US20050064798A1 - Methods and compositions for chemical mechanical planarization of ruthenium - Google Patents

Methods and compositions for chemical mechanical planarization of ruthenium Download PDF

Info

Publication number
US20050064798A1
US20050064798A1 US10/666,140 US66614003A US2005064798A1 US 20050064798 A1 US20050064798 A1 US 20050064798A1 US 66614003 A US66614003 A US 66614003A US 2005064798 A1 US2005064798 A1 US 2005064798A1
Authority
US
United States
Prior art keywords
ruthenium
composition
planarizing
acid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/666,140
Other versions
US6869336B1 (en
Inventor
Vishwas Hardikar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novellus Systems Inc
Original Assignee
Novellus Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novellus Systems Inc filed Critical Novellus Systems Inc
Priority to US10/666,140 priority Critical patent/US6869336B1/en
Assigned to NOVELLUS SYSTEMS, INC. reassignment NOVELLUS SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARDIKAR, VISHWAS V.
Application granted granted Critical
Publication of US6869336B1 publication Critical patent/US6869336B1/en
Publication of US20050064798A1 publication Critical patent/US20050064798A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/0056Control means for lapping machines or devices taking regard of the pH-value of lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S451/00Abrading
    • Y10S451/921Pad for lens shaping tool

Definitions

  • the present invention generally relates to chemical mechanical polishing of metal layers, and more particularly relates to methods and compositions for chemical mechanical polishing of ruthenium layers.
  • the production of integrated circuits begins with the creation of high-quality semiconductor wafers.
  • the wafers may undergo multiple dielectric and conductor deposition processes followed by the masking and etching of the deposited layers.
  • Some of these steps relate to metallization, which generally refers to the materials, methods and processes of wiring together or interconnecting the component parts of an integrated circuit located on or overlying the surface of the wafer.
  • the “wiring” of an integrated circuit involves etching features, such as trenches and “vias,” in a planar dielectric (insulator) layer and filling the features with a conductive material, typically a metal.
  • metallization material In the past, aluminum was used extensively as a metallization material in semiconductor fabrication due to ease with which aluminum could be applied and patterned and due to the leakage and adhesion problems experienced with the use of gold.
  • Other metallization materials have included such materials as Ni, Ta, Ti, W, Ag, Cu/Al, TaN, TiN, CoWP, NiP and CoP, alone or in various combinations.
  • the copper conductive contacts and interconnects are usually formed by creating a via within an insulating material.
  • a barrier layer which serves to prevent catastrophic contamination caused by copper diffusing through the interlayer dielectrics, may be deposited onto the surface of the insulating material and into the via Because it is often difficult to form a copper metallization layer overlying the barrier layer, a seed layer of copper may be deposited onto the barrier layer. Then, a copper metallization layer is electrodeposited onto the seed layer to fill the via. The excess copper metallization layer, the copper seed layer, and the barrier layer overlying the insulating material then may be removed, for example by a process of chemical mechanical planarization or chemical mechanical polishing, each of which will hereafter be referred to as chemical mechanical planarization or CMP.
  • CMP chemical mechanical planarization
  • Barrier layers formed of tantalum (Ta) and tantalum nitride (TaN) currently are used to contain copper interconnects.
  • As integrated circuits continue to scale to 90 nm nodes, 65 nm nodes, 45 nm nodes and smaller it may become difficult to further decrease the dimensions of the Ta/TaN/Cu trilayer in higher-aspect ratio features.
  • Preferable barrier layers should demonstrate good adhesion to both copper and interlayer dielectric materials, in addition to affording a conductive copper-plating platform that allows for the bottom-up copper electrofill of damascene features. Accordingly, as the aggressive scaling of semiconductor device dimensions continues, it is highly desirable to use a copper-plateable single-layer barrier layer for use in interconnects applications.
  • Barrier layers formed of ruthenium may present a desirable alternative to Ta/TaN barriers.
  • Ruthenium is an air-stable transition metal with a high melting point and is nearly twice as thermally and electrically conductive as tantalum.
  • ruthenium like tantalum, generally shows negligible solid solubility with copper.
  • ruthenium presents a particular challenge during CMP, as ruthenium is mechanically hard (Mohs hardness of approximately 6.5) and chemically resistant.
  • FIG. 1 illustrates schematically, in cross section, an apparatus in which a work piece can be planarized in accordance with an embodiment of the invention
  • FIG. 2 is a Pourbaix diagram for a ruthenium-water-peroxide system.
  • the invention disclosed and claimed herein is directed to the chemical mechanical planarization of a ruthenium layer overlying a work piece.
  • the invention is applicable to the planarization of a surface of a variety of work pieces, but will be described and illustrated with reference to only a single illustrative work piece, namely a semiconductor wafer having a layer of ruthenium deposited thereon.
  • the invention is illustrated with reference to its application only to one particular work piece and to one particular metal deposited on that work piece, it is not intended that the invention be limited to that particular application.
  • a method for chemical mechanical planarization of a work piece having a ruthenium layer thereon comprises polishing the ruthenium layer while concurrently exposing the ruthenium layer to a planarization composition.
  • the planarization of the ruthenium layer can be accomplished in a CMP apparatus such as a Momentum CMP apparatus available from Novellus Systems Inc., CMP division, of Chandler, Ariz.
  • a representative CMP apparatus 10 with which the planarization can be carried out is schematically illustrated, in cross section, in FIG. 1 .
  • This apparatus is merely exemplary of CMP apparatus that can be employed in carrying out a CMP process in accordance with various embodiments of the invention and it will be appreciated that any other suitable CMP apparatus may be used.
  • CMP apparatus 10 includes a carrier head 12 for controllably pressing a semiconductor wafer 14 having a ruthenium layer 30 on a front surface thereof against a contact surface, such as a polishing pad 16 .
  • Carrier head 12 includes a rigid casing having a cavity 18 on a lower surface.
  • a flexible membrane 20 is stretched across the cavity and presses against the back surface of the semiconductor wafer.
  • a wear ring 22 is attached to the rigid carrier head with a resilient attachment here illustrated by springs 24 .
  • the wear ring surrounds cavity 18 and serves to precondition the polishing pad and to contain the lateral movement of the semiconductor wafer, thus maintaining the semiconductor wafer in position on the underside of carrier head 12 .
  • Carrier head 12 is attached to a shaft 26 by means of which the correct downward pressure can be applied to the carrier head and hence between the semiconductor wafer and the polishing pad.
  • the downward pressure applied to the semiconductor wafer by the polishing pad is a low down force, that is, a contact pressure in the range of from about 0.1 to about 4.0 psi.
  • a low down force in this range will result in a controllable removal rate of the ruthenium while reducing or preventing the likelihood of damage to an underlying insulative layer such as a low-k dielectric material, that is, having a dielectric constant in the range of about 2 ⁇ k ⁇ 3.9 or an ultra-low-k dielectric material, that is, having a dielectric constant no greater than about 2.
  • CMP apparatus 10 illustrates a method for planarization during which wafer 14 is pressed down against polishing pad 16
  • CMP apparatus 10 could be configured so that polishing pad 16 is pressed down against wafer 14
  • contact pressure shall refer to the pressure exerted on semiconductor wafer 14 by polishing pad 16 , regardless of the position of the polishing pad relative to the wafer.
  • low contact pressure shall mean a contact pressure in the range of from about 0.1 to about 4 psi.
  • Shaft 26 also may be used to impart a rotational motion to carrier head 12 to improve the uniformity of the polishing action. Polishing pad 16 is mounted on a platen 28 .
  • Polishing pad 16 may comprise any suitable contact surface used to impart pressure on a surface of wafer 14 to facilitate the planarization thereof.
  • polishing pad 16 may be a polishing pad such as an IC 1000 available from Rodel, Inc. of Newark Del.
  • Platen 28 may be connected to a driver or motor assembly (not shown) that is operative to rotate platen 28 and polishing pad 16 about a vertical axis. It will be appreciated, however, that the driver or motor assembly may be operative to move platen 28 and polishing pad 16 in an orbital, linear or oscillatory pattern or any combination thereof.
  • carrier head 12 and shaft 26 may be connected to a driver or motor assembly (not shown) that is operative to rotate carrier head 12 and semiconductor wafer 14 about a vertical axis or to move carrier head 12 and semiconductor wafer 14 in an orbital, linear or oscillator pattern or any combination thereof.
  • Platen 28 may have one or more channels 32 for the transportation of the planarization composition of the present invention to the surface of polishing pad 16 from a manifold apparatus (not shown) or any suitable distribution system.
  • the planarization composition of the present invention may be deposited directly on or through the polishing pad by a conduit or any suitable application mechanism.
  • FIG. 2 is a Pourbaix diagram for a ruthenium-water-peroxide system.
  • the electrochemical potential of the ruthenium-water system is such that ruthenium may be removed from a ruthenium layer as a hydroxide species, such as, for example, Ru(OH) 4 .
  • ruthenium may be removed from a ruthenium layer as an oxide species, such as, for example, Ru 2 O 3 .
  • oxide species such as, for example, Ru 2 O 3 .
  • ruthenium may exist as an ionic species, that is, Ru +2 and/or Ru +3 .
  • the ionic ruthenium species then may be removed as a complex when combined with a suitable complexing agent. While the Pourbaix diagram of FIG. 2 illustrates a ruthenium-water-peroxide system, the system illustrated is not limited to the use of peroxide. Rather, the same diagram may result with the use of any similar oxidizing agent.
  • the planarization composition may be formulated so that ruthenium of a ruthenium layer of a semiconductor wafer is removed as a ruthenium hydroxide.
  • the planarization composition may comprise a dispersing medium and a plurality of abrasive particles.
  • the dispersing medium serves to distribute the abrasive particles, and any other suitable polishing additive that comprises the planarization composition, as described in more detail below, to the surface of the ruthenium layer.
  • the dispersing medium preferably is an aqueous liquid, such as, for example, water, or any other suitable dispersing medium, such as an aqueous solution or emulsion.
  • the abrasives particles of the various embodiments of the planarization composition of the present invention form a uniform, substantially dispersed solution with the dispersing medium.
  • the abrasive particles have a Mohs hardness in the range of about 5 to about 9, preferably in the range of about 6 to about 7, and a particle size in the range of about 20 nms to about 2 microns.
  • particle size refers to the average size (the size is the average diameter of an abrasive particle) of the plurality of abrasive particles.
  • the planarization composition of the present invention may comprise abrasive particles such as, for example, silica (Mohs hardness of approximately 6.5), titania (Mohs hardness of approximately 5.5 to 6.5), zirconia (Mohs hardness of approximately 6.5), alumina (Mohs hardness of approximately 9) or a combination thereof.
  • the abrasive particles may be formed of fumed silica.
  • the abrasive particles form a stable colloid with the dispersing medium, that is, the abrasive particles do not exhibit substantial agglomeration or coagulation and do not readily settle out of solution.
  • the concentration of the abrasive particles may be in the range of about 1 weight percent to about 50 weight percent.
  • the planarization composition can be formulated to have a pH in the range of from about 8 to about 12. If the dispersing medium/abrasive particles solution has a pH outside of this range, the planarization composition may comprise a suitable pH-adjusting agent to adjust the pH to within this range.
  • pH adjusting agents suitable for adjusting the pH of the planarization composition to within the range of about 8 to about 12 include, but are not limited to, potassium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide and the like or a combination thereof.
  • the planarization composition interacts with the ruthenium surface and promotes its dissolution as a ruthenium hydroxide species.
  • the planarization composition can be formulated to so that ruthenium is liberated from the ruthenium layer as ruthenium oxide and/or a hydrated ruthenium oxide.
  • the planarization composition may comprise a dispersion medium and abrasive particles, such as the dispersion medium and abrasive particles described above.
  • the planarization composition also may have a pH in the range of from about 8 to about 12. If the dispersing medium/abrasive particles solution does not have a pH within this range, the planarization composition may comprise any of the suitable pH-adjusting agents described above to adjust the pH to within this range.
  • the planarization composition of this embodiment further comprises one or more oxidizing agents.
  • the oxidizing agent may comprise any suitable oxidizing agent, such as a peroxide, which is defined as any organic or inorganic compound containing a bivalent O—O group.
  • suitable oxidizing agents include hydrogen peroxide (H 2 O 2 ), peroxysulfuric acid (or persulfuric acid), periodic acid (HIO 4 or H 5 IO 2 ), monopersulfates (SO 5 2 ⁇ ), dipersulfates (S 2 O 8 2 ⁇ ), di-tert-butyl peroxide (C 8 H 18 O 2 ) and the like and combinations thereof.
  • the oxidizing agent comprises hydrogen peroxide.
  • the oxidizing agent may be present in the planarizing composition in the range of about 0.001 to about 3M.
  • the planarization composition can be formulated so that ruthenium from the ruthenium layer is transformed to an ionic state (Ru +2 and/or Ru +3 ) and is liberated from the ruthenium layer as ruthenium complex.
  • the planarization composition may comprise a dispersion medium and abrasive particles, such as the dispersion medium and abrasive particles disclosed above.
  • the planarization composition also may have a pH in the range of from about 0 to about 2.5. If the dispersing medium/abrasive particles solution has a pH outside of this range, the planarization composition may comprise a suitable pH-adjusting agent to adjust the pH to a pH within this range.
  • Suitable pH adjusting agents for adjusting the pH of the planarization composition to no greater than 2.5 comprise inorganic and organic acids.
  • pH adjusting agents suitable for adjusting the pH of the planarization composition to no greater than 2.5 include, but are not limited to, sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, mono-, di- and tri-carboxylic acids, polyhydroxy acids and the like and combinations thereof.
  • This embodiment of the planarization composition further comprises an oxidizing agent, such as the oxidizing agents described above, present in the planarization composition at a concentration at the range of about 0.001 to about 3M.
  • the planarization composition of this embodiment also may comprise a complexing agent.
  • the complexing agent forms a soluble complex with the Ru +2 or Ru +3 ionic species, or both ionic species, which facilitates removal of the ruthenium from the semiconductor wafer.
  • the complexing agent may comprise any suitable constituent that is capable of forming a soluble complex with an ionic state of ruthenium.
  • suitable complexing agents comprise the following: L-2-amino-3-hydroxybutanoic acid (threonine, C 4 H 9 NO 3 ), iminodiacetic acid (IDA, C 4 H 7 NO 4 ), N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid (HEDTA, C 10 H 18 N 2 O 7 ), ethylenedinitrilotetraacetic acid (EDTA, C 10 H 16 N 2 O 8 ), DL-(methylethylene)dinitrilotetraacetic acid (PDTA, C 11 H 18 N 2 O 8 ), trans-1,2-cyclohexylenedinitrilotetraacetic acid (CDTA, C 14 H 22 N 2 O 8 ), diethylenetrinitrilopentaacetic acid (DTPA, C 14 H 23 N 3 O 10 ), ethylenediamine(C 2 H 8 N 2 ), 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron, C 6 H 6 O 8 S 2 ), 1-nitroso-2
  • a complexing agent such as any of the suitable complexing agents described above, also may be used in the planarizing composition described above that comprises a dispersion medium, abrasive particles, and an oxidizing agent, and having a pH in the range of from about 8 to about 12.
  • a complexing agent in this embodiment may form a complex with the liberated Ru 2 O 3 and enhance the solubility of the liberated ruthenium.
  • Each of the semiconductor wafers tested comprised 400 angstroms of ruthenium deposited over a titanium nitride insulative layer on a silicon dioxide substrate.
  • the wafers were subjected to CMP using a Momentum CMP apparatus from Novellus Systems, Inc. while exposed to a planarization composition.
  • Each of the planarizing compositions used comprised a water dispersion medium and 30 wt. % of silica abrasives having a hardness of 6.5 and a particles size of 50 nm.
  • the platen and polishing pad of the CMP apparatus were moved orbitally at speeds of 600 rpm, with a flow of the planarization composition at the polishing pad of 175 ml/min.
  • the following example demonstrates the effect of the hardness and size of the abrasive particles of the planarizing composition of the present invention when a low contact pressure is used.
  • Each of the semiconductor wafers tested comprised 400 angstroms of ruthenium deposited over a titanium nitride insulative layer on a silicon dioxide substrate. The wafers were subjected to CMP using a Momentum CMP apparatus from Novellus Systems, Inc. while exposed to a planarization composition.
  • Each of the planarizing compositions comprised a water dispersion medium. The platen and polishing pad of the CMP apparatus were moved orbitally at speeds of 600 rpm, with a flow of the planarization composition at the polishing pad of 175 ml/min.
  • An IC 1000 polishing pad available from Rodel, Inc. was used in the CMP apparatus.
  • the wafers were rotated at velocities in the range of 2-50 rpm and the CMP time for each wafer was 60 seconds.
  • the removal rate of the ruthenium was calculated from the difference in the resistivity of the semiconductor wafer measured before CMP and after CMP.
  • the planarizing composition used to planarize wafer 7 further comprised 30 wt. % silica abrasives with a particle size of 50 nm and IDA as a complexing agent.
  • the planarizing composition used to planarize wafer 8 comprised 10 wt. % alumina abrasives with a particle size of 140 nm and no complexing agent.
  • the planarizing composition used to planarize wafer 9 comprised 10 wt. % alumina with a particle size of 2 microns and no complexing agent
  • Table 2 The approximate removal rates of ruthenium from the tested wafers are summarized in Table 2.
  • planarization compositions and methods of the present invention are capable of removing ruthenium, which is a relatively hard metal (Mohs hardness of 6.5), from a semiconductor wafer at a suitable rate, the planarization compositions and methods of the present invention further are capable of removing materials that are not as hard as or are as hard as ruthenium, such as, for example, copper.
  • the planarization compositions and methods of the present invention may be used first to remove a copper (or other similarly hard metal) layer and then to remove an underlying ruthenium layer.
  • the planarization compositions and methods of the present invention may be used first to remove a ruthenium layer and then may be used to remove an underlying insulating material layer, such as a low-k or ultra-low-k dielectric.
  • the planarization compositions and methods of the present invention may be used first to remove a copper layer, then remove a ruthenium layer underlying the copper layer, followed by removal of a dielectric layer underlying the ruthenium layer.
  • the copper, ruthenium and dielectric layers are polished with a polishing selectivity of 1:1:1.
  • the chemical mechanical planarization process of the present invention may use two or more planarization compositions to remove multiple layers from a semiconductor wafer.
  • a planarization composition of the present invention may be used in a CMP apparatus to remove a ruthenium layer from a semiconductor wafer and a second composition may be used to remove an underlying insulating material layer.
  • a first composition such as an abrasive-free slurry, may be used to remove a material overlying the ruthenium layer, such as copper, and a planarization compositions of the present invention may be used to planarize the ruthenium layer and any metal remaining thereon.
  • the various planarization compositions of the present invention may further comprise a passivation agent.
  • the passivation agent may be suitable to reduce or prevent the corrosion of a copper layer overlying the ruthenium layer so as to facilitate planar polishing of the semiconductor wafer.
  • the passivation agent may serve to protect an insulating material layer underlying the ruthenium layer.
  • Any conventional passivation agent known in the semiconductor processing industry may be used in a planarization composition of the present invention and may include, for example, benzotriazole and aromatic heterocyclo compounds.

Abstract

Methods and compositions are provided for the chemical mechanical planarization of ruthenium. The method includes polishing the ruthenium layer using a low contact pressure and exposing the ruthenium layer to a planarization composition while polishing. The planarization composition comprises a dispersing medium and a plurality of abrasive particles. The method further includes removing the ruthenium of the ruthenium layer as a ruthenium hydroxide if the pH of the composition is in the range of from about 8 to about 12. The planarization composition may further comprise an oxidizing agent, with the ruthenium removed as a ruthenium hydroxide if the pH of the composition is in the range of from about 2 to about 14. The planarization composition may further comprise a complexing agent, with the ruthenium transformed into an ionic state and removed as a ruthenium complex if the pH of the composition is no greater than about 2.5.

Description

    TECHNICAL FIELD
  • The present invention generally relates to chemical mechanical polishing of metal layers, and more particularly relates to methods and compositions for chemical mechanical polishing of ruthenium layers.
  • BACKGROUND
  • The production of integrated circuits begins with the creation of high-quality semiconductor wafers. During the wafer fabrication process, the wafers may undergo multiple dielectric and conductor deposition processes followed by the masking and etching of the deposited layers. Some of these steps relate to metallization, which generally refers to the materials, methods and processes of wiring together or interconnecting the component parts of an integrated circuit located on or overlying the surface of the wafer. Typically, the “wiring” of an integrated circuit involves etching features, such as trenches and “vias,” in a planar dielectric (insulator) layer and filling the features with a conductive material, typically a metal.
  • In the past, aluminum was used extensively as a metallization material in semiconductor fabrication due to ease with which aluminum could be applied and patterned and due to the leakage and adhesion problems experienced with the use of gold. Other metallization materials have included such materials as Ni, Ta, Ti, W, Ag, Cu/Al, TaN, TiN, CoWP, NiP and CoP, alone or in various combinations.
  • Recently, techniques have been developed which utilize copper to form conductive contacts and interconnects because copper is less susceptible to electromigration and exhibits a lower resistivity than aluminum. Since copper does not readily form volatile or soluble compounds, the patterned etching of copper is difficult, and the copper conductive contacts and interconnects are therefore often formed using a damascene process. In accordance with the damascene process, the copper conductive contacts and interconnects are usually formed by creating a via within an insulating material. A barrier layer, which serves to prevent catastrophic contamination caused by copper diffusing through the interlayer dielectrics, may be deposited onto the surface of the insulating material and into the via Because it is often difficult to form a copper metallization layer overlying the barrier layer, a seed layer of copper may be deposited onto the barrier layer. Then, a copper metallization layer is electrodeposited onto the seed layer to fill the via. The excess copper metallization layer, the copper seed layer, and the barrier layer overlying the insulating material then may be removed, for example by a process of chemical mechanical planarization or chemical mechanical polishing, each of which will hereafter be referred to as chemical mechanical planarization or CMP.
  • Barrier layers formed of tantalum (Ta) and tantalum nitride (TaN) currently are used to contain copper interconnects. However, it is difficult to deposit copper effectively onto thin barrier layers of Ta/TaN because the layers generally are too resistive, especially in high-aspect-ratio features. In addition, it is difficult to fill high-aspect ratio features with copper due to the occurrence of copper voids. Poor sidewall coverage and large overhang surrounding the features cause the copper electrofill to close off and leave void defects in the features. As integrated circuits continue to scale to 90 nm nodes, 65 nm nodes, 45 nm nodes and smaller, it may become difficult to further decrease the dimensions of the Ta/TaN/Cu trilayer in higher-aspect ratio features. Preferable barrier layers should demonstrate good adhesion to both copper and interlayer dielectric materials, in addition to affording a conductive copper-plating platform that allows for the bottom-up copper electrofill of damascene features. Accordingly, as the aggressive scaling of semiconductor device dimensions continues, it is highly desirable to use a copper-plateable single-layer barrier layer for use in interconnects applications.
  • Barrier layers formed of ruthenium may present a desirable alternative to Ta/TaN barriers. Ruthenium is an air-stable transition metal with a high melting point and is nearly twice as thermally and electrically conductive as tantalum. In addition, ruthenium, like tantalum, generally shows negligible solid solubility with copper. However, ruthenium presents a particular challenge during CMP, as ruthenium is mechanically hard (Mohs hardness of approximately 6.5) and chemically resistant.
  • Accordingly, it is desirable to provide an improved method for the chemical mechanical planarization of ruthenium. In addition, it is desirable to provide improved chemical mechanical planarization compositions for removing ruthenium from a work piece. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
  • FIG. 1 illustrates schematically, in cross section, an apparatus in which a work piece can be planarized in accordance with an embodiment of the invention; and
  • FIG. 2 is a Pourbaix diagram for a ruthenium-water-peroxide system.
  • DETAILED DESCRIPTION
  • The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
  • The invention disclosed and claimed herein is directed to the chemical mechanical planarization of a ruthenium layer overlying a work piece. The invention is applicable to the planarization of a surface of a variety of work pieces, but will be described and illustrated with reference to only a single illustrative work piece, namely a semiconductor wafer having a layer of ruthenium deposited thereon. Although the invention is illustrated with reference to its application only to one particular work piece and to one particular metal deposited on that work piece, it is not intended that the invention be limited to that particular application.
  • In accordance with an exemplary embodiment of the present invention, a method for chemical mechanical planarization of a work piece having a ruthenium layer thereon comprises polishing the ruthenium layer while concurrently exposing the ruthenium layer to a planarization composition. The planarization of the ruthenium layer can be accomplished in a CMP apparatus such as a Momentum CMP apparatus available from Novellus Systems Inc., CMP division, of Chandler, Ariz. A representative CMP apparatus 10 with which the planarization can be carried out is schematically illustrated, in cross section, in FIG. 1. This apparatus is merely exemplary of CMP apparatus that can be employed in carrying out a CMP process in accordance with various embodiments of the invention and it will be appreciated that any other suitable CMP apparatus may be used.
  • Referring to FIG. 1, CMP apparatus 10 includes a carrier head 12 for controllably pressing a semiconductor wafer 14 having a ruthenium layer 30 on a front surface thereof against a contact surface, such as a polishing pad 16. Carrier head 12 includes a rigid casing having a cavity 18 on a lower surface. A flexible membrane 20 is stretched across the cavity and presses against the back surface of the semiconductor wafer. A wear ring 22 is attached to the rigid carrier head with a resilient attachment here illustrated by springs 24. The wear ring surrounds cavity 18 and serves to precondition the polishing pad and to contain the lateral movement of the semiconductor wafer, thus maintaining the semiconductor wafer in position on the underside of carrier head 12. Carrier head 12 is attached to a shaft 26 by means of which the correct downward pressure can be applied to the carrier head and hence between the semiconductor wafer and the polishing pad. In a preferred embodiment of the invention, the downward pressure applied to the semiconductor wafer by the polishing pad is a low down force, that is, a contact pressure in the range of from about 0.1 to about 4.0 psi. A low down force in this range will result in a controllable removal rate of the ruthenium while reducing or preventing the likelihood of damage to an underlying insulative layer such as a low-k dielectric material, that is, having a dielectric constant in the range of about 2<k≦3.9 or an ultra-low-k dielectric material, that is, having a dielectric constant no greater than about 2. While CMP apparatus 10 illustrates a method for planarization during which wafer 14 is pressed down against polishing pad 16, it will be appreciated that CMP apparatus 10 could be configured so that polishing pad 16 is pressed down against wafer 14. Accordingly, the term “contact pressure” shall refer to the pressure exerted on semiconductor wafer 14 by polishing pad 16, regardless of the position of the polishing pad relative to the wafer. Further, the term “low contact pressure” shall mean a contact pressure in the range of from about 0.1 to about 4 psi. Shaft 26 also may be used to impart a rotational motion to carrier head 12 to improve the uniformity of the polishing action. Polishing pad 16 is mounted on a platen 28. Polishing pad 16 may comprise any suitable contact surface used to impart pressure on a surface of wafer 14 to facilitate the planarization thereof. In accordance with one embodiment of the invention, polishing pad 16 may be a polishing pad such as an IC 1000 available from Rodel, Inc. of Newark Del.
  • Platen 28 may be connected to a driver or motor assembly (not shown) that is operative to rotate platen 28 and polishing pad 16 about a vertical axis. It will be appreciated, however, that the driver or motor assembly may be operative to move platen 28 and polishing pad 16 in an orbital, linear or oscillatory pattern or any combination thereof. Similarly, carrier head 12 and shaft 26 may be connected to a driver or motor assembly (not shown) that is operative to rotate carrier head 12 and semiconductor wafer 14 about a vertical axis or to move carrier head 12 and semiconductor wafer 14 in an orbital, linear or oscillator pattern or any combination thereof.
  • Platen 28 may have one or more channels 32 for the transportation of the planarization composition of the present invention to the surface of polishing pad 16 from a manifold apparatus (not shown) or any suitable distribution system. Alternatively, it will be appreciated that the planarization composition of the present invention may be deposited directly on or through the polishing pad by a conduit or any suitable application mechanism.
  • The planarization compositions of the exemplary embodiments of the present invention take advantage of the various species of ruthenium, such as those illustrated in FIG. 2. FIG. 2 is a Pourbaix diagram for a ruthenium-water-peroxide system. As illustrated in FIG. 2, in a ruthenium-water system at an alkaline pH, that is, a pH in the range of about 8 to about 12, the electrochemical potential of the ruthenium-water system is such that ruthenium may be removed from a ruthenium layer as a hydroxide species, such as, for example, Ru(OH)4. At a pH in the range of about 2.5 to about 14, if a sufficient amount of peroxide, an oxidizing agent, is added to the system, the electrochemical potential of ruthenium is increased and ruthenium may be removed from a ruthenium layer as an oxide species, such as, for example, Ru2O3. At a pH no greater than about 2.5, if the electrochemical potential of ruthenium is sufficiently increased, such as by the addition of peroxide, ruthenium may exist as an ionic species, that is, Ru+2 and/or Ru+3. The ionic ruthenium species then may be removed as a complex when combined with a suitable complexing agent. While the Pourbaix diagram of FIG. 2 illustrates a ruthenium-water-peroxide system, the system illustrated is not limited to the use of peroxide. Rather, the same diagram may result with the use of any similar oxidizing agent.
  • Accordingly, in accordance with one exemplary embodiment of the present invention, the planarization composition may be formulated so that ruthenium of a ruthenium layer of a semiconductor wafer is removed as a ruthenium hydroxide. The planarization composition may comprise a dispersing medium and a plurality of abrasive particles. The dispersing medium serves to distribute the abrasive particles, and any other suitable polishing additive that comprises the planarization composition, as described in more detail below, to the surface of the ruthenium layer. The dispersing medium preferably is an aqueous liquid, such as, for example, water, or any other suitable dispersing medium, such as an aqueous solution or emulsion.
  • The abrasives particles of the various embodiments of the planarization composition of the present invention form a uniform, substantially dispersed solution with the dispersing medium. The abrasive particles have a Mohs hardness in the range of about 5 to about 9, preferably in the range of about 6 to about 7, and a particle size in the range of about 20 nms to about 2 microns. As used herein, “particle size” refers to the average size (the size is the average diameter of an abrasive particle) of the plurality of abrasive particles. The planarization composition of the present invention may comprise abrasive particles such as, for example, silica (Mohs hardness of approximately 6.5), titania (Mohs hardness of approximately 5.5 to 6.5), zirconia (Mohs hardness of approximately 6.5), alumina (Mohs hardness of approximately 9) or a combination thereof. In a preferred embodiment of the invention, the abrasive particles may be formed of fumed silica. Further, the abrasive particles form a stable colloid with the dispersing medium, that is, the abrasive particles do not exhibit substantial agglomeration or coagulation and do not readily settle out of solution. The concentration of the abrasive particles may be in the range of about 1 weight percent to about 50 weight percent.
  • In another embodiment of the present invention, the planarization composition can be formulated to have a pH in the range of from about 8 to about 12. If the dispersing medium/abrasive particles solution has a pH outside of this range, the planarization composition may comprise a suitable pH-adjusting agent to adjust the pH to within this range. Examples of pH adjusting agents suitable for adjusting the pH of the planarization composition to within the range of about 8 to about 12 include, but are not limited to, potassium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide and the like or a combination thereof. At this pH, the planarization composition interacts with the ruthenium surface and promotes its dissolution as a ruthenium hydroxide species.
  • In another embodiment of the present invention, the planarization composition can be formulated to so that ruthenium is liberated from the ruthenium layer as ruthenium oxide and/or a hydrated ruthenium oxide. In accordance with this embodiment, the planarization composition may comprise a dispersion medium and abrasive particles, such as the dispersion medium and abrasive particles described above. The planarization composition also may have a pH in the range of from about 8 to about 12. If the dispersing medium/abrasive particles solution does not have a pH within this range, the planarization composition may comprise any of the suitable pH-adjusting agents described above to adjust the pH to within this range. The planarization composition of this embodiment further comprises one or more oxidizing agents. The oxidizing agent may comprise any suitable oxidizing agent, such as a peroxide, which is defined as any organic or inorganic compound containing a bivalent O—O group. Examples of suitable oxidizing agents include hydrogen peroxide (H2O2), peroxysulfuric acid (or persulfuric acid), periodic acid (HIO4 or H5IO2), monopersulfates (SO5 2−), dipersulfates (S2O8 2−), di-tert-butyl peroxide (C8H18O2) and the like and combinations thereof. In a preferred embodiment of the present invention, the oxidizing agent comprises hydrogen peroxide. The oxidizing agent may be present in the planarizing composition in the range of about 0.001 to about 3M.
  • In a further embodiment of the present invention, the planarization composition can be formulated so that ruthenium from the ruthenium layer is transformed to an ionic state (Ru+2 and/or Ru+3) and is liberated from the ruthenium layer as ruthenium complex. In accordance with this embodiment, the planarization composition may comprise a dispersion medium and abrasive particles, such as the dispersion medium and abrasive particles disclosed above. The planarization composition also may have a pH in the range of from about 0 to about 2.5. If the dispersing medium/abrasive particles solution has a pH outside of this range, the planarization composition may comprise a suitable pH-adjusting agent to adjust the pH to a pH within this range. Suitable pH adjusting agents for adjusting the pH of the planarization composition to no greater than 2.5 comprise inorganic and organic acids. Examples of pH adjusting agents suitable for adjusting the pH of the planarization composition to no greater than 2.5 include, but are not limited to, sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, mono-, di- and tri-carboxylic acids, polyhydroxy acids and the like and combinations thereof. This embodiment of the planarization composition further comprises an oxidizing agent, such as the oxidizing agents described above, present in the planarization composition at a concentration at the range of about 0.001 to about 3M.
  • The planarization composition of this embodiment also may comprise a complexing agent. The complexing agent forms a soluble complex with the Ru+2 or Ru+3 ionic species, or both ionic species, which facilitates removal of the ruthenium from the semiconductor wafer. The complexing agent may comprise any suitable constituent that is capable of forming a soluble complex with an ionic state of ruthenium. Examples of suitable complexing agents comprise the following: L-2-amino-3-hydroxybutanoic acid (threonine, C4H9NO3), iminodiacetic acid (IDA, C4H7NO4), N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid (HEDTA, C10H18N2O7), ethylenedinitrilotetraacetic acid (EDTA, C10H16N2O8), DL-(methylethylene)dinitrilotetraacetic acid (PDTA, C11H18N2O8), trans-1,2-cyclohexylenedinitrilotetraacetic acid (CDTA, C14H22N2O8), diethylenetrinitrilopentaacetic acid (DTPA, C14H23N3O10), ethylenediamine(C2H8N2), 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron, C6H6O8S2), 1-nitroso-2-naphthol-3,6-disulfonic acid (Nitroso-R acid, C10H7NO8S2), 1,2-di(2-oxole)ethane-1,2-dione dioxime (alpha-Furil dioxime, C10H8N2O4), thiocarbamide (Thioura, CH4N2S), thiosemicarbazide (CH5N3S), dithiooxamide (C2H4N2S2), hydroxide ion (OH), hydrogen thiocyanate (thiocyanic acid, CHNS), ammonia (NH3), hydrogen nitrite (Nitrous acid, HNO2), hydrogen sulfate ion (sulfuric acid, HSO4 ), 2-hydroxyphenylpropenoic acid (o-coumaric acid, C9H8O3), and 4-phenylthiosemicarbazide (C7H9N3S). The complexing agent may be present in the planarization composition at a concentration in the range of from about 10−5 to about 2M.
  • It will be appreciated that a complexing agent, such as any of the suitable complexing agents described above, also may be used in the planarizing composition described above that comprises a dispersion medium, abrasive particles, and an oxidizing agent, and having a pH in the range of from about 8 to about 12. Use of a complexing agent in this embodiment may form a complex with the liberated Ru2O3 and enhance the solubility of the liberated ruthenium.
  • EXAMPLE 1
  • The following example demonstrates the effectiveness of the various embodiments of the planarizing composition and the method of chemical mechanical planarization of the present invention on the removal of ruthenium from a semiconductor wafer using low contact pressures. This example should not be construed as in any way limiting the scope of the present invention.
  • Each of the semiconductor wafers tested comprised 400 angstroms of ruthenium deposited over a titanium nitride insulative layer on a silicon dioxide substrate. The wafers were subjected to CMP using a Momentum CMP apparatus from Novellus Systems, Inc. while exposed to a planarization composition. Each of the planarizing compositions used comprised a water dispersion medium and 30 wt. % of silica abrasives having a hardness of 6.5 and a particles size of 50 nm. The platen and polishing pad of the CMP apparatus were moved orbitally at speeds of 600 rpm, with a flow of the planarization composition at the polishing pad of 175 ml/min. An IC 1000 polishing pad available from Rodel, Inc. was used in the CMP apparatus. The wafers were rotated at velocities in the range of 2-50 rpm and the CMP time for each wafer was 60 seconds. The removal rate of the ruthenium was calculated from the difference in the resistivity of the semiconductor wafer measured before CMP and after CMP. The approximate removal rates of ruthenium from the tested wafers are summarized in Table 1.
    TABLE 1
    Wafer Oxidant pH Carrier Pressure Removal Rate
    1 11 2.5 psi  75 ang./min
    2 H2O2/1 M 10-11 2.5 psi 150 ang./min
    3 H 202/2 M 10-11 2.5 psi 200 ang./min
    4 S2O8 −2/0.01 M 10-11 2.5 psi 200 ang./min
    5 S2O8 −2/0.1 M 10-11 2.5 psi 200 ang./min
    6 S2O8 −2/0.1 M 10-11 1.5 psi  85 ang./min
  • The results demonstrate that, even at low contact pressures, a high removal rate of the ruthenium layer can be achieved using a method of chemical mechanical planarization and a planarizing composition of the present invention.
  • EXAMPLE 2
  • The following example demonstrates the effect of the hardness and size of the abrasive particles of the planarizing composition of the present invention when a low contact pressure is used. Each of the semiconductor wafers tested comprised 400 angstroms of ruthenium deposited over a titanium nitride insulative layer on a silicon dioxide substrate. The wafers were subjected to CMP using a Momentum CMP apparatus from Novellus Systems, Inc. while exposed to a planarization composition. Each of the planarizing compositions comprised a water dispersion medium. The platen and polishing pad of the CMP apparatus were moved orbitally at speeds of 600 rpm, with a flow of the planarization composition at the polishing pad of 175 ml/min. An IC 1000 polishing pad available from Rodel, Inc. was used in the CMP apparatus. The wafers were rotated at velocities in the range of 2-50 rpm and the CMP time for each wafer was 60 seconds. The removal rate of the ruthenium was calculated from the difference in the resistivity of the semiconductor wafer measured before CMP and after CMP.
  • The planarizing composition used to planarize wafer 7 further comprised 30 wt. % silica abrasives with a particle size of 50 nm and IDA as a complexing agent. The planarizing composition used to planarize wafer 8 comprised 10 wt. % alumina abrasives with a particle size of 140 nm and no complexing agent. The planarizing composition used to planarize wafer 9 comprised 10 wt. % alumina with a particle size of 2 microns and no complexing agent The approximate removal rates of ruthenium from the tested wafers are summarized in Table 2.
    TABLE 2
    Abrasive Abrasive
    Carrier Particle Particle
    Wafer Oxidant pH Pressure Type Size Additives Removal Rate
    7 H2O2/1 M 2 2.5 psi 30 wt. % silica  50 nm 0.1 wt. % HCl and 140 ang./min
    0.1 wt. % IDA
    8 H2O2/1 M 2 2.5 psi 10 wt. % 140 nm 0.1 wt. % HCl None
    alumina
    9 H2O2/1 M 2 2.5 psi 10 wt. % 2 microns 0.1 wt. % HCl  85 ang./min
    alumina
  • The results demonstrate that, even at low contact pressures, a high removal rate of the ruthenium layer can be achieved using the method of chemical mechanical planarization and the planarizing composition of the present invention.
  • It will be appreciated that, because the planarization compositions and methods of the present invention are capable of removing ruthenium, which is a relatively hard metal (Mohs hardness of 6.5), from a semiconductor wafer at a suitable rate, the planarization compositions and methods of the present invention further are capable of removing materials that are not as hard as or are as hard as ruthenium, such as, for example, copper. Thus, in accordance with one exemplary embodiment of the present invention, the planarization compositions and methods of the present invention may be used first to remove a copper (or other similarly hard metal) layer and then to remove an underlying ruthenium layer. In accordance with another exemplary embodiment of the present invention, the planarization compositions and methods of the present invention may be used first to remove a ruthenium layer and then may be used to remove an underlying insulating material layer, such as a low-k or ultra-low-k dielectric. In accordance with a further exemplary embodiment of the present invention, the planarization compositions and methods of the present invention may be used first to remove a copper layer, then remove a ruthenium layer underlying the copper layer, followed by removal of a dielectric layer underlying the ruthenium layer. In a preferred embodiment of the invention, the copper, ruthenium and dielectric layers are polished with a polishing selectivity of 1:1:1.
  • In another embodiment of the present invention, the chemical mechanical planarization process of the present invention may use two or more planarization compositions to remove multiple layers from a semiconductor wafer. For example, a planarization composition of the present invention may be used in a CMP apparatus to remove a ruthenium layer from a semiconductor wafer and a second composition may be used to remove an underlying insulating material layer. Alternatively, a first composition, such as an abrasive-free slurry, may be used to remove a material overlying the ruthenium layer, such as copper, and a planarization compositions of the present invention may be used to planarize the ruthenium layer and any metal remaining thereon.
  • In another embodiment of the present invention, the various planarization compositions of the present invention may further comprise a passivation agent. The passivation agent may be suitable to reduce or prevent the corrosion of a copper layer overlying the ruthenium layer so as to facilitate planar polishing of the semiconductor wafer. Alternatively, the passivation agent may serve to protect an insulating material layer underlying the ruthenium layer. Any conventional passivation agent known in the semiconductor processing industry may be used in a planarization composition of the present invention and may include, for example, benzotriazole and aromatic heterocyclo compounds.
  • While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention as set forth in the appended claims and the legal equivalents thereof.

Claims (39)

1. A method for chemical mechanical planarization of a work piece having a ruthenium layer thereon, the method comprising the steps of:
polishing the ruthenium layer using a low contact pressure;
exposing the ruthenium layer to a planarization composition concurrently with said step of polishing, said planarization composition comprising a dispersing medium and a plurality of abrasive particles and having a composition pH; and
removing the ruthenium of the ruthenium layer as a ruthenium hydroxide if said composition pH is in the range of from about 8 to about 12.
2. The method of claim 1, said planarization composition further comprising an oxidizing agent, and the method the comprising removing the ruthenium of the ruthenium layer as one of a ruthenium oxide and a hydrated ruthenium oxide if said composition pH is in the range of from about 2.5 to about 14.
3. The method of claim 1, said planarization composition further comprising an oxidizing agent and a complexing agent, and the method further comprising transforming the ruthenium of the ruthenium layer to an ionic state and removing the ruthenium as a ruthenium complex if said composition pH is no greater than 2.5.
4. The method of claim 1, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition comprising a plurality of abrasive particles having a Mohs hardness in the range of from about 5 to about 9.
5. The method of claim 4, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition having a plurality of abrasive particles formed from at least one material selected from the group comprising silica, alumina zirconia, and titania.
6. The method of claim 1, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition comprising a plurality of abrasive particles having a particle size in the range of about 20 nm to about 2 microns.
7. The method of claim 2, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition comprising a plurality of abrasive particles having a Mohs hardness in the range of from about 5 to about 9.
8. The method of claim 7, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition having a plurality of abrasive particles formed from at least one material selected from the group comprising silica, alumina, zirconia, and titania.
9. The method of claim 2, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition comprising a plurality of abrasive particles having a particle size in the range of about 20 nm to about 2 microns.
10. The method of claim 2, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition having an oxidizing agent selected from the group comprising hydrogen peroxide, peroxysulfuric acid, periodic acid, monopersulfates, dipersulfates, and di-tert-butyl peroxide.
11. The method of claim 3, wherein said step of exposing comprises exposing the ruthenium layer to said planing composition comprising a plurality of abrasive particles having a Mohs hardness in the range of from about 5 to about 9.
12. The method of claim 3, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition having a plurality of abrasive particles formed from at least one material selected from the group comprising silica, alumina, zirconia, and titania.
13. The method of claim 3, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition comprising a plurality of abrasive particles having a particle size in the range of about 20 nm to about 2 microns.
14. The method of claim 3, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition having an oxidizing agent selected from the group comprising hydrogen peroxide, peroxysulfuric acid, periodic acid, monopersulfates, dipersulfates, and di-tert-butyl peroxide.
15. The method of claim 3, wherein said step of exposing comprises exposing the ruthenium layer to said planarizing composition having a complexing agent selected from the group comprising L-2-amino-3-hydroxybutanoic acid (threonine, C4H9NO3), iminodiacetic acid (IDA, C4H7NO4), N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid (HEDTA, C10H18N2O7), ethylenedinitrilotetraacetic acid (EDTA, C10H16N2O8), DL-(methylethylene)dinitrilotetraacetic acid (PDTA, C11H18N2O8), trans-1,2-cyclohexylenedinitilotetraacetic acid (CDTA, C14H22N2O8), diethylenetrinitrilopentaacetic acid (DTPA, C14H23N3O10), ethylenediamine (C2H8N2), 1,2-dihydroxybeazene-3,5-disulfonic acid (Tiron, C6H6O8S2), 1-nitroso-2-naphthol-3,6-disulfonic acid (Nitroso-R acid, C10H7NO8S2), 1,2-di(2-oxole)ethane-1,2-dione dioxime (alpha-Furil dioxime, C10H8N2O4), thiocarbamide (Thioura, CH4N2S), thiosemicarbazide (CH5N3S), ditiooxamide (C2H4N2S2), hydroxide ion (OH), hydrogen thiocyanate (thiocyanic acid, CHNS), ammonia (NH3), hydrogen nitrite (Nitrous acid, HNO2), hydrogen sulfate ion (sulfuric acid, HSO4 ), 2-hydroxyphenylpropenoic acid (o-coumaic acid, C9H8O3), and 4-phenylthiosemicabazide (C7H9N3S).
16. The method of claim 1, wherein the work piece has an insulating layer underlying the ruthenium layer and the method further comprises the step of planarizing said insulating layer after the step of removing the ruthenium.
17. The method of claim 16, wherein the method further comprises exposing said insulating layer to said planarization composition concurrently with said step of planarizing said insulating layer.
18. The method of claim 2, wherein the work piece has an insulating layer underlying the ruthenium layer and the method further comprises the step of planarizing said insulating layer after the step of removing the ruthenium.
19. The method of claim 18, wherein the method further comprises exposing said insulating layer to said planarization composition concurrently with said step of planarizing said insulating layer.
20. The method of claim 3, wherein the work piece has an insulating layer underlying the ruthenium layer and the method further comprises the step of planarizing said insulating layer after the step of removing the ruthenium.
21. The method of claim 20, wherein the method further comprises exposing said insulating layer to said planarization composition concurrently with said step of planarizing said insulating layer.
22. The method of claim 1, wherein the work piece has a metal layer overlying the ruthenium layer and an insulating layer underlying the ruthenium layer and the method further comprises the step of planarizing said metal layer before the step of polishing the ruthenium and the step of planarizing said insulating layer after the step of removing the ruthenium.
23. The method of claim 22, wherein the method further comprises the step of exposing said metal layer to said planarization composition concurrently with said step of planarizing said metal layer and the step of exposing said insulating layer to said planarization composition concurrently with said step of planarizing said insulating layer.
24. The method of claim 22, wherein the steps of planarizing said metal layer, removing the ruthenium and planarizing said insulating layer result in a planarization selectivity of 1:1:1.
25. The method of claim 2, wherein the work piece has a metal layer overlying the ruthenium layer and an insulating layer underlying the ruthenium layer and the method further comprises the step of planarizing said metal layer before the step of polishing the ruthenium and the step of planarizing said insulating layer after the step of removing the ruthenium.
26. The method of claim 25, wherein the method further comprises exposing said metal layer to said planarization composition concurrently with said step of planarizing said metal layer and the step of exposing said insulating layer to said planarization composition concurrently with said step of planarizing said insulating layer.
27. The method of claim 25, wherein the steps of planarizing said metal layer, removing the ruthenium and planarizing said insulating layer result in a planarization selectivity of 1:1:1.
28. The method of claim 3, wherein the work piece has a metal layer overlying the ruthenium layer and an insulating layer underlying the ruthenium layer and the method further comprises the step of planarizing said metal layer before the step of polishing the ruthenium and the step of planarizing said insulating layer after the step of removing the ruthenium.
29. The method of claim 28, wherein the method further comprises exposing said metal layer to said planarization composition concurrently with said step of planarizing said metal layer and the step of exposing said insulating layer to said planarization composition concurrently with said step of planarizing said insulating layer.
30. The method of claim 25, wherein the steps of planarizing said metal layer, removing the ruthenium and planarizing said insulating layer result in a planarization selectivity of 1:1:1.
31. A planarization composition for chemical mechanical planarization using low contact pressures to remove ruthenium from a work piece, the composition comprising:
a dispersing medium; and
a plurality of abrasive particles dispersed in said dispersing medium, said abrasive particles having a Mohs hardness in the range of about 5 to about 9 and a particle size in the range of about 20 nm to about 2 microns, said plurality of abrasive particles comprising about 1 to 50 wt. percent of the composition;
wherein said planarization composition has a pH in the range of about 8 to about 12 and wherein said planar ation composition causes the ruthenium to be removed from the work piece as a ruthenium hydroxide.
32. The planarization composition of claim 31, wherein said plurality of abrasive particles are formed from at least one material selected from the group comprising silica, alumina, zirconia, and titania.
33. A planarization composition for chemical mechanical planarization using low contact pressures to remove ruthenium from a work piece, the composition comprising:
a dispersing medium;
a plurality of abrasive particles dispersed in said dispersing medium, wherein said abrasive particles having a Mohs hardness in the range of about 5 to about 9 and a particle size in the range of about 20 nm to about 2 microns, and where said plurality of abrasive particles comprising about 1 to 50 wt. percent of the composition; and
an oxidizing agent;
wherein said planarization composition causes the ruthenium to be removed from the work piece as a ruthenium oxide when said planarization composition has a pH in the range of about 2.5 to about 14.
34. The planarization composition of claim 33, wherein said plurality of abrasive particles is formed from at least one material selected from the group comprising silica, alumina, zirconia, and titania.
35. The planarization composition of claim 33, wherein said oxidizing agent is selected from the group comprising hydrogen peroxide, peroxysulfuric acid, periodic acid, monopersulfates, dipersulfates, and di-tert-butyl peroxide.
36. A planarization composition for chemical mechanical planarization using low contact pressures to remove ruthenium from a work piece, the composition comprising:
a dispersing medium;
a plurality of abrasive particles colloidally dispersed in said dispersing medium, wherein said abrasive particles having a Mohs hardness in the range of about 5 to about 9 and a particle size in the range of about 20 nm to about 2 microns, and wherein said plurality of abrasive particles comprising about 1 to 50 wt. percent of the composition;
an oxidizing agent; and
a complexing agent,
wherein said planarization composition causes the ruthenium to be transformed to an ionic state and the ionic ruthenium to be removed as a ruthenium complex when the planarization composition has a pH no greater than about 2.5.
37. The planarization composition of claim 36, wherein said plurality of abrasive particles is formed from at least one material selected from the group comprising silica, alumina, zirconia, and titania.
38. The planarization composition of claim 36, wherein said oxidizing agent is selected from the group comprising hydrogen peroxide, peroxysulfuric acid, periodic acid, monopersulfates, dipersulfates, and di-tert-butyl peroxide.
39. The planarization composition of claim 36, wherein said step complexing agent selected from the group comprising L-2-amino-3-hydroxybutanoic acid (threonine, C4H9NO3), iminodiacetic acid (IDA, C4H7NO4), N-(2-hydroxyethyl)ethylene-dinitrilotriacetic acid (HEDTA, C10H18N2O7), ethylenedinitrilo-tetraacetic acid (EDTA, C10H18N2O8), DL-(methylethylene)dinitilotetraacetic acid (PDTA, C11H18N2O8), trans-1,2-cyclohexylenedinitrilotetaacetic acid (CDTA, C14H22N2O8), diethylenetrinitrilopentaacetic acid (DTPA, C14H23N3O10), ethylenediamine (C2H8N2), 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron, C6H6O8S2), 1-nitroso-2-naphthol-3,6-disulfonic acid (Nitroso-R acid, C10H7NO8S2), 1,2-di(2-oxole)ethane-1,2-dione dioxime (alpha-Furil dioxime, C10H8N2O4), thiocarbamide (Thioura, CH4N2S), thiosemicarbazide (CH5N3S), dithiooxamide (C2H4N2S2), hydroxide ion (OH), hydrogen thiocyanate (thiocyanic acid, CHNS), ammonia (NH3), hydrogen nitrite (Nitrous acid, HNO2), hydrogen sulfate ion (sulfuric acid, HSO4 ), 2-hydroxyphenylpropenoic acid (o-coumaric acid, C9H8O3), and 4-phenylthiosemicarbazide (C7H9N3S).
US10/666,140 2003-09-18 2003-09-18 Methods and compositions for chemical mechanical planarization of ruthenium Expired - Fee Related US6869336B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/666,140 US6869336B1 (en) 2003-09-18 2003-09-18 Methods and compositions for chemical mechanical planarization of ruthenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/666,140 US6869336B1 (en) 2003-09-18 2003-09-18 Methods and compositions for chemical mechanical planarization of ruthenium

Publications (2)

Publication Number Publication Date
US6869336B1 US6869336B1 (en) 2005-03-22
US20050064798A1 true US20050064798A1 (en) 2005-03-24

Family

ID=34274699

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/666,140 Expired - Fee Related US6869336B1 (en) 2003-09-18 2003-09-18 Methods and compositions for chemical mechanical planarization of ruthenium

Country Status (1)

Country Link
US (1) US6869336B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090094A1 (en) * 2005-10-26 2007-04-26 Cabot Microelectronics Corporation CMP of copper/ruthenium substrates
US20090035942A1 (en) * 2007-08-01 2009-02-05 Daniela White Ruthenium CMP compositions and methods
US20120045970A1 (en) * 2009-05-08 2012-02-23 Basf Se Oxidizing particles based slurry for nobel metal including ruthenium chemical mechanical planarization
US9196283B1 (en) 2013-03-13 2015-11-24 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a chemical buffer

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953389B2 (en) * 2001-08-09 2005-10-11 Cheil Industries, Inc. Metal CMP slurry compositions that favor mechanical removal of oxides with reduced susceptibility to micro-scratching
US7316977B2 (en) * 2005-08-24 2008-01-08 Air Products And Chemicals, Inc. Chemical-mechanical planarization composition having ketooxime compounds and associated method for use
US7732393B2 (en) * 2006-03-20 2010-06-08 Cabot Microelectronics Corporation Oxidation-stabilized CMP compositions and methods
US7915071B2 (en) * 2007-08-30 2011-03-29 Dupont Air Products Nanomaterials, Llc Method for chemical mechanical planarization of chalcogenide materials
US7803711B2 (en) * 2007-09-18 2010-09-28 Cabot Microelectronics Corporation Low pH barrier slurry based on titanium dioxide
EP2250286A1 (en) * 2008-02-15 2010-11-17 Life Technologies Corporation Methods and compositions for shearing of polymers by sonication
US20100081279A1 (en) * 2008-09-30 2010-04-01 Dupont Air Products Nanomaterials Llc Method for Forming Through-base Wafer Vias in Fabrication of Stacked Devices
US20100096584A1 (en) * 2008-10-22 2010-04-22 Fujimi Corporation Polishing Composition and Polishing Method Using the Same
US8916473B2 (en) 2009-12-14 2014-12-23 Air Products And Chemicals, Inc. Method for forming through-base wafer vias for fabrication of stacked devices
JP6363724B2 (en) 2014-10-31 2018-07-25 富士フイルム株式会社 Ruthenium removing composition and magnetoresistive memory manufacturing method
WO2019190730A2 (en) 2018-03-28 2019-10-03 Fujifilm Electronic Materials U.S.A., Inc. Barrier ruthenium chemical mechanical polishing slurry
JP7351839B2 (en) * 2018-03-28 2023-09-27 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド Ruthenium bulk chemical mechanical polishing composition
KR20210102947A (en) 2018-12-12 2021-08-20 바스프 에스이 Chemical mechanical polishing of substrates containing copper and ruthenium
US20220064485A1 (en) 2018-12-12 2022-03-03 Basf Se Chemical mechanical polishing of substrates containing copper and ruthenium
JP2022512431A (en) 2018-12-12 2022-02-03 ビーエーエスエフ ソシエタス・ヨーロピア Chemical mechanical polishing of substrates containing copper and ruthenium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527423A (en) * 1994-10-06 1996-06-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers
US5691219A (en) * 1994-09-17 1997-11-25 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor memory device
US5693239A (en) * 1995-10-10 1997-12-02 Rodel, Inc. Polishing slurries comprising two abrasive components and methods for their use
US5958794A (en) * 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
US6126853A (en) * 1996-12-09 2000-10-03 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US6146244A (en) * 1995-11-10 2000-11-14 Kao Corporation Substrate produced by using alumina particles as an abrasive
US6293848B1 (en) * 1999-11-15 2001-09-25 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
US6527622B1 (en) * 2002-01-22 2003-03-04 Cabot Microelectronics Corporation CMP method for noble metals
US20030139116A1 (en) * 2002-01-18 2003-07-24 Cabot Microelectronics Corporation CMP systems and methods utilizing amine-containing polymers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691219A (en) * 1994-09-17 1997-11-25 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor memory device
US5527423A (en) * 1994-10-06 1996-06-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers
US5958794A (en) * 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
US5693239A (en) * 1995-10-10 1997-12-02 Rodel, Inc. Polishing slurries comprising two abrasive components and methods for their use
US6146244A (en) * 1995-11-10 2000-11-14 Kao Corporation Substrate produced by using alumina particles as an abrasive
US6126853A (en) * 1996-12-09 2000-10-03 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US6293848B1 (en) * 1999-11-15 2001-09-25 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
US20030139116A1 (en) * 2002-01-18 2003-07-24 Cabot Microelectronics Corporation CMP systems and methods utilizing amine-containing polymers
US6527622B1 (en) * 2002-01-22 2003-03-04 Cabot Microelectronics Corporation CMP method for noble metals

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090094A1 (en) * 2005-10-26 2007-04-26 Cabot Microelectronics Corporation CMP of copper/ruthenium substrates
US7265055B2 (en) * 2005-10-26 2007-09-04 Cabot Microelectronics Corporation CMP of copper/ruthenium substrates
US20090035942A1 (en) * 2007-08-01 2009-02-05 Daniela White Ruthenium CMP compositions and methods
US8008202B2 (en) * 2007-08-01 2011-08-30 Cabot Microelectronics Corporation Ruthenium CMP compositions and methods
US20120045970A1 (en) * 2009-05-08 2012-02-23 Basf Se Oxidizing particles based slurry for nobel metal including ruthenium chemical mechanical planarization
US8684793B2 (en) * 2009-05-08 2014-04-01 Basf Se Oxidizing particles based slurry for nobel metal including ruthenium chemical mechanical planarization
US9196283B1 (en) 2013-03-13 2015-11-24 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a chemical buffer

Also Published As

Publication number Publication date
US6869336B1 (en) 2005-03-22

Similar Documents

Publication Publication Date Title
US6869336B1 (en) Methods and compositions for chemical mechanical planarization of ruthenium
US7029373B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
US6375693B1 (en) Chemical-mechanical planarization of barriers or liners for copper metallurgy
US6692546B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
US7104267B2 (en) Planarized copper cleaning for reduced defects
US6774041B1 (en) Polishing method, metallization fabrication method, method for manufacturing semiconductor device and semiconductor device
US6451697B1 (en) Method for abrasive-free metal CMP in passivation domain
US20130186850A1 (en) Slurry for cobalt applications
US6638326B2 (en) Compositions for chemical mechanical planarization of tantalum and tantalum nitride
US20020111024A1 (en) Chemical mechanical polishing compositions
US20030159362A1 (en) Chemical-mechanical polishing slurry for polishing of copper or silver films
US20140017893A1 (en) Cmp polishing liquid and method for polishing substrate using the same
US20030162399A1 (en) Method, composition and apparatus for tunable selectivity during chemical mechanical polishing of metallic structures
US7731864B2 (en) Slurry for chemical mechanical polishing of aluminum
US20050016861A1 (en) Method for planarizing a work piece
US20220384245A1 (en) Methods of Forming an Abrasive Slurry and Methods for Chemical-Mechanical Polishing
US7422700B1 (en) Compositions and methods of electrochemical removal of material from a barrier layer of a wafer
JP2004259867A (en) Slurry for chemical mechanical polishing
KR20180117609A (en) Chemical mechanical polishing method of substrate
US20040014399A1 (en) Selective barrier removal slurry

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVELLUS SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARDIKAR, VISHWAS V.;REEL/FRAME:014531/0201

Effective date: 20030911

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20170322