US20050064035A1 - Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof - Google Patents

Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof Download PDF

Info

Publication number
US20050064035A1
US20050064035A1 US10/665,081 US66508103A US2005064035A1 US 20050064035 A1 US20050064035 A1 US 20050064035A1 US 66508103 A US66508103 A US 66508103A US 2005064035 A1 US2005064035 A1 US 2005064035A1
Authority
US
United States
Prior art keywords
layer
gastric juice
medicament according
intermediate layer
omeprazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/665,081
Inventor
Gerd-Ulfert Heese
Herbert Junger
Arnim Laicher
Claudio Lorck
Thomas Profitlich
Gerd Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19626045A external-priority patent/DE19626045C2/en
Application filed by Individual filed Critical Individual
Priority to US10/665,081 priority Critical patent/US20050064035A1/en
Publication of US20050064035A1 publication Critical patent/US20050064035A1/en
Priority to US11/502,830 priority patent/US7276253B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5084Mixtures of one or more drugs in different galenical forms, at least one of which being granules, microcapsules or (coated) microparticles according to A61K9/16 or A61K9/50, e.g. for obtaining a specific release pattern or for combining different drugs

Definitions

  • the present invention discloses a stable medicament for oral administration which comprises-one or more of the benzimidazole derivatives Omeprazole, Lansoprazole or Pantoprazole as an active ingredient as well as a method for its production.
  • Omeprazole (5-methoxy-2(((4-methoxy-3,5-dimethyl-2-pyridyl)methyl)-sulfinyl)-1H-benzimidazole functions as a potent inhibitor in the secretion of gastric acid.
  • Omeprazole has proven itself in the therapy of duodenal ulcer, gastric ulcer, reflux esophagitis and Zollinger-Ellision syndrome. Parenteral and solid peroral medicaments are employed in this connection.
  • Omeprazole The following embodiments presented for Omeprazole apply in the same manner for Lansoprazole (2-(((3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl)methyl)-sulfinyl)-1H-benzimidazole) and Pantoprazole (5-difluoromethoxy-2-((3,4-dimethoxy-2-pyridyl)methyl)-sulfinyl)-1H-benzimidazole).
  • the administration of a medicine per os is especially convenient because it can be carried out by patients practically anywhere and at any time without effort and unpleasant attendant phenomena.
  • the oral administration inevitably leads to the fact that the medicament reaches the stomach at first.
  • Omeprazole and its derivatives degrade very rapidly in the acidic environment of the stomach to ineffective compounds.
  • Omeprazole has a half-life of less than ten minutes in aqueous solution at pH values under 4. Therefore, solid peroral medicines (tablets, pellets, granulates) of Omeprazole and similar active ingredients must be completely protected against gastric juice.
  • Omeprazole is provided with a coating of enteric, i.e. gastric juice-resistant materials, which is insoluble in the acid environment of the stomach (ca. pH 1 to 3) on the one hand, but dissolves in the weakly acidic to weakly alkaline region of the duodenum (pH>5.5). It is known to introduce the extremely acid sensitive active ingredient Omeprazole into the core of a pellet formulation onto which one or more coating layers provided.
  • enteric i.e. gastric juice-resistant materials
  • Eudragit® L100 or L100-55 is used a layer material.
  • Eudragit® L100 is a copolymer of methacrylic acid and methylmethacrylate in a certain ratio and is insoluble in an acidic environment, for example in the stomach, and therewith forms a considerably impermeable protective layer.
  • Eudragit® L100-55 is a copolymer of methacrylic acid and ethylacrylate, whereby the ratio of the monomers is chosen in such a manner that it is insoluble at a pH ⁇ 5.5, but is soluble at a pH above this.
  • the reason for this essentially lies in the fact that the carboxyl side groups of the polymer are protonated in the acidic environment, and therewith, the polymer is non-charged as a whole. In the weakly acidic neutral and/or basic environment, for example in the intestine region, the carboxyl groups deprotonate whereby the polymer obtains negative charges. It is then water-soluble whereby the active ingredient is released.
  • Eudragit® cannot be applied directly onto the Omeprazole core because the carboxyl groups in the coating layer degrade the Omeprazole which also presents problems in the production and storage of the medicament. Even small amounts of degradation products already lead to unambiguous color changes, and therewith to loss of quality, which no longer allow administration to patients under certain conditions.
  • the storage problems are intensified when moisture penetrates into the active ingredient-containing core through hair-line cracks and other defects in the coating layer.
  • Gastric juice-resistant coatings of the above-mentioned polymers which are separated from the active ingredient-containing core by an inert isolation layer are suitable for the protection of solid, peroral medicaments with Omeprazole, Lansoprazole or Pantoprazole as an active ingredient against unfavourable storage conditions and against gastric juice in oral ingestion. Additionally, it has also been proven to be appropriate to stabilize the active ingredient-containing core by addition of an alkaline reacting substance. On the other hand, a sufficiently fast release in the intestine must be ensured.
  • DE 1 204 363 describes a medicament comprising a core with various layers applied thereto.
  • the first (inner most) layer is soluble in the stomach, but insoluble in the intestine.
  • the second protective layer is water soluble (independent of the pH value) and the third (outer most) protective layer is a gastric juice-resistant coating.
  • this formulation is not suitable for Omeprazole because it only dissolves slowly in the intestine.
  • a fast dissolution in the intestine is essential for the desired bio-availability.
  • EP 0 247 983 discloses a pharmaceutical agent for oral administration which comprises Omeprazole as an effective component.
  • the core material contains Omeprazole together with an alkaline reacting compound or an Omeprazole salt, optionally together with an alkaline reacting adjuvant.
  • Intermediate layers which form a separation layer between the alkaline reacting core and an outer layer of a gastric juice-resistant coating comprise water-soluble tablet carrier mediums or tablet carrier mediums quickly disintegrating in water or polymeric, water-soluble, film-forming substance mixtures which optionally contain buffering, alkaline compounds and which should capture protons penetrating from the outside. Aside from its water-solubility, the layer material is chemically and physically inert.
  • EP 0 519 144 describes Omeprazole pellets consisting of an inert pellet core which is coded with the micronized active ingredient and is subsequently coated with a gastric juice-resistant layer.
  • the following adjuvants, dispersed in water, are employed for coating the core with Omeprazole: hydroxymethylcellulose (HMC), water-free lactose, L-hydroxypropylcellulose (L-HPC), sodium lauryl sulfate, disodium hydrogen phosphate dihydrate.
  • Hydrokypropylmethylcellulose phthalate (HPMCP) is used as a gastric juice-resistant coating.
  • HPMCP Hydrokypropylmethylcellulose phthalate
  • EP 0 496 437 encompasses pellet cores and/or tablets which contain Omeprazole or an alkaline salt of Omeprazole together with an alkaline reacting compound (buffer) and which are coated with a layer of water-soluble, film-forming adjuvants which preferably react alkaline (buffer) as well as with a gastric juice-resistant outer film.
  • EP 0 239 200 uses basic magnesium salts and/or basic calcium salts for stabilizing benzimidazole derivatives with Omeprazole as typical representative.
  • Object of the present invention is to provide an improved medicament as compared to the state of the art suitable for oral administration which comprises Omeprazole, Lansoprazole and/or Pantoprazole as an active ingredient, optionally in combination with further pharmaceutically effective substances, and which possesses excellent stability in extended storage and under chemico-physical load.
  • the penetration of acidic gastric juice into faults, cracks, chips or any other imperfections of the coating layer into the core layer should be avoided with the medicament according to the invention and the degradation of the acid-label active ingredient should be prevented therewith.
  • the medicament according to the invention guarantees a very high medicament security which above all should also be provided if unfavourable conditions arise in the course of the manufacturing process of the medicament as well as in the handling of the same and/or its packaged form by patients.
  • the medicament quickly releases the active ingredient in the small intestine after passage through the stomach. Additionally, the degradation of the medicament should prevent the occurrence of discoloration of the active ingredient.
  • subject-matter of the invention is a method for the production of the above-mentioned medicament, whereby
  • the layer construction of the medicament according to the invention is schematically given in FIG. 1 .
  • the core of the medicament according to the invention encompasses the active ingredient Omeprazole, Lansoprazole or Pantoprazole individually or combinations thereof together with customary auxiliary substances.
  • the core of the active ingredient is formulated together with an alkaline reacting compound. It is also not necessary for an alkaline salt of the active ingredient be employed.
  • fillers such as mannite, hydroxypropylcellulose, microcrystalline cellulose and water-free lactose are especially suitable. Additionally, it has be shown that advantageous stability effects can be obtained by using a specific combination of mannite and hydroxypropylcellulose as a non-alkalizing adjuvant in the core.
  • the core can also comprise tensides which are selected in the suitable manner from sodium lauryl sulfate, sorbitan fatty acid ester and polyoxyethylene sorbitan fatty acid ester.
  • the core of the medicament according to the invention can be formed as a molded article.
  • Preferred molded articles are pellet cores, tablets microtablets or granulates.
  • the molded articles are coated with an intermediate layer.
  • This intermediate layer preferably has a layer thickness of approximately 5 to 30 ⁇ m. It forms a mechanical as well as chemical barrier to the core. Thereby, it is necessary that the intermediate layer be present in an intact film.
  • the polymer of the intermediate layer amounts to approximately 3 to 5% by weight of the core weight.
  • the intermediate layer comprises a gastric juice-resistant polymer layer material which was adjusted with alkali to pH range of 5.5 to 7.0, preferably 5.5 to 6.5. With these pH values, not all protons of the acidic functions of the polymer material are exchanged; the material is merely partially neutralized. As emerges from FIG. 2 , less than 40% of the carboxyl functions in the case of Eudragit® are present at a pH of 5.5. Despite this, a combination of Eudragit® partially neutralized to pH 5.5 with Omeprazole is unexpectedly stable even under intensive storage conditions (see Example 2). At pH 7.0, ca. 97% of the carboxyl functions of Eudragit® are neutralized (see FIG. 2 ).
  • alkali substances substances are to be understood whose solutions demonstrate alkaline reactions with water (Römpps Chemistry Encyclopaedia, 8th Edition, 1979).
  • hydroxides of alkali metals especially sodium and potassium, but also hydroxides of the earth alkali metals are primarily among these.
  • Hydroxides of the alkali metals, especially sodium hydroxide, are preferred according to the invention.
  • protons of the acidic functions are fixed through the polymer chains of the coat material, for example carboxyl groups, are partially replaced by alkali metal ions for example as counter-ions.
  • the polymer layer material modified in this manner is no longer physico-chemically inert in the presence of protons, but rather, is reactive because it now possess cation exchange capacity. This means that when moisture and especially acidic gastric juice penetrates into cracks, faults, chips or other imperfections through the outer layer of the medicament according to the invention, the penetrating protons are captured and are exchanged by harmless alkali metal ions.
  • a further aspect of the reactive principal of the intermediate layer material is demonstrated by the fact the intermediate layer is transformed at these places into a gastric juice-resistant barrier; it possess a “self-repair-mechanism” to a certaint degree. Practical tests have shown that with contact of the intermediate layer with an acidic medium forms a gel-like substance which not only captures protons but also forms a flexible mechanical barrier which prevents the further penetration of moisture and/or acid medium.
  • the partial neutralization of the polymer material for the reactive intermediate layer to a pH range 5.5 to 6.5 is especially preferred because a gastric juice-resistant barrier already forms when only few protons penetrate through the outer layer; on the other hand, the Omeprazole core is still sufficiently stable.
  • Buffering and/or alkalizing additives in the intermediate layer as proposed in EP 0 247 983 are no longer necessary and can even be damaging because they increase solubility of the intermediate layer and reduce its protective function. This nearly contradicts the “self-repair-mechanism” according to the invention; namely, the more basic equivalents that are present in the intermediate layer, the more protons must penetrate from the outside so that the “self-repair-mechanism” of the reactive layer-has a quick effect.
  • Eudragit® L100-55 Eudragit® L100 produced from Röhm Pharma, Germany, as well as hydroxypropylmethylcellulose phthalate (HPMCP) and cellulose acetate phthalate (CAP) which, as described above, are partially neutralized with alkali before use as an intermediate layer, i.e. before spraying of the same, are suitable as preferred substances for the intermediate layer.
  • HPMCP hydroxypropylmethylcellulose phthalate
  • CAP cellulose acetate phthalate
  • Particularly preferred is Eudragit® L100-55 obtainable world-wide as a commercial product.
  • the intermediate layer can contain customary additives, for example an emollient.
  • an emollient for example an emollient.
  • triethyl citrate, acetyltriethyl citrate, acetylated monoglycerides, propylene glycol and polyethylene glycols are preferably suitable fore this.
  • the coated molded articles i.e. the core and the intermediate layer, are then coated with an outer layer for the production of the medicament according to the invention.
  • the outer layer represents a customary enteric, gastric juice-resistant layer.
  • commercial, aqueous polymer dispersions such as polymethacrylates, for example Eudragit® L100-55 (Röhm Pharma), and coating CE 5142 (BASF) are suitable as materials.
  • polymers can also be used for formation of the gastric juice-resistant layer which are soluble in organic solvents.
  • phthalates cellulose acetate phthalate, hydroxypropylmethyl cellulose phthalate
  • the outer layer of the medicament according to the invention can contain antiblocking agents, dispersion agents, pigments and colorants.
  • a suitable antiblocking agent is talcum for example.
  • the inventive combination of enteric outer layer and reactive intermediate layer shows an accelerated dissolution behaviour in artificial intestinal fluid (pH ca. 5.8).
  • This effect not only allows a very quick release of the active ingredient in the weakly acidic to weakly alkaline environment of the small intestine, and therewith an excellent bio-availability, but also permits improved medicament security because the enteric outer layer can be strengthened without retarding a desired quick release.
  • the thickness of the gastric juice-resistant outer layer of the medicament according to the invention amounts to 20 to 60 ⁇ m (ca. 10 to 50% weight with respect to the core), preferably 30 to 60 ⁇ m.
  • the reactive intermediate layer consists of partially neutralized Eudragit® L100-55 at a pH value of 5.5 to 7.0, preferably 5.5to 6.5
  • the outer layer consists of commercial Eudragit® L100-55 (pH ca. 2 to 3).
  • the pH transition between outer layer and intermediate layer does not necessarily have to be discontinuous, but rather, can also be formed as a gradient, This can be obtained if several thin Eudragit layers are applied from inside to outside each of which was partially neutralized to a decreasing pH value.
  • the reactive intermediate layer as well as the gastric juice-resistant outer layer can can be formed as a plurality of single layers.
  • the present invention further comprises a method for the production of a stable medicament for oral administration which comprises Omeprazole, Lansoprazole and/or Pantoprazole as an active ingredient.
  • the active ingredient and adjuvants such as mannite, hydroxypropylcellulose and sodium lauryl sulfate
  • a suitable solvent preferably isopropanol
  • the molded articles are subsequently laminated with an aqueous dispersion consisting of a gastric juice-resistant substance partially neutralized with alkali to a pH value of ca.
  • Eudragit® L100-55 preferably Eudragit® L100-55, as well as antiblocking agent and/or emollient, such as talcum and triethyl citrate, in a fluidized bed apparatus for example under formation of the intermediate layer with cation exchange activity.
  • a quality product corresponding to Eudragit® L100-55 is also commercially obtainable as a finished suspension under the designation Eudragit® L30D-55.
  • the coating occurs with a gastric juice-resistant substance (for example Eudragit® L100-55), talcum and an emollient (such as triethyl citrate) for formation of the enteric outer layer of the medicament according to the invention.
  • pellets which are filled in gelatine capsules in an amount sufficient for the desired active ingredient dose is preferred.
  • the capsule formulations produced in this manner can also contain other active ingredients.
  • Preferable is a combination of Diclofenac- and Omeprazole-containing pellets.
  • the Diclofenac-containing pellets are preferably produced according to the method of the invention, i.e. they also contain a reactive intermediate layer. However, they can also be produced by known methods, such as disclosed in EP 0 348 808 for example.
  • the Diclofenac-containing pellets are present as a mixture of gastric juice-resistant coated pellets and retarded permeable pellets which are first released in lower intestinal sections.
  • EP 0 527 887 names the combination of Diclofenac (o-(2,6-dichloroanilino)phenyl acetic acid), a highly effective NSAID (Non-Steroidal Anti-Inflammatory Drug), with Misoprostol, for example, which is employed for the treatment of painful inflammation diseases under the trade name Arthrotec®, Heumann Pharma GmbH, Germany.
  • the prostaglandin derivative Misoprostol serves in this connection for prevention of NSAID-associated ulcer diseases.
  • the solid combination of Diclofenac and Omeprazole has a number of advantageous in long-term treatment of pain/inflammation.
  • a combination of Diclofenac with Omeprazole maintains a low ulcer rate in patients who have a high risk for the development of gastrointestinal ulcers and who require treatment with an NSAID at the same time (ulcer prevention).
  • this combination attains high ulcer healing rates in connection with sufficient pain relief (therapy).
  • Patient compliance can be considerably increased as a result of the high effectiveness and good tolerance of the combination partners in connection with a single daily administration.
  • the capsule formulation which are suitable for direct administration per os comprise 25 to 200 mg, preferably 75 to 150 mg, Diclofenac and 10 to 40 mg, preferably 10 or 20 mg, Omeprazole as a unit dose in the pellets according to the invention.
  • the advantages of the medicament according to the invention with respect to Omeprazole and other benzimidazole-containing medicines of the art particularly exist in the fact that when any imperfections in the outer layer are present through which moisture upon storage.or acidic gastric juice after peroral administration may penetrate into the core layer, the reactive intermediate layer not only captures protons but is additionally retransformed into a gastric juice-resistant layer material. Through this “self-repair-mechanism”, a gel-like layer is formed which is able to prevent the penetration of moisture and acid into the core of the medicament. In case that no penetration of gastric juice occurs, the intermediate layer remains soluble.
  • the combination of enteric outer layer and the active intermediate layer additionally shows an improved dissolution behaviour in artificial intestinal fluid which infers a correspondingly good dissolution behaviour in the small intestine.
  • Omeprazole with a non-pre-treated enteric coat material used for formation of gastric juice-resistant coatings (HPMCP, batch la, and Eudragit® L100-22, charge 1b, pH 2-3) and Omeprazole with a pre-treated enteric layer material (Eudragit® L100-55) according to the invention were triturated and stored open in Petri dishes under the given conditions.
  • the pre-treated Eudragit® L100-55 was previously partially neutralized with sodium hydroxide to pH 5.5 (batch 1c) and pH 7.0 (batch 1d).
  • the pellets according to the invention still have 93% by weight of the active ingredient Omeprazole in an intact form after one week and 80% by weight of the active ingredient Omeprazole in an intact form after 20 days under the described intensified storage condition. Even after 4 weeks. storage, an Omeprazole content of 67% by weight was determined according to the invention (not represented in the Table). In contrast, the Omeprazole content in medicament not according to the invention, i.e. those
  • pellets were not provided with the outer enteric coat. All pellet types were tested in artificial gastric juice (pH 1.2) in a release model of the European Pharmacopoeia (basket). The intermediate layer was partially nuetralized to pH 7.0, the upper limit of the preferred range.
  • pellets without intermediate layer completely dissolve within 2 minutes.
  • the release medium has a strong brown coloration.
  • pellets with the reactive intermediate layer according to the invention remain intact as a function of the layer thickness (up to 20% with respect to the core) of the intermediate layer up to a maximum of 120 minutes.
  • the release medium only has a slight discoloration.
  • the release medium has a strong brown discoloration.
  • FIG. 3 shows a graphic representation of the result.
  • the thickness of the outer enteric layer with pellet batches 4 a, b and c is each the same (30% by weight with respect to the pellet core, corresponding to ca. 40 ⁇ m). Despite this, batches 4a and 4b provided with the reactive intermediate layer according to the invention demonstrate a clearly quicker dissolution in artificial intestinal fluid than when no intermediate layer (batch 4c) is present. This is also still the case when the enteric coating.layer is more thinly formed (batch 4b, 20% by weight with respect to the pellet core, corresponding to ca. 30 ⁇ m). This permits the thickness of the outer enteric layer in the medicaments according to the invention to be further increased which offers an improved medicament safety in comparison to known preparations without negatively influencing release behaviour—which was not to be expected.
  • the Omeprazole granulate without alkaline reacting additive demonstrated a clearly deteriorated storage stability compared to an Omeprazole granulate with Na 2 HPO 4 as an additive (batch 5b).
  • the Omeprazole content decreases to 72%; ca. 30 area-% degradation product arises.
  • an Omeprazole granulate with mannite and hydroxypropylcellulose as the only adjuvants, particularly without alkaline reacting additives (batch 5a) also has an outstanding storage stability.
  • alkaline reacting adjuvants or Omeprazole salts in the core because, if necessary, alkaline substances diffusing from the core into the reactive intermediated layer can be hindered by the “self-repair mechanism” as illustrated above.
  • Medicament A Omeprazole 210.00 g Mannite 781.60 g Hydroxypropylcellulose 3.30 g Sodium lauryl sulfate 5.00 g
  • Intermediate layer Eudragit ® L100-55 50.00 g neutralized to pH 7.0 with NaOH Triethyl citrate 5.00 g
  • Gastric juice-resistant (outer) layer Eudragit ® L100-55 300.00 g Triethyl citrate 30.00 g Mikronized Talcum 150.00 g Medicament B
  • Intermediate layer Eudragit ® L 100-55 50.00 g neutralized to pH 5.5 with NaOH Triethyl citrate 5.00 g
  • Gastric juice-resistant (outer) layer Eudragit ® L100-55 400.00 g Triethyl citrate 40.00
  • the pre-weighed components Omeprazole, mannite and sodium lauryl sulfate are placed in a mixer and mixed.
  • a granulation liquid of hydroxypropylecellulose dissolved in isopropanol is slowly added to the pre-mixed components in the mixer under constant stirring. If necessary, further isopropanol can be added for better pellet formation.
  • the mixing time amounts to 10 to 20 minutes until the majority of the pellets have a desired average size of ca. 1000 ⁇ m.
  • the moist pellets are dried in a dryer at ca. 60° C. for ca. 40 min. Pellets with a diameter of ⁇ 700 ⁇ m or >1200 ⁇ m are sieved out.
  • the pellets are obtained in a fluidized state during which at first a coating dispersion I and subsequently a coating dispersion II is sprayed on to the pellets with a constant rate.
  • the coating dispersion I For production of the coating dispersion I, purified water is filled into a stainless steel vessel and sodium hydroxide is dissolved in the water. The sodium hydroxide solution is added to micronized talcum under stirring, a Eudragit® dispersion is then slowly added to the sodium hydroxide/talcum dispersion under stirring whereby clumps and foam formation must be avoided. After addition of triethyl citrate to the dispersion, stirring continued for at least 15 minutes whereby the pH value is adjusted to pH 7.0 and/or pH 5.5 with sodium hydroxide solution. The dispersion must be continuously stirred during the formation of the coat.
  • micronized talcum is dispersed in purified water. Subsequently, the aqueous dispersion obtained in this manner is added tQ the Eudragit® dispersion under stirring whereby the appearance of clumps or foam must be avoided. After addition of triethyl citrate, the dispersion is further stirred for at least 15 min.
  • the Omeprazole pellets are then transferred into a coating apparatus and laminated at first with the coating dispersion I and then with the coating dispersion II. The finished Omeprazole pellets are filled into hard gelatine capsules.
  • Omeprazole loses its effectiveness with longer storage which is traceable to a degradation of the active ingredient. This chemical degradation of Omeprazole can be reduced to a minimum by applying suitable protection layers.
  • Example 6 an inventive medicament according to Example 6 was also examined.
  • the respective sample which was found in a basket, was exposed to a medium (1000 ml) of pH 1.2 for 120 minutes at 37° C.
  • a capsule contains 210 mg Diclofenac pellets corresponding to 75 mg Diclofenac-Na and 160 mg Omeprazole pellets corresponding to 20 mg Omeprazole.
  • the Diclofenac pellets as well as the Omeprazole pellets were produced according to the method of production according to Example 6.
  • a capsule comtains 420 mg Diclofenac pellets corresponding to 150 mg Diclofenac-Na and 160 mg Omeprazoile pellets corresponding to 20 mg Omeprazole which were produced according to Example 6.
  • the Diclofenac pellets were produced according to the method given in EP 0 348 808.

Abstract

The invention relates to a stable medicament for oral administration which comprises (a) a core which contains an active ingredient selected from Omeprazole, Lansoprazole and Pantoprazole, together with customary pharmaceutical adjuvants, (b) an intermediate layer applied onto the core, and (c) a gastric juice-resistant outer layer. The intermediate layer in (b) is formed as a reactive layer in which a gastric juice-resistant polymer layer material partially neutralized with alkali with cation exchange capacity is present. Further, a method for the production of the stable medicament is disclosed.

Description

  • The present invention discloses a stable medicament for oral administration which comprises-one or more of the benzimidazole derivatives Omeprazole, Lansoprazole or Pantoprazole as an active ingredient as well as a method for its production.
  • It is known from EP 0 005 129 that Omeprazole (5-methoxy-2(((4-methoxy-3,5-dimethyl-2-pyridyl)methyl)-sulfinyl)-1H-benzimidazole functions as a potent inhibitor in the secretion of gastric acid. Omeprazole has proven itself in the therapy of duodenal ulcer, gastric ulcer, reflux esophagitis and Zollinger-Ellision syndrome. Parenteral and solid peroral medicaments are employed in this connection.
  • The following embodiments presented for Omeprazole apply in the same manner for Lansoprazole (2-(((3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl)methyl)-sulfinyl)-1H-benzimidazole) and Pantoprazole (5-difluoromethoxy-2-((3,4-dimethoxy-2-pyridyl)methyl)-sulfinyl)-1H-benzimidazole).
  • The administration of a medicine per os is especially convenient because it can be carried out by patients practically anywhere and at any time without effort and unpleasant attendant phenomena. The oral administration inevitably leads to the fact that the medicament reaches the stomach at first. However, Omeprazole and its derivatives degrade very rapidly in the acidic environment of the stomach to ineffective compounds. For example, Omeprazole has a half-life of less than ten minutes in aqueous solution at pH values under 4. Therefore, solid peroral medicines (tablets, pellets, granulates) of Omeprazole and similar active ingredients must be completely protected against gastric juice.
  • The resorption of Omeprazole occurs in the upper duodenum whereby this active ingredient exhibits a pronounced first-pass-effect. Therefore, an as quick and complete release as possible of the active ingredient from the medicament after passage of the pylorus must be ensured in order to guarantee a sufficiently high bio-availability.
  • For this, Omeprazole is provided with a coating of enteric, i.e. gastric juice-resistant materials, which is insoluble in the acid environment of the stomach (ca. pH 1 to 3) on the one hand, but dissolves in the weakly acidic to weakly alkaline region of the duodenum (pH>5.5). It is known to introduce the extremely acid sensitive active ingredient Omeprazole into the core of a pellet formulation onto which one or more coating layers provided.
  • Frequently, Eudragit® L100 or L100-55 is used a layer material. Eudragit® L100 is a copolymer of methacrylic acid and methylmethacrylate in a certain ratio and is insoluble in an acidic environment, for example in the stomach, and therewith forms a considerably impermeable protective layer. Eudragit® L100-55 is a copolymer of methacrylic acid and ethylacrylate, whereby the ratio of the monomers is chosen in such a manner that it is insoluble at a pH<5.5, but is soluble at a pH above this. The reason for this essentially lies in the fact that the carboxyl side groups of the polymer are protonated in the acidic environment, and therewith, the polymer is non-charged as a whole. In the weakly acidic neutral and/or basic environment, for example in the intestine region, the carboxyl groups deprotonate whereby the polymer obtains negative charges. It is then water-soluble whereby the active ingredient is released.
  • However, Eudragit® cannot be applied directly onto the Omeprazole core because the carboxyl groups in the coating layer degrade the Omeprazole which also presents problems in the production and storage of the medicament. Even small amounts of degradation products already lead to unambiguous color changes, and therewith to loss of quality, which no longer allow administration to patients under certain conditions. The storage problems are intensified when moisture penetrates into the active ingredient-containing core through hair-line cracks and other defects in the coating layer.
  • Gastric juice-resistant coatings of the above-mentioned polymers which are separated from the active ingredient-containing core by an inert isolation layer are suitable for the protection of solid, peroral medicaments with Omeprazole, Lansoprazole or Pantoprazole as an active ingredient against unfavourable storage conditions and against gastric juice in oral ingestion. Additionally, it has also been proven to be appropriate to stabilize the active ingredient-containing core by addition of an alkaline reacting substance. On the other hand, a sufficiently fast release in the intestine must be ensured.
  • BACKGROUND ART
  • DE 1 204 363 describes a medicament comprising a core with various layers applied thereto. The first (inner most) layer is soluble in the stomach, but insoluble in the intestine. The second protective layer is water soluble (independent of the pH value) and the third (outer most) protective layer is a gastric juice-resistant coating. However, this formulation is not suitable for Omeprazole because it only dissolves slowly in the intestine. However, a fast dissolution in the intestine is essential for the desired bio-availability.
  • EP 0 247 983 discloses a pharmaceutical agent for oral administration which comprises Omeprazole as an effective component. The core material contains Omeprazole together with an alkaline reacting compound or an Omeprazole salt, optionally together with an alkaline reacting adjuvant. Intermediate layers which form a separation layer between the alkaline reacting core and an outer layer of a gastric juice-resistant coating comprise water-soluble tablet carrier mediums or tablet carrier mediums quickly disintegrating in water or polymeric, water-soluble, film-forming substance mixtures which optionally contain buffering, alkaline compounds and which should capture protons penetrating from the outside. Aside from its water-solubility, the layer material is chemically and physically inert.
  • However, with use of an alkaline buffering substance, such as sodium acetate for example, this freely diffuses into the intermediate layer and penetrates into the outer gastric juice-resistant layer. The increase of the pH value associated therewith can favour the penetration of moisture through the enteric layer as a result of the increasing solubility. This means that the danger exists with the penetration of higher concentrations of protons that these reach the core and destroy the Omeprazole there. This last phenomena can easily occur especially when the outer gastric juice-resistant layer possesses faults as a result of imperfections which can arise in production, physical load or through ageing manifestations in storage.
  • EP 0 519 144 describes Omeprazole pellets consisting of an inert pellet core which is coded with the micronized active ingredient and is subsequently coated with a gastric juice-resistant layer. The following adjuvants, dispersed in water, are employed for coating the core with Omeprazole: hydroxymethylcellulose (HMC), water-free lactose, L-hydroxypropylcellulose (L-HPC), sodium lauryl sulfate, disodium hydrogen phosphate dihydrate. Hydrokypropylmethylcellulose phthalate (HPMCP) is used as a gastric juice-resistant coating. In this method, a possible reaction of the Omeprazole with the polymer is not excluded which can especially lead to a deteriorated storage stability.
  • EP 0 496 437 encompasses pellet cores and/or tablets which contain Omeprazole or an alkaline salt of Omeprazole together with an alkaline reacting compound (buffer) and which are coated with a layer of water-soluble, film-forming adjuvants which preferably react alkaline (buffer) as well as with a gastric juice-resistant outer film.
  • EP 0 239 200 uses basic magnesium salts and/or basic calcium salts for stabilizing benzimidazole derivatives with Omeprazole as typical representative.
  • According to this, numerous efforts were undertaken in the production of Omeprazole medicines which prevent the discoloration of the active ingredient, which considerably reduce the chemical degradation of Omeprazole,.which prevent the degradation of the active ingredient in acidic gastric juice,.but should simultaneously release the active ingredient as quickly as possible in the environment of the small intestine.
  • Object of the present invention is to provide an improved medicament as compared to the state of the art suitable for oral administration which comprises Omeprazole, Lansoprazole and/or Pantoprazole as an active ingredient, optionally in combination with further pharmaceutically effective substances, and which possesses excellent stability in extended storage and under chemico-physical load. In particular, the penetration of acidic gastric juice into faults, cracks, chips or any other imperfections of the coating layer into the core layer should be avoided with the medicament according to the invention and the degradation of the acid-label active ingredient should be prevented therewith.
  • The medicament according to the invention guarantees a very high medicament security which above all should also be provided if unfavourable conditions arise in the course of the manufacturing process of the medicament as well as in the handling of the same and/or its packaged form by patients.
  • At the same time, it is necessary that the medicament quickly releases the active ingredient in the small intestine after passage through the stomach. Additionally, the degradation of the medicament should prevent the occurrence of discoloration of the active ingredient.
  • The above problem is solved according to the invention by a stable medicament for oral administration which
      • (a) comprises a core which contains an active ingredient selected from Omeprazole, Lansoprazole and Pantoprazole together with customary pharmaceutical adjuvants,
      • (b) an intermediate layer applied to the core, and
      • (c) a gastric juice-resistant outer layer,
        characterized in that a reactive intermediate layer of gastric juice-resistant polymer layer material-partially neutralized. with alkali with cation exchange capacity is present in (b).
  • Furthermore, subject-matter of the invention is a method for the production of the above-mentioned medicament, whereby
      • (a) a molded article is formed as the core which contains an active ingredient selected from Omeprazole, Lansoprazole and Pantoprazole, together customary pharmaceutical adjuvants,
      • (b) an intermediate layer is applied to the molded article, and
      • (c) the coated molded article is laminated with a gastric juice-resistant layer,
        and the method is characterized in that a reactive intermediate layer of a gastric juice-resistant polymer coat material partially neutralized with alkali with cation exchange capacity is applied in (b).
  • Preferred embodiments of the invention are given in the dependant claims.
  • The layer construction of the medicament according to the invention is schematically given in FIG. 1.
  • The core of the medicament according to the invention encompasses the active ingredient Omeprazole, Lansoprazole or Pantoprazole individually or combinations thereof together with customary auxiliary substances. For the stability of the medicament according to the invention it is not necessary and is also not preferred that the core of the active ingredient is formulated together with an alkaline reacting compound. It is also not necessary for an alkaline salt of the active ingredient be employed.
  • As the pharmaceutical adjuvants for the core, fillers such as mannite, hydroxypropylcellulose, microcrystalline cellulose and water-free lactose are especially suitable. Additionally, it has be shown that advantageous stability effects can be obtained by using a specific combination of mannite and hydroxypropylcellulose as a non-alkalizing adjuvant in the core.
  • The core can also comprise tensides which are selected in the suitable manner from sodium lauryl sulfate, sorbitan fatty acid ester and polyoxyethylene sorbitan fatty acid ester.
  • The core of the medicament according to the invention can be formed as a molded article. Preferred molded articles are pellet cores, tablets microtablets or granulates.
  • The molded articles are coated with an intermediate layer. This intermediate layer preferably has a layer thickness of approximately 5 to 30 μm. It forms a mechanical as well as chemical barrier to the core. Thereby, it is necessary that the intermediate layer be present in an intact film. The polymer of the intermediate layer amounts to approximately 3 to 5% by weight of the core weight.
  • The intermediate layer comprises a gastric juice-resistant polymer layer material which was adjusted with alkali to pH range of 5.5 to 7.0, preferably 5.5 to 6.5. With these pH values, not all protons of the acidic functions of the polymer material are exchanged; the material is merely partially neutralized. As emerges from FIG. 2, less than 40% of the carboxyl functions in the case of Eudragit® are present at a pH of 5.5. Despite this, a combination of Eudragit® partially neutralized to pH 5.5 with Omeprazole is unexpectedly stable even under intensive storage conditions (see Example 2). At pH 7.0, ca. 97% of the carboxyl functions of Eudragit® are neutralized (see FIG. 2).
  • As alkali substances, substances are to be understood whose solutions demonstrate alkaline reactions with water (Römpps Chemistry Encyclopaedia, 8th Edition, 1979). In this connection, hydroxides of alkali metals, especially sodium and potassium, but also hydroxides of the earth alkali metals are primarily among these. Hydroxides of the alkali metals, especially sodium hydroxide, are preferred according to the invention.
  • In the partial neutralization, protons of the acidic functions are fixed through the polymer chains of the coat material, for example carboxyl groups, are partially replaced by alkali metal ions for example as counter-ions. The polymer layer material modified in this manner is no longer physico-chemically inert in the presence of protons, but rather, is reactive because it now possess cation exchange capacity. This means that when moisture and especially acidic gastric juice penetrates into cracks, faults, chips or other imperfections through the outer layer of the medicament according to the invention, the penetrating protons are captured and are exchanged by harmless alkali metal ions. A further aspect of the reactive principal of the intermediate layer material is demonstrated by the fact the intermediate layer is transformed at these places into a gastric juice-resistant barrier; it possess a “self-repair-mechanism” to a certaint degree. Practical tests have shown that with contact of the intermediate layer with an acidic medium forms a gel-like substance which not only captures protons but also forms a flexible mechanical barrier which prevents the further penetration of moisture and/or acid medium. The partial neutralization of the polymer material for the reactive intermediate layer to a pH range 5.5 to 6.5 is especially preferred because a gastric juice-resistant barrier already forms when only few protons penetrate through the outer layer; on the other hand, the Omeprazole core is still sufficiently stable.
  • Thereby, a clearly improved stability behaviour of the claimed medicament in extended storage and under chemico-physical load is also obtained.
  • Buffering and/or alkalizing additives in the intermediate layer as proposed in EP 0 247 983 are no longer necessary and can even be damaging because they increase solubility of the intermediate layer and reduce its protective function. This nearly contradicts the “self-repair-mechanism” according to the invention; namely, the more basic equivalents that are present in the intermediate layer, the more protons must penetrate from the outside so that the “self-repair-mechanism” of the reactive layer-has a quick effect.
  • Eudragit® L100-55, Eudragit® L100 produced from Röhm Pharma, Germany, as well as hydroxypropylmethylcellulose phthalate (HPMCP) and cellulose acetate phthalate (CAP) which, as described above, are partially neutralized with alkali before use as an intermediate layer, i.e. before spraying of the same, are suitable as preferred substances for the intermediate layer. Particularly preferred is Eudragit® L100-55 obtainable world-wide as a commercial product.
  • The intermediate layer can contain customary additives, for example an emollient. Preferably, triethyl citrate, acetyltriethyl citrate, acetylated monoglycerides, propylene glycol and polyethylene glycols are preferably suitable fore this.
  • The coated molded articles, i.e. the core and the intermediate layer, are then coated with an outer layer for the production of the medicament according to the invention. The outer layer represents a customary enteric, gastric juice-resistant layer. In this connection, commercial, aqueous polymer dispersions, such as polymethacrylates, for example Eudragit® L100-55 (Röhm Pharma), and coating CE 5142 (BASF) are suitable as materials. Additionally, polymers can also be used for formation of the gastric juice-resistant layer which are soluble in organic solvents. For example, phthalates (cellulose acetate phthalate, hydroxypropylmethyl cellulose phthalate) are to be named as suitable materials. Additionally, the outer layer of the medicament according to the invention can contain antiblocking agents, dispersion agents, pigments and colorants. A suitable antiblocking agent is talcum for example.
  • In comparison to conventional medicinal forms with an inert intermediate layer, it was surprisingly determined that the inventive combination of enteric outer layer and reactive intermediate layer shows an accelerated dissolution behaviour in artificial intestinal fluid (pH ca. 5.8). This effect not only allows a very quick release of the active ingredient in the weakly acidic to weakly alkaline environment of the small intestine, and therewith an excellent bio-availability, but also permits improved medicament security because the enteric outer layer can be strengthened without retarding a desired quick release. Thereby, not only can the gastric juice-resistance be improved, but also the medicament stability especially under unfavourable storage conditions. Hence, the thickness of the gastric juice-resistant outer layer of the medicament according to the invention amounts to 20 to 60 μm (ca. 10 to 50% weight with respect to the core), preferably 30 to 60 μm.
  • In an advantageous embodiment of the invention, the reactive intermediate layer consists of partially neutralized Eudragit® L100-55 at a pH value of 5.5 to 7.0, preferably 5.5to 6.5, and the outer layer consists of commercial Eudragit® L100-55 (pH ca. 2 to 3). The pH transition between outer layer and intermediate layer does not necessarily have to be discontinuous, but rather, can also be formed as a gradient, This can be obtained if several thin Eudragit layers are applied from inside to outside each of which was partially neutralized to a decreasing pH value.
  • The reactive intermediate layer as well as the gastric juice-resistant outer layer can can be formed as a plurality of single layers.
  • The present invention further comprises a method for the production of a stable medicament for oral administration which comprises Omeprazole, Lansoprazole and/or Pantoprazole as an active ingredient.
  • According to the method of the invention, the active ingredient and adjuvants, such as mannite, hydroxypropylcellulose and sodium lauryl sulfate, are moistened together with a suitable solvent, preferably isopropanol, granulated and worked to the desired molded articles (for example pellets, granulates, tablets) according to customary methods. The molded articles are subsequently laminated with an aqueous dispersion consisting of a gastric juice-resistant substance partially neutralized with alkali to a pH value of ca. 5.5 to ca.7.0, preferably Eudragit® L100-55, as well as antiblocking agent and/or emollient, such as talcum and triethyl citrate, in a fluidized bed apparatus for example under formation of the intermediate layer with cation exchange activity. A quality product corresponding to Eudragit® L100-55 is also commercially obtainable as a finished suspension under the designation Eudragit® L30D-55. Subsequent to this, the coating occurs with a gastric juice-resistant substance (for example Eudragit® L100-55), talcum and an emollient (such as triethyl citrate) for formation of the enteric outer layer of the medicament according to the invention.
  • The production of pellets which are filled in gelatine capsules in an amount sufficient for the desired active ingredient dose is preferred.
  • Aside from the pellets containing the mentioned benzimidazole compounds, the capsule formulations produced in this manner can also contain other active ingredients. Preferable is a combination of Diclofenac- and Omeprazole-containing pellets. The Diclofenac-containing pellets are preferably produced according to the method of the invention, i.e. they also contain a reactive intermediate layer. However, they can also be produced by known methods, such as disclosed in EP 0 348 808 for example. In a further embodiment, the Diclofenac-containing pellets are present as a mixture of gastric juice-resistant coated pellets and retarded permeable pellets which are first released in lower intestinal sections.
  • Combinations of non-steroidal inflammation inhibitors and analgesics are known. Thus, EP 0 527 887 names the combination of Diclofenac (o-(2,6-dichloroanilino)phenyl acetic acid), a highly effective NSAID (Non-Steroidal Anti-Inflammatory Drug), with Misoprostol, for example, which is employed for the treatment of painful inflammation diseases under the trade name Arthrotec®, Heumann Pharma GmbH, Germany. The prostaglandin derivative Misoprostol serves in this connection for prevention of NSAID-associated ulcer diseases.
  • The solid combination of Diclofenac and Omeprazole has a number of advantageous in long-term treatment of pain/inflammation. Thus, a combination of Diclofenac with Omeprazole maintains a low ulcer rate in patients who have a high risk for the development of gastrointestinal ulcers and who require treatment with an NSAID at the same time (ulcer prevention). Furthermore, this combination attains high ulcer healing rates in connection with sufficient pain relief (therapy). Patient compliance can be considerably increased as a result of the high effectiveness and good tolerance of the combination partners in connection with a single daily administration.
  • The capsule formulation which are suitable for direct administration per os comprise 25 to 200 mg, preferably 75 to 150 mg, Diclofenac and 10 to 40 mg, preferably 10 or 20 mg, Omeprazole as a unit dose in the pellets according to the invention.
  • The advantages of the medicament according to the invention with respect to Omeprazole and other benzimidazole-containing medicines of the art particularly exist in the fact that when any imperfections in the outer layer are present through which moisture upon storage.or acidic gastric juice after peroral administration may penetrate into the core layer, the reactive intermediate layer not only captures protons but is additionally retransformed into a gastric juice-resistant layer material. Through this “self-repair-mechanism”, a gel-like layer is formed which is able to prevent the penetration of moisture and acid into the core of the medicament. In case that no penetration of gastric juice occurs, the intermediate layer remains soluble. Unexpectedly, the combination of enteric outer layer and the active intermediate layer additionally shows an improved dissolution behaviour in artificial intestinal fluid which infers a correspondingly good dissolution behaviour in the small intestine.
  • The invention is more closely illustrated by the following examples without limiting the invention to said examples.
  • EXAMPLE 1
  • In Vitro Tests For Chemical/Physical Stability of the Medicament According to the Invention: Trituration of Omeprazole and Intermediate Layer Material:
  • Storage experiments with trituration of Omeprazole and various treated intermediate layer materials were carried out over 32 days at 40° C. and 75% relative humidity (r.H). Subsequently, the degree to which the active ingredient Omeprazole (residual content in % by weight) remains stable, the percentage of degradation products arising (area-% from purity chromatogram) and the degree to which discoloration occurred were examined with HPLC. In this connection, Omeprazole with a non-pre-treated enteric coat material used for formation of gastric juice-resistant coatings (HPMCP, batch la, and Eudragit® L100-22, charge 1b, pH 2-3) and Omeprazole with a pre-treated enteric layer material (Eudragit® L100-55) according to the invention were triturated and stored open in Petri dishes under the given conditions. The pre-treated Eudragit® L100-55 was previously partially neutralized with sodium hydroxide to pH 5.5 (batch 1c) and pH 7.0 (batch 1d).
  • The results are reproduced in Table 1. The given values correspond to the average of 3 sample preparations. The discoloration is given as a color value according to “Taschenlexikon der Farben”, A. Kornerup and J. H. Wauscher, Muster-Schmidt Publishers, Zürich, Gottingen, 3rd Edition, 1981.
    TABLE 1
    Omeprazole content Degradation product Color value
    Trituration percent by weight area-% (standard - color table)
    Omeprazole + . . . after after 32 after after 32 after after 32
    Batch (1:1) production days production days production days
    Reference example
    1 a HPMCP 100
    Figure US20050064035A1-20050324-P00801
    85 <0.1
    Figure US20050064035A1-20050324-P00801
    7.0 5A1-2
    Figure US20050064035A1-20050324-P00801
     7C5
    (white - (brown)
    pale-orange)
    1 b Eudragit L 100-55 100
    Figure US20050064035A1-20050324-P00801
    97 <0.1
    Figure US20050064035A1-20050324-P00801
    0.99 4A2
    Figure US20050064035A1-20050324-P00801
     6B4
    pH 2-3 (pale light yellow) (brown-orange)
    according to invention
    1 c Eudragit L 100-55 100
    Figure US20050064035A1-20050324-P00801
    97 <0.1
    Figure US20050064035A1-20050324-P00801
    0.25 1A1-2
    Figure US20050064035A1-20050324-P00801
    12B2
    pH
    5, 5 (white - (pale light grey)
    pale light yellow)
    1 d Eudragit L 100-55 100
    Figure US20050064035A1-20050324-P00801
    98 <0.1
    Figure US20050064035A1-20050324-P00801
    0.25 1A1-2
    Figure US20050064035A1-20050324-P00801
    11C2
    pH
    7, 0 (white - (pale light grey)
    pale light yellow)
  • It is deduced from the column “Omeprazole content” that the active ingredient remains considerably more stable with use of partially neutralized, gastric juice-resistant polymer material according to the invention that in a trituration with a customary enteric substance which possess up to 100% free carboxyl groups. Thus, after 32 days storage under the named conditions, according to the invention only 2 or 3% of the active ingredient Omeprazole is degraded. In contrast, Omeprazole degradation up to 15% by weight is determined when using the customary enteric layer material HPMCP of the art in the present trituration experiments after 32 days. Additionally, no clear Omeprazole degradation (3% by weight) is demonstrated with use of non-neutralized Eudragit.
  • Instead, clear differences result in a comparison of the content of an Omeprazole degradation product appearing in the HPLC-chromatogram with use of partially neutralised Eudragit (pH 5.5 and 7.0) according to the invention with commercial Eudragit (pH 2 to 3) (see the column “Degradation Product”). Thus, according to the invention, hardly any degradation product is found after 32 days (0.25 area-% in both batches), whereas ca. 0.99 areas-% in the presence of commercial Eudragit (pH 2 to 3) and even ca. 7% degradation product in the presence of a customary layer material (HPMCP) are present. This result is confirmed by the color comparison (see the column “color-value”). Neither the brown product of batch 1a nor the brown-orange product of batch 1b are still capable of being sold. In contrast, the treated products according to the invention (batches 1c and d) demonstrate a considerably lesser color change.
  • The above experiments prove that in the presence of high humidity and high temperature (intensified stability test) the partially neutralized layer material in the saturated state also functions protectively on the active ingredient Omeprazole. In contrast, customary enteric layer material, which has up to 100% free COOH-groups, not only demonstrates, no such protective effect, but also causes a clear degradation of the active ingredient.
  • EXAMPLE 2
  • Stability of Pellet Formulations:
  • In a further series of experiments, the medicament according to the invention was compared with the state of the art (EP 0 247 983). For this, various colored batches were produced which have a three-layer construction:
      • core, with the active ingredient Omeprazole in the presence of an alkaline buffering substance (Na2HPO4, according to the state of the art) and without alkaline buffering substance (according to the invention).
      • intermediate layer either consisting of a enteric layer material partially neutralized with alkali to a pH 6.0 and/or 7.0 according to the invention or inert layer material which contains sodium acetate as a buffering substance according to the state of the art. The reference example contains non-neutralized enteric layer material and sodium acetate as a buffering substance.
      • Outer layer of Eudragit L 100-55.
  • Additionally, a medicament was tested in the series of experiments in which the intermediate layer was omitted.
  • The respective pellet batches were stored open in a Petri dish for a week and 20 days at 40° C. and 75% relative humidity (r.H). Subsequently, the Omeprazole content and/or the appearance of degradation product was determined with HPLC. The values compiled in Table 2 represent the average of 3 sample preparations.
    TABLE 2
    Degradation product of
    Omeprazole content Omeprazole
    Formula percent by weight area-%
    storage conditions
    40° C./75% rel. Humidity
    Batch storage duration after prod. 1 Week 20 days after prod.. 1 Week
    according to the invention
    2 a Omeprazole-core + adjuvant*, 100
    Figure US20050064035A1-20050324-P00801
    92
    Figure US20050064035A1-20050324-P00801
    84 <0.4
    Figure US20050064035A1-20050324-P00801
    n.d.
    IL.: 3% E. L 100-55 pH 7,0
    gjr: 30% E. L 100-55
    2 b Omeprazole-core + adjuvant*, 100
    Figure US20050064035A1-20050324-P00801
    93
    Figure US20050064035A1-20050324-P00801
    80 <0.4
    Figure US20050064035A1-20050324-P00801
     2
    IL.: 3% E. L 100-55 pH 6,0
    gjr: 30% E. L 100-55
    Prior art
    2 c Omeprazole-core + adjuvant*, 100
    Figure US20050064035A1-20050324-P00801
    89
    Figure US20050064035A1-20050324-P00801
    66 <0.4
    Figure US20050064035A1-20050324-P00801
     5
    IL.: 3% HPMC + NaOAc
    gjr: 30% E. L 100-55
    2 d Omeprazole-Core + Adjuvant*, 100
    Figure US20050064035A1-20050324-P00801
    83
    Figure US20050064035A1-20050324-P00801
    57 <0.4
    Figure US20050064035A1-20050324-P00801
    10
    IL.: 3% HPMC
    gjr: 30% E. L 100-55
    2 e Omeprazole-Core + Adjuvant*, 100
    Figure US20050064035A1-20050324-P00801
    84
    Figure US20050064035A1-20050324-P00801
    54 <0.4
    Figure US20050064035A1-20050324-P00801
    10
    keine IL.
    gjr: 30% E. L 100-55
    Reference example
    2 f Omeprazole-Core + Adjuvant* + Na2HPO4 100
    Figure US20050064035A1-20050324-P00801
    73
    Figure US20050064035A1-20050324-P00801
    41 <0.4
    Figure US20050064035A1-20050324-P00801
    16
    IL.: 3% HPMCP + NaOAc
    gjr: 30% HPMCP

    *Adjuvant: Mannite, HPC, sodium lauryl sulfate

    n.d. = not determined

    IL: Intermediate layer

    E: Eudragit (percent by weight with respect to the core)

    gjr: gastric juice-resistant (layer) (percent by weight with respect to the core)
  • In comparison with the state of the art, a clearly more stable administration form is obtained according to the invention. The pellets according to the invention still have 93% by weight of the active ingredient Omeprazole in an intact form after one week and 80% by weight of the active ingredient Omeprazole in an intact form after 20 days under the described intensified storage condition. Even after 4 weeks. storage, an Omeprazole content of 67% by weight was determined according to the invention (not represented in the Table). In contrast, the Omeprazole content in medicament not according to the invention, i.e. those
      • with an intermediate layer of HPMC and NaOAc
      • with an intermediate layer of HPMC
      • without an intermediate layer
      • with an intermediate layer HPMCP and NaOAc merely amount to 66, 57, 54 and 41% by weight after 20 days.
    EXAMPLE 3
  • “Self-Repair-Mechanism” of the Reactive Intermediate Layer:
  • Pellets with the following construction were compared:
      • without intermediate layer (so-called pellet core)
      • with the reactive intermediate layer according to the invention
      • with an inert intermediate layer of HPMC (reference example)
  • For better judgement of the “self-repair-mechanism”, the pellets were not provided with the outer enteric coat. All pellet types were tested in artificial gastric juice (pH 1.2) in a release model of the European Pharmacopoeia (basket). The intermediate layer was partially nuetralized to pH 7.0, the upper limit of the preferred range.
  • The results (pellet cores without intermediate layer: not shown) are summarized in the following Table 3:
    TABLE 3
    Intermediate layer according to the invention Reference example
    Eudragit ® L100-55, pH 7.0, partially neutralized (HPMC)
    5% Intermediate 10% Intermediate 15% Intermediate 20% Intermediate 20% Intermediate
    layer 3 a layer 3 b layer 3 c layer 3 d layer 3 e
    Time Pellets Color of Pellets Pellets Pellets Pellets
    Batch discolored the discolored Color of the discolored Color of the discolored Color of the discolored Color of the
    (min) (%) medium (%) medium (%) medium (%) medium (%) medium
    1 10 light 0 colorless 0 colorless 0 colorless 10 light yellow
    yellow
    5 50 green- 0 colorless 0 colorless 0 colorless 100 brown
    yellow
    10 80 brownish 5 pale yellow 0 colorless 0 colorless
    20 100 brown 30 yellowish 5 pale yellow 5 pale yellow
    30 50 green- 30 yellowish 5 pale yellow
    yellow
    50 70 green- 50 green- 10 light yellow
    brown yellow
    70 80 brownish 10 light yellow
    90 100 brown
    100 70 green- 10 light yellow
    brown
    120 80 brownish 30 yellowish
  • According to these results, pellets without intermediate layer (as comparison) completely dissolve within 2 minutes. The release medium has a strong brown coloration.
  • In contrast, pellets with the reactive intermediate layer according to the invention remain intact as a function of the layer thickness (up to 20% with respect to the core) of the intermediate layer up to a maximum of 120 minutes. The release medium only has a slight discoloration.
  • Pellets with a customary inert intermediate layer according to the state of the art (reference example) with maximum layer thickness of the intermediate layer also completely dissolved within 5 minutes. The release medium has a strong brown discoloration.
  • These experiments proved a measurable protective mechanism with the intermediate layer according to the invention as opposed to pellets with an intermediate layer according to the state of the art. This protection mechanism brings about the reactive transformation of the intermediate layer to a gastric juice-resistant layer in the gastric juice acidic medium. The closer the pH value of the partially neutralized intermediate layer lies to 5.5, the faster this occurs.
  • Thus, it clearly emerges from all experiments in Examples 1 to 3 that according to the invention a medicament with surprisingly improved stability is obtained in comparison to those of the state of the art. The stability behaviour is demonstrated especially at increased temperature and humidity (trituration experiments) but also under intensified storage conditions of 40° C. and 75% r.H of pellets.
  • EXAMPLE 4
  • Release Behaviour of Various Pellet Formulas:
  • Essential for the good bio-availability of the active ingredient is its release as quickly as possible in the upper small intestine region, i.e. in a weakly acid/neutral environment. To investigate the release behaviour pellets with various formulas were introduced into an aqueous medium with a pH value of 5.8 as an in vitro model for the upper small intestine (artificial intestinal fluid) and the Omeprazole released under stirring into the surroundings was determined as a function of time with HPLC (analogously to the Pharmacopia).
  • The examined pellet formulas and the release results are reproduced in Table 4:
    TABLE 4
    Pellet formula Released Omeprazole [%]
    Batch release period 30 min 45 min 60 min
    according to the invention
    4 a Omeprazole-Core + Adjuvant*, 72 84 89
    IL.: 3% E. L 100-55 pH 7.0
    gjr: 30% E. L 100-55
    4 b Omeprazole-Core + Adjuvant*, 40 81 88
    IL.: 3% E. L 100-55 pH 6.0
    gjr: 30% E. L 100-55
    comparative examples
    4 c Omeprazole-Core + Adjuvant*,  3  5  8
    no IL.
    gjr: 30% E. L 100-55
    4 d Omeprazole-Core + Adjuvant*, 13 37 59
    no IL
    gjr: 20% E. L 100-55

    *Adjuvant: Mannite, HPC, sodium lauryl sulfate

    IL: Intermediate layer

    E: Eudragit (percent by weight with respect to the core)

    gjr: gastric juice-resistant (layer) (percent by weight with respect to the core)
  • FIG. 3 shows a graphic representation of the result.
  • The thickness of the outer enteric layer with pellet batches 4 a, b and c is each the same (30% by weight with respect to the pellet core, corresponding to ca. 40 μm). Despite this, batches 4a and 4b provided with the reactive intermediate layer according to the invention demonstrate a clearly quicker dissolution in artificial intestinal fluid than when no intermediate layer (batch 4c) is present. This is also still the case when the enteric coating.layer is more thinly formed (batch 4b, 20% by weight with respect to the pellet core, corresponding to ca. 30 μm). This permits the thickness of the outer enteric layer in the medicaments according to the invention to be further increased which offers an improved medicament safety in comparison to known preparations without negatively influencing release behaviour—which was not to be expected.
  • EXAMPLE 5
  • Improved Stability of the Active Ingredient-Containing Core:
  • Granulates of Omeprazole with various adjuvants were produced in a mortar. After open storage over 32 days at 40° C. and 75% relative humidity, the residual content of Omeprazole as well as the appearence of degradation product were determined with HPLC. Na2HPO4 buffering in an alkaline environment, Texapon, lactose, L-HPC, microcrystalline cellulose and mannite (batch 5b) as well as a combination of these adjuvants without Na2HPO4 (batch 5c) were employed as adjuvants. These batches were comopared with an Omeprazole granulate which aside from the active ingredient only contained HCP and mannite (batch 5a). The results are reproduced in Table 5.
    TABLE 5
    Degradation product of
    Formula Gehalt Omeprazole Omeprazole
    (Granulate) [precent by weight] [area-%]
    Storage conditions 40° C./75% rel. Feuchte
    Batch Storage duration after production. 32 days after production. 32 days
    preferred according to the invention
    5 a Omeprazole*, 100
    Figure US20050064035A1-20050324-P00801
    100 <0.1
    Figure US20050064035A1-20050324-P00801
    <0.5
    Mannite
    HPC
    Referenzbeispiel
    5 b Omeprazole 100
    Figure US20050064035A1-20050324-P00801
    100 <0.1
    Figure US20050064035A1-20050324-P00801
    <0.5
    adjuvants
    Na2HPO4
    5 c Omeprazole 100
    Figure US20050064035A1-20050324-P00801
     72 <0.1
    Figure US20050064035A1-20050324-P00801
    ca.30
    adjuvants
    without Na2HPO4
  • As expected, the Omeprazole granulate without alkaline reacting additive (batch 5c) demonstrated a clearly deteriorated storage stability compared to an Omeprazole granulate with Na2HPO4 as an additive (batch 5b). Thus, the Omeprazole content decreases to 72%; ca. 30 area-% degradation product arises. Surprisingly, an Omeprazole granulate with mannite and hydroxypropylcellulose as the only adjuvants, particularly without alkaline reacting additives (batch 5a), also has an outstanding storage stability. Therefore, in the preferred medicament according to the invention, it is not necessary and is also not preferred to use alkaline reacting adjuvants or Omeprazole salts in the core because, if necessary, alkaline substances diffusing from the core into the reactive intermediated layer can be hindered by the “self-repair mechanism” as illustrated above.
  • EXAMPLE 6
  • Production of Medicaments According to the Invention:
  • Formula examples.
    Medicament A
    Core:
    Omeprazole 210.00 g
    Mannite 781.60 g
    Hydroxypropylcellulose  3.30 g
    Sodium lauryl sulfate  5.00 g
    Intermediate layer:
    Eudragit ® L100-55  50.00 g
    neutralized to pH 7.0 with NaOH
    Triethyl citrate  5.00 g
    Gastric juice-resistant (outer) layer:
    Eudragit ® L100-55 300.00 g
    Triethyl citrate  30.00 g
    Mikronized Talcum 150.00 g
    Medicament B
    Core:
    Omeprazole 210.00 g
    Mannite 781.60 g
    Hydroxypropylcellulose  3.30 g
    Sodium lauryl sulfate  5.00 g
    Intermediate layer:
    Eudragit ® L 100-55  50.00 g
    neutralized to pH 5.5 with NaOH
    Triethyl citrate  5.00 g
    Talcum  15.00 g
    Gastric juice-resistant (outer) layer:
    Eudragit ® L100-55 400.00 g
    Triethyl citrate  40.00 g
    Micronized talcum 200.00 g
  • The pre-weighed components Omeprazole, mannite and sodium lauryl sulfate are placed in a mixer and mixed. A granulation liquid of hydroxypropylecellulose dissolved in isopropanol is slowly added to the pre-mixed components in the mixer under constant stirring. If necessary, further isopropanol can be added for better pellet formation., The mixing time amounts to 10 to 20 minutes until the majority of the pellets have a desired average size of ca. 1000 μm.
  • The moist pellets are dried in a dryer at ca. 60° C. for ca. 40 min. Pellets with a diameter of <700 μm or >1200 μm are sieved out.
  • The pellets are obtained in a fluidized state during which at first a coating dispersion I and subsequently a coating dispersion II is sprayed on to the pellets with a constant rate.
  • For production of the coating dispersion I, purified water is filled into a stainless steel vessel and sodium hydroxide is dissolved in the water. The sodium hydroxide solution is added to micronized talcum under stirring, a Eudragit® dispersion is then slowly added to the sodium hydroxide/talcum dispersion under stirring whereby clumps and foam formation must be avoided. After addition of triethyl citrate to the dispersion, stirring continued for at least 15 minutes whereby the pH value is adjusted to pH 7.0 and/or pH 5.5 with sodium hydroxide solution. The dispersion must be continuously stirred during the formation of the coat.
  • For production of the coating dispersion II, micronized talcum is dispersed in purified water. Subsequently, the aqueous dispersion obtained in this manner is added tQ the Eudragit® dispersion under stirring whereby the appearance of clumps or foam must be avoided. After addition of triethyl citrate, the dispersion is further stirred for at least 15 min. The Omeprazole pellets are then transferred into a coating apparatus and laminated at first with the coating dispersion I and then with the coating dispersion II. The finished Omeprazole pellets are filled into hard gelatine capsules.
  • EXAMPLE 7
  • In Vitro Experiments on Chemical Stability of the Medicament According to the Invention:
  • It is known that Omeprazole loses its effectiveness with longer storage which is traceable to a degradation of the active ingredient. This chemical degradation of Omeprazole can be reduced to a minimum by applying suitable protection layers.
  • It could be demonstrated in stability tests under stress conditions (40° C./75% rel. humidity) that the medicament according to the invention loses less than 2 percent by weight on active ingredient (average value of each of three content determinations) when stored in closed, brown screw-cap vials for 4 weeks. In contrast, a commercial product (Antra 20, VD5672-A01) lost more than 80 percent by weight on active ingredient under identical conditions in the same time period (see Table 6).
    TABLE 6
    Omeprazole residual content
    after 12 week storage at 40° C./75% r.H.
    in a closed, screw-cap vial
    Medicament (batch) (percent by weight)
    according to the ivention
    6 a 98.9
    6 b 98.3
    6 c 99.3
    commercial product
    6 d 16.2
  • In further stability tests under long-term and stress conditions (25° C./60% r.H;, 30° C./60% r.H; 40° C./75% r.H), it could be demonstrated that the medicament according to the invention loses less than 5 percent by weight on active ingredient (average value of each of three content determinations) when stored in the primary package for 12 weeks. The results are-depicted in Table 7.
    TABLE 7
    Omeprazole content
    Medicament after 12 Weeks storage
    (batch) storage percent by weight
    conditions
    25° C./60% r.H. 30° C./60% r.H. 40° C./75% r.H.
    7 a 98.9 97.9 97.8
    7 b 99.1 97.8 95.3
    7 c 100.5 100.3 98.0
  • The results clearly demonstrate that no significant decrease in content from the starting value was determined with the medicament according to the invention.
  • EXAMPLE 8
  • Determination of the Gastric-Juice-Resistance:
  • For determining the gastric-juice-resistance,. samples of the inventive medicament according to Example 6 were subjected to an in vitro test. Thereby, each sample, which was found in a basket at pH 1.2 and a temperature of 37° C. as well as 100 rpm of the basket, was left in the acidic medium for 120 minutes and subsequently the sample was analysed as to the remaining active ingredient content. The values obtained thereby are summarized in Table 8. All values show that no significant degradation from the starting values resulted under the selected conditions.
    TABLE 8
    Omeprazole residual content
    Medicament (batch) percent by weight
    according to the ivention
    8 a 98.4
    8 b 98.9
    8 c 96.0
  • EXAMPLE 9
  • In Vitro Experiments on Active Ingredient Release:
  • For the following experiments, an inventive medicament according to Example 6 was also examined. The respective sample, which was found in a basket, was exposed to a medium (1000 ml) of pH 1.2 for 120 minutes at 37° C.
  • After the above-mentioned residence time in acidic medium, this was replaced by an alkali medium (pH 6.8, phosphate buffered) and the samples were left therein for a time period of 5, 10, 15, 20, 30, 60 minutes respectively. After the mentioned time intervals, analysis as to the least active ingredient was carried out.
  • The determination of the in vitro active ingredient release occurred on samples which before their storage (FIG. 4) and after 12 week storage at 25° C./60% r.H. (FIG. 5), at 30° C./60% r.H. (FIG. 6) and 40° C./75% r. H. (FIG. 7). The medicaments were previously filled in the designated packaging. The obtained values are represented for the respective batches according to the invention in FIGS. 4 to 7 and show that the release is stable over the storage time.
  • EXAMPLE 10
  • Combination Preparation Omeprazole and Diclofenac:
  • Capsule Formulation C:
  • A capsule contains 210 mg Diclofenac pellets corresponding to 75 mg Diclofenac-Na and 160 mg Omeprazole pellets corresponding to 20 mg Omeprazole. The Diclofenac pellets as well as the Omeprazole pellets were produced according to the method of production according to Example 6.
  • Capsule Formulation D
  • A capsule comtains 420 mg Diclofenac pellets corresponding to 150 mg Diclofenac-Na and 160 mg Omeprazoile pellets corresponding to 20 mg Omeprazole which were produced according to Example 6. The Diclofenac pellets were produced according to the method given in EP 0 348 808.

Claims (28)

1. Stable medicament for oral administration which comprises
(a) a core which contains an active ingredient selected from Omeprazole, Lansoprazole and Pantoprazole, together with customary pharmaceutical adjuvants,
(b) an intermediate layer applied onto the core, and
(c) a gastric juice-resistant outer layer, characterized in that
a reactive intermediate.layer of a gastric juice-resistant polymer layer material partially neutralized with alkali with cation exchange capacity is present in (b).
2. Medicament according to claim 1, characterized in that the alkali is selected from sodium hydroxide and potassium hydroxide.
3. Medicament according to claim 1 or 2, characterized in that the pharmaceutical adjuvant is selected from mannite and hydroxypropylcellulose.
4. Medicament according to claim 1 to 3, characterized in that the core additionally.comprises a tenside.
5. Medicament according to claim 4, characterized in that the tenside is selected from sodium lauryl sulfate, sorbitan fatty acid ester and polyethylene sorbitan fatty acid ester.
6. Medicament according to claim 1 to 5, characterized in that the core is present in the form of pellet cores, tablets, microtablets or as a granulate.
7. Medicament according to claim 1 to 6, character ized in that the gastric juice-resistant polymer layer material in the reactive intermediate layer is partially neutralized to a pH range of ca. 5.5 to 7.0, preferably 5.5 to 6.5.
8. Medicament according to claim 7, characterized in that the partially neutralized gastric juice-resistant polymer layer material is selected from partially neutralized Eudragit® L100-55, Eudragit® L100, hydroxypropylmethylcellulose phthalate (HPMCP) and cellulose acetate phthalate (CAP).
9. Medicament according to claim 1 to 8, characterized in that the reactive intermediate layer additionally comprises an emollient.
10. Medicament according to claim 9, characterized in that the emollient is selected from triethyl citrate, acetyltriethyl citrate, acetylated monoglycerides, propylene glycol and polyethylene glycols.
11. Medicament according to claim 1 to 10, characterized in that the reactive intermediate layer forms a gel-like layer with penetration of protons through the outer layer.
12. Medicament according to claim 1 to 11, characterized in that the reactive intermediate layer possesses a thickness from 5 to 30 μm.
13. Medicament according to claim 1 to 12, characterized in that the gastric juice-resistant outer layer in (c) contains Eudragit® L100-55, Eudragit® L100, hydroxypropylmethylcellulose phthalate (HPMCP) and/or cellulose acetate phthalate (CAP).
14. Medicament according to claim 3, characterized in that the gastric juice-resistant outer layer contains pharmaceutically acceptable antiblocking agents, dispersion agents, pigments and/or colorants.
15. Medicament according to claim 14, characterized in that the antiblocking agent is talcum.
16. Medicament according to claim 1 to 15, characterized in that the gastric juice-resistant outer layer has a layer thickness from 20 to 60 μm, preferably 30 to 60 μm.
17. Medicament according to claim 1 to 16 which comprises
(a) a core which contains an active ingredient selected from Omeprazole, Lansoprazole and Pantoprazole, together with mannite and hydroxypropylcellulose as adjuvants without alkaline additives,
(b) a reactive intermediate layer applied on the core with a thickness from 5 to 30 μm of Eudragit® L100-55 partially neutralized with sodium hydroxide to a pH range of ca. 5.5 to ca. 7.0, and
(c) a gastric juice-resistant outer layer of Eudragit® L100-55 with a thickness from 30 to 60 μm.
18. Medicament according to claim 1 to 17, characterized in that the reactive intermediate layer is formed as a plurality of single layers.
19. Medicament according to claim 1 to 18, characterized in that the gastric juice-resistant layer is formed as a plurality of single layers.
20. Medicament according to claim 1 to 19, characterized in that the pH transition at the border of the gastric juice-resistant outer layer to the reactive intermediate layer is formed as a gradient.
21. Method for the production of a stable medicament for oral administration according to one of claims 1 to 20, characterized in that
(a) a moulded article is formed as a core-which contains an active ingredient selected from Omeprazole, Lansoprazole and Pantoprazole, together with customary pharmaceutical adjuvants,
(b) an intermediate layer is applied onto the moulded article, and
(c) the moulded article-coated in this manner is laminated with a gastric juice-resistant layer, characterized in that a reactive intermediate layer of a gastric juice-resistant layer material partially neutralized with alkali with cation exchange capacity is applied in (b).
22. Method according to claim 21, characterized in that the gastric juice-resistant polymer layer material is partially neutralized with alkali to a pH range from ca. 5.5 to ca. 7.0 before spraying.
23. Method according to claim 21, characterized in that sodium hydroxide or potassium hydroxide is used as an alkali.
24. Method according to claim 21, characterized in that isopropanol is used as a solvent in step (a).
25. Pharmaceutical composition which contains Diclofenac as a further active ingredient in addition to a stable medicament according to claim 1 to 20.
26. Pharmaceutical composition according to claim 25, characterized in that the Diclofenac is present as a formulation which comprises
(a) a Diclofenac containing core together with customary adjuvants,
(b) a reactive intermediate layer of gastric juice-resistant polymer layer material partially neutralized with alkali, and
(c) a gasteric juice-resistant outer layer.
27. Pharmaceuticcal composition according to claim 25, characterized in the the Diclofenac is present as a pellet formulation comprising a mixture of gasturic juice-resistant coated pellets and retarded, permeable pellets.
28. Pharmaceutical capsule formulation, characterized in that it comprises a stable medicament according to claim 1 to 20 or a composition according to claim 25 to 27 as pellets.
US10/665,081 1996-06-28 2003-09-16 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof Abandoned US20050064035A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/665,081 US20050064035A1 (en) 1996-06-28 2003-09-16 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof
US11/502,830 US7276253B2 (en) 1996-06-28 2006-08-11 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19626045.0 1996-06-28
DE19626045A DE19626045C2 (en) 1996-06-28 1996-06-28 A stable dosage form for oral administration containing omeprazole as the active ingredient and methods of making the same
PCT/EP1997/003387 WO1998000114A2 (en) 1996-06-28 1997-06-27 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof
US21998598A 1998-12-23 1998-12-23
US09/947,166 US6623759B2 (en) 1996-06-28 2001-09-05 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof
US10/665,081 US20050064035A1 (en) 1996-06-28 2003-09-16 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/947,166 Continuation US6623759B2 (en) 1996-06-28 2001-09-05 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/502,830 Division US7276253B2 (en) 1996-06-28 2006-08-11 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof

Publications (1)

Publication Number Publication Date
US20050064035A1 true US20050064035A1 (en) 2005-03-24

Family

ID=26027020

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/947,166 Expired - Lifetime US6623759B2 (en) 1996-06-28 2001-09-05 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof
US10/665,081 Abandoned US20050064035A1 (en) 1996-06-28 2003-09-16 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof
US11/502,830 Expired - Fee Related US7276253B2 (en) 1996-06-28 2006-08-11 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/947,166 Expired - Lifetime US6623759B2 (en) 1996-06-28 2001-09-05 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/502,830 Expired - Fee Related US7276253B2 (en) 1996-06-28 2006-08-11 Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof

Country Status (1)

Country Link
US (3) US6623759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785135A1 (en) * 2005-11-10 2007-05-16 Laboratorios Del Dr. Esteve, S.A. New stabilized galenic formulations comprising lansoprazole and their preparation
US20090175936A1 (en) * 2006-02-10 2009-07-09 Biogenerics Pharma Gmbh Microtablet-Based Pharmaceutical Preparation
US20130266658A1 (en) * 2010-11-29 2013-10-10 Temmler Werke Gmbh Method of producing a PPI-containing pharmaceutical preparation

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840737A (en) 1996-01-04 1998-11-24 The Curators Of The University Of Missouri Omeprazole solution and method for using same
US6699885B2 (en) * 1996-01-04 2004-03-02 The Curators Of The University Of Missouri Substituted benzimidazole dosage forms and methods of using same
US6645988B2 (en) * 1996-01-04 2003-11-11 Curators Of The University Of Missouri Substituted benzimidazole dosage forms and method of using same
US6489346B1 (en) * 1996-01-04 2002-12-03 The Curators Of The University Of Missouri Substituted benzimidazole dosage forms and method of using same
ATE321538T1 (en) * 1998-08-12 2006-04-15 Altana Pharma Ag ORAL PHARMACEUTICAL FORM FOR PYRIDINE-2-YLMETHYLSULFINYL-1H-BENZIMIDAZOLE
IL130602A0 (en) * 1999-06-22 2000-06-01 Dexcel Ltd Stable benzimidazole formulation
AR030557A1 (en) 2000-04-14 2003-08-27 Jagotec Ag A TABLET IN MULTI-MAP OF CONTROLLED RELEASE AND TREATMENT METHOD
AR045068A1 (en) * 2003-07-23 2005-10-12 Univ Missouri FORMULATION OF IMMEDIATE RELEASE OF PHARMACEUTICAL COMPOSITIONS
US9675548B2 (en) * 2003-07-24 2017-06-13 GlaxoSmithKline, LLC Orally dissolving films
TWI372066B (en) * 2003-10-01 2012-09-11 Wyeth Corp Pantoprazole multiparticulate formulations
US20050181052A1 (en) * 2004-02-17 2005-08-18 Patel Satishkumar A. Lansoprazole microtablets
US20070141137A1 (en) * 2004-03-04 2007-06-21 Naoki Nagahara Stable capsule preparation
US8282960B2 (en) * 2004-03-30 2012-10-09 Relypsa, Inc. Ion binding compositions
JP4964122B2 (en) * 2004-03-30 2012-06-27 レリプサ, インコーポレイテッド Ion binding composition
US8192758B2 (en) * 2004-03-30 2012-06-05 Relypsa, Inc. Ion binding compositions
US7854924B2 (en) * 2004-03-30 2010-12-21 Relypsa, Inc. Methods and compositions for treatment of ion imbalances
US20060078621A1 (en) * 2004-10-13 2006-04-13 Wedinger Robert S Method of providing customized drug delivery systems
TW200626185A (en) * 2004-12-17 2006-08-01 Bpsi Holdings Inc Enteric film coating composition containing entericpolymer micronized with detackifier
ES2550626T5 (en) 2005-02-25 2019-01-15 Takeda Pharmaceuticals Co Method to produce granules
BRPI0616603A2 (en) * 2005-09-30 2012-12-25 Ilypsa Inc Method for preparing a core-wrap composite, and for the manufacture of a medicament, pharmaceutical composition, and use thereof
CA2624170C (en) 2005-09-30 2014-02-25 Ilypsa, Inc. Methods and compositions for selectively removing potassium ion from the gastrointestinal tract of a mammal
WO2007122478A2 (en) * 2006-04-20 2007-11-01 Themis Laboratories Private Limited Multiple unit compositions
WO2008135090A1 (en) * 2007-05-07 2008-11-13 Evonik Röhm Gmbh Solid dosage forms comprising an enteric coating with accelerated drug release
EP2293782B1 (en) * 2008-05-06 2015-08-12 Dexcel Pharma Technologies Ltd. Stable benzimidazole formulation
DK2957286T3 (en) * 2008-08-22 2018-12-17 Vifor Int Ltd Compositions comprising cross-linked cation exchange polymers and use in the treatment of hyperkalaemia
WO2010022380A2 (en) 2008-08-22 2010-02-25 Relypsa, Inc. Linear polyol stabilized polyfluoroacrylate compositions
US20100104527A1 (en) * 2008-08-22 2010-04-29 Relypsa, Inc. Treating hyperkalemia with crosslinked cation exchange polymers of improved physical properties
US20100233259A1 (en) * 2008-12-12 2010-09-16 Pascal Grenier Dosage form of ropinirole
US20120070468A1 (en) * 2010-09-16 2012-03-22 Uop Llc Removal of toxins from gastrointestinal fluids
CN103202820B (en) * 2012-01-11 2016-03-30 浙江亚太药业股份有限公司 A kind of stable lansoprazole intestine dissolving capsule and preparation method thereof
KR101390647B1 (en) * 2012-02-15 2014-04-30 주식회사 대웅제약 Oral formulation comprising lansoprazole and the preparation method thereof
CN104822383A (en) 2012-10-08 2015-08-05 瑞立普萨公司 Potassium-binding agents for treating hypertension and hyperkalemia
WO2016174664A1 (en) 2015-04-29 2016-11-03 Dexcel Pharma Technologies Ltd. Orally disintegrating compositions
US10736855B2 (en) 2016-02-25 2020-08-11 Dexcel Pharma Technologies Ltd. Compositions comprising proton pump inhibitors
US10076494B2 (en) 2016-06-16 2018-09-18 Dexcel Pharma Technologies Ltd. Stable orally disintegrating pharmaceutical compositions
GB2551980A (en) * 2016-06-30 2018-01-10 Commw Scient Ind Res Org Method and system for low level metal analysis of mineral samples
JP2023510158A (en) 2019-12-27 2023-03-13 エヴェロ バイオサイエンシズ,インコーポレーテッド Solid dosage form containing bacteria and microbial extracellular vesicles
WO2021146523A1 (en) 2020-01-17 2021-07-22 Evelo Biosciences, Inc. Solid dosage forms with improved disintegration profiles
EP4135670A1 (en) 2020-04-17 2023-02-22 Evelo Biosciences, Inc. Solid dosage forms with improved disintegration profiles
CA3192766A1 (en) 2020-09-18 2022-03-24 Syed Altaf Solid dosage forms of bacteria
WO2022061123A1 (en) 2020-09-21 2022-03-24 Evelo Biosciences, Inc. Solid dosage forms with improved disintegration profiles
US20240024377A1 (en) 2020-10-29 2024-01-25 Evelo Biosciences, Inc. Compositions comprising spirulina components
US20240058271A1 (en) 2020-12-14 2024-02-22 Kevin Huynh Extracellular vesicle preparations
EP4267154A1 (en) 2020-12-22 2023-11-01 Evelo Biosciences, Inc. Compositions comprising animal hemoglobin
EP4284400A1 (en) 2021-01-26 2023-12-06 Evelo Biosciences, Inc. Prevotella extracellular vesicle preparations
WO2022182707A1 (en) 2021-02-26 2022-09-01 Evelo Biosciences, Inc. Compositions and methods for reducing cytokine expression
WO2022187578A1 (en) 2021-03-05 2022-09-09 Evelo Biosciences, Inc. Solid dosage forms
EP4319723A1 (en) 2021-04-08 2024-02-14 Evelo Biosciences, Inc. Pharmaceutical composition containing bacteria
WO2022221183A1 (en) 2021-04-12 2022-10-20 Evelo Biosciences, Inc. Fournierella extracellular vesicle preparations
WO2022251166A2 (en) 2021-05-25 2022-12-01 Evelo Biosciences, Inc. Bacterial compositions comprising soy hemoglobin
WO2023049268A1 (en) 2021-09-24 2023-03-30 Evelo Biosciences, Inc. Solid dosage forms containing bacteria and microbial extracellular vesicles
WO2023114295A1 (en) 2021-12-14 2023-06-22 Evelo Biosciences, Inc. Veillonella parvula bacteria extracellular vesicle preparations
WO2023114300A1 (en) 2021-12-14 2023-06-22 Evelo Biosciences, Inc. Fournierella massiliensis bacteria extracellular vesicle preparations
WO2023114296A2 (en) 2021-12-14 2023-06-22 Evelo Biosciences, Inc. Extracellular vesicle preparations
WO2023146843A1 (en) 2022-01-25 2023-08-03 Evelo Biosciences, Inc. Extracellular vesicle compositions and methods of use
WO2023183396A1 (en) 2022-03-22 2023-09-28 Evelo Biosciences, Inc. Compositions and methods of treating inflammation using prevotella histicola
WO2023200837A1 (en) 2022-04-13 2023-10-19 Evelo Biosciences, Inc. Compositions and methods of treating inflammation using prevotella histicola
WO2023239728A1 (en) 2022-06-07 2023-12-14 Evelo Biosciences, Inc. Compositions and methods of treating inflammation using prevotella histicola extracellular vesicles

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255431A (en) * 1978-04-14 1981-03-10 Aktiebolaget Hassle Gastric acid secretion inhibiting substituted 2-(2-benzimidazolyl)-pyridines, pharmaceutical preparations containing same, and method for inhibiting gastric acid secretion
US4786505A (en) * 1986-04-30 1988-11-22 Aktiebolaget Hassle Pharmaceutical preparation for oral use
US4853230A (en) * 1986-04-30 1989-08-01 Aktiebolaget Hassle Pharmaceutical formulations of acid labile substances for oral use
US4980170A (en) * 1988-06-30 1990-12-25 Klinge Pharma Gmbh Pharmaceutical formulation as well as a process for its preparation
US5385739A (en) * 1992-06-16 1995-01-31 Ethypharm Stable compositions of gastroprotected omerprazole microgranules and process for the production thereof
US5417980A (en) * 1989-11-02 1995-05-23 Mcneil-Ppc, Inc. Pharmaceutical compositions and methods for treating the symptoms of overindulgence
US5601843A (en) * 1990-05-03 1997-02-11 G. D. Searle & Co. Pharmaceutical tablet composition
US5753265A (en) * 1994-07-08 1998-05-19 Astra Aktiebolag Multiple unit pharmaceutical preparation
US5817338A (en) * 1994-07-08 1998-10-06 Astra Aktiebolag Multiple unit tableted dosage form of omeprazole
US5900424A (en) * 1993-07-09 1999-05-04 Astra Aktiebolag Omeprazole magnesium salt form
US6013281A (en) * 1995-02-09 2000-01-11 Astra Aktiebolag Method of making a pharmaceutical dosage form comprising a proton pump inhibitor
US6365184B1 (en) * 1996-01-08 2002-04-02 Astrazeneca Ab Oral pharmaceutical dosage forms comprising a proton pump inhibitor and a NSAID

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1204363B (en) 1963-09-10 1965-11-04 Hoffmann La Roche Process for the production of an oral medicinal preparation which only releases its active ingredient in the ileum
CA1327010C (en) 1986-02-13 1994-02-15 Tadashi Makino Stabilized solid pharmaceutical composition containing antiulcer benzimidazole compound and its production
DE69127275T2 (en) 1991-06-21 1998-03-12 Ilsan Ilac Ve Hammaddeleri San New galenic process for pellets containing omeprazole
AU4513393A (en) 1992-07-17 1994-02-14 Astra Aktiebolag Pharmaceutical composition containing antiulcer agent
SE9302395D0 (en) 1993-07-09 1993-07-09 Ab Astra NEW PHARMACEUTICAL FORMULATION

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255431A (en) * 1978-04-14 1981-03-10 Aktiebolaget Hassle Gastric acid secretion inhibiting substituted 2-(2-benzimidazolyl)-pyridines, pharmaceutical preparations containing same, and method for inhibiting gastric acid secretion
US4786505A (en) * 1986-04-30 1988-11-22 Aktiebolaget Hassle Pharmaceutical preparation for oral use
US4853230A (en) * 1986-04-30 1989-08-01 Aktiebolaget Hassle Pharmaceutical formulations of acid labile substances for oral use
US4980170A (en) * 1988-06-30 1990-12-25 Klinge Pharma Gmbh Pharmaceutical formulation as well as a process for its preparation
US5417980A (en) * 1989-11-02 1995-05-23 Mcneil-Ppc, Inc. Pharmaceutical compositions and methods for treating the symptoms of overindulgence
US5601843A (en) * 1990-05-03 1997-02-11 G. D. Searle & Co. Pharmaceutical tablet composition
US5698225A (en) * 1990-05-03 1997-12-16 G. D. Searle & Co. Pharmaceutical composition
US5385739A (en) * 1992-06-16 1995-01-31 Ethypharm Stable compositions of gastroprotected omerprazole microgranules and process for the production thereof
US5900424A (en) * 1993-07-09 1999-05-04 Astra Aktiebolag Omeprazole magnesium salt form
US5753265A (en) * 1994-07-08 1998-05-19 Astra Aktiebolag Multiple unit pharmaceutical preparation
US5817338A (en) * 1994-07-08 1998-10-06 Astra Aktiebolag Multiple unit tableted dosage form of omeprazole
US6013281A (en) * 1995-02-09 2000-01-11 Astra Aktiebolag Method of making a pharmaceutical dosage form comprising a proton pump inhibitor
US6365184B1 (en) * 1996-01-08 2002-04-02 Astrazeneca Ab Oral pharmaceutical dosage forms comprising a proton pump inhibitor and a NSAID

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785135A1 (en) * 2005-11-10 2007-05-16 Laboratorios Del Dr. Esteve, S.A. New stabilized galenic formulations comprising lansoprazole and their preparation
WO2007054565A2 (en) * 2005-11-10 2007-05-18 Laboratorios Del Dr. Esteve, S.A. New stabilized galenic formulations comprising lansoprazole and their preparation
WO2007054565A3 (en) * 2005-11-10 2007-09-27 Esteve Labor Dr New stabilized galenic formulations comprising lansoprazole and their preparation
ES2336757A1 (en) * 2005-11-10 2010-04-15 Laboratorios Del Dr. Esteve, S.A. New stabilized galenic formulations comprising lansoprazole and its preparation
US20090175936A1 (en) * 2006-02-10 2009-07-09 Biogenerics Pharma Gmbh Microtablet-Based Pharmaceutical Preparation
US8883205B2 (en) 2006-02-10 2014-11-11 Biogenerics Pharma Gmbh Microtablet-based pharmaceutical preparation
US20130266658A1 (en) * 2010-11-29 2013-10-10 Temmler Werke Gmbh Method of producing a PPI-containing pharmaceutical preparation

Also Published As

Publication number Publication date
US6623759B2 (en) 2003-09-23
US20070048380A1 (en) 2007-03-01
US20020054913A1 (en) 2002-05-09
US7276253B2 (en) 2007-10-02

Similar Documents

Publication Publication Date Title
US7276253B2 (en) Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof
CA2258918C (en) Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof
CA1292693C (en) Pharmaceutical preparation containing omeprazole
US6228400B1 (en) Orally administered pharmaceutical formulations of benzimidazole derivatives and the method of preparing the same
EP0502556B1 (en) Use of specific core material and layers to obtain pharmaceutical formulations stable to discolouration of acid labile compounds
KR100616027B1 (en) Oral Pharmaceutical Pulsed Release Dosage Form
KR100627205B1 (en) Pharmaceutical Formulation Comprising Omeprazole
CZ298972B6 (en) Pharmaceutical formulation of omeprazole
CZ20014579A3 (en) Novel preparation
AU783911B2 (en) Coated solid dosage forms
EP0960620A1 (en) A stable oral pharmaceutical composition containing a substituted pyridylsulfinyl benzimidazole
CZ20002709A3 (en) Omeprazole micro-granules with external layer protecting from stomach medium and process for preparing such micro-granules
IL229510A (en) Solid dosage form in a tablet or a pellet form, resistant to gastric juice and for oral administration of pantoprazole magnesium dihydrate as active ingredient
JP2014533656A5 (en)
HUT78132A (en) New oral pharmaceutical formulation containing magnesium salt of omeprazole
EP2345408A2 (en) Acid labile drug formulations
US20090280175A1 (en) Multilayer Proton Pump Inhibitor Tablets
WO2003103638A1 (en) Stabilized pharmaceutical compositions containing benzimidazole compounds
MXPA00005895A (en) Oral pharmaceutical pulsed release dosage form
MXPA99010910A (en) Pharmaceutical formulation of omeprazole

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION