosiloxane compositions containing microencapsulated platinum-containing catalysts
US4868096A (en) * 1986-09-09 1989-09-19 Tokyo Ohka Kogyo Co., Ltd. Surface treatment of silicone-based coating films
US4897153A (en) * 1989-04-24 1990-01-30 General Electric Company Method of processing siloxane-polyimides for electronic packaging applications
US4908094A (en) * 1986-04-14 1990-03-13 International Business Machines Corporation Method for laminating organic materials via surface modification
US4933060A (en) * 1987-03-02 1990-06-12 The Standard Oil Company Surface modification of fluoropolymers by reactive gas plasmas
US5017654A (en) * 1988-06-30 1991-05-21 Toray Silicone Company, Limited Thermosetting organosiloxane composition
US5019210A (en) * 1989-04-03 1991-05-28 International Business Machines Corporation Method for enhancing the adhesion of polymer surfaces by water vapor plasma treatment
US5110845A (en) * 1990-12-03 1992-05-05 Dow Corning Corporation Extrudable curable organosiloxane compositions
US5148266A (en) * 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
US5344467A (en) * 1991-05-13 1994-09-06 The Lubrizol Corporation Organometallic complex-antioxidant combinations, and concentrates and diesel fuels containing same
US5347159A (en) * 1990-09-24 1994-09-13 Tessera, Inc. Semiconductor chip assemblies with face-up mounting and rear-surface connection to substrate
US5357005A (en) * 1991-12-11 1994-10-18 International Business Machines Corporation Reactive surface functionalization
US5403453A (en) * 1993-05-28 1995-04-04 The University Of Tennessee Research Corporation Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure
US5477611A (en) * 1993-09-20 1995-12-26 Tessera, Inc. Method of forming interface between die and chip carrier
US5497033A (en) * 1993-02-08 1996-03-05 Martin Marietta Corporation Embedded substrate for integrated circuit modules
US5848467A (en) * 1990-09-24 1998-12-15 Tessera, Inc. Methods of making semiconductor chip assemblies
US5851854A (en) * 1995-08-04 1998-12-22 Giesecke & Devrient Gmbh Method for producing a data carrier
US5858815A (en) * 1996-06-21 1999-01-12 Anam Semiconductor Inc. Semiconductor package and method for fabricating the same
US5977226A (en) * 1998-05-04 1999-11-02 Dow Corning Corporation Vacuum dispensable silicone compositions
US5990545A (en) * 1996-12-02 1999-11-23 3M Innovative Properties Company Chip scale ball grid array for integrated circuit package
US6074895A (en) * 1997-09-23 2000-06-13 International Business Machines Corporation Method of forming a flip chip assembly
US6083340A (en) * 1997-02-28 2000-07-04 Hokuriku Electric Industry Co., Ltd. Process for manufacturing a multi-layer circuit board
US6130112A (en) * 1996-03-19 2000-10-10 Hitachi, Ltd. Semiconductor device
US6139678A (en) * 1997-11-20 2000-10-31 Trusi Technologies, Llc Plasma processing methods and apparatus
US6602803B2 (en) * 1998-09-28 2003-08-05 Texas Instruments Incorporated Direct attachment semiconductor chip to organic substrate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1238628A (en) 1984-02-22 1988-06-28 Ronald M. Heck Vanadium oxide catalyst for nitrogen oxide reduction and process using the same
ATE47646T1 (en) 1985-09-04 1989-11-15 Gen Foods Corp PROCESS FOR FLAVORING SOLUTION COFFEE.
JPH03167869A (en) 1989-11-20 1991-07-19 American Teleph & Telegr Co <Att> Manufacture of product and electronic device
JPH06346034A (en) 1993-06-11 1994-12-20 Nitto Denko Corp Adhesive tape for producing plastic lens
JP2925960B2 (en) 1994-11-29 1999-07-28 三洋電機株式会社 Method for manufacturing semiconductor device
JPH08335608A (en) 1995-06-06 1996-12-17 Toray Ind Inc Spacer film for tab
JPH09214140A (en) 1995-11-29 1997-08-15 Toppan Printing Co Ltd Multilayered printed wiring board and its manufacture
JP3395640B2 (en) 1998-03-31 2003-04-14 宇部興産株式会社 Metal layer laminated film
JP2000073029A (en) 1998-08-26 2000-03-07 Nitto Denko Corp Adhesive member and its production
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
JP3440057B2 (en) 2000-07-05 2003-08-25 唯知 須賀 Semiconductor device and manufacturing method thereof
US6563133B1 (en) 2000-08-09 2003-05-13 Ziptronix, Inc. Method of epitaxial-like wafer bonding at low temperature and bonded structure

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629084A (en) * 1969-06-19 1971-12-21 Union Carbide Corp Method of improving the tack of rubbers
US4639285A (en) * 1985-02-13 1987-01-27 Shin-Etsu Chemical Co. Ltd. Heat-resistant flexible laminate for substrate of printed circuit board and a method for the preparation thereof
US4908094A (en) * 1986-04-14 1990-03-13 International Business Machines Corporation Method for laminating organic materials via surface modification
US4868096A (en) * 1986-09-09 1989-09-19 Tokyo Ohka Kogyo Co., Ltd. Surface treatment of silicone-based coating films
US4933060A (en) * 1987-03-02 1990-06-12 The Standard Oil Company Surface modification of fluoropolymers by reactive gas plasmas
US4766176A (en) * 1987-07-20 1988-08-23 Dow Corning Corporation Storage stable heat curable organosiloxane compositions containing microencapsulated platinum-containing catalysts
US4753978A (en) * 1987-08-25 1988-06-28 Dow Corning Corporation Curable organosiloxane compositions
US5017654A (en) * 1988-06-30 1991-05-21 Toray Silicone Company, Limited Thermosetting organosiloxane composition
US5019210A (en) * 1989-04-03 1991-05-28 International Business Machines Corporation Method for enhancing the adhesion of polymer surfaces by water vapor plasma treatment
US4897153A (en) * 1989-04-24 1990-01-30 General Electric Company Method of processing siloxane-polyimides for electronic packaging applications
US5346861A (en) * 1990-09-24 1994-09-13 Tessera, Inc. Semiconductor chip assemblies and methods of making same
US5848467A (en) * 1990-09-24 1998-12-15 Tessera, Inc. Methods of making semiconductor chip assemblies
US5347159A (en) * 1990-09-24 1994-09-13 Tessera, Inc. Semiconductor chip assemblies with face-up mounting and rear-surface connection to substrate
US5148266A (en) * 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
US5110845A (en) * 1990-12-03 1992-05-05 Dow Corning Corporation Extrudable curable organosiloxane compositions
US5344467A (en) * 1991-05-13 1994-09-06 The Lubrizol Corporation Organometallic complex-antioxidant combinations, and concentrates and diesel fuels containing same
US5357005A (en) * 1991-12-11 1994-10-18 International Business Machines Corporation Reactive surface functionalization
US5497033A (en) * 1993-02-08 1996-03-05 Martin Marietta Corporation Embedded substrate for integrated circuit modules
US5403453A (en) * 1993-05-28 1995-04-04 The University Of Tennessee Research Corporation Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure
US5477611A (en) * 1993-09-20 1995-12-26 Tessera, Inc. Method of forming interface between die and chip carrier
US5851854A (en) * 1995-08-04 1998-12-22 Giesecke & Devrient Gmbh Method for producing a data carrier
US6130112A (en) * 1996-03-19 2000-10-10 Hitachi, Ltd. Semiconductor device
US5858815A (en) * 1996-06-21 1999-01-12 Anam Semiconductor Inc. Semiconductor package and method for fabricating the same
US5990545A (en) * 1996-12-02 1999-11-23 3M Innovative Properties Company Chip scale ball grid array for integrated circuit package
US6083340A (en) * 1997-02-28 2000-07-04 Hokuriku Electric Industry Co., Ltd. Process for manufacturing a multi-layer circuit board
US6074895A (en) * 1997-09-23 2000-06-13 International Business Machines Corporation Method of forming a flip chip assembly
US6139678A (en) * 1997-11-20 2000-10-31 Trusi Technologies, Llc Plasma processing methods and apparatus
US5977226A (en) * 1998-05-04 1999-11-02 Dow Corning Corporation Vacuum dispensable silicone compositions
US6602803B2 (en) * 1998-09-28 2003-08-05 Texas Instruments Incorporated Direct attachment semiconductor chip to organic substrate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067682A1 (en) * 2003-09-30 2005-03-31 Ryosuke Usui Semiconductor device containing stacked semiconductor chips and manufacturing method thereof
US20070148916A1 (en) * 2003-11-12 2007-06-28 3M Innovative Properties Company Semiconductor surface protecting sheet and method
US8349706B2 (en) 2003-11-12 2013-01-08 3M Innovtive Properties Company Semiconductor surface protecting method
US20090311442A1 (en) * 2006-08-23 2009-12-17 Europlasma Nv Method for pre-treating fibre reinforced composite plastic materials prior to painting and method for applying a painting layer on fibre reinforced composite plastic materials
CN101647323A (en) * 2007-02-23 2010-02-10 米兰-比可卡大学 Atmospheric -plasma processing method for processing materials
US20090140029A1 (en) * 2007-11-29 2009-06-04 Ernst Wandke Method and device for wire bonding
US20110189422A1 (en) * 2007-12-27 2011-08-04 Jean-Marc Frances Silicone-Self-Adhesives, Method of Production, Complexes Using Them and Their Uses
US9371428B2 (en) * 2007-12-27 2016-06-21 Bluestar Silicones France Sas Silicone-self-adhesives, method of production, complexes using them and their uses
CN101932638A (en) * 2007-12-27 2010-12-29 蓝星有机硅法国简易股份有限公司 Silicone-self-adhesives, method for the production thereof, complexes using same and uses
US7858499B2 (en) 2008-03-07 2010-12-28 3M Innovative Properties Company Dicing tape and die attach adhesive with patterned backing
US20090227089A1 (en) * 2008-03-07 2009-09-10 Plaut David J Dicing tape and die attach adhesive with patterned backing
US8008783B2 (en) 2008-03-07 2011-08-30 3M Innovative Properties Company Dicing tape and die attach adhesive with patterned backing
US20110064948A1 (en) * 2008-03-07 2011-03-17 3M Innovative Properties Company Dicing tape and die attach adhesive with patterned backing
US20110151176A1 (en) * 2008-09-02 2011-06-23 Ryota Akiyama Method of manufacturing wafer laminated body, device of manufacturing wafer laminated body, wafer laminated body, method of peeling support body, and method of manufacturing wafer
US20140087359A1 (en) * 2012-09-21 2014-03-27 California Institute Of Technology Methods and devices for sample lysis
WO2014047523A3 (en) * 2012-09-21 2014-06-26 California Institute Of Technology Methods and devices for sample lysis
WO2014047523A2 (en) * 2012-09-21 2014-03-27 California Institute Of Technology Methods and devices for sample lysis
US9580679B2 (en) * 2012-09-21 2017-02-28 California Institute Of Technology Methods and devices for sample lysis
US11742315B2 (en) 2017-04-21 2023-08-29 Adeia Semiconductor Bonding Technologies Inc. Die processing
WO2019160690A1 (en) * 2018-02-15 2019-08-22 Invensas Bonding Technologies, Inc. Techniques for processing devices
US10727219B2 (en) 2018-02-15 2020-07-28 Invensas Bonding Technologies, Inc. Techniques for processing devices
US11037919B2 (en) 2018-02-15 2021-06-15 Invensas Bonding Technologies, Inc. Techniques for processing devices
US11855064B2 (en) 2018-02-15 2023-12-26 Adeia Semiconductor Bonding Technologies Inc. Techniques for processing devices
US11742314B2 (en) 2020-03-31 2023-08-29 Adeia Semiconductor Bonding Technologies Inc. Reliable hybrid bonded apparatus
WO2022094579A1 (en) * 2020-10-29 2022-05-05 Invensas Bonding Technologies, Inc. Direct bonding methods and structures

Also Published As

Publication number Publication date
KR100895779B1 (en) 2009-05-08
AU2002339981A1 (en) 2003-05-19
JP4256260B2 (en) 2009-04-22
WO2003041130A3 (en) 2003-11-27
WO2003041130A2 (en) 2003-05-15
JP2005509289A (en) 2005-04-07
US20030145940A1 (en) 2003-08-07
TW569300B (en) 2004-01-01
EP1435109A2 (en) 2004-07-07
US6793759B2 (en) 2004-09-21
KR20050029114A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US6793759B2 (en) Method for creating adhesion during fabrication of electronic devices
KR101204197B1 (en) Adhesive sheet, dicing tape integrated type, adhesive sheet, and semiconductor device producing method
JP5206769B2 (en) Adhesive sheet
JP4261356B2 (en) Method for manufacturing a semiconductor package
EP2200075A1 (en) Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
EP2200074A1 (en) Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
TWI692519B (en) Electronic parts protection film, electronic parts protection member, electronic parts manufacturing method and packaging manufacturing method
WO2005103180A1 (en) Adhesive sheet, semiconductor device and process for producing semiconductor device
JP2005019962A (en) Adhesive sheet
KR20050088251A (en) Pressure sensitive adhesive sheet, method of protecting semiconductor wafer surface and method of processing work
KR101974257B1 (en) Adhesive film and semiconductor package using adhesive film
JP2010287836A (en) Adhesive film laminate for semiconductor processing
JP2017528528A (en) Resin composition for bonding semiconductor, adhesive film, dicing die bonding film, and semiconductor device
US20120091585A1 (en) Laser release process for very thin si-carrier build
JP5754072B2 (en) Adhesive composition, adhesive member sheet for connecting circuit members, and method for manufacturing semiconductor device
US8545663B2 (en) Process for manufacturing semiconductor devices
KR20200118811A (en) Adhesive sheet for semiconductor device manufacturing and method for manufacturing semiconductor device using the same
Garrou et al. Underfill adhesion to BCB (Cyclotene/sup TM/) bumping and redistribution dielectrics
Omazic et al. Optimum Chip-Tape Adhesion for Reliable Pickup Process
WO2022118925A1 (en) Method for manufacturing semiconductor device
JP2009278079A (en) Adhesive sheet for semiconductor, and dicing tape integrated type adhesive sheet for semiconductor
JP2003082301A (en) Adhesive tape and semiconductor device
Hart et al. Enabling MSL-1 capability for QFN and other design leadframe packages

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW CORNING CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAUDHURY, MANOJ KUMAR;GOODWIN, ANDREW JAMES;LEE, YEONG JOO;AND OTHERS;REEL/FRAME:015888/0544;SIGNING DATES FROM 20040715 TO 20041012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION