US20050075711A1 - Balloon catheter with selectable diameter and expandable length - Google Patents

Balloon catheter with selectable diameter and expandable length Download PDF

Info

Publication number
US20050075711A1
US20050075711A1 US10/678,833 US67883303A US2005075711A1 US 20050075711 A1 US20050075711 A1 US 20050075711A1 US 67883303 A US67883303 A US 67883303A US 2005075711 A1 US2005075711 A1 US 2005075711A1
Authority
US
United States
Prior art keywords
balloon
restrictors
inflatable balloon
restrictor
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/678,833
Inventor
Anthony Neary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Vascular Inc
Original Assignee
Medtronic Vascular Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Vascular Inc filed Critical Medtronic Vascular Inc
Priority to US10/678,833 priority Critical patent/US20050075711A1/en
Assigned to MEDTRONIC VASCULAR INC. reassignment MEDTRONIC VASCULAR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEARY, MR ANTHONY J.
Publication of US20050075711A1 publication Critical patent/US20050075711A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • A61F2/9662Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod the middle portion of the stent or stent-graft is released first

Definitions

  • This invention relates generally to balloon catheters and stent-deployment systems. More specifically, the invention relates to restrictors for pre-selectively controlling the diameter and length of an inflatable balloon.
  • Medical balloon catheters are used in procedures to treat a wide variety of blood vessel disorders such as intravascular restrictions due to atherosclerosis or restenosis.
  • Various techniques have been used to control, expand, or alter the size of catheter balloons that are used in angioplasty and stent placement procedures.
  • the size of a catheter balloon and the amount of inflation fluid used to expand that balloon can give only limited control over the diameter and length of the deployed catheter balloon.
  • Various balloon configurations as well as limiters such as sheaths have been used to provide greater control.
  • Some control techniques have required a catheter balloon to expand to a certain amount of predilation before fully inflating.
  • balloon expansion methods and systems have been developed for first expanding a stent to a relatively small diameter to open a lesion and then further expanding the stent to embed the stent in a vessel wall. Such methods are described in “Stent Installation Method Using Balloon Catheter Having Stepped Compliance Curve,” Wang, U.S. Pat. No. 6,402,778 issued Jun. 11, 2002 and “Stent Installation Method Using Balloon Catheter Having Stepped Compliance Curve,” Wang, U.S. Pat. No. 6,352,551 issued Mar. 5, 2002.
  • the methods allow predilation of a balloon at a low pressure and predetermined diameter, followed by expansion of the balloon at a substantially larger diameter by high pressure.
  • a catheter balloon that is designed to be expanded to two different, known, work-hardened diameters is described in “Balloon Catheter and Inflation Method,” Miller, U.S. Pat. No. 5,779,730 issued Jul. 14, 1998.
  • An associated method increasingly pressurizes a catheter balloon made of work-hardenable material for elastically expanding the balloon to such a first pressure that sufficient work-hardening takes place in the expanding balloon, causing the balloon diameter to substantially stop expanding even in response to a further increase in pressure.
  • Two or more chambers of a balloon can be inflated independently, as disclosed in “Angioplasty Catheter System with Adjustable Balloon Length,” Lee et al., U.S. Pat. No. 6,527,741 issued Mar. 4, 2003 and “Adjustable Length Balloon Catheter,” Peacock, III et al., U.S. Pat. No. 5,549,551 issued Aug. 27, 1996.
  • Sheaths have been introduced to provide greater control over the expansion of an expandable stent, as well as the inflation of a balloon catheter, as exemplified in “Peeling Sheath for Self-Expanding Stent,” Bigus et al., U.S. Patent Application 2003/0004561 published Jan. 2, 2003.
  • a sheath of shape-memory polymer may be used help deploy and control expansion size, as described in “Expandable Introducer Sheath,” Kratoska et al., U.S. Pat. No. 6,183,443 issued Feb. 6, 2001.
  • the sheath also may be manipulated while in a body vessel to expand its inner diameter to a larger diameter.
  • a covering sleeve which is movable along the catheter shaft, has a first portion with a first inner diameter surrounding the catheter shaft and a second portion with a second larger inner diameter being pushable over the deflated dilatation balloon. The covering sleeve provides some adjustability of the balloon length.
  • Mickley and others disclose another type of sleeve that adjusts the length of a catheter balloon in “Catheter Having a Variable Length Balloon and Method of Using the Same,” U.S. Pat. No. 5,961,536 issued Oct. 5, 1999.
  • the outer sleeve includes a distal end that can be varied in size and configured to restrict inflation proximal the distal end.
  • An earlier example of a tubular sheath used to alter or limit the expansion of an inflatable catheter balloon is disclosed in “Balloon Sheath”, Stone et al., U.S. Pat. No. 5,843,027 issued Dec. 1, 1998.
  • Guide tubes have been suggested for controlling the expansion of a catheter balloon, as taught in “Method and Catheter System for Delivering Medication with an Everting Balloon Catheter,” Johnson et al., U.S. Pat. No. 6,039,721 issued Mar. 21, 2000.
  • the guide-tube system employs an annular catheter balloon having its proximal end secured to the lumen tube of a balloon catheter and its distal end secured to a guide tube. Relative axial movement of guide tubes, which define a lumen therebetween, adjusts the balloon between retracted and extended positions.
  • an improved balloon catheter system would allow a physician the option of selecting whatever diameter or length of catheter balloon that may be needed either prior to or during a medical procedure.
  • a preferred catheter balloon system would allow a balloon to be used once or multiple times during a procedure.
  • a balloon catheter system having a variably sized balloon could be used for a wider range of vascular sizes and applications than those with a single size option. With the availability of a variably sized catheter balloon, the inventory of sized balloon catheters required in a medical treatment facility could be reduced.
  • One aspect of the invention provides a system for treating a vascular condition, including a catheter body, an inflatable balloon disposed on the catheter body, a plurality of concentrically disposed restrictors circumferentially disposed on the inflatable balloon, and inflation means coupled to a proximal end of the catheter body to inflate the inflatable balloon.
  • One or more restrictors are at least partially removable to allow expansion of the inflatable balloon to a predetermined size.
  • a variable expansion balloon catheter including a plurality of concentrically disposed restrictors circumferentially disposed on an inflatable balloon is provided. At least one of the restrictors is selected based on a predetermined balloon size. The selected restrictors are axially displaced with respect to the inflatable balloon, and the inflatable balloon is inflated to the predetermined balloon size based on the axial displacement of the selected restrictors.
  • a balloon catheter including a catheter body, an inflatable balloon disposed on the catheter body, and a plurality of concentrically disposed restrictors circumferentially disposed on the inflatable balloon.
  • One or more restrictors are axially translatable to allow expansion of the inflatable balloon to a predetermined size.
  • FIG. 1 is an illustration of a system for treating a vascular condition, in accordance with one embodiment of the current invention
  • FIG. 2 a shows a longitudinal cross-sectional view of a portion of a balloon catheter with a plurality of concentrically disposed restrictors, in accordance with one embodiment of the current invention
  • FIG. 2 b , FIG. 2 c , FIG. 2 d , and FIG. 2 e show longitudinal cross-sectional views of a portion of a balloon catheter with a varying number of concentrically disposed restrictors as an inflatable balloon is inflated, in accordance with one embodiment of the current invention
  • FIG. 3 a shows a diametrical cross-sectional view of a portion of a balloon catheter with a plurality of concentrically disposed restrictors, in accordance with one embodiment of the current invention
  • FIG. 3 b , FIG. 3 c , FIG. 3 d , and FIG. 3 e show diametrical cross-sectional views of a portion of a balloon catheter with a plurality of concentrically disposed restrictors and an inflated balloon, in accordance with one embodiment of the current invention
  • FIG. 4 shows a graph of balloon diameter with applied pressure for a variable expansion balloon catheter with a preselected outer diameter, in accordance with one embodiment of the current invention
  • FIG. 5 a , FIG. 5 b , FIG. 5 c , FIG. 5 d , and FIG. 5 e show longitudinal cross-sectional views of a portion of a balloon catheter with a plurality of axially translatable restrictors, in accordance with one embodiment of the current invention
  • FIG. 6 shows a graph of balloon diameter versus position along the inflated balloon for a variable expansion balloon catheter with a preselected outer diameter and a preselected expandable length, in accordance with one embodiment of the current invention
  • FIG. 7 a , FIG. 7 b , FIG. 7 c and FIG. 7 d show longitudinal cross-sectional views of a portion of a variable expansion balloon catheter with a stent for controlled-diameter stent delivery, in accordance with one embodiment of the current invention
  • FIG. 8 shows a graphical illustration of stent diameter for a stent deployed with a variable expansion balloon catheter, in accordance with one embodiment of the current invention.
  • FIG. 9 is a flow chart of a method for treating a vascular condition, in accordance with one embodiment of the current invention.
  • FIG. 1 illustrates a system for treating a vascular condition, in accordance with one embodiment of the present invention at 100 .
  • Vascular treatment system 100 includes a balloon catheter having a catheter body 110 , an inflatable balloon 120 disposed on the catheter body, a plurality of concentrically disposed restrictors 130 circumferentially disposed on inflatable balloon 120 , and inflation means 140 such as a balloon inflation system to inflate inflatable balloon 120 .
  • Restrictors 130 are axially translatable or at least partially removable to allow expansion of inflatable balloon 120 to a predetermined size.
  • Restrictors 130 are axially translatable or at least partially removable to allow expansion to a predetermined balloon diameter or to control an expandable length of inflatable balloon 120 .
  • a practitioner may pre-select, for example, the balloon diameter and the expandable length by moving or removing one or more restrictors 130 from inflatable balloon 120 immediately prior to insertion into the body.
  • the removal of all restrictors 130 from inflatable balloon 120 prior to use allows the balloon to be inflated to its full diameter and length.
  • Catheter body 110 is an elongate, flexible member with a proximal end 112 and a distal end 114 .
  • One or more ports may be located at proximal end 112 to allow for the insertion of guidewires and to connect, for example, a balloon inflation system to catheter body 110 .
  • catheter body 110 may have a plugging mechanism to prevent leakage into or out of catheter body 110 , while allowing clear passage for a guidewire through a guidewire lumen 128 .
  • Distal end 114 of catheter body 110 is inserted first into the vasculature of the body through, for example, the femoral artery in the leg where it can be guided into more delicate vasculature including arteries within the human heart.
  • Treatment of vascular conditions may include the prevention or correction of various ailments and deficiencies associated with the cardiovascular system, the cerebrovascular system, urogenital systems, biliary conduits, abdominal passageways and other biological vessels within the body.
  • Catheter body 110 has a catheter sidewall 116 , and an outer surface 118 onto which inflatable balloon 120 is attached.
  • Inflatable balloon 120 which is a flexible and expandable thin-walled tubular member, attaches near distal end 114 of catheter body 110 .
  • Inflatable balloon 120 comprises an elastic material such as polyurethane, polyethylene terephthalate (PET), or a thermoplastic elastomer, as is currently known in the art.
  • Inflatable balloon 120 has a length, for example, of 8 millimeters to over 40 millimeters.
  • the proximal and distal ends of inflatable balloon 120 are attached to catheter body 110 using suitable adhesives, epoxies, glues, heat bonding, collars, bands, or other suitable attachment mechanisms.
  • An interior region 124 between an outer surface 118 of catheter body 110 and an inner surface of an exterior wall of inflatable balloon 120 may be filled with an inflation fluid such as dilute contrast fluid or saline solution to pressurize and enlarge the exterior wall of the balloon.
  • Inflation fluid injected at proximal end 112 of catheter body 110 travels through an inflation lumen 126 inside catheter body 110 , through an inflation hole 122 formed in catheter sidewall 116 between inflatable balloon 120 and inflation lumen 126 , and into interior region 124 of inflatable balloon 120 to inflate the balloon.
  • inflation fluid is removed from interior region 124 of inflatable balloon 120 through inflation hole 122 and inflation lumen 126 using, for example, a pump within the balloon inflation system or through elastic restoring forces generated by inflatable balloon 120 and any restrictors 130 surrounding the balloon.
  • inflatable balloon 120 Prior to inflation or when deflated, inflatable balloon 120 may be appreciably compressed against outer surface 118 of catheter body 110 . When compressed, inflatable balloon 120 has a small diameter that allows insertion into and extraction from the sometimes small, tortuous vasculature of the body. Restrictors 130 , elastic sleeves, or an unexpanded stent may be used to maintain inflatable balloon 120 in a compressed state until inflated.
  • Inflatable balloon 120 expands and inflates in response to increasing pressure from the inflation fluid.
  • inflatable balloon 120 presses, for example, against the walls of a restricted vessel to reduce constrictions within the blood vessel, or against a stent framework to expand and deploy a stent within the vessel.
  • inflation fluid is injected through inflation hole 122 , inflatable balloon 120 enlarges or unfolds to a nominally tubular shape, and once inflatable balloon 120 reaches its tubular shape, additional pressure applied to interior region 124 has minimal effect on further enlargements of the balloon diameter.
  • the size of inflatable balloon 120 is controlled in diameter and length.
  • Restrictors 130 are tubular members placed around the circumference of inflatable balloon 120 .
  • a set of restrictors 130 may include a range of restrictor diameters that provide and limit inflatable balloon 120 to different diameters of radial expansion and to different expandable lengths based on the position of the restrictors and the restrictor diameters.
  • Multiple restrictors 130 may be placed one on top of another, with the smallest restrictor diameter defining the allowable balloon diameter.
  • One or more restrictors 130 may be moved or pulled off inflatable balloon 120 to vary and control the diameter and length of the balloon during inflation.
  • Restrictors 130 may be frictionally coupled to inflatable balloon 120 to retain them on the balloon during storage and use, yet designed to allow freedom to be moved or removed as desired.
  • Restrictors 130 are formed from one or more layers of expandable material such as polyurethane, silicone, copolymers of polyurethane and silicone, natural rubber, synthetic rubber, a thermoplastic polyamide, nylon, latex, polyethylene, polyisoprene, polyisobutylene, polyethylene terephthalate (PET), polyethylene, polytetrafluoroethylene (PTFE), expanded polytetrafluoroethylene (ePTFE), an elastane, a thermoplastic elastomer, a woven polymeric fabric, an expandable polymeric sheet, an elastomeric material, a semi-compliant polymer, or combinations thereof.
  • expandable material such as polyurethane, silicone, copolymers of polyurethane and silicone, natural rubber, synthetic rubber, a thermoplastic polyamide, nylon, latex, polyethylene, polyisoprene, polyisobutylene, polyethylene terephthalate (PET), polyethylene, polytetrafluoroethylene (PTFE), expanded poly
  • the wall thickness of restrictors 130 is thin to maintain a low profile when placed on inflatable balloon 120 , though sufficient to maintain the desired restrictor diameter with large inflation pressure.
  • a composite restrictor 130 may be formed from a first material with high elasticity that keeps the restrictor profile small and a second material that provides the desired hoop strength when the balloon is expanded.
  • Restrictors 130 are readily expanded to a restrictor diameter when a balloon disposed thereunder is inflated. Once restrictors 130 expand to the restrictor diameter, further increases in balloon pressure result in minimal increases in the outside diameter of restrictor 130 , thus limiting the expandable diameter of inflatable balloon 120 to the restrictor diameter. In some cases, one or more restrictors 130 have an elastic characteristic that tends to compress inflatable balloon 120 onto the catheter while deflating or when stored. Restrictors 130 may be attached to outside surface 118 of catheter body 110 at one or more points to retain their position until moved or removed.
  • Restrictor removal elements 132 such as tabs, flaps, threads, strings, threads, or wires may be formed with or attached to restrictors 130 to aid in moving and removing one or more restrictors 130 from inflatable balloon 120 .
  • Restrictor removal elements 132 may be color-coded to aid in identification when selecting and moving restrictors 130 .
  • Restrictor removal elements 132 may be formed as a unitary member with restrictor 130 .
  • a lubricant may be positioned between each of restrictors 130 and between the innermost restrictor 130 and the exterior surface of inflatable balloon 120 to aid in sliding restrictors 130 during use.
  • bitumen catheter body 110 with side-by-side inflation lumen 126 and guidewire lumen 128 is illustrated in FIG. 1
  • the present invention is applicable to a coaxial catheter body 110 having a flexible inner tube that serves as a guidewire lumen and a flexible outer tube coaxially configured with the flexible inner tube.
  • the inner tube and the outer tube cooperate to form an annular inflation lumen between an outside surface of the interior tube and an interior surface of the outer tube to allow flow of inflation fluid through the annular inflation lumen into and out from inflatable balloon 120 .
  • FIG. 2 a shows a longitudinal cross-sectional view of a portion of a balloon catheter with a plurality of concentrically disposed restrictors, in accordance with one embodiment of the present invention at 200 .
  • Restrictors 230 a , 230 b and 230 c are coupled at each end to an outer surface 218 of a coaxial catheter body 210 , covering an inflatable balloon 220 .
  • the proximal ends of restrictors 230 are attached to an outer tube of coaxial catheter body 210
  • the distal ends of restrictors 230 are attached to an inner tube of coaxial catheter body 210 .
  • a guidewire lumen 228 is formed by the inner tube of coaxial catheter body 210 .
  • An annular inflation lumen 226 is formed between an interior surface of the outer tube and an exterior surface of the inner tube.
  • An annular inflation hole 222 is formed at the distal end of the outer tube adjacent to inflatable balloon 220 , allowing inflation fluid to flow into and out from inflatable balloon 220 .
  • Restrictors 230 may be secured tightly or loosely to outer surface 218 of catheter body 210 .
  • an epoxy or other adhesive is used to adhere the proximal ends, distal ends, or both ends of restrictors 230 to catheter body 210 .
  • the elasticity of the restrictor material provides sufficient force to be maintained at the desired position.
  • an elastic sleeve (not shown) may be placed over the set of restrictors 230 to compress restrictors 230 and inflatable balloon 220 against catheter body 210 .
  • Restrictors 230 have a predefined outer diameter to which the restrictors can be enlarged, referred to herein as the restrictor diameter. Positioned over an inflatable balloon 220 attached to catheter body 210 , restrictors 230 restrict the diameter to which inflatable balloon 220 can be expanded. Each restrictor 230 a , 230 b and 230 c have a predetermined restrictor diameter such as 2.0 millimeters (mm), 3.0 mm, and 4.0 mm, respectively. When inflatable balloon 220 is deflated or otherwise collapsed, the outer profile of the restrictors and underlying balloon is smaller than the smallest restrictor diameter, limited by the outer diameter of catheter body 210 and the thickness of the restrictors and balloon.
  • More than one restrictor can be in place over inflatable balloon 220 .
  • three restrictors with three different diameters are concentrically disposed on inflatable balloon 220 .
  • the outer restrictor 230 a has the smallest restrictor diameter of 2.0 mm.
  • the middle restrictor 230 b has a larger restrictor diameter of 3.0 mm, and the inner restrictor 230 c has the largest restrictor diameter of 4.0 mm.
  • Inflatable balloon 220 has, in this example, a balloon diameter when expanded of 5.0 mm. With restrictors 230 a , 230 b and 230 c in place, inflatable balloon 220 cannot be expanded beyond the restrictor diameter of 2.0 mm, limited by the restrictor diameter of restrictor 230 a as inflatable balloon 220 enlarges.
  • One or more restrictors can be axially translated or removed prior to inflation of inflatable balloon 220 to control the expansion capability of inflatable balloon 220 .
  • outer restrictor 230 a may be axially displaced towards the proximal end or the distal end of catheter body 210 , or physically removed from catheter body 210 such as by pulling, pushing, sliding or tearing.
  • the balloon diameter is limited by middle restrictor 230 b to approximately 3.0 mm in this example.
  • restrictors 230 a and 230 b are axially translated or removed from inflatable balloon 220
  • inflatable balloon 220 may be inflated to a balloon diameter of 4.0 mm.
  • restrictors 230 a , 230 b and 230 c are axially translated or removed from inflatable balloon 220 , inflatable balloon 220 may be inflated to a balloon diameter of 5.0 mm.
  • водем ⁇ restrictors are placed over a 6.0 mm inflatable balloon, with restrictor diameters of 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm, and 5.5 mm, thereby limiting balloon expansion to 2.0 mm.
  • the balloon diameter is limited to 2.5 mm.
  • the balloon diameter is limited to 3.0 mm.
  • the balloon diameter is limited to 3.5 mm.
  • the fourth restrictor removed the balloon diameter is limited to 4.0 mm.
  • the balloon diameter is limited to 4.5 mm.
  • the sixth restrictor removed the balloon diameter is limited to 5.0 mm.
  • the seventh restrictor removed the balloon diameter is limited to 5.5 mm.
  • all restrictors removed or at least axially displaced along catheter body 210 away from inflatable balloon 220 the balloon diameter is limited to 6.0 mm.
  • a restrictor removal element 232 such as a tab, a flap, a string, a thread, or a wire is coupled to each restrictor 230 .
  • Restrictor removal element 232 and restrictor 230 may be formed as a unitary member.
  • a lubricant or other slide enhancer may be placed between the each of the restrictors and between the restrictors and the outer wall of the balloon. For example, a user's fingers may be used to grab a tab or a flap to slide or detach a selected restrictor.
  • the tab or flap may be formed with the restrictor removal element as a unitary member, such that when the tab or flap is pulled, the restrictor slides readily.
  • a string or thread coupled to each restrictor 230 may be pulled to slide or remove a selected restrictor.
  • restrictors 230 may be attached to at least one point to catheter body 210 so that sliding or removing one of the restrictors does not appreciably move the others.
  • a tearing mode can be enhanced by forming partial slits in the restrictors close to the attachment points. Partial slits or perforations may be used to retain restrictors 230 in place until intentionally and forcibly moved.
  • the balloon catheter although illustrated with a coaxial catheter body design, may have a bi-lumen design having inflation lumen 226 and guidewire lumen 228 side-by-side in an extruded bi-lumen tube or with parallel, longitudinally connected tubes.
  • FIG. 2 b , FIG. 2 c , FIG. 2 d , and FIG. 2 e illustrate longitudinal cross-sectional views of a portion of a balloon catheter with a varying number of concentrically disposed restrictors 230 as inflatable balloon 220 is inflated, in accordance with one embodiment of the present invention.
  • restrictors 230 a , 230 b and 230 c circumferentially disposed on inflatable balloon 220 , inflation fluid flowing through annular inflation lumen 226 of catheter body 210 into interior region 224 inflates inflatable balloon 220 to a diameter limited by the restrictor diameter of restrictor 230 a such as 2.0 mm, as shown in FIG. 2 b .
  • FIG. 3 a shows a diametrical cross-sectional of a portion of a balloon catheter with a plurality of concentrically disposed restrictors 330 , in accordance with one embodiment of the present invention at 300 .
  • Catheter body 310 has an annular inflation lumen 326 and a guidewire lumen 328 .
  • An annular inflation hole 322 in a catheter sidewall fluidly connects annular inflation lumen 326 to an interior region 324 between a wall of inflatable balloon 320 and catheter body 310 .
  • three restrictors 330 a , 330 b and 330 c are circumferentially disposed on inflatable balloon 320 .
  • inflatable balloon 320 expands accordingly until restricted by one or more restrictors 330 or by the balloon diameter of inflatable balloon 320 .
  • Inflatable balloon 320 which may be folded with one or more pleats, is compressed into an uninflated or deflated state having a small cross section, thereby aiding the insertion of inflatable balloon 320 into and retraction from the body.
  • FIG. 3 b , FIG. 3 c , FIG. 3 d , and FIG. 3 e show diametrical cross-sectional views of a portion of a balloon catheter with an inflated balloon and a plurality of concentrically disposed restrictors 330 , in accordance with one embodiment of the present invention.
  • fluid is injected through annular inflation lumen 326 and annular inflation hole 322 of catheter body 310 into interior region 324 between a wall of inflatable balloon 320 and catheter body 310 .
  • a set of restrictors 330 a , 330 b and 330 c around inflatable balloon 320 limit the expansion of inflatable balloon 320 , the expansion of the balloon diameter being limited by the restrictor diameter of restrictor 330 a such as 2.0 mm, as shown in FIG. 3 b.
  • inflation fluid expands inflatable balloon 320 to a diameter limited by the balloon diameter such as 5.0 mm, as shown in FIG. 3 e.
  • FIG. 3 b , FIG. 3 c , FIG. 3 d , and FIG. 3 e illustrate restrictors of specific sizes
  • others embodiments use restrictors 330 that limit the balloon to different increasing and decreasing sizes.
  • a number of selectable diameters can be accommodated by the choice of a restrictor diameter and number of restrictors.
  • FIG. 4 is a graph of balloon diameter with applied pressure for a variable expansion balloon catheter, in accordance with one embodiment of the present invention at 400 .
  • Graph 400 shows the outer diameter of an inflatable balloon with varying combinations of restrictors in place around the inflatable balloon. As the balloon is inflated, the diameter of the balloon quickly changes from the uninflated or deflated state to the expanded state as the balloon unfolds or stretches, limited by the restrictor diameter of one of the restrictors or by the balloon diameter when all the restrictors are removed.
  • response curve 440 shows the balloon diameter increasing from approximately 1.0 mm in an uninflated or deflated state to a balloon diameter of 2.0 mm, limited by the presence of restrictor with a 2.0 mm restrictor diameter around the inflatable balloon.
  • response curve 442 shows the balloon diameter increasing from approximately 1.0 mm to a diameter of 3.0 mm, limited by the presence of a restrictor with a 3.0 mm restrictor diameter around the inflatable balloon.
  • Response curve 444 shows the balloon diameter limited to a diameter of 4.0 mm, limited by the presence of a restrictor with a 4.0 mm restrictor diameter around the inflatable balloon.
  • Response curve 446 shows a fully expanded balloon, limited by the balloon diameter of 5.0 mm.
  • FIG. 5 a , FIG. 5 b , FIG. 5 c , FIG. 5 d , and FIG. 5 e show longitudinal cross-sectional views of a portion of a balloon catheter with a plurality of concentrically disposed restrictors, in accordance with one embodiment of the present invention at 500 .
  • fluid is injected through annular inflation lumen 526 and annular inflation hole 522 of catheter body 510 into interior region 524 between catheter body 510 and a wall of inflatable balloon 520 .
  • the expandable length of an inflatable balloon 520 that is mounted on a catheter body 510 can be controlled by axially displacing one or more restrictors 530 to limit the expansion of select portions of inflatable balloon 520 to a predetermined balloon diameter when inflation fluid is injected into inflatable balloon 520 .
  • a set of restrictors 530 a , 530 b and 530 c are circumferentially disposed on inflatable balloon 520 , and when inflatable balloon 520 is inflated, the balloon diameter is limited to the smallest restrictor diameter such as 2.0 mm, as seen in FIG. 5 a .
  • a restrictor removal element 532 such as a tab, a flap, a string, a thread, or a wire may be coupled to each restrictor 530 .
  • an expandable length of inflatable balloon 520 is 10.0 mm with a balloon diameter of 3.0 mm at the distal end, while the remaining portion towards the proximal end is restricted to a balloon diameter of 2.0 mm.
  • an expandable length at the distal end of inflatable balloon 520 is 10.0 mm with a balloon diameter of 4.0 mm, while the proximal half is restricted to a balloon diameter of 2.0 mm.
  • an expandable length of inflatable balloon 520 is 10.0 mm with a balloon diameter of 5.0 mm, while the other half is restricted to a balloon diameter of 2.0 mm.
  • restrictors 530 a , 530 b , and 530 c can be axially displaced to control the balloon diameter and expandable length of each side, as seen in FIG. 5 e .
  • an expandable length of inflatable balloon 520 is 10.0 mm with a balloon diameter of 5.0 mm on one side, while the other side has a balloon diameter of 3.0 mm.
  • FIG. 6 shows a graph of balloon diameter versus position along the inflated balloon for a variable expansion balloon catheter, in accordance with one embodiment of the present invention at 600 .
  • the balloon diameters and lengths correspond with the descriptions of the examples given for FIG. 5 a to FIG. 5 d .
  • Response curve 650 has three restrictors in place, with the outer restrictor having a restrictor diameter of 2.0 mm resulting in a balloon diameter of 2.0 mm and an expandable length of 20 mm when the inflatable balloon is inflated.
  • response curve 652 shows an expanded balloon with an expandable length of 10.0 mm and a balloon diameter of 3.0 mm on one side, with a balloon diameter of 2.0 mm on the other side.
  • Response curve 654 shows an expanded balloon with an expandable length of 10.0 mm and a balloon diameter of 4.0 mm on the distal side, with a balloon diameter of 2.0 mm on the proximal side.
  • Response curve 656 shows an expanded balloon with an expandable length of 10.0 mm and a balloon diameter of 5.0 mm on the distal half, with a balloon diameter of 2.0 mm on the proximal half.
  • FIG. 7 a , FIG. 7 b , FIG. 7 c and FIG. 7 d show longitudinal cross-sectional views of a portion of a variable expansion balloon catheter with a stent for controlled-diameter stent delivery, in accordance with one embodiment of the present invention at 700 .
  • a stent 734 including a stent framework 736 is positioned on and coupled to an inflatable balloon 720 , with one or more concentrically disposed restrictors 730 a , 730 b , and 730 c positioned between stent framework 736 and inflatable balloon 720 .
  • Inflatable balloon 720 inflates when inflation fluid injected through an annular inflation lumen 726 in a catheter body 710 and through an annular inflation hole 722 into an interior region 724 between an outer surface of catheter body 710 and a wall of inflatable balloon 720 .
  • inflatable balloon 720 expands accordingly, limited by the inclusion of restrictors 730 .
  • Restrictors 730 are removable to allow expansion of stent framework 736 to a predetermined stent diameter.
  • a restrictor removal element 732 such as a tab, a flap, a string, a thread, or a wire may be coupled to each restrictor 730 to aid in the selective removal of restrictors 730 .
  • a retention sheath 738 is positioned between restrictors 730 and stent framework 736 to retain stent 734 on inflatable balloon 720 while various restrictors 730 are being removed.
  • Retention sheath 738 is attached, for example, to a point on catheter body 710 distal to inflatable balloon 720 , so that when restrictors 730 are pulled towards a proximal end of catheter body 710 , stent 734 remains unmoved.
  • Restrictors 730 may also be attached at a point on catheter body 710 distal to inflatable balloon 720 , so that when one or more selected restrictors 730 are pulled towards a proximal end of catheter body 710 , the selected restrictors detach or tear away from catheter body 710 and are removed, while the other restrictors stay in place. In this manner, a restrictor with the smallest diameter may be positioned inside of other restrictors rather than outside, being able to be pulled out without damaging or moving the other restrictors, the balloon, or the stent.
  • stent 734 is enlarged to a stent diameter limited by the restrictor diameter of restrictor 730 a such as 2.0 mm, as seen in FIG. 7 a .
  • stent 734 is enlarged to a balloon diameter limited by the restrictor diameter of restrictor 730 b such as 3.0 mm, as seen in FIG. 7 b .
  • stent 734 is enlarged to a stent diameter limited by the restrictor diameter of restrictor 730 c such as 4.0 mm, as seen in FIG. 7 c .
  • stent 734 is enlarged to a stent diameter limited by the balloon diameter such as 5.0 mm, as seen in FIG. 7 d .
  • Other stent diameters and the number of selectable diameters can be accommodated by choice of restrictor diameter and number of restrictors between the stent and the balloon.
  • FIG. 8 shows a graphical illustration of stent diameter for a stent deployed with a variable expansion balloon catheter, in accordance with one embodiment of the present invention at 800 .
  • Graph 800 shows the stent diameter of a stent deployed with various restrictors in place or removed, corresponding to the examples put forth in FIG. 7 a to FIG. 7 d.
  • An exemplary stent diameter 860 corresponds to an undeployed stent with a stent diameter such as 1.0 mm, as placed on the inflatable balloon of the variable expansion balloon catheter.
  • Stent diameter 862 corresponds to a deployed stent with a stent diameter such as 2.0 mm, limited by a restrictor with a restrictor diameter of 2.0 mm.
  • Stent diameter 864 corresponds to a deployed stent with a stent diameter of 3.0 mm, limited by a restrictor with a restrictor diameter of 3.0 mm.
  • Stent diameter 866 corresponds to a deployed stent with a stent diameter of 4.0 mm, corresponding to a restrictor diameter of 4.0 mm.
  • Stent diameter 868 corresponds to a deployed stent with a stent diameter of 5.0 mm, corresponding to a balloon diameter of 5.0 mm. Other deployed stent diameters may be predetermined by pre-selection of restrictors. Stents may be positioned on the selected restrictors or set of restrictors when initially assembled or during clinical use.
  • FIG. 9 is a flow chart of a method for treating a vascular condition, in accordance with one embodiment of the present invention at 900 .
  • Vascular treatment method 900 shows various steps for using a variable expansion balloon catheter.
  • variable expansion balloon catheter is provided, as seen at block 980 .
  • the variable expansion balloon catheter includes a plurality of concentrically disposed restrictors circumferentially disposed on an inflatable balloon of a balloon catheter. Axially translatable restrictors allow the inflatable balloon to expand up to a predetermined size.
  • At least one of the restrictors is selected, based on a predetermined balloon size, as seen at block 982 .
  • the predetermined balloon size may include the balloon diameter, the expandable balloon length, or a combination thereof.
  • the selected restrictors are axially displaced with respect to the inflatable balloon, as seen at block 984 .
  • one or more restrictors are slidably moved along the balloon catheter to reveal a portion of the inflatable balloon and control the expandable length of the balloon.
  • either the proximal end or the distal end of the inflatable balloon may be selected to have the larger diameter depending on the procedure. The transition between the larger and smaller diameters may be made at any point along the working length of the inflatable balloon.
  • one or more restrictors are slid away from the inflatable balloon towards a proximal end of the catheter, such that the selected restrictors remain on the catheter yet are separated by a distance from the inflatable balloon.
  • the balloon is inflatable to a pre-selected balloon diameter based on the restrictor diameters of the restrictors remaining on the inflatable balloon.
  • the selected restrictors are completely removed from the variable expansion balloon catheter.
  • the selected restrictors may be manually pulled by pulling a restrictor removal element such as a tab, a flap, a string, a thread, or a wire attached to the selected restrictors.
  • a medical practitioner would select one, two or more restrictors, slide the selected restrictors over an end of the catheter body, and position the restrictors accordingly over an inflatable balloon prior to balloon inflation to achieve the desired balloon diameter and expandable length.
  • the inflatable balloon is inflated to the predetermined balloon size based on the axial displacement of the selected restrictors, as seen at block 986 .
  • the inflatable balloon is allowed to expand to a predetermined balloon diameter when the inflatable balloon is inflated.
  • the expandable length of the inflatable balloon is controlled when inflating the inflatable balloon.
  • variable expansion balloon catheter is repositioned within or extracted from the body, as seen at block 988 .
  • an inflatable balloon is positioned in a vessel, expanded to the predetermined balloon diameter to enlarge the vessel, and then deflated.
  • the variable expansion balloon catheter may be repositioned and the inflatable balloon can be expanded several times as desired at locations within one or more blood vessels, and then extracted from the body.
  • Some medical cases may require that an additional restrictor be selected to increase the expandable diameter or to adjust the expandable length of the inflatable balloon.
  • One or more restrictors may be axially displaced or removed from the inflation balloon while the balloon catheter is outside the body, after which the balloon catheter may be re-inserted into the body. The practitioner can reposition the balloon at other treatment areas needing angioplasty, and inflate the catheter balloon to the larger balloon diameter. After withdrawal, yet another restrictor can be displaced or removed to allow the inflatable balloon to be expanded to an even larger diameter. The balloon catheter may be re-inserted into the body to continue the angioplastic maneuvers. When desired, the expandable length of the inflatable balloon can be adjusted, for example, by repositioning or partially removing selected restrictors from the inflatable balloon. In other medical cases such as dilating a bifurcate lesion, two variable expansion balloon catheters with pre-selected balloon lengths and diameters may be concurrently employed.
  • variable expansion balloon catheter may be used to deploy a stent including a stent framework, as seen at block 990 .
  • One or more restrictors are selected based on a predetermined balloon size needed to expand a stent that is coupled to the inflatable balloon.
  • the stent is expanded to a predetermined stent diameter based on the axial displacement or removal of the selected restrictors.
  • the balloon is deflated and the balloon catheter is extracted, as seen at block 992 .

Abstract

One aspect of the invention provides a system for treating a vascular condition, including a catheter body, an inflatable balloon disposed on the catheter body, a plurality of concentrically disposed restrictors circumferentially disposed on the inflatable balloon, and inflation means coupled to a proximal end of the catheter body to inflate the inflatable balloon. One or more restrictors are at least partially removable to allow expansion of the inflatable balloon to a predetermined size. A method of treating a vascular condition and a balloon catheter including a plurality of restrictors is also disclosed.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to balloon catheters and stent-deployment systems. More specifically, the invention relates to restrictors for pre-selectively controlling the diameter and length of an inflatable balloon.
  • BACKGROUND OF THE INVENTION
  • Medical balloon catheters are used in procedures to treat a wide variety of blood vessel disorders such as intravascular restrictions due to atherosclerosis or restenosis. Various techniques have been used to control, expand, or alter the size of catheter balloons that are used in angioplasty and stent placement procedures. The size of a catheter balloon and the amount of inflation fluid used to expand that balloon can give only limited control over the diameter and length of the deployed catheter balloon. Various balloon configurations as well as limiters such as sheaths have been used to provide greater control.
  • Some control techniques have required a catheter balloon to expand to a certain amount of predilation before fully inflating. For example, balloon expansion methods and systems have been developed for first expanding a stent to a relatively small diameter to open a lesion and then further expanding the stent to embed the stent in a vessel wall. Such methods are described in “Stent Installation Method Using Balloon Catheter Having Stepped Compliance Curve,” Wang, U.S. Pat. No. 6,402,778 issued Jun. 11, 2002 and “Stent Installation Method Using Balloon Catheter Having Stepped Compliance Curve,” Wang, U.S. Pat. No. 6,352,551 issued Mar. 5, 2002. The methods allow predilation of a balloon at a low pressure and predetermined diameter, followed by expansion of the balloon at a substantially larger diameter by high pressure.
  • A catheter balloon that is designed to be expanded to two different, known, work-hardened diameters is described in “Balloon Catheter and Inflation Method,” Miller, U.S. Pat. No. 5,779,730 issued Jul. 14, 1998. An associated method increasingly pressurizes a catheter balloon made of work-hardenable material for elastically expanding the balloon to such a first pressure that sufficient work-hardening takes place in the expanding balloon, causing the balloon diameter to substantially stop expanding even in response to a further increase in pressure.
  • Methods and systems have been developed to adjust the length of a catheter balloon. For example, two or more chambers of a balloon can be inflated independently, as disclosed in “Angioplasty Catheter System with Adjustable Balloon Length,” Lee et al., U.S. Pat. No. 6,527,741 issued Mar. 4, 2003 and “Adjustable Length Balloon Catheter,” Peacock, III et al., U.S. Pat. No. 5,549,551 issued Aug. 27, 1996.
  • Another approach to controlling the diameter and length of a catheter balloon is to introduce one tubular and elongate sheath or sleeve over a balloon or intravascular devices such as a stent. Sheaths have been introduced to provide greater control over the expansion of an expandable stent, as well as the inflation of a balloon catheter, as exemplified in “Peeling Sheath for Self-Expanding Stent,” Bigus et al., U.S. Patent Application 2003/0004561 published Jan. 2, 2003. A sheath of shape-memory polymer may be used help deploy and control expansion size, as described in “Expandable Introducer Sheath,” Kratoska et al., U.S. Pat. No. 6,183,443 issued Feb. 6, 2001. The sheath also may be manipulated while in a body vessel to expand its inner diameter to a larger diameter.
  • Another sheath-like device used to control the length of a balloon is described in “Captured Sleeve and Stent Delivery Device,” Amann et al., U.S. Pat. No. 6,066,155 issued May 23, 2000. A covering sleeve, which is movable along the catheter shaft, has a first portion with a first inner diameter surrounding the catheter shaft and a second portion with a second larger inner diameter being pushable over the deflated dilatation balloon. The covering sleeve provides some adjustability of the balloon length.
  • Mickley and others disclose another type of sleeve that adjusts the length of a catheter balloon in “Catheter Having a Variable Length Balloon and Method of Using the Same,” U.S. Pat. No. 5,961,536 issued Oct. 5, 1999. The outer sleeve includes a distal end that can be varied in size and configured to restrict inflation proximal the distal end. An earlier example of a tubular sheath used to alter or limit the expansion of an inflatable catheter balloon is disclosed in “Balloon Sheath”, Stone et al., U.S. Pat. No. 5,843,027 issued Dec. 1, 1998.
  • Guide tubes have been suggested for controlling the expansion of a catheter balloon, as taught in “Method and Catheter System for Delivering Medication with an Everting Balloon Catheter,” Johnson et al., U.S. Pat. No. 6,039,721 issued Mar. 21, 2000. The guide-tube system employs an annular catheter balloon having its proximal end secured to the lumen tube of a balloon catheter and its distal end secured to a guide tube. Relative axial movement of guide tubes, which define a lumen therebetween, adjusts the balloon between retracted and extended positions.
  • While the above-mentioned devices and systems provide some control over the diameter and length of a catheter balloon, an improved balloon catheter system would allow a physician the option of selecting whatever diameter or length of catheter balloon that may be needed either prior to or during a medical procedure. In addition, a preferred catheter balloon system would allow a balloon to be used once or multiple times during a procedure. A balloon catheter system having a variably sized balloon could be used for a wider range of vascular sizes and applications than those with a single size option. With the availability of a variably sized catheter balloon, the inventory of sized balloon catheters required in a medical treatment facility could be reduced.
  • SUMMARY OF THE INVENTION
  • One aspect of the invention provides a system for treating a vascular condition, including a catheter body, an inflatable balloon disposed on the catheter body, a plurality of concentrically disposed restrictors circumferentially disposed on the inflatable balloon, and inflation means coupled to a proximal end of the catheter body to inflate the inflatable balloon. One or more restrictors are at least partially removable to allow expansion of the inflatable balloon to a predetermined size.
  • Another aspect of the invention provides a method of treating a vascular condition. A variable expansion balloon catheter including a plurality of concentrically disposed restrictors circumferentially disposed on an inflatable balloon is provided. At least one of the restrictors is selected based on a predetermined balloon size. The selected restrictors are axially displaced with respect to the inflatable balloon, and the inflatable balloon is inflated to the predetermined balloon size based on the axial displacement of the selected restrictors.
  • Another aspect of the invention is a balloon catheter including a catheter body, an inflatable balloon disposed on the catheter body, and a plurality of concentrically disposed restrictors circumferentially disposed on the inflatable balloon. One or more restrictors are axially translatable to allow expansion of the inflatable balloon to a predetermined size.
  • The present invention is illustrated by the accompanying drawings of various embodiments and the detailed description given below. The drawings should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof. The foregoing aspects and other attendant advantages of the present invention will become more readily appreciated by the detailed description taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various embodiments of the present invention are illustrated by the accompanying figures, wherein:
  • FIG. 1 is an illustration of a system for treating a vascular condition, in accordance with one embodiment of the current invention;
  • FIG. 2 a shows a longitudinal cross-sectional view of a portion of a balloon catheter with a plurality of concentrically disposed restrictors, in accordance with one embodiment of the current invention;
  • FIG. 2 b, FIG. 2 c, FIG. 2 d, and FIG. 2 e show longitudinal cross-sectional views of a portion of a balloon catheter with a varying number of concentrically disposed restrictors as an inflatable balloon is inflated, in accordance with one embodiment of the current invention;
  • FIG. 3 a shows a diametrical cross-sectional view of a portion of a balloon catheter with a plurality of concentrically disposed restrictors, in accordance with one embodiment of the current invention;
  • FIG. 3 b, FIG. 3 c, FIG. 3 d, and FIG. 3 e show diametrical cross-sectional views of a portion of a balloon catheter with a plurality of concentrically disposed restrictors and an inflated balloon, in accordance with one embodiment of the current invention;
  • FIG. 4 shows a graph of balloon diameter with applied pressure for a variable expansion balloon catheter with a preselected outer diameter, in accordance with one embodiment of the current invention;
  • FIG. 5 a, FIG. 5 b, FIG. 5 c, FIG. 5 d, and FIG. 5 e show longitudinal cross-sectional views of a portion of a balloon catheter with a plurality of axially translatable restrictors, in accordance with one embodiment of the current invention;
  • FIG. 6 shows a graph of balloon diameter versus position along the inflated balloon for a variable expansion balloon catheter with a preselected outer diameter and a preselected expandable length, in accordance with one embodiment of the current invention;
  • FIG. 7 a, FIG. 7 b, FIG. 7 c and FIG. 7 d show longitudinal cross-sectional views of a portion of a variable expansion balloon catheter with a stent for controlled-diameter stent delivery, in accordance with one embodiment of the current invention;
  • FIG. 8 shows a graphical illustration of stent diameter for a stent deployed with a variable expansion balloon catheter, in accordance with one embodiment of the current invention; and
  • FIG. 9 is a flow chart of a method for treating a vascular condition, in accordance with one embodiment of the current invention.
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • FIG. 1 illustrates a system for treating a vascular condition, in accordance with one embodiment of the present invention at 100. Vascular treatment system 100 includes a balloon catheter having a catheter body 110, an inflatable balloon 120 disposed on the catheter body, a plurality of concentrically disposed restrictors 130 circumferentially disposed on inflatable balloon 120, and inflation means 140 such as a balloon inflation system to inflate inflatable balloon 120. Restrictors 130 are axially translatable or at least partially removable to allow expansion of inflatable balloon 120 to a predetermined size. Restrictors 130 are axially translatable or at least partially removable to allow expansion to a predetermined balloon diameter or to control an expandable length of inflatable balloon 120. A practitioner may pre-select, for example, the balloon diameter and the expandable length by moving or removing one or more restrictors 130 from inflatable balloon 120 immediately prior to insertion into the body. The removal of all restrictors 130 from inflatable balloon 120 prior to use allows the balloon to be inflated to its full diameter and length.
  • Catheter body 110 is an elongate, flexible member with a proximal end 112 and a distal end 114. One or more ports may be located at proximal end 112 to allow for the insertion of guidewires and to connect, for example, a balloon inflation system to catheter body 110. At distal end 114, catheter body 110 may have a plugging mechanism to prevent leakage into or out of catheter body 110, while allowing clear passage for a guidewire through a guidewire lumen 128. Distal end 114 of catheter body 110 is inserted first into the vasculature of the body through, for example, the femoral artery in the leg where it can be guided into more delicate vasculature including arteries within the human heart. Treatment of vascular conditions may include the prevention or correction of various ailments and deficiencies associated with the cardiovascular system, the cerebrovascular system, urogenital systems, biliary conduits, abdominal passageways and other biological vessels within the body. Catheter body 110 has a catheter sidewall 116, and an outer surface 118 onto which inflatable balloon 120 is attached.
  • Inflatable balloon 120, which is a flexible and expandable thin-walled tubular member, attaches near distal end 114 of catheter body 110. Inflatable balloon 120 comprises an elastic material such as polyurethane, polyethylene terephthalate (PET), or a thermoplastic elastomer, as is currently known in the art. Inflatable balloon 120 has a length, for example, of 8 millimeters to over 40 millimeters.
  • The proximal and distal ends of inflatable balloon 120 are attached to catheter body 110 using suitable adhesives, epoxies, glues, heat bonding, collars, bands, or other suitable attachment mechanisms. An interior region 124 between an outer surface 118 of catheter body 110 and an inner surface of an exterior wall of inflatable balloon 120 may be filled with an inflation fluid such as dilute contrast fluid or saline solution to pressurize and enlarge the exterior wall of the balloon. Inflation fluid injected at proximal end 112 of catheter body 110 travels through an inflation lumen 126 inside catheter body 110, through an inflation hole 122 formed in catheter sidewall 116 between inflatable balloon 120 and inflation lumen 126, and into interior region 124 of inflatable balloon 120 to inflate the balloon. To deflate the balloon, inflation fluid is removed from interior region 124 of inflatable balloon 120 through inflation hole 122 and inflation lumen 126 using, for example, a pump within the balloon inflation system or through elastic restoring forces generated by inflatable balloon 120 and any restrictors 130 surrounding the balloon.
  • Prior to inflation or when deflated, inflatable balloon 120 may be appreciably compressed against outer surface 118 of catheter body 110. When compressed, inflatable balloon 120 has a small diameter that allows insertion into and extraction from the sometimes small, tortuous vasculature of the body. Restrictors 130, elastic sleeves, or an unexpanded stent may be used to maintain inflatable balloon 120 in a compressed state until inflated.
  • Inflatable balloon 120 expands and inflates in response to increasing pressure from the inflation fluid. As inflatable balloon 120 expands, inflatable balloon 120 presses, for example, against the walls of a restricted vessel to reduce constrictions within the blood vessel, or against a stent framework to expand and deploy a stent within the vessel. As inflation fluid is injected through inflation hole 122, inflatable balloon 120 enlarges or unfolds to a nominally tubular shape, and once inflatable balloon 120 reaches its tubular shape, additional pressure applied to interior region 124 has minimal effect on further enlargements of the balloon diameter. However, with one or more restrictors 130 in place, the size of inflatable balloon 120 is controlled in diameter and length.
  • Restrictors 130 are tubular members placed around the circumference of inflatable balloon 120. A set of restrictors 130 may include a range of restrictor diameters that provide and limit inflatable balloon 120 to different diameters of radial expansion and to different expandable lengths based on the position of the restrictors and the restrictor diameters. Multiple restrictors 130 may be placed one on top of another, with the smallest restrictor diameter defining the allowable balloon diameter. One or more restrictors 130 may be moved or pulled off inflatable balloon 120 to vary and control the diameter and length of the balloon during inflation. Restrictors 130 may be frictionally coupled to inflatable balloon 120 to retain them on the balloon during storage and use, yet designed to allow freedom to be moved or removed as desired.
  • Restrictors 130 are formed from one or more layers of expandable material such as polyurethane, silicone, copolymers of polyurethane and silicone, natural rubber, synthetic rubber, a thermoplastic polyamide, nylon, latex, polyethylene, polyisoprene, polyisobutylene, polyethylene terephthalate (PET), polyethylene, polytetrafluoroethylene (PTFE), expanded polytetrafluoroethylene (ePTFE), an elastane, a thermoplastic elastomer, a woven polymeric fabric, an expandable polymeric sheet, an elastomeric material, a semi-compliant polymer, or combinations thereof. The wall thickness of restrictors 130 is thin to maintain a low profile when placed on inflatable balloon 120, though sufficient to maintain the desired restrictor diameter with large inflation pressure. A composite restrictor 130 may be formed from a first material with high elasticity that keeps the restrictor profile small and a second material that provides the desired hoop strength when the balloon is expanded.
  • Restrictors 130 are readily expanded to a restrictor diameter when a balloon disposed thereunder is inflated. Once restrictors 130 expand to the restrictor diameter, further increases in balloon pressure result in minimal increases in the outside diameter of restrictor 130, thus limiting the expandable diameter of inflatable balloon 120 to the restrictor diameter. In some cases, one or more restrictors 130 have an elastic characteristic that tends to compress inflatable balloon 120 onto the catheter while deflating or when stored. Restrictors 130 may be attached to outside surface 118 of catheter body 110 at one or more points to retain their position until moved or removed.
  • Restrictor removal elements 132 such as tabs, flaps, threads, strings, threads, or wires may be formed with or attached to restrictors 130 to aid in moving and removing one or more restrictors 130 from inflatable balloon 120. Restrictor removal elements 132 may be color-coded to aid in identification when selecting and moving restrictors 130. Restrictor removal elements 132 may be formed as a unitary member with restrictor 130. A lubricant may be positioned between each of restrictors 130 and between the innermost restrictor 130 and the exterior surface of inflatable balloon 120 to aid in sliding restrictors 130 during use.
  • While a bitumen catheter body 110 with side-by-side inflation lumen 126 and guidewire lumen 128 is illustrated in FIG. 1, the present invention is applicable to a coaxial catheter body 110 having a flexible inner tube that serves as a guidewire lumen and a flexible outer tube coaxially configured with the flexible inner tube. The inner tube and the outer tube cooperate to form an annular inflation lumen between an outside surface of the interior tube and an interior surface of the outer tube to allow flow of inflation fluid through the annular inflation lumen into and out from inflatable balloon 120.
  • FIG. 2 a shows a longitudinal cross-sectional view of a portion of a balloon catheter with a plurality of concentrically disposed restrictors, in accordance with one embodiment of the present invention at 200. Restrictors 230 a, 230 b and 230 c are coupled at each end to an outer surface 218 of a coaxial catheter body 210, covering an inflatable balloon 220. The proximal ends of restrictors 230 are attached to an outer tube of coaxial catheter body 210, and the distal ends of restrictors 230 are attached to an inner tube of coaxial catheter body 210. A guidewire lumen 228 is formed by the inner tube of coaxial catheter body 210. An annular inflation lumen 226 is formed between an interior surface of the outer tube and an exterior surface of the inner tube. An annular inflation hole 222 is formed at the distal end of the outer tube adjacent to inflatable balloon 220, allowing inflation fluid to flow into and out from inflatable balloon 220. Restrictors 230 may be secured tightly or loosely to outer surface 218 of catheter body 210. For example, an epoxy or other adhesive is used to adhere the proximal ends, distal ends, or both ends of restrictors 230 to catheter body 210. In another example, the elasticity of the restrictor material provides sufficient force to be maintained at the desired position. In another example, an elastic sleeve (not shown) may be placed over the set of restrictors 230 to compress restrictors 230 and inflatable balloon 220 against catheter body 210.
  • Inflation fluid injected through an annular inflation lumen 226 within catheter body 210 traverses annular inflation hole 222 into an interior region 224 of inflatable balloon 220 to inflate the balloon. Restrictors 230 have a predefined outer diameter to which the restrictors can be enlarged, referred to herein as the restrictor diameter. Positioned over an inflatable balloon 220 attached to catheter body 210, restrictors 230 restrict the diameter to which inflatable balloon 220 can be expanded. Each restrictor 230 a, 230 b and 230 c have a predetermined restrictor diameter such as 2.0 millimeters (mm), 3.0 mm, and 4.0 mm, respectively. When inflatable balloon 220 is deflated or otherwise collapsed, the outer profile of the restrictors and underlying balloon is smaller than the smallest restrictor diameter, limited by the outer diameter of catheter body 210 and the thickness of the restrictors and balloon.
  • More than one restrictor can be in place over inflatable balloon 220. In one example, three restrictors with three different diameters are concentrically disposed on inflatable balloon 220. The outer restrictor 230 a has the smallest restrictor diameter of 2.0 mm. The middle restrictor 230 b has a larger restrictor diameter of 3.0 mm, and the inner restrictor 230 c has the largest restrictor diameter of 4.0 mm. Inflatable balloon 220 has, in this example, a balloon diameter when expanded of 5.0 mm. With restrictors 230 a, 230 b and 230 c in place, inflatable balloon 220 cannot be expanded beyond the restrictor diameter of 2.0 mm, limited by the restrictor diameter of restrictor 230 a as inflatable balloon 220 enlarges.
  • One or more restrictors can be axially translated or removed prior to inflation of inflatable balloon 220 to control the expansion capability of inflatable balloon 220. For example, outer restrictor 230 a may be axially displaced towards the proximal end or the distal end of catheter body 210, or physically removed from catheter body 210 such as by pulling, pushing, sliding or tearing. When inflatable balloon 220 is inflated with outer restrictor 230 a removed, the balloon diameter is limited by middle restrictor 230 b to approximately 3.0 mm in this example. When restrictors 230 a and 230 b are axially translated or removed from inflatable balloon 220, inflatable balloon 220 may be inflated to a balloon diameter of 4.0 mm. When restrictors 230 a, 230 b and 230 c are axially translated or removed from inflatable balloon 220, inflatable balloon 220 may be inflated to a balloon diameter of 5.0 mm.
  • In another example, eight restrictors are placed over a 6.0 mm inflatable balloon, with restrictor diameters of 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm, and 5.5 mm, thereby limiting balloon expansion to 2.0 mm. With the outer restrictor removed, the balloon diameter is limited to 2.5 mm. With the second restrictor removed, the balloon diameter is limited to 3.0 mm. With the third restrictor removed, the balloon diameter is limited to 3.5 mm. With the fourth restrictor removed, the balloon diameter is limited to 4.0 mm. With the fifth restrictor removed, the balloon diameter is limited to 4.5 mm. With the sixth restrictor removed, the balloon diameter is limited to 5.0 mm. With the seventh restrictor removed, the balloon diameter is limited to 5.5 mm. With all restrictors removed or at least axially displaced along catheter body 210 away from inflatable balloon 220, the balloon diameter is limited to 6.0 mm.
  • To aid in sliding, removing, or detaching restrictors 230, a restrictor removal element 232 such as a tab, a flap, a string, a thread, or a wire is coupled to each restrictor 230. Restrictor removal element 232 and restrictor 230 may be formed as a unitary member. A lubricant or other slide enhancer may be placed between the each of the restrictors and between the restrictors and the outer wall of the balloon. For example, a user's fingers may be used to grab a tab or a flap to slide or detach a selected restrictor. The tab or flap may be formed with the restrictor removal element as a unitary member, such that when the tab or flap is pulled, the restrictor slides readily. In another example, a string or thread coupled to each restrictor 230 may be pulled to slide or remove a selected restrictor. In cases where restrictors 230 are slid or removed, restrictors 230 may be attached to at least one point to catheter body 210 so that sliding or removing one of the restrictors does not appreciably move the others. For example, a tearing mode can be enhanced by forming partial slits in the restrictors close to the attachment points. Partial slits or perforations may be used to retain restrictors 230 in place until intentionally and forcibly moved.
  • The balloon catheter, although illustrated with a coaxial catheter body design, may have a bi-lumen design having inflation lumen 226 and guidewire lumen 228 side-by-side in an extruded bi-lumen tube or with parallel, longitudinally connected tubes.
  • FIG. 2 b, FIG. 2 c, FIG. 2 d, and FIG. 2 e illustrate longitudinal cross-sectional views of a portion of a balloon catheter with a varying number of concentrically disposed restrictors 230 as inflatable balloon 220 is inflated, in accordance with one embodiment of the present invention. With restrictors 230 a, 230 b and 230 c circumferentially disposed on inflatable balloon 220, inflation fluid flowing through annular inflation lumen 226 of catheter body 210 into interior region 224 inflates inflatable balloon 220 to a diameter limited by the restrictor diameter of restrictor 230 a such as 2.0 mm, as shown in FIG. 2 b. With restrictor 230 a slidably removed from and restrictors 230 b and 230 c circumferentially disposed on inflatable balloon 220, inflation fluid flowing through annular inflation lumen 226 into interior region 224 inflates inflatable balloon 220 to a balloon diameter limited by the restrictor diameter of restrictor 230 b such as 3.0 mm, as shown in FIG. 2 c. With restrictors 230 a and 230 b slidably removed from and restrictor 230 c circumferentially disposed on inflatable balloon 220, inflation fluid flowing through annular inflation lumen 226 into interior region 224 inflates inflatable balloon 220 to a balloon diameter limited by the restrictor diameter of restrictor 230 c such as 4.0 mm, as shown in FIG. 2 d. With restrictors 230 a, 230 b and 230 c slidably removed from inflatable balloon 220, inflation fluid flowing through annular inflation lumen 226 into interior region 224 inflates inflatable balloon 220 to a balloon diameter limited by the diameter of unrestricted inflatable balloon 220 such as 5.0 mm, as shown in FIG. 2 e.
  • FIG. 3 a shows a diametrical cross-sectional of a portion of a balloon catheter with a plurality of concentrically disposed restrictors 330, in accordance with one embodiment of the present invention at 300. Catheter body 310 has an annular inflation lumen 326 and a guidewire lumen 328. An annular inflation hole 322 in a catheter sidewall fluidly connects annular inflation lumen 326 to an interior region 324 between a wall of inflatable balloon 320 and catheter body 310. In this embodiment, three restrictors 330 a, 330 b and 330 c are circumferentially disposed on inflatable balloon 320. As inflation fluid is injected into interior region 324 of inflatable balloon 320, inflatable balloon 320 expands accordingly until restricted by one or more restrictors 330 or by the balloon diameter of inflatable balloon 320. Inflatable balloon 320, which may be folded with one or more pleats, is compressed into an uninflated or deflated state having a small cross section, thereby aiding the insertion of inflatable balloon 320 into and retraction from the body.
  • FIG. 3 b, FIG. 3 c, FIG. 3 d, and FIG. 3 e show diametrical cross-sectional views of a portion of a balloon catheter with an inflated balloon and a plurality of concentrically disposed restrictors 330, in accordance with one embodiment of the present invention. To inflate inflatable balloon 320, fluid is injected through annular inflation lumen 326 and annular inflation hole 322 of catheter body 310 into interior region 324 between a wall of inflatable balloon 320 and catheter body 310.
  • As inflation fluid is injected into inflatable balloon 320, a set of restrictors 330 a, 330 b and 330 c around inflatable balloon 320 limit the expansion of inflatable balloon 320, the expansion of the balloon diameter being limited by the restrictor diameter of restrictor 330 a such as 2.0 mm, as shown in FIG. 3 b.
  • When restrictor 330 a is axially displaced or otherwise removed from around inflatable balloon 320, and restrictors 330 b and 330 c are circumferentially disposed on inflatable balloon 320, inflation fluid expands inflatable balloon 320 to a diameter limited by the restrictor diameter of restrictor 330 b such as 3.0 mm, as shown in FIG. 3 c.
  • When restrictors 330 a and 330 b are axially displaced or otherwise removed from around inflatable balloon 320, and restrictor 330 c is circumferentially disposed on inflatable balloon 320, inflatable balloon 320 inflates to a diameter limited by the restrictor diameter of restrictor 330 c such as 4.0 mm, as shown in FIG. 3 d.
  • With restrictors 330 a, 330 b and 330 c axially displaced or otherwise removed from around inflatable balloon 320, inflation fluid expands inflatable balloon 320 to a diameter limited by the balloon diameter such as 5.0 mm, as shown in FIG. 3 e.
  • While FIG. 3 b, FIG. 3 c, FIG. 3 d, and FIG. 3 e illustrate restrictors of specific sizes, others embodiments use restrictors 330 that limit the balloon to different increasing and decreasing sizes. A number of selectable diameters can be accommodated by the choice of a restrictor diameter and number of restrictors.
  • FIG. 4 is a graph of balloon diameter with applied pressure for a variable expansion balloon catheter, in accordance with one embodiment of the present invention at 400. Graph 400 shows the outer diameter of an inflatable balloon with varying combinations of restrictors in place around the inflatable balloon. As the balloon is inflated, the diameter of the balloon quickly changes from the uninflated or deflated state to the expanded state as the balloon unfolds or stretches, limited by the restrictor diameter of one of the restrictors or by the balloon diameter when all the restrictors are removed.
  • For example, response curve 440 shows the balloon diameter increasing from approximately 1.0 mm in an uninflated or deflated state to a balloon diameter of 2.0 mm, limited by the presence of restrictor with a 2.0 mm restrictor diameter around the inflatable balloon. As pressure is applied to the interior region of the balloon, response curve 442 shows the balloon diameter increasing from approximately 1.0 mm to a diameter of 3.0 mm, limited by the presence of a restrictor with a 3.0 mm restrictor diameter around the inflatable balloon. Response curve 444 shows the balloon diameter limited to a diameter of 4.0 mm, limited by the presence of a restrictor with a 4.0 mm restrictor diameter around the inflatable balloon. Response curve 446 shows a fully expanded balloon, limited by the balloon diameter of 5.0 mm. For fully expanded, non-compliant balloon and restrictor materials, slight increases in balloon diameter may occur with further increases in applied pressure, whereas with compliant and expandable balloon and restrictor materials, further increases in applied pressure will result in larger diameters. The outer diameters obtained at a given applied pressure may be reduced by the rigidity of the vessel walls or by the inclusion of a stent around the outside of the inflation balloon and the restrictors.
  • FIG. 5 a, FIG. 5 b, FIG. 5 c, FIG. 5 d, and FIG. 5 e show longitudinal cross-sectional views of a portion of a balloon catheter with a plurality of concentrically disposed restrictors, in accordance with one embodiment of the present invention at 500. To inflate inflatable balloon 520, fluid is injected through annular inflation lumen 526 and annular inflation hole 522 of catheter body 510 into interior region 524 between catheter body 510 and a wall of inflatable balloon 520. The expandable length of an inflatable balloon 520 that is mounted on a catheter body 510 can be controlled by axially displacing one or more restrictors 530 to limit the expansion of select portions of inflatable balloon 520 to a predetermined balloon diameter when inflation fluid is injected into inflatable balloon 520.
  • A set of restrictors 530 a, 530 b and 530 c are circumferentially disposed on inflatable balloon 520, and when inflatable balloon 520 is inflated, the balloon diameter is limited to the smallest restrictor diameter such as 2.0 mm, as seen in FIG. 5 a. To aid in sliding, removing, or detaching restrictors 530, a restrictor removal element 532 such as a tab, a flap, a string, a thread, or a wire may be coupled to each restrictor 530.
  • As restrictor 530 a is axially displaced towards a proximal end or a distal end of catheter body 510 leaving restrictors 530 b and 530 c, a portion of inflatable balloon 520 is allowed to expand to a balloon diameter set by restrictor 530 b on one side, and limited to a balloon diameter set by restrictor 530 a on the other side, as seen in FIG. 5 b. For example, an expandable length of inflatable balloon 520 is 10.0 mm with a balloon diameter of 3.0 mm at the distal end, while the remaining portion towards the proximal end is restricted to a balloon diameter of 2.0 mm.
  • As restrictors 530 a and 530 b are axially displaced towards a proximal end or a distal end of catheter body 510, a portion of inflatable balloon 520 is allowed to expand to a balloon diameter set by restrictor 530 c on one side, and limited to a balloon diameter set by restrictor 530 a on the other side, as seen in FIG. 5 c. For example, an expandable length at the distal end of inflatable balloon 520 is 10.0 mm with a balloon diameter of 4.0 mm, while the proximal half is restricted to a balloon diameter of 2.0 mm.
  • As restrictors 530 a, 530 b and 530 c are axially displaced towards a proximal end or a distal end of catheter body 510, a portion of inflatable balloon 520 is allowed to expand to a balloon diameter set by the balloon diameter on one side, and by restrictor 530 a on the other side, as seen in FIG. 5 d. For example, an expandable length of inflatable balloon 520 is 10.0 mm with a balloon diameter of 5.0 mm, while the other half is restricted to a balloon diameter of 2.0 mm.
  • To allow more flexibility in selecting the expandable length and expandable diameter of the balloon, restrictors 530 a, 530 b, and 530 c can be axially displaced to control the balloon diameter and expandable length of each side, as seen in FIG. 5 e. For example, an expandable length of inflatable balloon 520 is 10.0 mm with a balloon diameter of 5.0 mm on one side, while the other side has a balloon diameter of 3.0 mm.
  • FIG. 6 shows a graph of balloon diameter versus position along the inflated balloon for a variable expansion balloon catheter, in accordance with one embodiment of the present invention at 600. The balloon diameters and lengths correspond with the descriptions of the examples given for FIG. 5 a to FIG. 5 d. Response curve 650 has three restrictors in place, with the outer restrictor having a restrictor diameter of 2.0 mm resulting in a balloon diameter of 2.0 mm and an expandable length of 20 mm when the inflatable balloon is inflated.
  • As restrictors are selected and axially displaced with respect to the inflatable balloon, the balloon diameter and balloon length effectively change accordingly. For example, response curve 652 shows an expanded balloon with an expandable length of 10.0 mm and a balloon diameter of 3.0 mm on one side, with a balloon diameter of 2.0 mm on the other side. Response curve 654 shows an expanded balloon with an expandable length of 10.0 mm and a balloon diameter of 4.0 mm on the distal side, with a balloon diameter of 2.0 mm on the proximal side. Response curve 656 shows an expanded balloon with an expandable length of 10.0 mm and a balloon diameter of 5.0 mm on the distal half, with a balloon diameter of 2.0 mm on the proximal half.
  • FIG. 7 a, FIG. 7 b, FIG. 7 c and FIG. 7 d show longitudinal cross-sectional views of a portion of a variable expansion balloon catheter with a stent for controlled-diameter stent delivery, in accordance with one embodiment of the present invention at 700. A stent 734 including a stent framework 736 is positioned on and coupled to an inflatable balloon 720, with one or more concentrically disposed restrictors 730 a, 730 b, and 730 c positioned between stent framework 736 and inflatable balloon 720. Inflatable balloon 720 inflates when inflation fluid injected through an annular inflation lumen 726 in a catheter body 710 and through an annular inflation hole 722 into an interior region 724 between an outer surface of catheter body 710 and a wall of inflatable balloon 720. As inflation fluid is injected into interior region 724, inflatable balloon 720 expands accordingly, limited by the inclusion of restrictors 730. Restrictors 730 are removable to allow expansion of stent framework 736 to a predetermined stent diameter. A restrictor removal element 732 such as a tab, a flap, a string, a thread, or a wire may be coupled to each restrictor 730 to aid in the selective removal of restrictors 730.
  • In one embodiment, a retention sheath 738 is positioned between restrictors 730 and stent framework 736 to retain stent 734 on inflatable balloon 720 while various restrictors 730 are being removed. Retention sheath 738 is attached, for example, to a point on catheter body 710 distal to inflatable balloon 720, so that when restrictors 730 are pulled towards a proximal end of catheter body 710, stent 734 remains unmoved.
  • Restrictors 730 may also be attached at a point on catheter body 710 distal to inflatable balloon 720, so that when one or more selected restrictors 730 are pulled towards a proximal end of catheter body 710, the selected restrictors detach or tear away from catheter body 710 and are removed, while the other restrictors stay in place. In this manner, a restrictor with the smallest diameter may be positioned inside of other restrictors rather than outside, being able to be pulled out without damaging or moving the other restrictors, the balloon, or the stent.
  • In a first example, stent 734 is enlarged to a stent diameter limited by the restrictor diameter of restrictor 730 a such as 2.0 mm, as seen in FIG. 7 a. In a second example, stent 734 is enlarged to a balloon diameter limited by the restrictor diameter of restrictor 730 b such as 3.0 mm, as seen in FIG. 7 b. In a third example, stent 734 is enlarged to a stent diameter limited by the restrictor diameter of restrictor 730 c such as 4.0 mm, as seen in FIG. 7 c. In a fourth example, stent 734 is enlarged to a stent diameter limited by the balloon diameter such as 5.0 mm, as seen in FIG. 7 d. Other stent diameters and the number of selectable diameters can be accommodated by choice of restrictor diameter and number of restrictors between the stent and the balloon.
  • FIG. 8 shows a graphical illustration of stent diameter for a stent deployed with a variable expansion balloon catheter, in accordance with one embodiment of the present invention at 800. Graph 800 shows the stent diameter of a stent deployed with various restrictors in place or removed, corresponding to the examples put forth in FIG. 7 a to FIG. 7 d.
  • An exemplary stent diameter 860 corresponds to an undeployed stent with a stent diameter such as 1.0 mm, as placed on the inflatable balloon of the variable expansion balloon catheter. Stent diameter 862 corresponds to a deployed stent with a stent diameter such as 2.0 mm, limited by a restrictor with a restrictor diameter of 2.0 mm. Stent diameter 864 corresponds to a deployed stent with a stent diameter of 3.0 mm, limited by a restrictor with a restrictor diameter of 3.0 mm. Stent diameter 866 corresponds to a deployed stent with a stent diameter of 4.0 mm, corresponding to a restrictor diameter of 4.0 mm. Stent diameter 868 corresponds to a deployed stent with a stent diameter of 5.0 mm, corresponding to a balloon diameter of 5.0 mm. Other deployed stent diameters may be predetermined by pre-selection of restrictors. Stents may be positioned on the selected restrictors or set of restrictors when initially assembled or during clinical use.
  • FIG. 9 is a flow chart of a method for treating a vascular condition, in accordance with one embodiment of the present invention at 900. Vascular treatment method 900 shows various steps for using a variable expansion balloon catheter.
  • A variable expansion balloon catheter is provided, as seen at block 980. The variable expansion balloon catheter includes a plurality of concentrically disposed restrictors circumferentially disposed on an inflatable balloon of a balloon catheter. Axially translatable restrictors allow the inflatable balloon to expand up to a predetermined size.
  • At least one of the restrictors is selected, based on a predetermined balloon size, as seen at block 982. The predetermined balloon size may include the balloon diameter, the expandable balloon length, or a combination thereof.
  • The selected restrictors are axially displaced with respect to the inflatable balloon, as seen at block 984. In one example, one or more restrictors are slidably moved along the balloon catheter to reveal a portion of the inflatable balloon and control the expandable length of the balloon. In this multiple-diameter configuration, either the proximal end or the distal end of the inflatable balloon may be selected to have the larger diameter depending on the procedure. The transition between the larger and smaller diameters may be made at any point along the working length of the inflatable balloon. In another example, one or more restrictors are slid away from the inflatable balloon towards a proximal end of the catheter, such that the selected restrictors remain on the catheter yet are separated by a distance from the inflatable balloon. The balloon is inflatable to a pre-selected balloon diameter based on the restrictor diameters of the restrictors remaining on the inflatable balloon. In another example, the selected restrictors are completely removed from the variable expansion balloon catheter.
  • The selected restrictors may be manually pulled by pulling a restrictor removal element such as a tab, a flap, a string, a thread, or a wire attached to the selected restrictors. In another example, a medical practitioner would select one, two or more restrictors, slide the selected restrictors over an end of the catheter body, and position the restrictors accordingly over an inflatable balloon prior to balloon inflation to achieve the desired balloon diameter and expandable length.
  • The inflatable balloon is inflated to the predetermined balloon size based on the axial displacement of the selected restrictors, as seen at block 986. In one example, the inflatable balloon is allowed to expand to a predetermined balloon diameter when the inflatable balloon is inflated. In another example, the expandable length of the inflatable balloon is controlled when inflating the inflatable balloon.
  • The balloon is deflated and the variable expansion balloon catheter is repositioned within or extracted from the body, as seen at block 988. In an exemplary medical treatment using balloon angioplasty, an inflatable balloon is positioned in a vessel, expanded to the predetermined balloon diameter to enlarge the vessel, and then deflated. The variable expansion balloon catheter may be repositioned and the inflatable balloon can be expanded several times as desired at locations within one or more blood vessels, and then extracted from the body.
  • Some medical cases may require that an additional restrictor be selected to increase the expandable diameter or to adjust the expandable length of the inflatable balloon. One or more restrictors may be axially displaced or removed from the inflation balloon while the balloon catheter is outside the body, after which the balloon catheter may be re-inserted into the body. The practitioner can reposition the balloon at other treatment areas needing angioplasty, and inflate the catheter balloon to the larger balloon diameter. After withdrawal, yet another restrictor can be displaced or removed to allow the inflatable balloon to be expanded to an even larger diameter. The balloon catheter may be re-inserted into the body to continue the angioplastic maneuvers. When desired, the expandable length of the inflatable balloon can be adjusted, for example, by repositioning or partially removing selected restrictors from the inflatable balloon. In other medical cases such as dilating a bifurcate lesion, two variable expansion balloon catheters with pre-selected balloon lengths and diameters may be concurrently employed.
  • Alternatively, the variable expansion balloon catheter may be used to deploy a stent including a stent framework, as seen at block 990. One or more restrictors are selected based on a predetermined balloon size needed to expand a stent that is coupled to the inflatable balloon. The stent is expanded to a predetermined stent diameter based on the axial displacement or removal of the selected restrictors. After the stent is deployed, the balloon is deflated and the balloon catheter is extracted, as seen at block 992.
  • Variations and alterations in the design, manufacture and use of the restrictors are apparent to one skilled in the art, and may be made without departing from the spirit and scope of the present invention. While the embodiments of the invention disclosed herein are presently preferred, various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein.

Claims (29)

1. A system for treating a vascular condition, comprising:
a catheter body;
an inflatable balloon disposed on the catheter body;
a plurality of concentrically disposed restrictors circumferentially disposed on the inflatable balloon, wherein one or more restrictors are at least partially removable to allow expansion of the inflatable balloon to a predetermined size; and
inflation means to inflate the inflatable balloon, the inflation means coupled to a proximal end of the catheter body.
2. The system of claim 1 wherein the catheter body includes an inflation lumen and an inflation hole adjacent to the inflatable balloon, wherein the inflation lumen and the inflation hole allow inflation fluid from the inflation means to inflate the inflatable balloon.
3. The system of claim 1 wherein the one or more restrictors are partially removable to allow expansion of the inflatable balloon to a predetermined balloon diameter.
4. The system of claim 1 wherein the one or more restrictors are partially removable to control an expandable length of the inflatable balloon.
5. The system of claim 1 wherein the one or more restrictors are frictionally coupled to the inflatable balloon.
6. The system of claim 1 wherein each restrictor is attached to the catheter body at at least one point on an outside surface of the catheter body.
7. The system of claim 1 further comprising:
a restrictor removal element attached to each restrictor.
8. The system of claim 7 wherein the restrictor removal element and the restrictor are formed as a unitary member.
9. The system of claim 7 wherein the restrictor removal element is selected from the group consisting of a tab, a flap, a string, a thread, and a wire.
10. The system of claim 1 wherein the one or more restrictors comprise a material selected from the group consisting of polyurethane, silicone, a copolymer of polyurethane and silicone, natural rubber, synthetic rubber, a thermoplastic polyamide, nylon, latex, polyethylene, polyisoprene, polyisobutylene, polyethylene terephthalate, polyethylene, polytetrafluoroethylene, expanded polytetrafluoroethylene, an elastane, a thermoplastic elastomer, a woven polymeric fabric, an expandable polymeric sheet, an elastomeric material, a semi-compliant polymer, and a combination thereof.
11. The system of claim 1 further comprising:
a stent including a stent framework operably coupled to the inflatable balloon, wherein the one or more restrictors are removable to allow expansion of the stent framework to a predetermined stent diameter.
12. A method of treating a vascular condition, comprising:
providing a variable expansion balloon catheter including a plurality of concentrically disposed restrictors circumferentially disposed on an inflatable balloon;
selecting at least one of the restrictors based on a predetermined balloon size;
axially displacing the selected restrictors with respect to the inflatable balloon; and
inflating the inflatable balloon to the predetermined balloon size based on the axial displacement of the selected restrictors.
13. The method of claim 12 wherein axially displacing the selected restrictors comprises sliding the selected restrictors towards a proximal end of the variable expansion balloon catheter.
14. The method of claim 12 wherein axially displacing the selected restrictors comprises removing the selected restrictors from the variable expansion balloon catheter.
15. The method of claim 12 wherein axially displacing the selected restrictors comprises manually pulling at least one restrictor removal element attached to the selected restrictors.
16. The method of claim 12 wherein inflating the inflatable balloon to the predetermined balloon size comprises allowing expansion of the inflatable balloon to a predetermined balloon diameter when the inflatable balloon is inflated.
17. The method of claim 12 wherein inflating the inflatable balloon to the predetermined balloon size comprises controlling an expandable length of the inflatable balloon.
18. The method of claim 12 further comprising:
expanding a stent including a stent framework, the stent framework operably coupled to the inflatable balloon; wherein the stent is expanded to a predetermined stent diameter based on the axial displacement of the selected restrictors.
19. A balloon catheter, comprising:
a catheter body;
an inflatable balloon disposed on the catheter body; and
a plurality of concentrically disposed restrictors circumferentially disposed on the inflatable balloon, wherein one or more restrictors are axially translatable to allow expansion of the inflatable balloon to a predetermined size.
20. The balloon catheter of claim 19 wherein the catheter body includes an inflation lumen and an inflation hole adjacent to the inflatable balloon, wherein the inflation lumen and the inflation hole allow inflation of the inflatable balloon when an inflation fluid is injected into the inflation lumen at a proximal end of the balloon catheter.
21. The balloon catheter of claim 19 wherein the one or more restrictors are axially translatable to allow expansion of the inflatable balloon to a predetermined balloon diameter.
22. The balloon catheter of claim 19 wherein the one or more restrictors are axially translatable to control an expandable length of the inflatable balloon.
23. The balloon catheter of claim 19 wherein the one or more restrictors are frictionally coupled to the inflatable balloon.
24. The balloon catheter of claim 19 wherein each restrictor is attached to the catheter body at least one point on an outside surface of the catheter body.
25. The balloon catheter of claim 19 wherein the one or more restrictors comprise a material selected from the group consisting of polyurethane, silicone, a copolymer of polyurethane and silicone, natural rubber, synthetic rubber, a thermoplastic polyamide, nylon, latex, polyethylene, polyisoprene, polyisobutylene, polyethylene terephthalate, polyethylene, polytetrafluoroethylene, expanded polytetrafluoroethylene, an elastane, a thermoplastic elastomer, a woven polymeric fabric, an expandable polymeric sheet, an elastomeric material, a semi-compliant polymer, and a combination thereof.
26. The balloon catheter of claim 19 further comprising:
a restrictor removal element attached to each restrictor.
27. The balloon catheter of claim 26 wherein the restrictor removal element and the restrictor are formed as a unitary member.
28. The balloon catheter of claim 26 wherein the restrictor removal element is selected from the group consisting of a tab, a flap, a string, a thread, and a wire.
29. The balloon catheter of claim 19 further comprising:
a stent including a stent framework operably coupled to the inflatable balloon, wherein the one or more restrictors are removable to allow expansion of the stent framework to a predetermined stent diameter.
US10/678,833 2003-10-03 2003-10-03 Balloon catheter with selectable diameter and expandable length Abandoned US20050075711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/678,833 US20050075711A1 (en) 2003-10-03 2003-10-03 Balloon catheter with selectable diameter and expandable length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/678,833 US20050075711A1 (en) 2003-10-03 2003-10-03 Balloon catheter with selectable diameter and expandable length

Publications (1)

Publication Number Publication Date
US20050075711A1 true US20050075711A1 (en) 2005-04-07

Family

ID=34394029

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/678,833 Abandoned US20050075711A1 (en) 2003-10-03 2003-10-03 Balloon catheter with selectable diameter and expandable length

Country Status (1)

Country Link
US (1) US20050075711A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262502A1 (en) * 2006-10-24 2008-10-23 Trans1, Inc. Multi-membrane prosthetic nucleus
US20100274189A1 (en) * 2009-04-22 2010-10-28 Pressure Products Medical Supplies Inc. Balloon catheter and method of manufacture of the same
US7875109B1 (en) * 2007-03-08 2011-01-25 A+ Manufacturing, Llc Integral flow restrictor valve
US20130131709A1 (en) * 2004-10-15 2013-05-23 Bard Peripheral Vascular, Inc. Medical balloon having strengthening rods
US8568648B2 (en) 2005-12-16 2013-10-29 Interface Associates, Inc. Methods for manufacturing multi-layer balloons for medical applications
US8956376B2 (en) 2011-06-30 2015-02-17 The Spectranetics Corporation Reentry catheter and method thereof
US20150066070A1 (en) * 2009-06-08 2015-03-05 TriReme Medical, LLC Side branch balloon
US8998936B2 (en) 2011-06-30 2015-04-07 The Spectranetics Corporation Reentry catheter and method thereof
US9358042B2 (en) 2013-03-13 2016-06-07 The Spectranetics Corporation Expandable member for perforation occlusion
US20160242864A1 (en) * 2013-11-04 2016-08-25 Shanghai Ninth People's Hospital Affiliated, Shanghai Jiaotong University School Of Medicine Skin dilator
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US9814862B2 (en) 2011-06-30 2017-11-14 The Spectranetics Corporation Reentry catheter and method thereof
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
US10449336B2 (en) 2015-08-11 2019-10-22 The Spectranetics Corporation Temporary occlusions balloon devices and methods for preventing blood flow through a vascular perforation
US10499892B2 (en) 2015-08-11 2019-12-10 The Spectranetics Corporation Temporary occlusion balloon devices and methods for preventing blood flow through a vascular perforation
WO2020056098A1 (en) * 2018-09-12 2020-03-19 Enlightenvue Llc Direct endoluminal- and/or endovascular-illumination systems and methods of use thereof
CN112043463A (en) * 2015-08-26 2020-12-08 爱德华兹生命科学公司 Controlled balloon deployment
EP3600171A4 (en) * 2016-03-25 2021-03-31 Ostial Corporation Balloon catheters and methods for use
US11058429B2 (en) 2019-06-24 2021-07-13 Covidien Lp Load sensing assemblies and methods of manufacturing load sensing assemblies
US11141045B2 (en) 2015-08-07 2021-10-12 Enlightenvue Llc Endoscope with variable profile tip
US11812985B2 (en) 2017-06-30 2023-11-14 Enlightenvue, Inc. Endoscopy systems and methods of use thereof
US11819209B2 (en) 2021-08-03 2023-11-21 Covidien Lp Hand-held surgical instruments

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702252A (en) * 1983-10-13 1987-10-27 Smiths Industries Public Limited Company Catheters
US5338298A (en) * 1993-06-04 1994-08-16 C. R. Bard, Inc. Double-tapered balloon
US5549551A (en) * 1994-12-22 1996-08-27 Advanced Cardiovascular Systems, Inc. Adjustable length balloon catheter
US5779730A (en) * 1993-06-16 1998-07-14 Cordis Corporation Balloon catheter and inflation method
US5843027A (en) * 1996-12-04 1998-12-01 Cardiovascular Dynamics, Inc. Balloon sheath
US5961536A (en) * 1997-10-14 1999-10-05 Scimed Life Systems, Inc. Catheter having a variable length balloon and method of using the same
US6039721A (en) * 1996-07-24 2000-03-21 Cordis Corporation Method and catheter system for delivering medication with an everting balloon catheter
US6066155A (en) * 1996-11-15 2000-05-23 Schneider (Europe) A.G. Captured sleeve and stent delivery device
US6136011A (en) * 1998-07-14 2000-10-24 Advanced Cardiovascular Systems, Inc. Stent delivery system and method of use
US6183443B1 (en) * 1992-10-15 2001-02-06 Scimed Life Systems, Inc. Expandable introducer sheath
US6352551B1 (en) * 1995-03-02 2002-03-05 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
US20020193820A1 (en) * 1999-12-24 2002-12-19 Hiroshi Wakuda Catheter with balloon
US20030004561A1 (en) * 2001-06-28 2003-01-02 Steve Bigus Peeling sheath for self-expanding stent
US6527741B1 (en) * 1999-12-21 2003-03-04 Advanced Cardiovascular Systems, Inc. Angioplasty catheter system with adjustable balloon length

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702252A (en) * 1983-10-13 1987-10-27 Smiths Industries Public Limited Company Catheters
US6183443B1 (en) * 1992-10-15 2001-02-06 Scimed Life Systems, Inc. Expandable introducer sheath
US5338298A (en) * 1993-06-04 1994-08-16 C. R. Bard, Inc. Double-tapered balloon
US5779730A (en) * 1993-06-16 1998-07-14 Cordis Corporation Balloon catheter and inflation method
US5549551A (en) * 1994-12-22 1996-08-27 Advanced Cardiovascular Systems, Inc. Adjustable length balloon catheter
US6352551B1 (en) * 1995-03-02 2002-03-05 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
US6402778B2 (en) * 1995-03-02 2002-06-11 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
US6039721A (en) * 1996-07-24 2000-03-21 Cordis Corporation Method and catheter system for delivering medication with an everting balloon catheter
US6066155A (en) * 1996-11-15 2000-05-23 Schneider (Europe) A.G. Captured sleeve and stent delivery device
US5843027A (en) * 1996-12-04 1998-12-01 Cardiovascular Dynamics, Inc. Balloon sheath
US5961536A (en) * 1997-10-14 1999-10-05 Scimed Life Systems, Inc. Catheter having a variable length balloon and method of using the same
US6136011A (en) * 1998-07-14 2000-10-24 Advanced Cardiovascular Systems, Inc. Stent delivery system and method of use
US6527741B1 (en) * 1999-12-21 2003-03-04 Advanced Cardiovascular Systems, Inc. Angioplasty catheter system with adjustable balloon length
US20020193820A1 (en) * 1999-12-24 2002-12-19 Hiroshi Wakuda Catheter with balloon
US20030004561A1 (en) * 2001-06-28 2003-01-02 Steve Bigus Peeling sheath for self-expanding stent

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130131709A1 (en) * 2004-10-15 2013-05-23 Bard Peripheral Vascular, Inc. Medical balloon having strengthening rods
US8945168B2 (en) * 2004-10-15 2015-02-03 Bard Peripheral Vascular, Inc. Medical balloon having strengthening rods
US9833600B2 (en) 2005-12-16 2017-12-05 Interface Associates, Inc. Methods for manufacturing multi-layer balloons for medical applications
US10835720B2 (en) 2005-12-16 2020-11-17 Confluent Medical Technologies, Inc. Methods for manufacturing multi-layer balloons for medical applications
US8568648B2 (en) 2005-12-16 2013-10-29 Interface Associates, Inc. Methods for manufacturing multi-layer balloons for medical applications
US11311702B2 (en) 2005-12-16 2022-04-26 Confluent Medical Technologies, Inc. Methods for manufacturing multi-layer balloons for medical applications
US8088147B2 (en) * 2006-10-24 2012-01-03 Trans1 Inc. Multi-membrane prosthetic nucleus
US8328846B2 (en) * 2006-10-24 2012-12-11 Trans1 Inc. Prosthetic nucleus with a preformed membrane
US20100137991A1 (en) * 2006-10-24 2010-06-03 Trans1, Inc. Prosthetic nucleus with a preformed membrane
US20080262502A1 (en) * 2006-10-24 2008-10-23 Trans1, Inc. Multi-membrane prosthetic nucleus
US7875109B1 (en) * 2007-03-08 2011-01-25 A+ Manufacturing, Llc Integral flow restrictor valve
US20100274189A1 (en) * 2009-04-22 2010-10-28 Pressure Products Medical Supplies Inc. Balloon catheter and method of manufacture of the same
US10493246B2 (en) 2009-06-08 2019-12-03 Trireme Medical, Inc. Side branch balloon
US20150066070A1 (en) * 2009-06-08 2015-03-05 TriReme Medical, LLC Side branch balloon
US10183151B2 (en) 2011-06-30 2019-01-22 Spectranetics Corporation Reentry catheter and method thereof
US9408998B2 (en) 2011-06-30 2016-08-09 The Spectranetics Corporation Reentry catheter and method thereof
US8956376B2 (en) 2011-06-30 2015-02-17 The Spectranetics Corporation Reentry catheter and method thereof
US9814862B2 (en) 2011-06-30 2017-11-14 The Spectranetics Corporation Reentry catheter and method thereof
US10709872B2 (en) 2011-06-30 2020-07-14 The Spectranetics Corporation Reentry catheter and method thereof
US8998936B2 (en) 2011-06-30 2015-04-07 The Spectranetics Corporation Reentry catheter and method thereof
US9775969B2 (en) 2011-06-30 2017-10-03 The Spectranetics Corporation Reentry catheter and method thereof
US10603467B2 (en) 2011-06-30 2020-03-31 The Spectranetics Corporation Reentry catheter and method thereof
US9358042B2 (en) 2013-03-13 2016-06-07 The Spectranetics Corporation Expandable member for perforation occlusion
US10932785B2 (en) 2013-03-13 2021-03-02 Spectranetics Llc Expandable member for perforation occlusion
US9883917B2 (en) * 2013-11-04 2018-02-06 Shanghai Ninth People's Hospital Affiliated, Shanghai Jiaotong, University School Of Medicine Skin dilator
US20160242864A1 (en) * 2013-11-04 2016-08-25 Shanghai Ninth People's Hospital Affiliated, Shanghai Jiaotong University School Of Medicine Skin dilator
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
US11141045B2 (en) 2015-08-07 2021-10-12 Enlightenvue Llc Endoscope with variable profile tip
US10449336B2 (en) 2015-08-11 2019-10-22 The Spectranetics Corporation Temporary occlusions balloon devices and methods for preventing blood flow through a vascular perforation
US10499892B2 (en) 2015-08-11 2019-12-10 The Spectranetics Corporation Temporary occlusion balloon devices and methods for preventing blood flow through a vascular perforation
CN112043463A (en) * 2015-08-26 2020-12-08 爱德华兹生命科学公司 Controlled balloon deployment
JP7195618B2 (en) 2016-03-25 2022-12-26 オスティアル コーポレイション Balloon catheter and method of use
EP3600171A4 (en) * 2016-03-25 2021-03-31 Ostial Corporation Balloon catheters and methods for use
US11812985B2 (en) 2017-06-30 2023-11-14 Enlightenvue, Inc. Endoscopy systems and methods of use thereof
US11051685B2 (en) 2018-09-12 2021-07-06 Enlightenvue Llc Direct endoluminal- and/or endovascular-illumination systems and methods of use thereof
WO2020056098A1 (en) * 2018-09-12 2020-03-19 Enlightenvue Llc Direct endoluminal- and/or endovascular-illumination systems and methods of use thereof
US10687698B2 (en) 2018-09-12 2020-06-23 Enlightenvue Llc Direct endoluminal- and/or endovascular-illumination systems and methods of use thereof
US11832798B2 (en) 2018-09-12 2023-12-05 Enlightenvue, Inc. Direct endoluminal-and/or endovascular-illumination systems and methods of use thereof
US11058429B2 (en) 2019-06-24 2021-07-13 Covidien Lp Load sensing assemblies and methods of manufacturing load sensing assemblies
US11819209B2 (en) 2021-08-03 2023-11-21 Covidien Lp Hand-held surgical instruments

Similar Documents

Publication Publication Date Title
US20050075711A1 (en) Balloon catheter with selectable diameter and expandable length
US9849013B2 (en) Stent delivery catheter
US10912665B2 (en) Balloon catheter for multiple adjustable stent deployment
US5843027A (en) Balloon sheath
US6190393B1 (en) Direct stent delivery catheter system
US5562620A (en) Perfusion shunt device having non-distensible pouch for receiving angioplasty balloon
US6589274B2 (en) Stent delivery catheter and method of making same
US5409495A (en) Apparatus for uniformly implanting a stent
US10251766B2 (en) Balloon catheters and systems and methods for delivering stents using such catheters
US6071285A (en) Rapid exchange folded balloon catheter and stent delivery system
CA2383238C (en) Balloon with reversed cones
US6379365B1 (en) Stent delivery catheter system having grooved shaft
US5868779A (en) Apparatus and methods for dilating vessels and hollow-body organs
EP0744187B1 (en) Balloon catheter with balloon protection sheath
US20170014157A1 (en) Expandable introducer sheath
US6527741B1 (en) Angioplasty catheter system with adjustable balloon length
JP2007500577A (en) Stent deployment system and method
WO1994021321A1 (en) Hybrid balloon angioplasty catheter and methods of use
US6419657B1 (en) Flow regulator valve to optimize stent deployment and method of using the same
EP1132059B1 (en) Balloon catheter with balloon shoulders
WO2002051490A1 (en) Balloon for a balloon dilation catheter and stent implantation
KR20210034044A (en) How to make an inflatable sheath
US20160082230A1 (en) Compliant sleeve for vascular balloon
WO2022264083A1 (en) A medical device which includes a balloon module
JP2008517727A (en) Sleeve to protect ratchet stent from guide catheter obstruction

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC VASCULAR INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEARY, MR ANTHONY J.;REEL/FRAME:015019/0765

Effective date: 20031006

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION