US20050064494A1 - Chemically modified biological molecules and methods for coupling biological molecules to solid support - Google Patents

Chemically modified biological molecules and methods for coupling biological molecules to solid support Download PDF

Info

Publication number
US20050064494A1
US20050064494A1 US10/948,858 US94885804A US2005064494A1 US 20050064494 A1 US20050064494 A1 US 20050064494A1 US 94885804 A US94885804 A US 94885804A US 2005064494 A1 US2005064494 A1 US 2005064494A1
Authority
US
United States
Prior art keywords
dna
solid support
nucleic acid
modified
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/948,858
Inventor
Allan Bradley
Wei-Wen Cai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baylor College of Medicine
Original Assignee
Baylor College of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baylor College of Medicine filed Critical Baylor College of Medicine
Priority to US10/948,858 priority Critical patent/US20050064494A1/en
Assigned to BURRILL BIOTECHNOLOGY CAPITAL FUND L.P., TECHXAS FUND IIA, L.P., BURRILL AGBIO CAPITAL FUND, L.P., TECHXAS II AFFILIATES FUND, L.P., TECHXAS FUND IIQ, L.P., BIOTEX FINANCE, LTD., BCM TECHNOLOGIES, INC. reassignment BURRILL BIOTECHNOLOGY CAPITAL FUND L.P. SECURITY AGREEMENT Assignors: SPECTRAL GENOMICS, INC.
Publication of US20050064494A1 publication Critical patent/US20050064494A1/en
Assigned to TECHXAS FUND IIQ, L.P., TECHXAS FUND IIA, L.P., TECHXAS II AFFILIATES FUND, L.P., BIOTEX FINANCE, LTD., BURRILL AGBIO CAPITAL FUND, L.P., BURRILL BIOTECHNOLOGY CAPITAL FUND, L.P., BCM TECHNOLOGIES, INC. reassignment TECHXAS FUND IIQ, L.P. RELEASE OF SECURITY AGREEMENT Assignors: SGI HOLDING CORP. (F/K/A SPECTRAL GENOMICS, INC.)
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/197Modifications characterised by incorporating a spacer/coupling moiety
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures

Definitions

  • the present invention claims a closely related family of compounds, devices, and methods relating to techniques for immobilizing biological molecules to a solid support for the purpose of conducting scientific investigation or routine testing upon the bound molecule samples in areas such as genome-wide genetic mapping and gene expression studies, protein interaction studies, peptide interaction studies & small molecule interactions with larger macromolecules.
  • DNA is a water-soluble compound, that if left in solution (i.e., a water-based solution), is likely to degrade, through hydrolysis, and so forth. Obviously this frustrates any investigation involving DNA, and so therefore, accurate and reliable study involving DNA requires a method or device to ensure the integrity of DNA.
  • immobilizing DNA means fixing one end of the strand to the solid support so that the remainder of the strand is unmodified and free to undergo further reaction depending upon the particular study. Indeed, this is a widely used method to conduct laboratory studies involving DNA.
  • the particular immobilized strand to which the probe reacts reveals the nucleotide sequence of the previously unknown immobilized strand.
  • probe studies are severely confounded by electrostatic sticking of the probe to the derivatized (hence electrostatically charged) glass surface.
  • the probe is often radiolabeled so that its presence can be detected by an ordinary radiation detector.
  • the location of the probe on the glass surface as evidenced by the detector, reveals the chemical identity or sequence of the immobilized DNA strand at that particular location on the glass surface (which is known and designated in advance).
  • the radiation detector is unable to distinguish between probe that is chemically bound to a complementary strand of DNA affixed to the solid support, and probe that is simply electrostatically stuck to the glass surface (but not to a DNA strand).
  • One very common substance used to prepare a glass surface to receive a nucleic acid sample is poly-L-lysine. See, e.g., DeRisi, et al., Use of a cDNA Microarray to Analyze Gene Expression Pattern in Human Cancer, 14 Nature Genetics 457 (1996); Shalon et al. in A DNA Microarray System for Analyzing Complex DNA Samples Using Two-Color Fluorescent Probe Hybridization, 6 Genome Res. 639 (1996); and Schena, et al., Quantitative Monitoring of Gene Expression Patterns With a Complementary DNA Microarray, 270 Science 467 (1995).
  • pre-derivatized glass supports are commercially available (e.g., silylated microscope slides). See, e.g., Schena, et al., Parallel Human Genome Analysis: Microarray-Based Expression Monitoring of 1000 Genes, 93 P.N.A.S. 10614 (1996).
  • U.S. Pat. No. 5,630,932 assigned to Molecular Imaging Corp. discloses a coating for a probe (platinum) tip for use in scanning tunneling microscopy; numerous means 25 are disclosed for coating the surface, notably, Si(OCH 3 )CH 2 I.
  • U.S. Pat. No. 5,610,287 assigned to Molecular Tool, discloses coating a solid support with a salt or cationic detergent to non-covalently bond nucleic acids to the support.
  • U.S. Pat. No. 5,024,933, assigned to Enzo Biochem discloses coating a solid support with an isolate of naturally occurring mussel adhesive protein.
  • Another approach to this problem involves derivatizing both the solid support and the nucleic acid sought to be immobilized. See, e.g., U.S. Pat. No. 5,641,630, assigned to Amgen and Abbott, discloses coating a solid support with a complexing agent that binds to an other complexing agent to which the nucleic acid sought to be bound is likewise bound.
  • U.S. Pat. No. 5,554,744, assigned to Hybridon discloses contacting a solid support with diisopropylcarbodiimide and an acid catalyst and a succinylated nucleoside to immobilize the nucleoside.
  • 5,514,785 assigned to Becton Dickinson, discloses coating a solid support with, preferably, primary and secondary amines, followed by activation of the nucleic acid using cyanuric chloride.
  • U.S. Pat. No. 5,215,882, assigned to Ortho Diagnostic Systems discloses modifying the nucleic acid sought to be immobilized with a primary amine or equivalent, followed by reaction of the modified nucleic acid with the solid support (the support must have free aldehyde groups) in the presence of a reducing agent.
  • the solid support in order to effectively immobilize nucleic acids onto solid surfaces, the solid support must first be derivatized, or made chemically labile, so that the nucleic acid can then be reacted with solid support.
  • epoxides are known mutagens; that is, they are known to damage nucleic acids, particularly DNA.
  • One object of the present invention is modified biological molecules, e.g., nucleic acids, that will adhere to a solid surface to allow subsequent biochemical investigation.
  • a high-density microarray which comprises a glass or other inert surface, made by printing numerous highly discrete modified biological molecule sample spots upon the surface.
  • the present invention possesses numerous advantages over the prior art. Many of the advantages derive from the fact that the solid surface, which is typically ordinary glass, remains highly chemically inert. Thus the previously mentioned problems of probe (or other reactant) sticking to the glass .eliminated. The ultimate result is, among other things, far higher detection sensitivity compared with state-of-the-art derivatized solid support due to the absence of non-specific probe absorption.
  • the biological molecule to be immobilized upon the solid support is readily derivatized since the reaction conditions can take place in liquid phase for as long as necessary to obtain the required level of derivatization.
  • the reaction of the epoxide derivatives of the present invention is simply to execute it under mild conditions, reaction rates are quick, and equilibrium is highly favorable.
  • the epoxide-modified molecule of the present invention is essentially permanently stable, thus it can be prepared and stored for later use. Additional, more specific advantages will be disclosed later during discussion of particular embodiments of the present invention.
  • FIG. 1 depicts a coupling reaction of nucleic acid (in this instance DNA) with 3-glycidoxypropyltrimethoxysilane, followed by the reaction of the newly modified DNA and the solid support (in this instance a glass surface). The final reaction product?the immobilized DNA is shown at bottom.
  • FIG. 2 depicts a coupling reaction of nucleic acid (in this instance DNA) with 3-aminoproplytriethoxysilane followed by the reaction of the newly modified DNA and the solid support (in this instance a glass surface). The final reaction product the immobilized DNA is shown at bottom.
  • nucleic acid in this instance DNA
  • 3-aminoproplytriethoxysilane followed by the reaction of the newly modified DNA and the solid support (in this instance a glass surface).
  • the final reaction product the immobilized DNA is shown at bottom.
  • FIG. 3 depicts a device for making a high-density microarray; both a top ( FIG. 3A ) and a side view ( FIG. 3B ) are shown.
  • FIG. 4 depicts the silanization of nucleic acid through alkylation of halogen-containing silane compounds.
  • FIG. 5 a depicts the first step in the silanization of nucleic acid using amine-containing silane compounds.
  • the reaction occurs preferentially at the guanine base at neutral and slightly basic pH.
  • FIG. 5 b depicts the first step in the silanization of nucleic acid using amine-containing silane compounds. In this case, the reaction occurs preferentially at the cytosine base at more basic pH.
  • FIG. 5 c depicts the second and final step in the silanization of nucleic acid using amine-containing silane compounds.
  • FIG. 6 is a schematic representation of one embodiment of the present invention showing silane linkers by hydrophobic linkers.
  • One aspect of this invention is chemical modification of the nucleic acid sought to be immobilized.
  • This chemically modified nucleic acid is then readily reacted to a solid support such as a glass surface, rendering the nucleic acid immobilized. Again, this is in direct contradiction to the prior art, which teaches modification of the solid support, rather than the nucleic acid itself.
  • the modified nucleic acids of the present invention readily adhere to a variety of solid surfaces having reactive functional groups. These include, but are not limited to: quartz glass, mica, alumina (Al 2 O 3 ), titania (TiO 2 ), SnO 2 , RuO 2 , PtO 2 , plastics such as the following polymer materials, polystyrene, polyester, polycarbonate, polyethylene, polypropylene, and nylon as well as numerous semi-conductive surfaces, such as metal oxide surfaces.
  • the chemically modified nucleic acids of the present invention are so modified with compounds having two crucial functionalities: a ring ether and an alkoxysilane group.
  • the nucleic acid reacts with the ring ether, then the newly modified nucleic acid is contacted with the otherwise inert glass surface, where the alkoxysilane group reacts with the Si—OH groups on the glass surface.
  • the nucleic acids are modified by reaction with halogenated silane compounds.
  • the nucleic acids are derivatized by a two-step process involving a final reaction with amine-containing silanes and brominated nucleic acids.
  • DNA is only one of many biological polymers.
  • a polymer refers to a molecule that has joined prefabricated units, monomers, which are of limited diversity and are linked together by identical mechanisms; e.g., cellulose is a polymer of simple sugars or polysaccharide.
  • Exemplary biological molecules include but are not limited to DNA, RNA, protein, peptides, lipids, saccharides, and polysaccharides. Thus, a skilled artisan recognizes these molecules can be modified and affixed to a solid surface similar to nucleic acids.
  • Another embodiment of the present invention is the modification of biological molecules.
  • One type of modification is chemical crosslinking.
  • bifunctional “crosslinking” reagents contain two reactive groups, thus providing a means of covalently linking two target groups.
  • the reactive groups in a chemical crosslinking reagent typically belong to the classes of functional groups, e.g., succinimidyl esters, maleimides and idoacetamides.
  • Bifunctional crosslinking reagents can be divided in homobifuntional, heterobifuntional and zero-length bifunctional crosslinking reagents. In homobifunctional crosslinking reagents, the reactive groups are identical.
  • reagents couple like functional groups, e.g., two thiols, two amines, two acids or two alcohols, and are predominantly used to form intramolecular crosslinks.
  • the reactive groups have dissimilar chemistry, allowing the formation of crosslinks between unlike functional groups.
  • the “zero-length” crosslinking reagent forms a chemical bond between two groups without itself being incorporated into the product.
  • water-soluble carbodiimide (EDAC) is used to couple carboxylic acids to amines.
  • EDAC water-soluble carbodiimide
  • a noncovalent interaction between two molecules that has very slow dissociation kinetics can also function as a crosslink.
  • reactive derivatives of phospholipids can be used to link the liposomes or cell membranes to antibodies or enzymes.
  • Biotinylation and haptenylation reagents can also be thought of as heterobifunctional crosslinking reagents because they comprise a chemically reactive group as well as a biotin or hapten moiety that binds with high affinity to avidin or an anti-hapten antibody, respectively.
  • photoreactive crosslinking reagents are available.
  • the general scheme involves photoreactive crosslinking reagents that contain a chemically reactive group as well as a photoreactive group. These crosslinkers are first chemically reacted with one molecule and then this modified molecule is coupled to a second molecule using UV illumination. Depending on the reactive properties of the chemical and photoreactive groups, these crosslinkers can be used to couple like or unlike functional groups.
  • nucleic acid of the present invention describes one form of modified nucleic acid of the present invention.
  • the purpose of the chemical modification is to enable the nucleic acid to be readily affixed to an underivatized solid surface.
  • the nucleic acid preferably DNA
  • the nucleic acid is modified by reaction with 3-glycidoxypropyltrimethoxysilane (GPTS), according to FIG. 1 .
  • GPTS 3-glycidoxypropyltrimethoxysilane
  • GPTS 3-glycidoxypropyltrimethoxysilane
  • GPTS 3-glycidoxypropyltrimethoxysilane
  • GPTS 3-glycidoxypropyltrimethoxysilane
  • affixing the nucleic acid to the solid support consists essentially of two steps.
  • the nucleic acid reacts with the epoxide end of the GPTS molecule;
  • the glass surface reacts with the other end, or the silane end of the GPTS-modified nucleic acid, thereby affixing the nucleic acid onto an underivatized glass surface.
  • the entire reaction is rapid, is characterized by a favorable equilibrium, and occurs under very mild conditions using a minimum of inexpensive reagents. Though there quite obviously are numerous ways to carry out either step of the reaction, the preferred method is shown in this and the following example.
  • the compound shown is 3-glycidoxypropyltrimethoxysilane or GPTS.
  • DNA is reacted with GPTS at basic pH, preferably above 9.5, to form the modified DNA.
  • the modified DNA is then reacted with an underivatized glass (or other silanol-containing) surface at neutral pH, thus immobilizing the DNA onto the glass surface.
  • the ring ether functionality reacts with the DNA.
  • the ring ether need not be ethylene oxide, as it is in GPTS, although the small ring is preferred to increase reactivity of the ether functionality which is relatively unreactive.
  • the first reaction leading to the derivatized DNA, is a ring-opening reaction likely involving carbon 5 of the ribose ring of the DNA.
  • This derivatized DNA is unusually stable and can be stored for long periods of time prior to actual use.
  • the second reaction, immobilizing the derivatized DNA onto the glass surface is a simple substitution reaction creating an Si—O—Si linkage in the glass surface, and removing one of the alkoxy groups from the GPTS molecule.
  • nucleic acid of the present invention describes another preferred form of modified nucleic acid of the present invention.
  • the purpose of the chemical modification is to enable the nucleic acid to be readily affixed to an underivatized solid surface.
  • the nucleic acid preferably DNA
  • affixing the nucleic acid to the solid support consists essentially of two steps.
  • the nucleic acid reacts with the epoxide end of the 3-aminopropyltrimethoxysilane molecule; in the second step, the glass surface reacts with the other end, or the silane end of the 3-aminopropyltrimethoxysilane-modified nucleic acid, thereby affixing the nucleic acid onto an underivatized glass surface.
  • the entire reaction is rapid, is characterized by a favorable equilibrium, and occurs under very mild conditions using a minimum of inexpensive reagents. Though there quite obviously are numerous ways to carry out either step of the reaction, the preferred method is shown in this and the following example.
  • the compound shown is 3-aminopropyltriethoxysilane.
  • DNA is reacted with 3-aminopropyltriethoxysilane at neutral pH in the presence of preferably sodium bisulfite.
  • the first reaction, leading to the derivatized DNA, is transamination reaction of the cytosine residues on nucleic acids.
  • the second reaction as in Example 1, immobilizing the derivatized DNA onto the glass surface is a simple substitution reaction creating an Si—O—Si linkage in the glass surface, and removing one of the alkoxy groups from the GPTS molecule.
  • modified nucleic acids of the present invention such as those described in Examples 1 and 2
  • these modified nucleic acids can be immobilized onto a glass surface simply by contacting the modified DNA onto the underivatized surface.
  • the significance of this is, among other things, that spreading (migration of the DNA sought to be immobilized from the desired location) and non-specific probe sticking (caused by derivatization of the glass surface which creates a net positive electrostatic charge upon the surface which attracts the net negatively charged DNA) are essentially eliminated.
  • microarrays which is highly desirable. For instance, due to the elimination of spreading, and the effective elimination of probe sticking, a single small glass surface can contain virtually thousands of DNA samples to be tested, each of which is microscopic in size, all immobilized upon a single glass surface. Indeed, one can construct a microarray consisting of multiple single sample spots smaller than 50 microns placed upon a glass surface.
  • FIG. 3 illustrates one embodiment of a device for preparing such a high-density microarray using the DNA chips of the present invention.
  • the device is made from a plurality of inexpensive commercially available capillary micropipets, preferably 10 cm micropipets, although other sizes will, of course, work. As depicted in FIG.
  • each 10 cm micropipet is pulled to make a taper at one end. They are arranged in a hexagonal close-packed array, bounded by a square frame. The micropipets can be glued to one another to form a stable unit within the frame. The tapered ends ( FIG. 3B ) are cut off and polished to optical flatness.
  • the tips of the device are dipped into a multi-well container which contains the (chemically modified in accordance with the present invention) DNA samples to be tested, and whose wells are aligned with the micropipets of the device.
  • a small portion of each DNA sample is deposited into the micropipet corresponding to the particular well by simple capillary action.
  • the size of the spot can be carefully controlled by the size of the tapered end.
  • the method (comprising the DNA chips and pipet device) of the present invention has been shown to be even more efficient than methods using high-speed spotting robots.
  • the compounds, methods and devices of the present invention are readily incorporated into a pre-packaged kit for commercial sale.
  • the high-density microarray of the present invention can also be readily incorporated into the microarray systems of the prior art, such as those disclosed in the prior art section above. These methods are hereby incorporated by reference into the present Application, for instance, fluorescent in situ hybridization (FISH) and the method described in Shalon, et al. in A DNA Microarray System for Analyzing Complex DNA Samples Using Two-Color Fluorescent Probe Hybridization, 6 Genome Res. 639 (1996). In the Shalon, et al.
  • FISH fluorescent in situ hybridization
  • a microarray system for analyzing DNA samples that involves making microarrays of DNA samples on glass substrates, probing them by hybridization with complex fluorescent-labeled probes, and using a laser-scanning microscope to detect the fluorescent signals representing hybridization.
  • Sargent, et al. U.S. Pat. No. 5,601,982 discloses a method and apparatus for determining the sequence of polynucleotides involving scanning the nucleic acids by scanning tunneling microscopy.
  • nucleic acids include DNA, RNA, proteins or polypeptides, and polysaccharides.
  • biopolymers such as DNA, RNA, proteins or polypeptides, and polysaccharides can be directly activated using similar bi-functional silane compounds or other crosslinking reagents resulting in an immobilized biopolymer to a solid surface.
  • This invention demonstrates that the target molecules to be arrayed are first modified so that they have binding affinity for solid surfaces without losing their probing abilities. Because the modification is a separate process, virtually any biological molecule can be modified and arrayed.
  • this invention is not limited to nucleic acids, but can be used for a spectrum of biological molecules.
  • modified nucleic acid of the present invention describes another form of modified nucleic acid of the present invention.
  • the purpose of the chemical modification disclosed and claimed here is to enable to nucleic acid to be readily affixed to an underivatized solid surface, e.g., ordinary quartz glass.
  • a modified nucleic acid in accordance with the present invention is prepared by reacting unmodified nucleic acid under near neutral pH with suitable silane compounds.
  • the “X” in FIG. 4 can refer to any halide, preferably Cl, Br, or I; R 1 , R 2 , and R 3 , can be the same or different, including, —OCH 3 , and —OC 2 H 5 .
  • the halogenated silane depicted to the left of the arrow in FIG. 4 is 8-bromocytltrichlorosilane, 8-bromocytltrimethoxysilane, 4-chlorobutylmethyldichlorosilane, and 3-iodopropyltrimethoxysilane.
  • the conversion depicted in FIG. 4 was performed as follows.
  • the halogenated silane was dissolved in dimethylformamide (DMF) at a concentration of about 30 mM.
  • 3 to 10 ug of nucleic acid was dissolved in 100 ul of 0.01 M phosphate buffer (pH 7.0).
  • 1 to 3 ug of 30 mM halogenated silane was added, the solution is then mixed well, and allowed to react at about 37 C for about 3 hours (alternatively, it can be reacted at ambient temperature overnight).
  • one particular advantage of the present invention is that it allows the investigator to prepare unusually high-density microarrays to conduct nucleic acid studies.
  • This example is best understood in relation to example 3, which disclosed the preparation of a high-density microarray in accordance with the present invention.
  • This example discloses enhanced methods for controlling the size of the individual nucleic acid “spots” on the solid supports, in accordance with the present invention.
  • silanes of the present invention In a family of embodiments of the present invention discussed in this example, the skilled artisan is spared this dilemma. More specifically, spreading can be eliminated yet the reactivity of the surface towards the modified nucleic acids can be maintained through the use of another type of silanes of the present invention. For instance, one quite general embodiment of these silanes after hydrolysis contains an Si(OH) 3 at each end, linked by a hydrophobic group. See FIG. 6 . Any of a variety of hydrophobic linkers can be used.
  • Particularly preferred embodiments include: 1,6-Bis-trichlorosilyhexane, 1,8-Bis-trichlorosilyloctane, 1,6-Bis-trimethoxysilyhexane, and 1,4 Bis-trimethoxysilylethylbenzene.
  • one end of the silane attaches to the surface, and the other end remains reactive to the modified nucleic acids.
  • the hydrophobic linker confers hydrophobicity to the surface.
  • the skilled artisan can readily see how the electrostatic properties of the surface (hydrophobic versus hydrophilic) can be readily modulated, e.g., the chain length of the linker can be adjusted to control hydrophobicity, and the surface reactivity can be controlled by adjusting the amount of silane contacted with the surface.
  • the glass surface was cleaned by slowly boiling in 3 M HCl for about 2 hrs in a fume hood. Next, the surfaces were rinsed with deionized water then kept in 0.1 M HCl until ready for use. When ready for use, the surfaces were rinsed with doubly distilled deionized water to remove any extant acid, then rinsed in absolute ethanol. Next, the surfaces were immediately transferred to an ethanol solution containing 0.0005% to 0.002% of the bi-functional silanes of this aspect of the invention. The surfaces were then treated at room temperature for about 48 hours. The surfaces were then rinsed with ethanol and air dried. Finally, the glass surfaces were stored in a dust-free environment until ready for use.
  • the modified nucleic acid is prepared by reacting pristine nucleic acids with an amine-containing silane.
  • the derivatization of nucleic acid with amine-containing silanes is comprised of two steps: (1) the halogenation (or bromination, as shown) of the nucleic acid ( FIG. 5 a, 5 b ); and (2) the derivatization of the halogenated nucleic acid ( FIG. 5 c ).
  • the reaction can occur in the presence of N-bromosuccinimide under mild pH conditions; varying either of these reaction variables allows the skilled biochemist to control the reaction rate.
  • reaction normally occurs at the guanine or cytosine base depending upon the pH—i.e., neutral to slightly basic pH favors reaction at the guanine residue, more basic pH favors reaction at the cytosine residue.
  • DNA DNA
  • RNA DNA
  • 5 ug of DNA was dissolved in 100 ul of 0.1 M NaHCO 3 , to reach a pH of about 9.5. This solution is kept on ice for about 5 minutes.
  • a fresh N-bromosuccinimide solution at concentration of about 10 mM was prepared and also chilled on ice.
  • 1 ul of the N-bromosuccinimide solution is added to the DNA solution; the solution was then stirred vigorously (to vortex). The reaction was then allowed to proceed on ice for about 15 minutes.
  • silane-modified DNA was purified by methods well known in the art; preferably, it is purified by ethanol precipitation.
  • RNA was dissolved in 100 ul of 0.1 M phosphate buffer, to reach a pH of about 7.5. This solution is kept on ice for about 5 minutes. Contemporaneously, a fresh N-bromosuccinimide solution at concentration of about 10 mM was prepared and also chilled on ice. Next, 1 ul of the N-bromosuccinimide solution is added to the RNA solution; the solution was then stirred vigorously (to vortex). The reaction was then allowed to proceed on ice for about 15 minutes. Next, 10 ul of 1 M aminosilane solution at pH about 8.0, was added to the bromine-activated RNA solution; this new mixture was allowed to react at 45 C for about 2 hours. Finally, the silane-modified DNA was purified by methods well known in the art; preferably, it is purified by ethanol precipitation.
  • This example describes modification of other biopolymers using bifunctional silane compounds.
  • the purpose of the chemical modification is to enable the sample to be readily affixed to an underivatized solid surface.
  • the biopolymer is modified by reaction with 3-glycidoxypropyltrimethoxysilane (GPTS).
  • GPTS 3-glycidoxypropyltrimethoxysilane
  • affixing the biopolymer to the solid support consists essentially of two steps.
  • the biopolymer reacts with the epoxide end of the GPTS molecule; in the second step, the glass surface reacts with the other end, or the silane end of the GPTS-modified biopolymer, thereby affixing the biopolymer onto an underivatized glass surface.
  • crosslinking reagents could be used in the present invention.
  • Crosslinking reagents and the conditions required for their use are well known in the art, thus one skilled in the art would be able to extrapolate the information provided by this application and utilize specific crosslinking reagents and conditions to obtain a specific modified biopolymer.
  • non-biopolymers are first crosslinked to expoxide silane activated biopolymers, e.g., biopolymers activated according to Example 7.
  • the crosslinking of these non-biopolymers increases the size and stability of the molecule.
  • an activated biopolymer e.g., polyethylene glycol (PEG) or DNA
  • PEG polyethylene glycol
  • Biopolymers are effectively silanized and arrayed onto glass surfaces. Biopolymers are first treated with 2-iminothiolane (commonly known as Traut's reagent) or N-succinimidyl S-acetylthioacetate (SATA) or Succinimdyl acetylthiopropionate (SATP) to introduce an active sulfhydryl functional group.
  • 2-iminothiolane commonly known as Traut's reagent
  • SATA N-succinimidyl S-acetylthioacetate
  • SATP Succinimdyl acetylthiopropionate
  • Antibodies are silanized by various methods.
  • One such method is to first dissolve an antibody in 0.1M sodium phosphate buffer (pH7.3) with 50 mM NaCl and 10 mM EDTA at a concentration of 1-3 mg/ml. Then, add 5 ⁇ l of 100 mM SATA or SATP DMSO solution to 1 ml antibody solution and react at room temperature overnight. Next, add 100 ⁇ M of 1M hydroxylamine hydrochloride and react at RT for 1 hour. After the RT activation, add 10 ⁇ M of 0.2 M 3-glycidoxypropyltrimethoxysilane (Epoxide silane) and react at RT for 5 hours. Upon completion of all reactions, the antibody is purified by gel filtration on a Sephadex G25 column. The modified antibody is fixed on a glass surface by direct deposition.

Abstract

The invention relates to novel chemically modified biological molecules with enhanced lability towards solid supports, such as glass. These modified molecules can be readily affixed to solid supports, for instance, a glass surface, without first derivatizing the glass surface. High-density microarrays based on these modified molecules as well as methods for preparing these microarrays are also useful.

Description

  • This application is a continuation-in-part of U.S. application Ser. No. 09/071,876, filed May 1, 1998.
  • FIELD OF THE INVENTION
  • The present invention claims a closely related family of compounds, devices, and methods relating to techniques for immobilizing biological molecules to a solid support for the purpose of conducting scientific investigation or routine testing upon the bound molecule samples in areas such as genome-wide genetic mapping and gene expression studies, protein interaction studies, peptide interaction studies & small molecule interactions with larger macromolecules.
  • BACKGROUND OF THE INVENTION
  • A large percentage of investigation in the biochemical arts are directed to studies involving nucleic acids, particularly deoxyribonucleic acid, or DNA. DNA is a water-soluble compound, that if left in solution (i.e., a water-based solution), is likely to degrade, through hydrolysis, and so forth. Obviously this frustrates any investigation involving DNA, and so therefore, accurate and reliable study involving DNA requires a method or device to ensure the integrity of DNA. To facilitate the study of DNA, it is often desirable to affix or immobilize the DNA on a solid surface, such as a smooth sheet of glass. Fixed in place in this manner, the DNA can be readily manipulated (i.e., reacted with other substances). If DNA is envisioned as a long strand, then immobilizing DNA means fixing one end of the strand to the solid support so that the remainder of the strand is unmodified and free to undergo further reaction depending upon the particular study. Indeed, this is a widely used method to conduct laboratory studies involving DNA.
  • Perhaps the major problem associated with immobilizing DNA on a solid support is exactly how to do it without altering the DNA (other than that relatively small portion that is actually bound to the solid support). This is a very difficult problem because whatever solid support is used must be essentially inert. That is, it must not react with the DNA, other than simply to immobilize it upon the solid support. Glass is a particularly suitable solid support, because it is inexpensive, and highly inert. At present, the current orthodoxy is that the solid support (e.g., a glass surface) must first be primed or derivatized so that it can bind (one end of) the DNA to the surface. Numerous techniques exist to do this.
  • Unfortunately, derivatizing the otherwise inert surface of glass creates problems which could confound the results of the laboratory study involving DNA. One problem is that derivatization activates and sometime creates a net positive electrostatic charge on the glass surface. Since DNA is (net) negatively charged, other DNA (or DNA used later in the study but not deliberately affixed to the glass surface) is prone to stick (by non-specific electrostatic attraction) to the glass surface. In other words, DNA “probes” which are single (rather than double) strands of DNA are often contacted with an array of DNA single strands affixed to a solid support. Since the probe has a known nucleotide sequence and since a particular single strand of DNA will bind preferentially to a complementary strand, the particular immobilized strand to which the probe reacts reveals the nucleotide sequence of the previously unknown immobilized strand. Yet simple experiments of this type (probe studies) are severely confounded by electrostatic sticking of the probe to the derivatized (hence electrostatically charged) glass surface. For instance, the probe is often radiolabeled so that its presence can be detected by an ordinary radiation detector. Thus, the location of the probe on the glass surface, as evidenced by the detector, reveals the chemical identity or sequence of the immobilized DNA strand at that particular location on the glass surface (which is known and designated in advance). Yet the radiation detector is unable to distinguish between probe that is chemically bound to a complementary strand of DNA affixed to the solid support, and probe that is simply electrostatically stuck to the glass surface (but not to a DNA strand).
  • Second, derivatized surfaces result in what shall be known as “spreading.” Spreading occurs because the solid support surface becomes hydrophilic upon derivatization. As a result, when the DNA (desired to be immobilized upon the solid support) is contacted with the surface of the solid support, it spreads, rather than remaining in a discrete “spot,” which it should ideally do, since whether the radioactive probe is detected in one spot or another determines whether the scientist infers that the probe reacted with this or that immobilized DNA. Spreading is a major constraint on array density (i.e., the number of different nucleic acid samples that can be arranged on a single solid support). Hence, any means to curtail spreading, and so increase array density, is highly desirable.
  • One very common substance used to prepare a glass surface to receive a nucleic acid sample is poly-L-lysine. See, e.g., DeRisi, et al., Use of a cDNA Microarray to Analyze Gene Expression Pattern in Human Cancer, 14 Nature Genetics 457 (1996); Shalon et al. in A DNA Microarray System for Analyzing Complex DNA Samples Using Two-Color Fluorescent Probe Hybridization, 6 Genome Res. 639 (1996); and Schena, et al., Quantitative Monitoring of Gene Expression Patterns With a Complementary DNA Microarray, 270 Science 467 (1995). Other types of pre-derivatized glass supports are commercially available (e.g., silylated microscope slides). See, e.g., Schena, et al., Parallel Human Genome Analysis: Microarray-Based Expression Monitoring of 1000 Genes, 93 P.N.A.S. 10614 (1996).
  • Numerous other surface coatings have been disclosed. See, e.g., U.S. Pat. No. 5,630,932, assigned to Molecular Imaging Corp., discloses a coating for a probe (platinum) tip for use in scanning tunneling microscopy; numerous means 25 are disclosed for coating the surface, notably, Si(OCH3)CH2I. U.S. Pat. No. 5,610,287, assigned to Molecular Tool, discloses coating a solid support with a salt or cationic detergent to non-covalently bond nucleic acids to the support. U.S. Pat. No. 5,024,933, assigned to Enzo Biochem, discloses coating a solid support with an isolate of naturally occurring mussel adhesive protein. U.S. Pat. No. 4,937,188, assigned to Northeastern University, discloses covalently bonding an enzyme to a solid support via molecular chain which acts as a substrate for the enzyme. U.S. Pat. No. 4,818,681, assigned to Molecular Diagnostics, discloses coating a solid support with a nucleoside phosphate through the heterocyclic moiety of the nucleoside; the nucleic acid is then immobilized upon the solid support by enzymatic coupling. U.S. Pat. No. 4,806,631, assigned to Miles, discloses activating a nylon solid support by partially solvolyzing the amine groups (e.g., by treating with an alkylating group) on the nylon surface.
  • Another approach to this problem involves derivatizing both the solid support and the nucleic acid sought to be immobilized. See, e.g., U.S. Pat. No. 5,641,630, assigned to Amgen and Abbott, discloses coating a solid support with a complexing agent that binds to an other complexing agent to which the nucleic acid sought to be bound is likewise bound. U.S. Pat. No. 5,554,744, assigned to Hybridon, discloses contacting a solid support with diisopropylcarbodiimide and an acid catalyst and a succinylated nucleoside to immobilize the nucleoside. U.S. Pat. No. 5,514,785, assigned to Becton Dickinson, discloses coating a solid support with, preferably, primary and secondary amines, followed by activation of the nucleic acid using cyanuric chloride. U.S. Pat. No. 5,215,882, assigned to Ortho Diagnostic Systems, discloses modifying the nucleic acid sought to be immobilized with a primary amine or equivalent, followed by reaction of the modified nucleic acid with the solid support (the support must have free aldehyde groups) in the presence of a reducing agent.
  • Finally, a third approach to the problem of immobilizing nucleic acids to solid support material involves creating a novel solid support. See, e.g., U.S. Pat. Nos. 5,055,429, 5,008,220, 4,963,436, 4,826,790, and 4,826,789, assigned to ECC International, disclose solid support material made from aluminosilicate material.
  • Due to the aforementioned shortcomings of derivatizing the (entire) glass surface prior to affixing the nucleic acid samples, several methods have been developed which involve synthesizing the nucleic acid samples directly to the solid support. See, e.g., Hacia, et al., Detection of Heterozygous Mutations in BRCA1 Using High Density Oligonucleotide Arrays and Two-Colour Fluorescence Analysis, 14 Nature Genetics 441 (1996); Lockhart, et al., Expression Monitoring by Hybridization to High-Density Oligonucleotide Arrays, 14 Nature Biotechnology 1675 (1996); Maskos and Southern, Oligonucleotide Hybridizations on Glass Supports: a Novel Linkerfor Oligonucleotide Synthesis and Hybridization Properties of Oligonucleotides Synthesized In Situ, 20 Nucleic Acids Res. 1679 (1992) (and references cited there, particularly 5-11).
  • To reiterate: at present, the prevailing view in the biochemical arts is that, in order to effectively immobilize nucleic acids onto solid surfaces, the solid support must first be derivatized, or made chemically labile, so that the nucleic acid can then be reacted with solid support. In addition, epoxides are known mutagens; that is, they are known to damage nucleic acids, particularly DNA.
  • This invention demonstrates that any biological molecule can be modified and affixed to an unmodified solid support. A skilled artisan will recognize the significance of first modifying a molecule to enhance its binding affinity by the appropriate modifications known in the art, thus this modified molecule can be immobilized to an unmodified solid surface generating a fully functional array of molecules for a spectrum of specific applications.
  • SUMMARY OF THE INVENTION
  • One object of the present invention is modified biological molecules, e.g., nucleic acids, that will adhere to a solid surface to allow subsequent biochemical investigation.
  • In accordance with an aspect of the present invention, a high-density microarray is claimed which comprises a glass or other inert surface, made by printing numerous highly discrete modified biological molecule sample spots upon the surface.
  • The present invention possesses numerous advantages over the prior art. Many of the advantages derive from the fact that the solid surface, which is typically ordinary glass, remains highly chemically inert. Thus the previously mentioned problems of probe (or other reactant) sticking to the glass .eliminated. The ultimate result is, among other things, far higher detection sensitivity compared with state-of-the-art derivatized solid support due to the absence of non-specific probe absorption.
  • In addition, the biological molecule to be immobilized upon the solid support is readily derivatized since the reaction conditions can take place in liquid phase for as long as necessary to obtain the required level of derivatization. The reaction of the epoxide derivatives of the present invention is simply to execute it under mild conditions, reaction rates are quick, and equilibrium is highly favorable. Moreover, the epoxide-modified molecule of the present invention is essentially permanently stable, thus it can be prepared and stored for later use. Additional, more specific advantages will be disclosed later during discussion of particular embodiments of the present invention.
  • Other and further objects, features, and advantages will be apparent from the following description of the presently preferred embodiments of the invention, which are given for the purpose of disclosure, when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 depicts a coupling reaction of nucleic acid (in this instance DNA) with 3-glycidoxypropyltrimethoxysilane, followed by the reaction of the newly modified DNA and the solid support (in this instance a glass surface). The final reaction product?the immobilized DNA is shown at bottom.
  • FIG. 2 depicts a coupling reaction of nucleic acid (in this instance DNA) with 3-aminoproplytriethoxysilane followed by the reaction of the newly modified DNA and the solid support (in this instance a glass surface). The final reaction product the immobilized DNA is shown at bottom.
  • FIG. 3 depicts a device for making a high-density microarray; both a top (FIG. 3A) and a side view (FIG. 3B) are shown.
  • FIG. 4 depicts the silanization of nucleic acid through alkylation of halogen-containing silane compounds.
  • FIG. 5 a depicts the first step in the silanization of nucleic acid using amine-containing silane compounds. In this case, the reaction occurs preferentially at the guanine base at neutral and slightly basic pH.
  • FIG. 5 b depicts the first step in the silanization of nucleic acid using amine-containing silane compounds. In this case, the reaction occurs preferentially at the cytosine base at more basic pH.
  • FIG. 5 c depicts the second and final step in the silanization of nucleic acid using amine-containing silane compounds.
  • FIG. 6 is a schematic representation of one embodiment of the present invention showing silane linkers by hydrophobic linkers.
  • Drawings are not necessary to scale. Certain features of the invention may be exaggerated in scale or shown in schematic form in the interest of clarity and conciseness.
  • DETAILED DESCRIPTION
  • It will be readily apparent to one skilled in the art that various substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention.
  • One aspect of this invention is chemical modification of the nucleic acid sought to be immobilized. This chemically modified nucleic acid is then readily reacted to a solid support such as a glass surface, rendering the nucleic acid immobilized. Again, this is in direct contradiction to the prior art, which teaches modification of the solid support, rather than the nucleic acid itself.
  • The modified nucleic acids of the present invention readily adhere to a variety of solid surfaces having reactive functional groups. These include, but are not limited to: quartz glass, mica, alumina (Al2O3), titania (TiO2), SnO2, RuO2, PtO2, plastics such as the following polymer materials, polystyrene, polyester, polycarbonate, polyethylene, polypropylene, and nylon as well as numerous semi-conductive surfaces, such as metal oxide surfaces.
  • In one family of embodiments, the chemically modified nucleic acids of the present invention are so modified with compounds having two crucial functionalities: a ring ether and an alkoxysilane group. The nucleic acid reacts with the ring ether, then the newly modified nucleic acid is contacted with the otherwise inert glass surface, where the alkoxysilane group reacts with the Si—OH groups on the glass surface.
  • In yet another distinct family of embodiments, the nucleic acids are modified by reaction with halogenated silane compounds. In a fourth set of embodiments, the nucleic acids are derivatized by a two-step process involving a final reaction with amine-containing silanes and brominated nucleic acids.
  • Further embodiments include the use of other biological molecules. One skilled in the art realizes that DNA is only one of many biological polymers. A polymer refers to a molecule that has joined prefabricated units, monomers, which are of limited diversity and are linked together by identical mechanisms; e.g., cellulose is a polymer of simple sugars or polysaccharide. Exemplary biological molecules include but are not limited to DNA, RNA, protein, peptides, lipids, saccharides, and polysaccharides. Thus, a skilled artisan recognizes these molecules can be modified and affixed to a solid surface similar to nucleic acids.
  • Another embodiment of the present invention is the modification of biological molecules. One type of modification is chemical crosslinking. It is well known in the art that bifunctional “crosslinking” reagents contain two reactive groups, thus providing a means of covalently linking two target groups. The reactive groups in a chemical crosslinking reagent typically belong to the classes of functional groups, e.g., succinimidyl esters, maleimides and idoacetamides. Bifunctional crosslinking reagents can be divided in homobifuntional, heterobifuntional and zero-length bifunctional crosslinking reagents. In homobifunctional crosslinking reagents, the reactive groups are identical. These reagents couple like functional groups, e.g., two thiols, two amines, two acids or two alcohols, and are predominantly used to form intramolecular crosslinks. In heterobifunctional crosslinking reagents, the reactive groups have dissimilar chemistry, allowing the formation of crosslinks between unlike functional groups. The “zero-length” crosslinking reagent forms a chemical bond between two groups without itself being incorporated into the product. For example, water-soluble carbodiimide (EDAC) is used to couple carboxylic acids to amines. In addition to the traditional bifuntional crosslinking reagents, a noncovalent interaction between two molecules that has very slow dissociation kinetics can also function as a crosslink. For example, reactive derivatives of phospholipids can be used to link the liposomes or cell membranes to antibodies or enzymes. Biotinylation and haptenylation reagents can also be thought of as heterobifunctional crosslinking reagents because they comprise a chemically reactive group as well as a biotin or hapten moiety that binds with high affinity to avidin or an anti-hapten antibody, respectively.
  • In contrast to chemical crosslinking reagents, photoreactive crosslinking reagents are available. The general scheme involves photoreactive crosslinking reagents that contain a chemically reactive group as well as a photoreactive group. These crosslinkers are first chemically reacted with one molecule and then this modified molecule is coupled to a second molecule using UV illumination. Depending on the reactive properties of the chemical and photoreactive groups, these crosslinkers can be used to couple like or unlike functional groups.
  • Other embodiments are directed to preparing and optimizing high-density microarrays utilizing the modified molecules of the prior embodiments of the present invention.
  • The following examples are offered by way of example, and are not intended to limit the scope of the invention in any manner.
  • EXAMPLE 1 Preparation of Modified Nucleic Acid Using 3-glycidoxypropyltrimethoxysilane
  • This example describes one form of modified nucleic acid of the present invention. The purpose of the chemical modification is to enable the nucleic acid to be readily affixed to an underivatized solid surface. In this example, the nucleic acid—preferably DNA—is modified by reaction with 3-glycidoxypropyltrimethoxysilane (GPTS), according to FIG. 1. GPTS has in fact been previously used to derivatize a glass surface upon which (unmodified) DNA samples are then contacted and immobilized. Yet the use of GPTS is for the opposite purpose: to modify the DNA for subsequent attachment to an underivatized glass surface has not been previously disclosed nor suggested. Moreover, GPTS—since it contains an epoxide group—is known to damage DNA in vivo. For these reasons, its use to derivatize DNA is actually discouraged by the prior art.
  • Schematically, affixing the nucleic acid to the solid support consists essentially of two steps. In the first, the nucleic acid reacts with the epoxide end of the GPTS molecule; in the second step, the glass surface reacts with the other end, or the silane end of the GPTS-modified nucleic acid, thereby affixing the nucleic acid onto an underivatized glass surface. The entire reaction is rapid, is characterized by a favorable equilibrium, and occurs under very mild conditions using a minimum of inexpensive reagents. Though there quite obviously are numerous ways to carry out either step of the reaction, the preferred method is shown in this and the following example.
  • As depicted in FIG. 1, a chemical compound having a cyclic or ring ether and an alkoxysilane—in this instance ethylene oxide and trimethyloxysilane, respectively—comprise the two ends of the compound; the two ends are connected by a four-carbon ether linkage. The compound shown is 3-glycidoxypropyltrimethoxysilane or GPTS. In the first step, DNA is reacted with GPTS at basic pH, preferably above 9.5, to form the modified DNA. The modified DNA is then reacted with an underivatized glass (or other silanol-containing) surface at neutral pH, thus immobilizing the DNA onto the glass surface. In the first step, the ring ether functionality reacts with the DNA. Again, the ring ether need not be ethylene oxide, as it is in GPTS, although the small ring is preferred to increase reactivity of the ether functionality which is relatively unreactive.
  • The first reaction, leading to the derivatized DNA, is a ring-opening reaction likely involving carbon 5 of the ribose ring of the DNA. This derivatized DNA is unusually stable and can be stored for long periods of time prior to actual use. The second reaction, immobilizing the derivatized DNA onto the glass surface, is a simple substitution reaction creating an Si—O—Si linkage in the glass surface, and removing one of the alkoxy groups from the GPTS molecule.
  • EXAMPLE 2 Preparation of Modified Nucleic Acid Using 3-aminopropyltriethoxysilane
  • This example describes another preferred form of modified nucleic acid of the present invention. The purpose of the chemical modification is to enable the nucleic acid to be readily affixed to an underivatized solid surface. In this example, the nucleic acid, preferably DNA, is modified by reaction with 3-aminopropyltrimethoxysilane, according to FIG. 2. As in example 1, affixing the nucleic acid to the solid support consists essentially of two steps. In the first, the nucleic acid reacts with the epoxide end of the 3-aminopropyltrimethoxysilane molecule; in the second step, the glass surface reacts with the other end, or the silane end of the 3-aminopropyltrimethoxysilane-modified nucleic acid, thereby affixing the nucleic acid onto an underivatized glass surface.
  • As in example 1, the entire reaction is rapid, is characterized by a favorable equilibrium, and occurs under very mild conditions using a minimum of inexpensive reagents. Though there quite obviously are numerous ways to carry out either step of the reaction, the preferred method is shown in this and the following example.
  • As depicted in FIG. 2, a chemical compound having an amino group and an alkoxysilane—in this instance —NH2 and triethyloxysilane, respectively—comprise the two ends of the compound; the two ends are connected by a propyl linkage. The compound shown is 3-aminopropyltriethoxysilane. In the first step, DNA is reacted with 3-aminopropyltriethoxysilane at neutral pH in the presence of preferably sodium bisulfite.
  • The first reaction, leading to the derivatized DNA, is transamination reaction of the cytosine residues on nucleic acids. The second reaction as in Example 1, immobilizing the derivatized DNA onto the glass surface is a simple substitution reaction creating an Si—O—Si linkage in the glass surface, and removing one of the alkoxy groups from the GPTS molecule.
  • EXAMPLE 3 Preparation of a High-Density Microarray
  • Once the modified nucleic acids of the present invention, such as those described in Examples 1 and 2, are prepared, they can then be exploited. Again, these modified nucleic acids (particularly DNA) can be immobilized onto a glass surface simply by contacting the modified DNA onto the underivatized surface. The significance of this is, among other things, that spreading (migration of the DNA sought to be immobilized from the desired location) and non-specific probe sticking (caused by derivatization of the glass surface which creates a net positive electrostatic charge upon the surface which attracts the net negatively charged DNA) are essentially eliminated.
  • These advantages allow the creation of extraordinarily high-density microarrays, which is highly desirable. For instance, due to the elimination of spreading, and the effective elimination of probe sticking, a single small glass surface can contain virtually thousands of DNA samples to be tested, each of which is microscopic in size, all immobilized upon a single glass surface. Indeed, one can construct a microarray consisting of multiple single sample spots smaller than 50 microns placed upon a glass surface.
  • A high-density microarray consisting of multiple DNA samples of this type is also easily constructed in accordance with the present invention. The modified DNA can be prepared (for instance, in accordance with Examples 1 and 2) well in advance of actual use. These chemically modified DNA samples are analogous to “DNA chips” that can then be readily “imprinted” upon an unaltered glass sheet in, for instance, grid fashion. FIG. 3 illustrates one embodiment of a device for preparing such a high-density microarray using the DNA chips of the present invention. In one preferred embodiment, the device is made from a plurality of inexpensive commercially available capillary micropipets, preferably 10 cm micropipets, although other sizes will, of course, work. As depicted in FIG. 3 each 10 cm micropipet is pulled to make a taper at one end. They are arranged in a hexagonal close-packed array, bounded by a square frame. The micropipets can be glued to one another to form a stable unit within the frame. The tapered ends (FIG. 3B) are cut off and polished to optical flatness.
  • To prepare the microarray, the tips of the device are dipped into a multi-well container which contains the (chemically modified in accordance with the present invention) DNA samples to be tested, and whose wells are aligned with the micropipets of the device. Upon contact of the tips into the wells, a small portion of each DNA sample is deposited into the micropipet corresponding to the particular well by simple capillary action. The size of the spot can be carefully controlled by the size of the tapered end. Using this device and the DNA chips of the present invention, thousands of samples can be arrayed in a narrow area, simultaneously and without the need for expensive robotics. Indeed, the method (comprising the DNA chips and pipet device) of the present invention has been shown to be even more efficient than methods using high-speed spotting robots. Finally, the compounds, methods and devices of the present invention are readily incorporated into a pre-packaged kit for commercial sale.
  • The high-density microarray of the present invention can also be readily incorporated into the microarray systems of the prior art, such as those disclosed in the prior art section above. These methods are hereby incorporated by reference into the present Application, for instance, fluorescent in situ hybridization (FISH) and the method described in Shalon, et al. in A DNA Microarray System for Analyzing Complex DNA Samples Using Two-Color Fluorescent Probe Hybridization, 6 Genome Res. 639 (1996). In the Shalon, et al. method, a microarray system is presented for analyzing DNA samples that involves making microarrays of DNA samples on glass substrates, probing them by hybridization with complex fluorescent-labeled probes, and using a laser-scanning microscope to detect the fluorescent signals representing hybridization. Similarly, Sargent, et al. (U.S. Pat. No. 5,601,982) discloses a method and apparatus for determining the sequence of polynucleotides involving scanning the nucleic acids by scanning tunneling microscopy.
  • One skilled in the art recognizes that this invention is not limited to using only nucleic acids. Other biopolymers such as DNA, RNA, proteins or polypeptides, and polysaccharides can be directly activated using similar bi-functional silane compounds or other crosslinking reagents resulting in an immobilized biopolymer to a solid surface. This invention demonstrates that the target molecules to be arrayed are first modified so that they have binding affinity for solid surfaces without losing their probing abilities. Because the modification is a separate process, virtually any biological molecule can be modified and arrayed. Thus, a skilled artisan realizes that this invention is not limited to nucleic acids, but can be used for a spectrum of biological molecules.
  • EXAMPLE 4 Preparation of Modified Nucleic Acids Using Halogenated Silanes
  • This example describes another form of modified nucleic acid of the present invention. Again, the purpose of the chemical modification disclosed and claimed here is to enable to nucleic acid to be readily affixed to an underivatized solid surface, e.g., ordinary quartz glass. According to FIG. 4, a modified nucleic acid in accordance with the present invention is prepared by reacting unmodified nucleic acid under near neutral pH with suitable silane compounds. The “X” in FIG. 4 can refer to any halide, preferably Cl, Br, or I; R1, R2, and R3, can be the same or different, including, —OCH3, and —OC2H5. In particularly, preferred embodiments, the halogenated silane depicted to the left of the arrow in FIG. 4 is 8-bromocytltrichlorosilane, 8-bromocytltrimethoxysilane, 4-chlorobutylmethyldichlorosilane, and 3-iodopropyltrimethoxysilane.
  • The conversion depicted in FIG. 4 was performed as follows. The halogenated silane was dissolved in dimethylformamide (DMF) at a concentration of about 30 mM. Next, 3 to 10 ug of nucleic acid was dissolved in 100 ul of 0.01 M phosphate buffer (pH 7.0). Then 1 to 3 ug of 30 mM halogenated silane was added, the solution is then mixed well, and allowed to react at about 37 C for about 3 hours (alternatively, it can be reacted at ambient temperature overnight). After reaction, the desired product—the modified nucleic acid—is purified by ethanol precipitation; then the modified nucleic acid is dissolved in water.
  • EXAMPLE 5 Controlling Spot Density/Size
  • As discussed throughout the present Application, one particular advantage of the present invention is that it allows the investigator to prepare unusually high-density microarrays to conduct nucleic acid studies. This example is best understood in relation to example 3, which disclosed the preparation of a high-density microarray in accordance with the present invention. This example discloses enhanced methods for controlling the size of the individual nucleic acid “spots” on the solid supports, in accordance with the present invention.
  • Small spot size, in relation to high-density microarrays, allows higher sample density (i.e., more samples per unit area) and superior detection sensitivity (because the signals are less diffuse). In the conventional solid support systems, the skilled artisan faces a crucial dilemma. An ordinary clean quartz glass surface—of the type used in the experiments described here—is very hydrophilic. Thus, nucleic acid samples will naturally tend to spread out when placed on the glass surface. Again, this is undesirable. To mitigate spreading, the skilled artisan can treat the surface to make it more hydrophobic, e.g., either pretreating the surface with a hydrophobic agent, or simply by dehydrating the surface. Naturally, either of these options makes the glass surface less reactive towards silane-modified nucleic acids.
  • In a family of embodiments of the present invention discussed in this example, the skilled artisan is spared this dilemma. More specifically, spreading can be eliminated yet the reactivity of the surface towards the modified nucleic acids can be maintained through the use of another type of silanes of the present invention. For instance, one quite general embodiment of these silanes after hydrolysis contains an Si(OH)3 at each end, linked by a hydrophobic group. See FIG. 6. Any of a variety of hydrophobic linkers can be used. Particularly preferred embodiments include: 1,6-Bis-trichlorosilyhexane, 1,8-Bis-trichlorosilyloctane, 1,6-Bis-trimethoxysilyhexane, and 1,4 Bis-trimethoxysilylethylbenzene. Thus, according to these embodiments of the present invention, one end of the silane attaches to the surface, and the other end remains reactive to the modified nucleic acids. The hydrophobic linker confers hydrophobicity to the surface. Thus, the skilled artisan can readily see how the electrostatic properties of the surface (hydrophobic versus hydrophilic) can be readily modulated, e.g., the chain length of the linker can be adjusted to control hydrophobicity, and the surface reactivity can be controlled by adjusting the amount of silane contacted with the surface.
  • To prepare the solid supports in accordance with this aspect of the present invention, the glass surface was cleaned by slowly boiling in 3 M HCl for about 2 hrs in a fume hood. Next, the surfaces were rinsed with deionized water then kept in 0.1 M HCl until ready for use. When ready for use, the surfaces were rinsed with doubly distilled deionized water to remove any extant acid, then rinsed in absolute ethanol. Next, the surfaces were immediately transferred to an ethanol solution containing 0.0005% to 0.002% of the bi-functional silanes of this aspect of the invention. The surfaces were then treated at room temperature for about 48 hours. The surfaces were then rinsed with ethanol and air dried. Finally, the glass surfaces were stored in a dust-free environment until ready for use.
  • EXAMPLE 6 Preparation of Modified Nucleic Acid Using Amine-Containing Silane Compounds
  • This example describes another form of modified nucleic acid of the present invention. In this family of embodiments, the modified nucleic acid is prepared by reacting pristine nucleic acids with an amine-containing silane. Heuristically, the derivatization of nucleic acid with amine-containing silanes is comprised of two steps: (1) the halogenation (or bromination, as shown) of the nucleic acid (FIG. 5 a, 5 b); and (2) the derivatization of the halogenated nucleic acid (FIG. 5 c). As depicted in FIG. 5 a, 5 b, the reaction can occur in the presence of N-bromosuccinimide under mild pH conditions; varying either of these reaction variables allows the skilled biochemist to control the reaction rate. Also as evidenced by FIG. 5 a, 5 b, the reaction normally occurs at the guanine or cytosine base depending upon the pH—i.e., neutral to slightly basic pH favors reaction at the guanine residue, more basic pH favors reaction at the cytosine residue.
  • Slightly different reaction protocols are preferably used depending upon whether the nucleic acid is DNA or RNA. For DNA, 5 ug of DNA was dissolved in 100 ul of 0.1 M NaHCO3, to reach a pH of about 9.5. This solution is kept on ice for about 5 minutes. Contemporaneously, a fresh N-bromosuccinimide solution at concentration of about 10 mM was prepared and also chilled on ice. Next, 1 ul of the N-bromosuccinimide solution is added to the DNA solution; the solution was then stirred vigorously (to vortex). The reaction was then allowed to proceed on ice for about 15 minutes. Next, 10 ul of 0.5 M aminosilane solution at pH about 9.5-12, was added to the bromine-activated DNA solution; this new mixture was allowed to react at 65 C for about 2 hours. Finally, the silane-modified DNA was purified by methods well known in the art; preferably, it is purified by ethanol precipitation.
  • A similar, though slightly different protocol was used, 5 ug of RNA was dissolved in 100 ul of 0.1 M phosphate buffer, to reach a pH of about 7.5. This solution is kept on ice for about 5 minutes. Contemporaneously, a fresh N-bromosuccinimide solution at concentration of about 10 mM was prepared and also chilled on ice. Next, 1 ul of the N-bromosuccinimide solution is added to the RNA solution; the solution was then stirred vigorously (to vortex). The reaction was then allowed to proceed on ice for about 15 minutes. Next, 10 ul of 1 M aminosilane solution at pH about 8.0, was added to the bromine-activated RNA solution; this new mixture was allowed to react at 45 C for about 2 hours. Finally, the silane-modified DNA was purified by methods well known in the art; preferably, it is purified by ethanol precipitation.
  • In these embodiments the following silanes are available for these reactions:
    Figure US20050064494A1-20050324-C00001

    R: —CH3, C2H5; R1: H, —CH3, —C2H5, —OCH3, —OC2H5 R2: H, —CH3, —C2H5, —OCH3, —OC2H5 X: a linker Further any other amino silane compound after hydrolysis that takes the following form is useful:
    Figure US20050064494A1-20050324-C00002
  • EXAMPLE 7 Preparation of Biopolymers Using 3-glycidoxypropyltrimethoxysilane
  • This example describes modification of other biopolymers using bifunctional silane compounds. The purpose of the chemical modification is to enable the sample to be readily affixed to an underivatized solid surface. In this example, the biopolymer is modified by reaction with 3-glycidoxypropyltrimethoxysilane (GPTS).
  • Schematically, affixing the biopolymer to the solid support consists essentially of two steps. In the first, the biopolymer reacts with the epoxide end of the GPTS molecule; in the second step, the glass surface reacts with the other end, or the silane end of the GPTS-modified biopolymer, thereby affixing the biopolymer onto an underivatized glass surface.
  • A skilled artisan recognizes that a variety of bifunctional crosslinking reagents could be used in the present invention. Crosslinking reagents and the conditions required for their use are well known in the art, thus one skilled in the art would be able to extrapolate the information provided by this application and utilize specific crosslinking reagents and conditions to obtain a specific modified biopolymer.
  • EXAMPLE 8 Preparation of Small Molecules
  • Other biological molecules, which are not biopolymers, can be used in the present invention. These non-biopolymers are first crosslinked to expoxide silane activated biopolymers, e.g., biopolymers activated according to Example 7. The crosslinking of these non-biopolymers, which are typically small molecules, increases the size and stability of the molecule. Once the non-biopolymer is crosslinked to an activated biopolymer, e.g., polyethylene glycol (PEG) or DNA, these crosslinked molecules can be immobilized on a solid surface by direct deposition and curing under proper conditions.
  • EXAMPLE 9 Silanization of Amine-Containing Biopolymers such as Polypeptides, Antibodies and Proteins
  • Biopolymers are effectively silanized and arrayed onto glass surfaces. Biopolymers are first treated with 2-iminothiolane (commonly known as Traut's reagent) or N-succinimidyl S-acetylthioacetate (SATA) or Succinimdyl acetylthiopropionate (SATP) to introduce an active sulfhydryl functional group. The activated biopolymers are silanized by reacting with the epoxide silane compound as described previously under mild conditions. A typical reaction is depicted below.
    Figure US20050064494A1-20050324-C00003
  • Antibodies are silanized by various methods. One such method is to first dissolve an antibody in 0.1M sodium phosphate buffer (pH7.3) with 50 mM NaCl and 10 mM EDTA at a concentration of 1-3 mg/ml. Then, add 5 μl of 100 mM SATA or SATP DMSO solution to 1 ml antibody solution and react at room temperature overnight. Next, add 100 μM of 1M hydroxylamine hydrochloride and react at RT for 1 hour. After the RT activation, add 10 μM of 0.2 M 3-glycidoxypropyltrimethoxysilane (Epoxide silane) and react at RT for 5 hours. Upon completion of all reactions, the antibody is purified by gel filtration on a Sephadex G25 column. The modified antibody is fixed on a glass surface by direct deposition.
  • All patents, publications mentioned in this specification are indicative of the level of those skilled in the art to which the invention pertains. All patents, publications herein are incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
  • One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned as well as those inherent therein. The chemically modified nucleic acids their attachment to solid support, along with the sequences, methods, procedures, assays, molecules, devices and specific compounds described herein are presently representative of the preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the claims.

Claims (7)

1. A high-density microarray comprising: a solid support and a modified biological molecule wherein said molecule is immobilized about said solid support in orderly discrete spots.
2. The high-density microarray of claim 1 wherein said solid support is an inert material.
3. The high-density microarray of claim 2 wherein said solid support is selected from the group consisting of glass, metal, or plastic.
4. The high-density microarray of claim 1 wherein said molecule is selected from the group consisting of DNA, RNA, peptides, proteins, saccharides, polysaccarides, and lipids.
5. The high-density microarray of claim 1 wherein said discrete spots are about 50 microns in diameter.
6. A high-density microarray comprising: the modified biological molecule of claim 1; and a solid support upon which said plurality of closely spaced samples of said biological samples are placed.
7. A method for immobilizing a biological molecule to a solid support comprising: reacting a biological molecule to form a derivatized biological molecule, and reacting said derivatized molecule with said solid support.
US10/948,858 1998-05-04 2004-09-24 Chemically modified biological molecules and methods for coupling biological molecules to solid support Abandoned US20050064494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/948,858 US20050064494A1 (en) 1998-05-04 2004-09-24 Chemically modified biological molecules and methods for coupling biological molecules to solid support

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/071,876 US6048695A (en) 1998-05-04 1998-05-04 Chemically modified nucleic acids and methods for coupling nucleic acids to solid support
US09/546,085 US6858713B1 (en) 1998-05-04 2000-04-10 Chemically modified biological molecules and methods for coupling biological molecules to solid support
US10/948,858 US20050064494A1 (en) 1998-05-04 2004-09-24 Chemically modified biological molecules and methods for coupling biological molecules to solid support

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/546,085 Continuation US6858713B1 (en) 1998-05-04 2000-04-10 Chemically modified biological molecules and methods for coupling biological molecules to solid support

Publications (1)

Publication Number Publication Date
US20050064494A1 true US20050064494A1 (en) 2005-03-24

Family

ID=22104163

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/071,876 Expired - Lifetime US6048695A (en) 1998-05-04 1998-05-04 Chemically modified nucleic acids and methods for coupling nucleic acids to solid support
US09/546,085 Expired - Fee Related US6858713B1 (en) 1998-05-04 2000-04-10 Chemically modified biological molecules and methods for coupling biological molecules to solid support
US10/948,858 Abandoned US20050064494A1 (en) 1998-05-04 2004-09-24 Chemically modified biological molecules and methods for coupling biological molecules to solid support

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/071,876 Expired - Lifetime US6048695A (en) 1998-05-04 1998-05-04 Chemically modified nucleic acids and methods for coupling nucleic acids to solid support
US09/546,085 Expired - Fee Related US6858713B1 (en) 1998-05-04 2000-04-10 Chemically modified biological molecules and methods for coupling biological molecules to solid support

Country Status (8)

Country Link
US (3) US6048695A (en)
EP (1) EP1075544B1 (en)
JP (1) JP4477774B2 (en)
AT (1) ATE535615T1 (en)
AU (1) AU770695B2 (en)
CA (1) CA2326684C (en)
DE (1) DE99920342T1 (en)
WO (1) WO1999057323A1 (en)

Families Citing this family (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426183B1 (en) * 1995-12-21 2002-07-30 Kenneth L. Beattie Oligonucleotide microarrays: direct covalent attachment to glass
US7078224B1 (en) 1999-05-14 2006-07-18 Promega Corporation Cell concentration and lysate clearance using paramagnetic particles
US6979728B2 (en) * 1998-05-04 2005-12-27 Baylor College Of Medicine Articles of manufacture and methods for array based analysis of biological molecules
AU2001263094B2 (en) * 1998-05-04 2008-07-10 Baylor College Of Medicine Compositions and methods for array-based genomic nucleic acid analysis of biological molecules
US6048695A (en) * 1998-05-04 2000-04-11 Baylor College Of Medicine Chemically modified nucleic acids and methods for coupling nucleic acids to solid support
WO2002092615A2 (en) * 2001-05-10 2002-11-21 Baylor College Of Medicine Compositions and methods for array-based genomic nucleic acid analysis of biological molecules
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
JP2000157272A (en) * 1998-12-01 2000-06-13 Hitachi Software Eng Co Ltd Biochip and its production
DE19957827C2 (en) * 1999-11-25 2003-06-12 Epigenomics Ag Use of an oligomer array with PNA and / or DNA oligomers on a surface
JP2001149060A (en) * 1999-11-29 2001-06-05 Nisshinbo Ind Inc Nucleic acid-immobilized board
SE9904506D0 (en) * 1999-12-09 1999-12-09 Karolinska Innovations Ab Method of Immobilization
EP1110967A1 (en) * 1999-12-21 2001-06-27 LION Bioscience AG Compound comprising a biomolecule moiety and an organo-silane moiety
AU3163101A (en) * 1999-12-21 2001-07-03 Vbc-Genomics Bioscience Research Gmbh Compound comprising a nucleic acid moiety and an organo-silane moiety
EP1111069A1 (en) * 1999-12-22 2001-06-27 BioChip Technologies GmbH Modified nucleic acids and their use
US7186813B1 (en) * 2000-01-11 2007-03-06 Nanogen Recognomics Gmbh Biomolecules having multiple attachment moieties for binding to a substrate surface
FR2804129B1 (en) * 2000-01-20 2002-10-18 Centre Nat Rech Scient METHODS FOR SYNTHESIS AND IMMOBILIZATION OF NUCLEIC ACIDS ON A SOLID SILANIZED SUPPORT
CA2399189A1 (en) * 2000-02-22 2001-08-30 Genospectra, Inc. Microarray fabrication techniques and apparatus
US20040014102A1 (en) * 2000-02-22 2004-01-22 Shiping Chen High density parallel printing of microarrays
KR20020097181A (en) 2000-02-22 2002-12-31 제노스펙트라 인코포레이티드 Microarray fabrication techniques and apparatus
JP3502803B2 (en) * 2000-03-06 2004-03-02 日立ソフトウエアエンジニアリング株式会社 Microarray, method for producing microarray, and method for correcting spot amount error between pins in microarray
WO2001075166A2 (en) * 2000-03-31 2001-10-11 Genentech, Inc. Compositions and methods for detecting and quantifying gene expression
KR100352171B1 (en) * 2000-04-14 2002-09-12 (주) 제노텍 Method for attaching oligonucleotide to solid support and the oligonucleotide array prepared by the method thereof
US6890483B2 (en) * 2000-07-05 2005-05-10 Cuno Incorporated Non-luminescent substrate
US20030219816A1 (en) * 2001-07-02 2003-11-27 Keith Solomon Composite microarray slides
WO2002002585A2 (en) * 2000-07-05 2002-01-10 Cuno, Inc. Low fluorescence nylon/glass composites for microdiagnostics
US20020102617A1 (en) * 2000-08-03 2002-08-01 Macbeath Gavin Protein microarrays
EP1307285A2 (en) * 2000-08-03 2003-05-07 Massachusetts Institute Of Technology Microarrays of functional biomolecules, and uses therefor
KR100379720B1 (en) * 2000-10-14 2003-04-11 주식회사 마크로젠 Supporter containing drimer monolayer and manufacturing method of same
US20070037144A1 (en) * 2000-10-20 2007-02-15 Jay Wohlgemuth Leukocyte expression profiling
US6861214B1 (en) * 2000-10-23 2005-03-01 Beckman Coulter, Inc. Immobilization of biopolymers to aminated substrates by direct adsorption
US20020150887A1 (en) * 2000-11-09 2002-10-17 National Institute Of Advanced Industrial Science And Technology Methods and nucleic acid probes for molecular genetic analysis of polluted environments and environmental samples
US20020146684A1 (en) * 2001-04-09 2002-10-10 Meldal Morten Peter One dimensional unichemo protection (UCP) in organic synthesis
JP2004530879A (en) * 2001-05-03 2004-10-07 シグマ−ジェノシス リミテッド How to build a protein microarray
US7235358B2 (en) 2001-06-08 2007-06-26 Expression Diagnostics, Inc. Methods and compositions for diagnosing and monitoring transplant rejection
US7026121B1 (en) * 2001-06-08 2006-04-11 Expression Diagnostics, Inc. Methods and compositions for diagnosing and monitoring transplant rejection
US6905827B2 (en) * 2001-06-08 2005-06-14 Expression Diagnostics, Inc. Methods and compositions for diagnosing or monitoring auto immune and chronic inflammatory diseases
FR2826957B1 (en) * 2001-07-09 2005-09-30 Centre Nat Rech Scient METHOD FOR FUNCTIONALIZING SOLID SUBSTRATES, FUNCTIONALIZED SOLID SUBSTRATES AND USES THEREOF
EP1417337B1 (en) * 2001-07-11 2009-03-04 Baylor College of Medicine Methods and devices based upon a novel form of nucleic acid duplex on a surface
US10272409B2 (en) * 2001-07-11 2019-04-30 Michael E. Hogan Methods and devices based upon a novel form of nucleic acid duplex on a surface
DE10139283A1 (en) * 2001-08-09 2003-03-13 Epigenomics Ag Methods and nucleic acids for the analysis of colon cancer
US20030087309A1 (en) * 2001-08-27 2003-05-08 Shiping Chen Desktop drug screening system
US20050032060A1 (en) * 2001-08-31 2005-02-10 Shishir Shah Arrays comprising pre-labeled biological molecules and methods for making and using these arrays
US9671396B2 (en) * 2001-09-05 2017-06-06 Joon Won Park Solid substrate comprising array of dendrons and methods for using the same
CA2461878C (en) * 2001-09-27 2012-04-03 Spectral Genomics, Inc. Methods for detecting genetic mosaicisms using arrays
US7439346B2 (en) * 2001-10-12 2008-10-21 Perkinelmer Las Inc. Nucleic acids arrays and methods of use therefor
JP2005519634A (en) * 2001-10-12 2005-07-07 スペクトラル ジェノミクス、インク. Nucleic acid compositions and arrays and methods using them
WO2003042697A1 (en) * 2001-11-14 2003-05-22 Genospectra, Inc. Biochemical analysis system with combinatorial chemistry applications
AU2002365759A1 (en) * 2001-12-03 2003-06-17 Invitrogen Corporation Identification of rearrangements in nucleic acid molecules
WO2003056007A1 (en) * 2001-12-26 2003-07-10 Canon Kabushiki Kaisha Probe medium
KR100450191B1 (en) * 2001-12-28 2004-10-02 삼성에스디아이 주식회사 Substrate for immobilizing physiological material, and a method of preparing the same
AU2003220159A1 (en) * 2002-03-08 2003-09-22 Spectral Genomics, Inc. Articles of manufacture and methods for making hydrophobic derivatized arrays
US6916621B2 (en) * 2002-03-27 2005-07-12 Spectral Genomics, Inc. Methods for array-based comparitive binding assays
CA2481411C (en) 2002-04-19 2016-06-14 Diversa Corporation Phospholipases, nucleic acids encoding them and methods for making and using them
US7226771B2 (en) 2002-04-19 2007-06-05 Diversa Corporation Phospholipases, nucleic acids encoding them and methods for making and using them
US7217512B2 (en) 2002-05-09 2007-05-15 Corning Incorporated Reagent and method for attaching target molecules to a surface
CA2503905A1 (en) * 2002-09-16 2004-03-25 Plexxikon, Inc. Crystal structure of pim-1 kinase
US7129046B2 (en) * 2002-10-21 2006-10-31 Agilent Technologies, Inc. Linking to chemical array assemblies with metal layers
US7195908B2 (en) 2002-10-31 2007-03-27 Corning Incorporated Supports treated with triamine for immobilizing biomolecules
US20050048573A1 (en) * 2003-02-03 2005-03-03 Plexxikon, Inc. PDE5A crystal structure and uses
US20050170431A1 (en) * 2003-02-28 2005-08-04 Plexxikon, Inc. PYK2 crystal structure and uses
CN104388449A (en) 2003-03-06 2015-03-04 维莱尼姆公司 Amylases, nucleic acids encoding them and methods for making and using them
CA2889013C (en) 2003-03-07 2018-07-17 Dsm Ip Assets B.V. Hydrolases, nucleic acids encoding them and methods for making and using them
MXPA05010681A (en) 2003-04-04 2005-12-15 Diversa Corp Pectate lyases, nucleic acids encoding them and methods for making and using them.
US7892745B2 (en) * 2003-04-24 2011-02-22 Xdx, Inc. Methods and compositions for diagnosing and monitoring transplant rejection
US20070248978A1 (en) * 2006-04-07 2007-10-25 Expression Diagnostics, Inc. Steroid responsive nucleic acid expression and prediction of disease activity
FR2854696A1 (en) * 2003-05-06 2004-11-12 Commissariat Energie Atomique BIOPUCE SUPPORT USING THIN LAYERS OF SOL GEL MATERIAL AND METHOD OF MAKING SAME
CN108486086A (en) 2003-07-02 2018-09-04 维莱尼姆公司 Dextranase, encode they nucleic acid and preparation and use their method
US20050079548A1 (en) * 2003-07-07 2005-04-14 Plexxikon, Inc. Ligand development using PDE4B crystal structures
WO2005021714A2 (en) 2003-08-11 2005-03-10 Diversa Corporation Laccases, nucleic acids encoding them and methods for making and using them
US20050164300A1 (en) * 2003-09-15 2005-07-28 Plexxikon, Inc. Molecular scaffolds for kinase ligand development
US7279280B2 (en) * 2003-09-25 2007-10-09 Mgp Biotech, Inc. Apparatus and method for detecting genetic mutations and single nucleotide polymorphisms
EP3246093A1 (en) 2003-10-24 2017-11-22 Aushon Biosystems, Inc. Apparatus and method for dispensing fluid, semi-solid and solid samples
JP2007515947A (en) * 2003-10-30 2007-06-21 タフツ−ニュー イングランド メディカル センター Prenatal diagnosis using acellular fetal DNA in amniotic fluid
US20070066641A1 (en) * 2003-12-19 2007-03-22 Prabha Ibrahim Compounds and methods for development of RET modulators
PL1696920T3 (en) * 2003-12-19 2015-03-31 Plexxikon Inc Compounds and methods for development of ret modulators
JP4202391B2 (en) * 2004-03-17 2008-12-24 パナソニック株式会社 Biochip manufacturing method, probe solution, and biochip
EP1742627A4 (en) 2004-05-06 2009-08-26 Plexxikon Inc Pde4b inhibitors and uses therefor
EP1766061B1 (en) * 2004-05-20 2013-07-17 Quest Diagnostics Investments Incorporated Single label comparative hybridization
ES2540728T3 (en) 2004-06-16 2015-07-13 Dsm Ip Assets B.V. Method for enzymatic discoloration of pheophytin
WO2006009797A1 (en) * 2004-06-17 2006-01-26 Plexxikon, Inc. Azaindoles modulating c-kit activity and uses therefor
US7498342B2 (en) * 2004-06-17 2009-03-03 Plexxikon, Inc. Compounds modulating c-kit activity
US7605168B2 (en) * 2004-09-03 2009-10-20 Plexxikon, Inc. PDE4B inhibitors
US7645575B2 (en) * 2004-09-08 2010-01-12 Xdx, Inc. Genes useful for diagnosing and monitoring inflammation related disorders
WO2006053972A2 (en) * 2004-11-16 2006-05-26 Commissariat A L'energie Atomique Silanizing agents comprising a saccharide end group and uses thereof, such as for the functionalization of solid supports
US20060160114A1 (en) * 2004-12-02 2006-07-20 Oncotech, Inc. Reagents and methods for predicting drug resistance
US20060147943A1 (en) * 2004-12-30 2006-07-06 Lewis Mark A Substrates having pendant epoxide groups for binding biomolecules and methods of making and using thereof
DE602006018861D1 (en) * 2005-01-27 2011-01-27 Quest Diagnostics Invest Inc FAST COMPARATIVE GENOM HYBRIDIZATION
CA2614769A1 (en) 2005-03-10 2006-09-21 Verenium Corporation Lyase enzymes, nucleic acids encoding them and methods for making and using them
BRPI0609140A2 (en) 2005-03-15 2010-02-17 Verenium Corp cellulases, nucleic acids that encode them and methods for their production and use
WO2006102497A2 (en) * 2005-03-22 2006-09-28 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for diagnosis, monitoring and development of therapeutics for treatment of atherosclerotic disease
WO2006122295A2 (en) * 2005-05-11 2006-11-16 Expression Diagnostics, Inc. Methods of monitoring functional status of transplants using gene panels
AU2006272951A1 (en) 2005-05-17 2007-02-01 Plexxikon, Inc. Pyrrol (2,3-b) pyridine derivatives protein kinase inhibitors
DK1893612T3 (en) * 2005-06-22 2011-11-21 Plexxikon Inc Pyrrole [2,3-B] pyridine derivatives as protein kinase inhibitors
JP2009500019A (en) * 2005-07-01 2009-01-08 プロメガ・コーポレーション Suspended particle network for the purification of biomolecules, and the use of buoyant particles or buoyant particle networks for the purification of biomolecules
CN1908189A (en) * 2005-08-02 2007-02-07 博奥生物有限公司 Method of external assistant identifying intestinal-type gastric cancer and differentiation degree thereof and special reagent case
US8076074B2 (en) 2005-11-29 2011-12-13 Quest Diagnostics Investments Incorporated Balanced translocation in comparative hybridization
WO2007070381A2 (en) 2005-12-09 2007-06-21 Promega Corporation Nucleic acid purification with a binding matrix
US7932037B2 (en) * 2007-12-05 2011-04-26 Perkinelmer Health Sciences, Inc. DNA assays using amplicon probes on encoded particles
US20090104613A1 (en) * 2005-12-23 2009-04-23 Perkinelmer Las, Inc. Methods and compositions relating to multiplexed genomic gain and loss assays
US20100009373A1 (en) * 2005-12-23 2010-01-14 Perkinelmer Health Sciences, Inc. Methods and compositions relating to multiplex genomic gain and loss assays
BRPI0620420B1 (en) 2005-12-23 2016-08-09 Perkinelmer Las Inc method to evaluate genomic DNA
EP2216403A3 (en) 2006-02-02 2010-11-24 Verenium Corporation Esterases and related nucleic acids and methods
NZ595498A (en) 2006-02-10 2013-05-31 Verenium Corp Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them
ES2682284T3 (en) 2006-02-14 2018-09-19 Bp Corporation North America Inc. Xylanases, nucleic acids that encode them and methods to make and use them
EP2316962B1 (en) 2006-03-07 2014-07-09 Cargill, Incorporated Aldolases, nucleic acids encoding them and methods for making and using them
CA2645225A1 (en) 2006-03-07 2007-09-13 Verenium Corporation Aldolases, nucleic acids encoding them and methods for making and using them
US20070232556A1 (en) * 2006-03-31 2007-10-04 Montine Thomas J Methods and compositions for the treatment of neurological diseases and disorders
EP2444413A1 (en) 2006-08-04 2012-04-25 Verenium Corporation Methods for oil or gas well drilling, washing and/or fracturing
US7993832B2 (en) * 2006-08-14 2011-08-09 Xdx, Inc. Methods and compositions for diagnosing and monitoring the status of transplant rejection and immune disorders
BRPI0716872A2 (en) 2006-09-21 2015-06-16 Verenium Corp Phospholipases, nucleic acids encoding them and methods for their manufacture and use
EP2617819B1 (en) 2006-09-21 2016-04-27 BASF Enzymes LLC Phytases, nucleic acids encoding them and methods for making and using them
US8618248B2 (en) 2006-10-31 2013-12-31 President And Fellows Of Harvard College Phosphopeptide compositions and anti-phosphopeptide antibody compositions and methods of detecting phosphorylated peptides
WO2008140484A2 (en) * 2006-11-09 2008-11-20 Xdx, Inc. Methods for diagnosing and monitoring the status of systemic lupus erythematosus
WO2008063888A2 (en) 2006-11-22 2008-05-29 Plexxikon, Inc. Compounds modulating c-fms and/or c-kit activity and uses therefor
WO2008079909A1 (en) * 2006-12-21 2008-07-03 Plexxikon, Inc. Pyrrolo [2,3-b] pyridines as kinase modulators
PE20081581A1 (en) * 2006-12-21 2008-11-12 Plexxikon Inc PIRROLO [2,3-b] PYRIDINES COMPOUNDS AS KINASE MODULATORS
EP2094701A2 (en) 2006-12-21 2009-09-02 Plexxikon, Inc. Compounds and methods for kinase modulation, and indications therefor
PL3101128T3 (en) 2006-12-21 2019-09-30 Basf Enzymes Llc Amylases and glucoamylases, nucleic acids encoding them and methods for making and using them
NZ610301A (en) 2007-01-30 2015-03-27 Bp Corp North America Inc Enzymes for the treatment of lignocellulosics, nucleic acids encoding them and methods for making and using them
CN103555735B (en) 2007-04-27 2016-03-09 加利福尼亚大学董事会 Plant CO 2sensor, encode their nucleic acid and manufacture and their method of use
MX2010000617A (en) 2007-07-17 2010-05-17 Plexxikon Inc Compounds and methods for kinase modulation, and indications therefor.
US7507539B2 (en) * 2007-07-30 2009-03-24 Quest Diagnostics Investments Incorporated Substractive single label comparative hybridization
CN110577945A (en) 2007-10-03 2019-12-17 维莱尼姆公司 xylanases, nucleic acids encoding them, and methods for making and using them
CN104651381A (en) 2008-01-03 2015-05-27 巴斯夫酶有限责任公司 Transferases and oxidoreductases, nucleic acids encoding them and methods for making and using them
US20090215050A1 (en) * 2008-02-22 2009-08-27 Robert Delmar Jenison Systems and methods for point-of-care amplification and detection of polynucleotides
WO2009137369A1 (en) * 2008-05-03 2009-11-12 Tufts Medical Center, Inc. Neonatal salivary genomics
US8153391B2 (en) 2008-08-29 2012-04-10 Bunge Oils, Inc. Hydrolases, nucleic acids encoding them and methods for making and using them
US8198062B2 (en) 2008-08-29 2012-06-12 Dsm Ip Assets B.V. Hydrolases, nucleic acids encoding them and methods for making and using them
US8357503B2 (en) 2008-08-29 2013-01-22 Bunge Oils, Inc. Hydrolases, nucleic acids encoding them and methods for making and using them
ES2581774T3 (en) 2008-08-29 2016-09-07 Janssen Biotech, Inc. Markers and methods of evaluation and treatment of ulcerative colitis and related disorders using a panel of 20 genes
DE102008053270A1 (en) * 2008-10-27 2010-05-12 Medizinische Hochschule Hannover Apparatus and method for analyzing cells
EP2352998A4 (en) 2008-11-07 2011-09-21 Centocor Ortho Biotech Inc Markers and methods for assessing and treating lupus patients susceptible to photoprovocation
ES2661310T3 (en) * 2009-03-09 2018-03-28 Bioatla, Llc Mirac proteins
WO2010114928A2 (en) * 2009-04-03 2010-10-07 F.Hoffmann-La Roche Ag Compositions and uses thereof
MX355638B (en) 2009-05-21 2018-03-26 Verenium Corp Phytases, nucleic acids encoding them and methods for making and using them.
US8329724B2 (en) 2009-08-03 2012-12-11 Hoffmann-La Roche Inc. Process for the manufacture of pharmaceutically active compounds
US20110046009A1 (en) * 2009-08-24 2011-02-24 Perkinelmer Health Sciences, Inc. Methods for detecting dna methylation using encoded particles
US8039613B2 (en) 2009-08-28 2011-10-18 Promega Corporation Methods of purifying a nucleic acid and formulation and kit for use in performing such methods
US8222397B2 (en) * 2009-08-28 2012-07-17 Promega Corporation Methods of optimal purification of nucleic acids and kit for use in performing such methods
CN102630250A (en) 2009-09-25 2012-08-08 基因诊断测试公司 Multiplex (+/-) stranded arrays and assays for detecting chromosomal abnormalities associated with cancer and other diseases
UA109884C2 (en) 2009-10-16 2015-10-26 A POLYPEPTIDE THAT HAS THE ACTIVITY OF THE PHOSPHATIDYLINOSYTOL-SPECIFIC PHOSPHOLIPASE C, NUCLEIC ACID, AND METHOD OF METHOD
UA111708C2 (en) 2009-10-16 2016-06-10 Бандж Ойлз, Інк. METHOD OF OIL REFINING
WO2011048498A2 (en) 2009-10-19 2011-04-28 Stichting Het Nederlands Kanker Instituut Differentiation between brca2-associated tumours and sporadic tumours via array comparative genomic hybridization
WO2011048495A1 (en) 2009-10-19 2011-04-28 Stichting Het Nederlands Kanker Instituut Predicting benefit of anti-cancer therapy via array comparative genomic hybridization
US20120277112A1 (en) 2009-10-19 2012-11-01 Stichting Het Nederlands Kanker Instituut Predicting response to anti-cancer therapy via array comparative genomic hybridization
NZ629615A (en) 2009-11-06 2016-01-29 Plexxikon Inc Compounds and methods for kinase modulation, and indications therefor
NL2004275C2 (en) * 2010-02-22 2011-08-23 Univ Leiden Raman spectrometry.
US20140018251A1 (en) 2010-09-20 2014-01-16 Stichting Het Nederlands Kanker Instituut Methods for Predicting Response to Anti-Cancer Therapy in Cancer Patients
WO2012051055A2 (en) 2010-10-06 2012-04-19 Bp Corporation North America Inc. Variant cbh i polypeptides
JP5941069B2 (en) 2011-02-07 2016-06-29 プレキシコン インコーポレーテッドPlexxikon Inc. Compounds and methods for kinase regulation and indications therefor
AR085279A1 (en) 2011-02-21 2013-09-18 Plexxikon Inc SOLID FORMS OF {3- [5- (4-CHLORINE-PHENYL) -1H-PIRROLO [2,3-B] PIRIDINA-3-CARBONIL] -2,4-DIFLUOR-PHENIL} -AMIDE OF PROPANE ACID-1- SULFONIC
RU2631487C2 (en) 2011-05-17 2017-09-22 Плексксикон Инк. Kinases modulation and indications for its use
WO2013067448A2 (en) 2011-11-03 2013-05-10 Vca Antech Inc. Compositions and methods to detect various infectious organisms
WO2013095941A1 (en) 2011-12-19 2013-06-27 Valley Health System Methods and kits for detecting subjects at risk of having cancer
US9150570B2 (en) 2012-05-31 2015-10-06 Plexxikon Inc. Synthesis of heterocyclic compounds
EP3339861B8 (en) 2012-06-15 2023-11-01 Genesis Theranostix Korlatolt Felelossegu Tarsasag Biomarker test for prediction or early detection of preeclampsia
EP2861989A4 (en) 2012-06-15 2016-03-02 Univ Wayne State Biomarker test for prediction or early detection of preeclampsia and/or hellp syndrome
CN104780976B (en) 2012-08-13 2019-01-01 洛克菲勒大学 Treatment and diagnosis melanoma
WO2014071067A2 (en) 2012-10-31 2014-05-08 The Rockefeller University Treatment and diagnosis of colon cancer
US9267171B2 (en) 2013-02-28 2016-02-23 New York University DNA photolithography with cinnamate crosslinkers
ES2913205T3 (en) 2014-05-13 2022-06-01 Bioatla Inc Conditionally active biological proteins
US10745761B2 (en) 2014-06-02 2020-08-18 Valley Health System Method and systems for lung cancer diagnosis
US11111288B2 (en) 2014-08-28 2021-09-07 Bioatla, Inc. Conditionally active chimeric antigen receptors for modified t-cells
AU2015308818B2 (en) 2014-08-28 2021-02-25 Bioatla Llc Conditionally active chimeric antigen receptors for modified T-cells
JP2017532019A (en) 2014-09-03 2017-11-02 バイオアトラ、エルエルシー Discovery and production of conditionally active biological proteins in the same eukaryotic cell production host
CA3225013A1 (en) 2015-02-24 2016-09-01 Bioatla, Llc Conditionally active proteins
US10160755B2 (en) 2015-04-08 2018-12-25 Plexxikon Inc. Compounds and methods for kinase modulation, and indications therefor
FR3038734A1 (en) * 2015-07-10 2017-01-13 Centre Nat De La Rech Scient (Cnrs) NEW FUNCTIONALIZED OPTICAL MATERIALS
US10829484B2 (en) 2015-07-28 2020-11-10 Plexxikon Inc. Compounds and methods for kinase modulation, and indications therefor
RU2018123825A (en) 2015-12-07 2020-01-15 Плексксикон Инк. COMPOUNDS AND METHODS FOR MODULATION OF KINASES, AND INDICATIONS FOR THIS
IL308504A (en) 2016-05-13 2024-01-01 Bioatla Llc Anti-ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof
TW201815766A (en) 2016-09-22 2018-05-01 美商普雷辛肯公司 Compounds and methods for IDO and TDO modulation, and indications therefor
WO2018136202A2 (en) 2016-12-23 2018-07-26 Plexxikon Inc. Compounds and methods for cdk8 modulation and indications therefor
US10428067B2 (en) 2017-06-07 2019-10-01 Plexxikon Inc. Compounds and methods for kinase modulation
WO2019104062A1 (en) 2017-11-21 2019-05-31 Rgenix, Inc. Polymorphs and uses thereof
EP3660172A1 (en) 2018-11-28 2020-06-03 Bioscreening and Diagnostics LLC Method for detection of traumatic brain injury (tbi)
CA3161274A1 (en) 2019-12-13 2021-06-17 Stephen Wald Metal salts and uses thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384045A (en) * 1980-05-21 1983-05-17 Borden, Inc. Activation of a siliceous carrier for enzyme immobilization
US5071909A (en) * 1989-07-26 1991-12-10 Millipore Corporation Immobilization of proteins and peptides on insoluble supports
US5252743A (en) * 1989-11-13 1993-10-12 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
US5412087A (en) * 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
US5658802A (en) * 1995-09-07 1997-08-19 Microfab Technologies, Inc. Method and apparatus for making miniaturized diagnostic arrays
US5688642A (en) * 1994-12-01 1997-11-18 The United States Of America As Represented By The Secretary Of The Navy Selective attachment of nucleic acid molecules to patterned self-assembled surfaces
US5847105A (en) * 1994-03-16 1998-12-08 California Institute Of Technology Methods for performing multiple sequential reactions on a matrix
US6048695A (en) * 1998-05-04 2000-04-11 Baylor College Of Medicine Chemically modified nucleic acids and methods for coupling nucleic acids to solid support
US6156502A (en) * 1995-12-21 2000-12-05 Beattie; Kenneth Loren Arbitrary sequence oligonucleotide fingerprinting
US6979728B2 (en) * 1998-05-04 2005-12-27 Baylor College Of Medicine Articles of manufacture and methods for array based analysis of biological molecules

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1253129A (en) * 1984-02-09 1989-04-25 Thomas R. Jones Porous inorganic materials
US4957858A (en) * 1986-04-16 1990-09-18 The Salk Instute For Biological Studies Replicative RNA reporter systems
US4637687A (en) * 1984-06-14 1987-01-20 General Electric Company Cascaded, dual cell transflective liquid crystal display
US4818681A (en) * 1985-02-22 1989-04-04 Molecular Diagnostics, Inc. Fast and specific immobilization of nucleic acids to solid supports
US5641630A (en) * 1985-06-13 1997-06-24 Amgen Inc. Method and kit for performing nucleic acid hybridization assays
US4806631A (en) * 1985-09-30 1989-02-21 Miles Inc. Immobilization of nucleic acids on solvolyzed nylon supports
US5190864A (en) * 1986-04-15 1993-03-02 Northeastern University Enzyme amplification by using free enzyme to release enzyme from an immobilized enzyme material
US4937188A (en) * 1986-04-15 1990-06-26 Northeastern University Enzyme activity amplification method for increasing assay sensitivity
US5055429A (en) * 1987-11-27 1991-10-08 Ecc International Limited Porous inorganic material
GB8803413D0 (en) * 1988-02-15 1988-03-16 Ecc Int Ltd Biological support
US5024933A (en) * 1988-05-10 1991-06-18 Enzo Biochem, Inc. Method and kit for sample adherence to test substrate
US5215882A (en) * 1989-11-30 1993-06-01 Ortho Diagnostic Systems, Inc. Method of immobilizing nucleic acid on a solid surface for use in nucleic acid hybridization assays
EP0745689A3 (en) * 1990-05-11 1996-12-11 Microprobe Corporation A dipstick for a nucleic acid hybridization assay
IL102486A (en) * 1991-10-04 1997-11-20 Orgenics Ltd Method and apparatus for detection of nucleic acid sequences with a nucleic acid probe
US5632957A (en) * 1993-11-01 1997-05-27 Nanogen Molecular biological diagnostic systems including electrodes
US5610287A (en) * 1993-12-06 1997-03-11 Molecular Tool, Inc. Method for immobilizing nucleic acid molecules
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5554744A (en) * 1994-09-23 1996-09-10 Hybridon, Inc. Method for loading solid supports for nucleic acid synthesis
US5807756A (en) * 1995-01-10 1998-09-15 At Point Bio Ceramic assembly for use in biological assays
US5601982A (en) * 1995-02-07 1997-02-11 Sargent; Jeannine P. Method and apparatus for determining the sequence of polynucleotides
US5959098A (en) * 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process
US5630932A (en) * 1995-09-06 1997-05-20 Molecular Imaging Corporation Tip etching system and method for etching platinum-containing wire
US5567294A (en) * 1996-01-30 1996-10-22 Board Of Governors, University Of Alberta Multiple capillary biochemical analyzer with barrier member
AU734704B2 (en) * 1996-05-30 2001-06-21 Cellomics, Inc. Miniaturized cell array methods and apparatus for cell-based screening

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384045A (en) * 1980-05-21 1983-05-17 Borden, Inc. Activation of a siliceous carrier for enzyme immobilization
US5071909A (en) * 1989-07-26 1991-12-10 Millipore Corporation Immobilization of proteins and peptides on insoluble supports
US5252743A (en) * 1989-11-13 1993-10-12 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
US5412087A (en) * 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
US5847105A (en) * 1994-03-16 1998-12-08 California Institute Of Technology Methods for performing multiple sequential reactions on a matrix
US5688642A (en) * 1994-12-01 1997-11-18 The United States Of America As Represented By The Secretary Of The Navy Selective attachment of nucleic acid molecules to patterned self-assembled surfaces
US5658802A (en) * 1995-09-07 1997-08-19 Microfab Technologies, Inc. Method and apparatus for making miniaturized diagnostic arrays
US6156502A (en) * 1995-12-21 2000-12-05 Beattie; Kenneth Loren Arbitrary sequence oligonucleotide fingerprinting
US6048695A (en) * 1998-05-04 2000-04-11 Baylor College Of Medicine Chemically modified nucleic acids and methods for coupling nucleic acids to solid support
US6858713B1 (en) * 1998-05-04 2005-02-22 Baylor College Of Medicine Chemically modified biological molecules and methods for coupling biological molecules to solid support
US6979728B2 (en) * 1998-05-04 2005-12-27 Baylor College Of Medicine Articles of manufacture and methods for array based analysis of biological molecules
US20060275787A1 (en) * 1998-05-04 2006-12-07 Allan Bradley Compositions and methods for array-based genomic nucleic acid analysis of biological molecules

Also Published As

Publication number Publication date
JP2002513814A (en) 2002-05-14
ATE535615T1 (en) 2011-12-15
CA2326684A1 (en) 1999-11-11
CA2326684C (en) 2006-03-14
EP1075544A1 (en) 2001-02-14
US6048695A (en) 2000-04-11
JP4477774B2 (en) 2010-06-09
AU3786199A (en) 1999-11-23
EP1075544A4 (en) 2005-03-09
US6858713B1 (en) 2005-02-22
AU770695B2 (en) 2004-02-26
EP1075544B1 (en) 2011-11-30
WO1999057323A1 (en) 1999-11-11
DE99920342T1 (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US6858713B1 (en) Chemically modified biological molecules and methods for coupling biological molecules to solid support
US6387631B1 (en) Polymer coated surfaces for microarray applications
US7695910B2 (en) Method for manufacturing hydrogel biochip by using star-like polyethylene glycol derivative having epoxy group
US20040106110A1 (en) Preparation of polynucleotide arrays
US20040203049A1 (en) Tiling process for constructing a chemical array
US20060275787A1 (en) Compositions and methods for array-based genomic nucleic acid analysis of biological molecules
US20040029156A1 (en) Immobilization of biomolecules on substrates by attaching them to adsorbed bridging biomolecules
JP2001108683A (en) Dna fragment fixing solid-phase carrier, dna fragment fixing method, and nucleic-acid fragment detecting method
KR100450822B1 (en) A method of preparing a hydrogel biochip by using satar-like PEG derivatives
US6989175B2 (en) Acyl fluoride activation of carboxysilyl-coated glass substrates
US20230265492A1 (en) Surface linker of semiconductor chip, preparation method therefor and application thereof
WO2002092615A2 (en) Compositions and methods for array-based genomic nucleic acid analysis of biological molecules
JP2003248000A (en) Analyzing method using carrier for immobilized biomacromolecule and carrier for immobilized biomacromolecule
AU2001263094B2 (en) Compositions and methods for array-based genomic nucleic acid analysis of biological molecules
AU2001263094A1 (en) Compositions and methods for array-based genomic nucleic acid analysis of biological molecules

Legal Events

Date Code Title Description
AS Assignment

Owner name: BCM TECHNOLOGIES, INC., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECTRAL GENOMICS, INC.;REEL/FRAME:015788/0643

Effective date: 20041213

Owner name: TECHXAS FUND IIA, L.P., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECTRAL GENOMICS, INC.;REEL/FRAME:015788/0643

Effective date: 20041213

Owner name: BIOTEX FINANCE, LTD., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECTRAL GENOMICS, INC.;REEL/FRAME:015788/0643

Effective date: 20041213

Owner name: TECHXAS II AFFILIATES FUND, L.P., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECTRAL GENOMICS, INC.;REEL/FRAME:015788/0643

Effective date: 20041213

Owner name: TECHXAS FUND IIQ, L.P., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECTRAL GENOMICS, INC.;REEL/FRAME:015788/0643

Effective date: 20041213

Owner name: BURRILL AGBIO CAPITAL FUND, L.P., CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECTRAL GENOMICS, INC.;REEL/FRAME:015788/0643

Effective date: 20041213

Owner name: BURRILL BIOTECHNOLOGY CAPITAL FUND L.P., CALIFORNI

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPECTRAL GENOMICS, INC.;REEL/FRAME:015788/0643

Effective date: 20041213

AS Assignment

Owner name: TECHXAS II AFFILIATES FUND, L.P., TEXAS

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SGI HOLDING CORP. (F/K/A SPECTRAL GENOMICS, INC.);REEL/FRAME:018420/0349

Effective date: 20060814

Owner name: TECHXAS FUND IIA, L.P., TEXAS

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SGI HOLDING CORP. (F/K/A SPECTRAL GENOMICS, INC.);REEL/FRAME:018420/0349

Effective date: 20060814

Owner name: BURRILL BIOTECHNOLOGY CAPITAL FUND, L.P., CALIFORN

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SGI HOLDING CORP. (F/K/A SPECTRAL GENOMICS, INC.);REEL/FRAME:018420/0349

Effective date: 20060814

Owner name: BCM TECHNOLOGIES, INC., TEXAS

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SGI HOLDING CORP. (F/K/A SPECTRAL GENOMICS, INC.);REEL/FRAME:018420/0349

Effective date: 20060814

Owner name: BIOTEX FINANCE, LTD., TEXAS

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SGI HOLDING CORP. (F/K/A SPECTRAL GENOMICS, INC.);REEL/FRAME:018420/0349

Effective date: 20060814

Owner name: TECHXAS FUND IIQ, L.P., TEXAS

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SGI HOLDING CORP. (F/K/A SPECTRAL GENOMICS, INC.);REEL/FRAME:018420/0349

Effective date: 20060814

Owner name: BURRILL AGBIO CAPITAL FUND, L.P., CALIFORNIA

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SGI HOLDING CORP. (F/K/A SPECTRAL GENOMICS, INC.);REEL/FRAME:018420/0349

Effective date: 20060814

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION