US20050075725A1 - Implantable prosthetic valve with non-laminar flow - Google Patents

Implantable prosthetic valve with non-laminar flow Download PDF

Info

Publication number
US20050075725A1
US20050075725A1 US10/677,947 US67794703A US2005075725A1 US 20050075725 A1 US20050075725 A1 US 20050075725A1 US 67794703 A US67794703 A US 67794703A US 2005075725 A1 US2005075725 A1 US 2005075725A1
Authority
US
United States
Prior art keywords
valve
valve assembly
valve prosthesis
outlet
support beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/677,947
Inventor
Stanton Rowe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences Corp
Edwards Lifesciences PVT Inc
Original Assignee
Edwards Lifesciences Corp
Edwards Lifesciences PVT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34393839&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050075725(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US10/677,947 priority Critical patent/US20050075725A1/en
Application filed by Edwards Lifesciences Corp, Edwards Lifesciences PVT Inc filed Critical Edwards Lifesciences Corp
Priority to AU2004279385A priority patent/AU2004279385B2/en
Priority to JP2006534149A priority patent/JP4852421B2/en
Priority to CA002541065A priority patent/CA2541065A1/en
Priority to EP16191929.5A priority patent/EP3156007B1/en
Priority to EP04785349.4A priority patent/EP1667614B2/en
Priority to PCT/US2004/032388 priority patent/WO2005034812A1/en
Assigned to PERCUTANEOUS VALVE TECHNOLOGIES, INC. reassignment PERCUTANEOUS VALVE TECHNOLOGIES, INC. CORRECTIVE ASSIGNMENT TO CORRECT SERIAL NUMBER 10/677,946 PREVIOUSLY RECORDED AT REEL 015041 FRAME 0685. Assignors: ROWE, STANTON J.
Assigned to EDWARDS LIFESCIENCES CORPORATION reassignment EDWARDS LIFESCIENCES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROWE, STANTON
Publication of US20050075725A1 publication Critical patent/US20050075725A1/en
Assigned to EDWARDS LIFESCIENCES PVT, INC. reassignment EDWARDS LIFESCIENCES PVT, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PERCUTANEOUS VALVE TECHNOLOGIES, INC.
Priority to US12/171,588 priority patent/US8080054B2/en
Priority to JP2011103782A priority patent/JP5514767B2/en
Priority to US13/330,370 priority patent/US9241793B2/en
Priority to US14/991,852 priority patent/US10154900B2/en
Priority to US15/679,456 priority patent/US10772723B2/en
Priority to US17/015,677 priority patent/US11076955B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • A61F2/2433Deployment by mechanical expansion using balloon catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2475Venous valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/844Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents folded prior to deployment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0041Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels or rivets, e.g. connecting screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/904Heart

Definitions

  • the present invention relates to implantable prosthetic valves. More particularly, the invention relates to a valve prosthesis for cardiac implantation or for implantation in other body ducts where the prosthesis has improved flow characteristics.
  • a highly desirable, and often preferred design utilizes a cylindrical stent platform of either balloon expandable or self-expanding metal designs. Usually these stents follow the cellular designs which tend to have higher radial strength and less foreshortening than wire-wound platforms.
  • Such cylindrical stents offer a stable and reproducible expansion platform for attaching valves and may be manufactured from a variety of biocompatible metals including stainless steels, titanium alloys, platinum-iridium, nickel-titanium alloys, chromium alloys, or tantalum.
  • the retrograde flow characteristics are most important in low flow/low pressure systems where the valve leaflets may thrombose in the presence of poor retrograde laminar flow.
  • Stented valves are passive devices. The valves function as a result of changes in pressure and flow.
  • An aortic stented valve opens passively when the pressure in the left ventricle exceeds the pressure in the aorta (plus any resistance required to open the valve). The valve closes when the pressure in the left ventricle is less than the pressure in the aorta.
  • the flow characteristics are critical to effect the closing of the aortic valve, otherwise regurgitation will ensue.
  • Laminar flow is the normal condition found in most of the circulatory system. It is characterized by concentric layers of blood moving in parallel down the length of the blood vessel. The highest velocity is found in the middle of the blood vessel while the lowest is found along the wall. The flow is parabolic in a long straight vessel under steady flow conditions.
  • Non-laminar, or turbulent, flow is useful to the circulatory system.
  • the aortic valve opens into the sinus of Valsalva at the inferior aspect of the ascending aorta.
  • This sinus has two key functions: First, it maximizes the flow characteristics so that the aortic valve closes during diastole. And second, it optimizes coronary sinus flow and perfusion.
  • Laminar flow makes the retrograde flow characteristics of valves mounted in cylindrical stents problematic as the flow along the wall is least, which is central to the closing of a valve. Such laminar flow with its attendant drawbacks is a characteristic of known stented valves. There is a need to have stented valves where the retrograde flow characteristics will be non-laminar, which will be advantageous with regard to valve closing.
  • a valve prosthesis device suitable for implantation in body ducts comprises:
  • a valve prosthesis device suitable for implantation in body ducts comprises:
  • the support stent comprises an annular frame.
  • the expanded prosthesis comprises a sinus area adjacent the valve assembly.
  • the support stent comprises an annular frame wherein the middle portion of the expanded annular frame extends radially to create a sinus adjacent the valve assembly.
  • the support stent comprises an annular frame with a valve assembly arranged therein to redirect flow towards the valve assembly.
  • said valve assembly has a tricuspid configuration.
  • the valve assembly is made from biocompatible material.
  • the valve assembly is made from pericardial tissue, or other biological tissue.
  • the valve assembly is made from biocompatible polymers.
  • valve assembly is made from materials selected from the group consisting of polyurethane and polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the valve assembly comprises a main body made from PET (polyethylene terephthalate) and leaflets made from polyurethane.
  • the support stent is made from nickel titanium.
  • the support beams are substantially equidistant and substantially parallel so as to provide anchorage for the valve assembly.
  • the support beams are provided with bores so as to allow stitching or tying of the valve assembly to the beams.
  • the support beams are chemically adhered to the support stent.
  • valve assembly is riveted to the support beams.
  • said valve assembly is sutured to the support beams.
  • the beams are manufactured by injection using a mold, or by machining.
  • valve assembly is rolled over the support stent at the inlet.
  • valve device is manufactured using forging or dipping techniques.
  • valve assembly leaflets are longer than needed to exactly close the outlet, thus when they are in the collapsed state substantial portions of the leaflets fall on each other creating better sealing.
  • valve assembly is made from coils of a polymer, coated by a coating layer of same polymer.
  • the polymer is polyurethane.
  • the support stent is provided with heavy metal markers to enable tracking and determining the valve device position and orientation.
  • the heavy metal markers are selected from the group consisting of gold, platinum-iridium, and tantalum.
  • valve assembly leaflets are provided with radio-opaque material at the outlet, to help tracking the valve device operation in vivo.
  • the radio-opaque material comprises gold thread.
  • the diameter of the support stent, when fully deployed is in the range of from about 19 to about 26 mm.
  • the diameter of the support stent may be expanded from about 4 to about 25 mm.
  • the support beams are provided with bores and wherein the valve assembly is attached to the support beams by means of U-shaped rigid members that are fastened to the valve assembly and that are provided with extruding portions that fit into matching bores on the support beams.
  • the support beams comprise rigid support beams in the form of frame construction, and the valve assembly pliant material is inserted through a gap in the frame and a fastening rod is inserted through a pocket formed between the pliant material and the frame and holds the valve in position.
  • the main body of the valve assembly is made from coiled wire coated with coating material.
  • the coiled wire and the coating material is made from polyurethane.
  • a strengthening wire is interlaced in the valve assembly at the outlet of the conduit so as to define a fault line about which the collapsible slack portion of the valve assembly may flap.
  • the strengthening wire is made from nickel titanium alloy.
  • a valve prosthesis device suitable for implantation in body ducts, the device comprising a main conduit body having an inlet and an outlet and pliant leaflets attached at the outlet so that when a flow passes through the conduit from the inlet to the outlet the leaflets are in an open position allowing the flow to exit the outlet, and when the flow is reversed the leaflets collapse so as to block the outlet, wherein the main body is made from PET and collapsible leaflets are made from polyurethane.
  • support beams made from polyurethane are provided on the main body and wherein the leaflets are attached to the main body at the support beams.
  • said support beams are chemically adhered to the main body.
  • valve prosthesis device suitable for implantation in body ducts, the device comprising:
  • a crimping device for crimping the valve device described above or in the claims below, the crimping device comprising a plurality of adjustable plates that resemble a typical SLR (Single Lens Reflex) camera variable restrictor, each provided with a blade, that are equally dispersed in a radial symmetry but each plate moves along a line passing off an opening in the center, all plates equidistant from that center opening.
  • SLR Single Lens Reflex
  • the multiple plates are adapted to move simultaneously by means of a lever and transmission.
  • a method for deploying an implantable prosthetic valve device from the retrograde approach (approaching the aortic valve from the descending aorta) or from the antegrade approach (approaching the aortic valve from the left ventricle after performing a trans-septal puncture) at the natural aortic valve position at the entrance to the left ventricle of a myocardium of a patient.
  • This method is described in co-pending, commonly assigned U.S. patent applications Ser. No. 09/975,750, filed Oct. 11, 2001, and Ser. No. 10,139,741, filed May 2, 2002, each of which is incorporated herein by reference in its entirety.
  • a valve prosthesis device suitable for implantation in body ducts comprises:
  • the support frame comprises a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the body duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location.
  • the support beams have a U-shaped cross section.
  • a holder is used to secure the plaint material to the support beams.
  • the support frame comprises three segments that form a circular assembly when assembled.
  • the support beams point inwardly with respect to a central longitudinal axis of the device.
  • the device is further provided with a restricting tapered housing, for housing it in a crimped state.
  • hooks are provided to secure the device in position after it is deployed.
  • the support beams comprise longitudinal bars having a narrow slit used as the commissural attachment so that extensions the pliant material are tightly inserted through it.
  • the extensions of the pliant material are wrapped about rigid bars serving as anchorage means.
  • extensions of the pliant material are sutured to each other at the rigid bars.
  • a bottom portion of the pliant material is attached to the inlet.
  • the support beams are each provided with a rounded pole, forming a loop through which the pliant material is inserted.
  • the pliant material is provided with longitudinal bars attached to the pliant material at positions assigned for attachment to the support frame, in order to prevent localized stress from forming.
  • the device is further provided with longitudinal bars having protrusions that are inserted in bores in the pliant material, a sheet of PET and through bores provided on the support beams.
  • pliant material is sutured leaving the slack portions free of sutures.
  • a connecting member with a split portion is used to connect leaflets of the pliant material to the support beams, the split connecting member compressing the pliant material in position.
  • a portion of the connecting member is perpendicular to the split portion.
  • the support frame is provided with metallic members coupled to the stent and rigid members are positioned on two opposite sides of the metallic member and held against each other holding portion of the pliant material between them, sutured, the metallic members wrapped with PET.
  • the device is further provided with spring in order to reduce wear of the pliant material.
  • the spring is provided with a spiral.
  • the spring is made from stainless steel.
  • the spring is attached to slots provided on the support frames.
  • the pliant material is sutured to the support frame forming pockets.
  • attachment bars are provided on the stent support at a portion of the stent close to the outlet, onto which the pliant material is coupled, and wherein the pliant material is attached circumferentially to the inlet, leaving slack pliant material.
  • the outlet is tapered with respect to the inlet.
  • the support frame at the outlet is wider in diameter than the pliant material forming the outlet.
  • the pliant material is reinforced using PET.
  • the support frame is a tube having an inner wall, having sinusoidal fold lines, wherein the pliant material is sutured to the inner wall of the tube along suture lines.
  • additional piece of PET is added below the suture lines.
  • the device is incorporated with an angioplasty balloon.
  • balloon has a central longitudinal axis that runs along a flow path through the device, and a perimeter, the balloon comprising four inflatable portions, one portion located along a central axis and the other three located on the perimeter, the pliant material in the form of leaflets is distributed about the perimeter.
  • FIG. 1 represents an oblique view of an embodiment of the invention
  • FIG. 2 represents a cross-sectional view across line 2 - 2 of the embodiment shown in FIG. 1 ;
  • FIG. 3 represents an oblique, partly cross-sectional view of another embodiment of the invention.
  • FIG. 4 represents a cross-sectional view across line 4 - 4 of the embodiment shown in FIG. 3 .
  • a main aspect of the present invention is the introduction of several novel designs for an implantable prosthetic valve. Another aspect of the present invention is the disclosure of several manufacturing methods for implantable prosthetic valves in accordance with the present invention. A further aspect of the present invention is the provision of novel deployment and positioning techniques suitable for the valve of the present invention.
  • the implantable prosthetic valve of the present invention comprises a leaflet-valve assembly, preferably tricuspid but not limited to tricuspid valves only, consisting of a conduit having an inlet end and an outlet, made of pliant material arranged so as to present collapsible walls at the outlet.
  • the valve assembly is mounted on a support structure or frame such as a stent adapted to be positioned at a target location within the body duct and deploy the valve assembly by the use of deploying means, such as a balloon catheter or similar devices.
  • the annular frame is able to be posed in two positions, a crimped position where the conduit passage cross-section presented is small so as to permit advancing the device towards its target location, and a deployed position where the frame is radial extended by forces exerted from within (by deploying means) so as to provide support against the body duct wall, secure the valve in position and open itself so as to allow flow through the conduit.
  • the valve assembly can be made from biological matter, such as a natural tissue, pericardial tissue or other biological tissue.
  • the valve assembly may be made form biocompatible polymers or similar materials.
  • Homograph biological valves need occasional replacement (usually within 5 to 14 years), and this is a consideration the surgeon must take into account when selecting the proper valve implant according to the patient type.
  • Mechanical valves which have better durability qualities, carry the associated risk of long-term anticoagulation treatment.
  • the frame can be made from shape memory alloys such as nickel titanium (nickel titanium shape memory alloys, or NiTi, as marketed, for example, under the brand name Nitinol), or other biocompatible metals.
  • NiTi nickel titanium shape memory alloys
  • the percutaneously implantable embodiment of the implantable valve of the present invention has to be suitable for crimping into a narrow configuration for positioning and expandable to a wider, deployed configuration so as to anchor in position in the desired target location.
  • the support stent is preferably annular, but may be provided in other shapes too, depending on the cross-section shape of the desired target location passage.
  • Manufacturing of the implantable prosthetic valve of the present invention can be done in various methods, by using pericardium or, for example, by using artificial materials made by dipping, injection, electrospinning, rotation, ironing, or pressing.
  • the attachment of the valve assembly to the support stent can be accomplished in several ways, such as by sewing it to several anchoring points on the support frame or stent, or riveting it, pinning it, adhering it, or welding it, to provide a valve assembly that is cast or molded over the support frame or stent, or use any other suitable way of attachment.
  • floating supports may be added to enhance the stability of the device and prevent it from turning inside out.
  • An important aspect of certain embodiments of the present invention is the provision of rigid support beams incorporated with the support stent that retains its longitudinal dimension while the entire support stent may be longitudinally or laterally extended.
  • FIGS. 1 and 2 illustrate a general tricuspid implantable prosthetic valve 10 in accordance with a preferred embodiment of the present invention, suitable for percutaneous deployment using an expandable stent or similar deploying means, shown in its deployed position.
  • Valve 10 comprises a valve assembly 20 having an inlet 22 and an outlet 24 , the outlet walls consisting of collapsible pliant leaflet material 26 that is arranged to collapse in a tricuspid arrangement.
  • Valve assembly 20 is attached to an annular support stent 32 , the one in this figure being a net-like frame designed to be adapted to crimp evenly so as to present a narrow configuration and be radially deployable so as to extend to occupy the passage at the target location for implantation in a body duct.
  • Support beams 34 are provided on annular support stent 32 to provide anchorage to valve assembly 20 .
  • Support beams 34 are optionally provided with bores 36 to allow stitching of valve assembly 20 to support beams 34 by thread, wire, or other attachment means.
  • the proximal portion 38 of support stent 32 is snuggly fit or fastened to the proximal portion of valve assembly 20 so that any flow is only into inlet 22 .
  • the radial sections of each leaflet 26 is closed by stitching, gluing or other means to narrow outlet 24 .
  • the distal portion 42 of support stent 32 is narrower than proximal portion 38 . The combination of the effect on flow characteristics due to the narrowing of support stent 32 and the narrowing of outlet 24 is sufficient to engender the desired effect or flow characteristics, namely, non-laminar retrograde flow that will assist in the closing of leaflets 26 .
  • a prosthetic valve 50 comprises a valve assembly 52 positioned within a support stent 54 .
  • the proximal 56 and distal 58 portions of support stent 54 are narrow as compared to the mid-portion 60 of support stent 54 , where valve assembly 52 is positioned.
  • valve assembly 52 is preferably positioned co-axially and at a small distance, for example, from 0.5 to 3 cm, from the interior surface 64 of support stent 54 .
  • Valve assembly 52 is attached by connecting membrane 66 to stent supports 68 , which optimally have holes or projections 70 to anchor said membranes 66 . Any annular space between interior surface 64 and valve assembly 54 is filled with appropriate material to prevent flow around valve assembly 54 .
  • Valve leaflets are shown in closed 72 and open 74 positions.
  • Valve assembly 54 is shown in a closed position wherein leaflets 70 inhibit flow.
  • valve assembly 54 will preferably be from about 40 to 80% of the cross-sectional area across support stent midsection 60 .
  • the preferred embodiments representing an implantable prosthetic valve in accordance with the present invention are relatively easy to manufacture as they are generally flat throughout most of the production process and only at the final stage of mounting the other elements of the valve assembly on the support frame, a three dimensional form is established.
  • a typical size of an aortic prosthetic valve is from about 19 to about 26 mm in diameter.
  • a maximal size of a catheter inserted into the femoral artery should be no more than 9 mm in diameter.
  • the present invention introduces a device, which has the ability to change its diameter from about 4 mm to about 26 mm.
  • Artificial valves are not new; however, artificial valves in accordance with the present invention posses the ability to change shape and size for the purpose of delivery and as such are novel. These newly designed valves require new manufacturing methods and technical inventions and improvements, some of which were described herein.
  • the material of which the valve is made from can be either biological or artificial. In any case new technologies are needed to create such a valve.
  • the blood vessels determine the size during delivery, and the requirements for it to work efficiently, there is a need to mount it on a collapsible construction which can be crimped to a small size, be expanded to a larger size, and be strong enough to act as a support for the valve function.
  • This construction which is in somewhat similar to a large “stent”, can be made of different materials such as Nitinol, biocompatible stainless steel, polymeric material or a combination of all. Special requirement for the stent are a subject of some of the embodiments discussed herein.
  • Another major aspect of the design of the valve of the present invention is the attachment to the body.

Abstract

A valve prosthesis device is disclosed suitable for implantation in body ducts. The device comprises a support stent, comprised of a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the body duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location, and a valve assembly comprising a flexible conduit having an inlet end and an outlet, made of pliant material attached to the support beams providing collapsible slack portions of the conduit at the outlet. The support stent is provided with a plurality of longitudinally rigid support beams of fixed length. When flow is allowed to pass through the valve prosthesis device from the inlet to the outlet, the valve assembly is kept in an open position, whereas a reverse flow is prevented as the collapsible slack portions of the valve assembly collapse inwardly providing blockage to the reverse flow. The device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.

Description

    FIELD OF THE INVENTION
  • The present invention relates to implantable prosthetic valves. More particularly, the invention relates to a valve prosthesis for cardiac implantation or for implantation in other body ducts where the prosthesis has improved flow characteristics.
  • BACKGROUND OF THE INVENTION
  • Several prosthetic valves are known. See, for example, U.S. Pat. No. 5,411,552 (Andersen et al.), entitled VALVE PROSTHESIS FOR IMPLANTATION IN THE BODY AND CATHETER FOR IMPLANTING SUCH VALVE PROSTHESIS, which discloses a valve prosthesis comprising a stent made from an expandable cylinder-shaped thread structure comprising several spaced apices. See, also, U.S. Pat. No. 6,168,614 (Andersen et al.), entitled VALVE PROSTHESIS FOR IMPLANTATION IN THE BODY, U.S. Pat. No. 5,840,081 (Andersen et al.), entitled SYSTEM AND METHOD FOR IMPLANTING CARDIAC VALVES, and PCT Application No. PCT/EP97/07337 (Letac, Cribier et al.), published as WO 98/29057, entitled VALVE. PROSTHESIS FOR IMPLANTATION IN BODY CHANNELS, all of which are incorporated herein by reference.
  • In the development of stented valves, a highly desirable, and often preferred design utilizes a cylindrical stent platform of either balloon expandable or self-expanding metal designs. Usually these stents follow the cellular designs which tend to have higher radial strength and less foreshortening than wire-wound platforms.
  • Such cylindrical stents offer a stable and reproducible expansion platform for attaching valves and may be manufactured from a variety of biocompatible metals including stainless steels, titanium alloys, platinum-iridium, nickel-titanium alloys, chromium alloys, or tantalum.
  • Polymeric, bovine venous, pericardial, and porcine valve constructs have lead the early development efforts of stent-valve designs. All of the early designs have utilized either bicuspid or tricuspid valve designs.
  • One of the key factors that determines the long term functionality of stented valves is the retrograde flow characteristics. The retrograde flow characteristics, along with the stiffness characteristics of the valve material, will determine leakage and closing pressure requirements. The retrograde flow characteristics are most important in low flow/low pressure systems where the valve leaflets may thrombose in the presence of poor retrograde laminar flow.
  • Stented valves are passive devices. The valves function as a result of changes in pressure and flow. An aortic stented valve opens passively when the pressure in the left ventricle exceeds the pressure in the aorta (plus any resistance required to open the valve). The valve closes when the pressure in the left ventricle is less than the pressure in the aorta. However, the flow characteristics are critical to effect the closing of the aortic valve, otherwise regurgitation will ensue.
  • Laminar flow is the normal condition found in most of the circulatory system. It is characterized by concentric layers of blood moving in parallel down the length of the blood vessel. The highest velocity is found in the middle of the blood vessel while the lowest is found along the wall. The flow is parabolic in a long straight vessel under steady flow conditions.
  • Non-laminar, or turbulent, flow is useful to the circulatory system. For example, the aortic valve opens into the sinus of Valsalva at the inferior aspect of the ascending aorta. This sinus has two key functions: First, it maximizes the flow characteristics so that the aortic valve closes during diastole. And second, it optimizes coronary sinus flow and perfusion.
  • Laminar flow makes the retrograde flow characteristics of valves mounted in cylindrical stents problematic as the flow along the wall is least, which is central to the closing of a valve. Such laminar flow with its attendant drawbacks is a characteristic of known stented valves. There is a need to have stented valves where the retrograde flow characteristics will be non-laminar, which will be advantageous with regard to valve closing.
  • SUMMARY OF THE INVENTION
  • According to the invention, a valve prosthesis device suitable for implantation in body ducts comprises:
      • a support stent having support beams; and
      • a valve assembly comprising a flexible conduit having an inlet end and an outlet end, made of pliant material attached to the support beams,
      • wherein when flow is allowed to pass through the valve prosthesis device from the inlet end to the outlet end, the valve assembly is kept in an open position; wherein a reverse flow is prevented as portions of the valve assembly collapse inwardly providing blockage to the reverse flow; and wherein the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
  • In accordance with a preferred embodiment of the present invention, a valve prosthesis device suitable for implantation in body ducts comprises:
      • a support stent, comprised of a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the body duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location, the support stent provided with a plurality of longitudinally generally rigid support beams of fixed length; and
      • a valve assembly comprising a flexible conduit having an inlet and an outlet, made of pliant material attached to the support beams providing collapsible slack portions of the conduit at the outlet,
      • wherein when flow is allowed to pass through the valve prosthesis device from the inlet to the outlet, the valve assembly is kept in an open position; wherein a reverse flow is prevented as the collapsible slack portions of the valve assembly collapse inwardly providing blockage to the reverse flow; and wherein the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support stent comprises an annular frame.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the expanded prosthesis comprises a sinus area adjacent the valve assembly.
  • Furthermore, in accordance with another preferred embodiment of the invention, the support stent comprises an annular frame wherein the middle portion of the expanded annular frame extends radially to create a sinus adjacent the valve assembly.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support stent comprises an annular frame with a valve assembly arranged therein to redirect flow towards the valve assembly.
  • Furthermore, in accordance with another preferred embodiment of the present invention, said valve assembly has a tricuspid configuration.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly is made from biocompatible material.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly is made from pericardial tissue, or other biological tissue.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly is made from biocompatible polymers.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly is made from materials selected from the group consisting of polyurethane and polyethylene terephthalate (PET).
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly comprises a main body made from PET (polyethylene terephthalate) and leaflets made from polyurethane.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support stent is made from nickel titanium.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams are substantially equidistant and substantially parallel so as to provide anchorage for the valve assembly.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams are provided with bores so as to allow stitching or tying of the valve assembly to the beams.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams are chemically adhered to the support stent.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly is riveted to the support beams.
  • Furthermore, in accordance with another preferred embodiment of the present invention, said valve assembly is sutured to the support beams.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the beams are manufactured by injection using a mold, or by machining.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly is rolled over the support stent at the inlet.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve device is manufactured using forging or dipping techniques.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly leaflets are longer than needed to exactly close the outlet, thus when they are in the collapsed state substantial portions of the leaflets fall on each other creating better sealing.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly is made from coils of a polymer, coated by a coating layer of same polymer.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the polymer is polyurethane.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support stent is provided with heavy metal markers to enable tracking and determining the valve device position and orientation.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the heavy metal markers are selected from the group consisting of gold, platinum-iridium, and tantalum.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the valve assembly leaflets are provided with radio-opaque material at the outlet, to help tracking the valve device operation in vivo.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the radio-opaque material comprises gold thread.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the diameter of the support stent, when fully deployed, is in the range of from about 19 to about 26 mm.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the diameter of the support stent may be expanded from about 4 to about 25 mm.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams are provided with bores and wherein the valve assembly is attached to the support beams by means of U-shaped rigid members that are fastened to the valve assembly and that are provided with extruding portions that fit into matching bores on the support beams.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams comprise rigid support beams in the form of frame construction, and the valve assembly pliant material is inserted through a gap in the frame and a fastening rod is inserted through a pocket formed between the pliant material and the frame and holds the valve in position.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the main body of the valve assembly is made from coiled wire coated with coating material.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the coiled wire and the coating material is made from polyurethane.
  • Furthermore, in accordance with another preferred embodiment of the present invention, a strengthening wire is interlaced in the valve assembly at the outlet of the conduit so as to define a fault line about which the collapsible slack portion of the valve assembly may flap.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the strengthening wire is made from nickel titanium alloy.
  • Furthermore, in accordance with another preferred embodiment of the present invention, there is provided a valve prosthesis device suitable for implantation in body ducts, the device comprising a main conduit body having an inlet and an outlet and pliant leaflets attached at the outlet so that when a flow passes through the conduit from the inlet to the outlet the leaflets are in an open position allowing the flow to exit the outlet, and when the flow is reversed the leaflets collapse so as to block the outlet, wherein the main body is made from PET and collapsible leaflets are made from polyurethane.
  • Furthermore, in accordance with another preferred embodiment of the present invention, support beams made from polyurethane are provided on the main body and wherein the leaflets are attached to the main body at the support beams.
  • Furthermore, in accordance with another preferred embodiment of the present invention, said support beams are chemically adhered to the main body.
  • Furthermore, in accordance with another preferred embodiment of the present invention, there is provided a valve prosthesis device suitable for implantation in body ducts, the device comprising:
      • a support stent, comprised of a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the body duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location, the support stent provided with a plurality of longitudinally rigid support beams of fixed length;
      • a valve assembly comprising a flexible conduit having an inlet end and an outlet, made of pliant material attached to the support beams providing collapsible slack portions of the conduit at the outlet; and
      • substantially equidistant rigid support beams interlaced or attached to the slack portion of the valve assembly material, arranged longitudinally,
      • wherein the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
  • Furthermore, in accordance with another preferred embodiment of the present invention, there is provided a crimping device for crimping the valve device described above or in the claims below, the crimping device comprising a plurality of adjustable plates that resemble a typical SLR (Single Lens Reflex) camera variable restrictor, each provided with a blade, that are equally dispersed in a radial symmetry but each plate moves along a line passing off an opening in the center, all plates equidistant from that center opening.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the multiple plates are adapted to move simultaneously by means of a lever and transmission.
  • Furthermore, in accordance with another preferred embodiment of the present invention, there is provided a method for deploying an implantable prosthetic valve device from the retrograde approach (approaching the aortic valve from the descending aorta) or from the antegrade approach (approaching the aortic valve from the left ventricle after performing a trans-septal puncture) at the natural aortic valve position at the entrance to the left ventricle of a myocardium of a patient. This method is described in co-pending, commonly assigned U.S. patent applications Ser. No. 09/975,750, filed Oct. 11, 2001, and Ser. No. 10,139,741, filed May 2, 2002, each of which is incorporated herein by reference in its entirety.
  • Furthermore, in accordance with another preferred embodiment of the present invention, a valve prosthesis device suitable for implantation in body ducts comprises:
      • an expandable support frame, the support frame provided with a plurality of longitudinally rigid support beams of fixed length; and
      • a valve assembly comprising a flexible conduit having an inlet end and an outlet, made of pliant material attached to the support beams providing collapsible slack portions of the conduit at the outlet,
      • wherein when flow is allowed to pass through the valve prosthesis device from the inlet to the outlet, the valve assembly is kept in an open position; wherein a reverse flow is prevented as the collapsible slack portions of the valve assembly collapse inwardly providing blockage to the reverse flow; and wherein the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support frame comprises a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the body duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams have a U-shaped cross section.
  • Furthermore, in accordance with another preferred embodiment of the present invention, a holder is used to secure the plaint material to the support beams.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support frame comprises three segments that form a circular assembly when assembled.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams point inwardly with respect to a central longitudinal axis of the device.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the device is further provided with a restricting tapered housing, for housing it in a crimped state.
  • Furthermore, in accordance with another preferred embodiment of the present invention, hooks are provided to secure the device in position after it is deployed.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams comprise longitudinal bars having a narrow slit used as the commissural attachment so that extensions the pliant material are tightly inserted through it.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the extensions of the pliant material are wrapped about rigid bars serving as anchorage means.
  • Furthermore, in accordance with another preferred embodiment of the present invention, extensions of the pliant material are sutured to each other at the rigid bars.
  • Furthermore, in accordance with another preferred embodiment of the present invention, a bottom portion of the pliant material is attached to the inlet.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support beams are each provided with a rounded pole, forming a loop through which the pliant material is inserted.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the pliant material is provided with longitudinal bars attached to the pliant material at positions assigned for attachment to the support frame, in order to prevent localized stress from forming.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the device is further provided with longitudinal bars having protrusions that are inserted in bores in the pliant material, a sheet of PET and through bores provided on the support beams.
  • Furthermore, in accordance with another preferred embodiment of the present invention, pliant material is sutured leaving the slack portions free of sutures.
  • Furthermore, in accordance with another preferred embodiment of the present invention, a connecting member with a split portion is used to connect leaflets of the pliant material to the support beams, the split connecting member compressing the pliant material in position.
  • Furthermore, in accordance with another preferred embodiment of the present invention, a portion of the connecting member is perpendicular to the split portion.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support frame is provided with metallic members coupled to the stent and rigid members are positioned on two opposite sides of the metallic member and held against each other holding portion of the pliant material between them, sutured, the metallic members wrapped with PET.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the device is further provided with spring in order to reduce wear of the pliant material.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the spring is provided with a spiral.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the spring is made from stainless steel.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the spring is attached to slots provided on the support frames.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the pliant material is sutured to the support frame forming pockets.
  • Furthermore, in accordance with another preferred embodiment of the present invention, attachment bars are provided on the stent support at a portion of the stent close to the outlet, onto which the pliant material is coupled, and wherein the pliant material is attached circumferentially to the inlet, leaving slack pliant material.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the outlet is tapered with respect to the inlet.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support frame at the outlet is wider in diameter than the pliant material forming the outlet.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the pliant material is reinforced using PET.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the support frame is a tube having an inner wall, having sinusoidal fold lines, wherein the pliant material is sutured to the inner wall of the tube along suture lines.
  • Furthermore, in accordance with another preferred embodiment of the present invention, additional piece of PET is added below the suture lines.
  • Furthermore, in accordance with another preferred embodiment of the present invention, the device is incorporated with an angioplasty balloon.
  • Finally, in accordance with another preferred embodiment of the present invention, balloon has a central longitudinal axis that runs along a flow path through the device, and a perimeter, the balloon comprising four inflatable portions, one portion located along a central axis and the other three located on the perimeter, the pliant material in the form of leaflets is distributed about the perimeter.
  • BRIEF DESCRIPTION OF THE FIGURES
  • To better understand the present invention and appreciate its practical applications, the following Figures are provided and referenced hereafter. It should be noted that the Figures are given as examples only and in no way limit the scope of the invention as defined in the appended claims.
  • FIG. 1 represents an oblique view of an embodiment of the invention:
  • FIG. 2 represents a cross-sectional view across line 2-2 of the embodiment shown in FIG. 1;
  • FIG. 3 represents an oblique, partly cross-sectional view of another embodiment of the invention; and
  • FIG. 4 represents a cross-sectional view across line 4-4 of the embodiment shown in FIG. 3.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A main aspect of the present invention is the introduction of several novel designs for an implantable prosthetic valve. Another aspect of the present invention is the disclosure of several manufacturing methods for implantable prosthetic valves in accordance with the present invention. A further aspect of the present invention is the provision of novel deployment and positioning techniques suitable for the valve of the present invention.
  • Basically the implantable prosthetic valve of the present invention comprises a leaflet-valve assembly, preferably tricuspid but not limited to tricuspid valves only, consisting of a conduit having an inlet end and an outlet, made of pliant material arranged so as to present collapsible walls at the outlet. The valve assembly is mounted on a support structure or frame such as a stent adapted to be positioned at a target location within the body duct and deploy the valve assembly by the use of deploying means, such as a balloon catheter or similar devices. In embodiments suitable for safe and convenient percutaneous positioning and deployment the annular frame is able to be posed in two positions, a crimped position where the conduit passage cross-section presented is small so as to permit advancing the device towards its target location, and a deployed position where the frame is radial extended by forces exerted from within (by deploying means) so as to provide support against the body duct wall, secure the valve in position and open itself so as to allow flow through the conduit.
  • The valve assembly can be made from biological matter, such as a natural tissue, pericardial tissue or other biological tissue. Alternatively, the valve assembly may be made form biocompatible polymers or similar materials. Homograph biological valves need occasional replacement (usually within 5 to 14 years), and this is a consideration the surgeon must take into account when selecting the proper valve implant according to the patient type. Mechanical valves, which have better durability qualities, carry the associated risk of long-term anticoagulation treatment.
  • The frame can be made from shape memory alloys such as nickel titanium (nickel titanium shape memory alloys, or NiTi, as marketed, for example, under the brand name Nitinol), or other biocompatible metals. The percutaneously implantable embodiment of the implantable valve of the present invention has to be suitable for crimping into a narrow configuration for positioning and expandable to a wider, deployed configuration so as to anchor in position in the desired target location.
  • The support stent is preferably annular, but may be provided in other shapes too, depending on the cross-section shape of the desired target location passage.
  • Manufacturing of the implantable prosthetic valve of the present invention can be done in various methods, by using pericardium or, for example, by using artificial materials made by dipping, injection, electrospinning, rotation, ironing, or pressing.
  • The attachment of the valve assembly to the support stent can be accomplished in several ways, such as by sewing it to several anchoring points on the support frame or stent, or riveting it, pinning it, adhering it, or welding it, to provide a valve assembly that is cast or molded over the support frame or stent, or use any other suitable way of attachment.
  • To prevent leakage from the inlet it is optionally possible to roll up some slack wall of the inlet over the edge of the frame so as to present rolled-up sleeve-like portion at the inlet.
  • Furthermore, floating supports may be added to enhance the stability of the device and prevent it from turning inside out.
  • An important aspect of certain embodiments of the present invention is the provision of rigid support beams incorporated with the support stent that retains its longitudinal dimension while the entire support stent may be longitudinally or laterally extended.
  • The aforementioned embodiments as well as other embodiments, manufacturing methods, different designs and different types of devices are discussed and explained below with reference to the accompanying drawings. Note that the drawings are only given for the purpose of understanding the present invention and presenting some preferred embodiments of the present invention, but this does in no way limit the scope of the present invention as defined in the appended claims.
  • FIGS. 1 and 2 illustrate a general tricuspid implantable prosthetic valve 10 in accordance with a preferred embodiment of the present invention, suitable for percutaneous deployment using an expandable stent or similar deploying means, shown in its deployed position. Valve 10 comprises a valve assembly 20 having an inlet 22 and an outlet 24, the outlet walls consisting of collapsible pliant leaflet material 26 that is arranged to collapse in a tricuspid arrangement. Valve assembly 20 is attached to an annular support stent 32, the one in this figure being a net-like frame designed to be adapted to crimp evenly so as to present a narrow configuration and be radially deployable so as to extend to occupy the passage at the target location for implantation in a body duct. Support beams 34 are provided on annular support stent 32 to provide anchorage to valve assembly 20. Support beams 34 are optionally provided with bores 36 to allow stitching of valve assembly 20 to support beams 34 by thread, wire, or other attachment means.
  • The proximal portion 38 of support stent 32 is snuggly fit or fastened to the proximal portion of valve assembly 20 so that any flow is only into inlet 22. Optionally the radial sections of each leaflet 26 is closed by stitching, gluing or other means to narrow outlet 24. The distal portion 42 of support stent 32 is narrower than proximal portion 38. The combination of the effect on flow characteristics due to the narrowing of support stent 32 and the narrowing of outlet 24 is sufficient to engender the desired effect or flow characteristics, namely, non-laminar retrograde flow that will assist in the closing of leaflets 26.
  • Another embodiment of the invention is shown in FIGS. 3 and 4. A prosthetic valve 50 comprises a valve assembly 52 positioned within a support stent 54. The proximal 56 and distal 58 portions of support stent 54 are narrow as compared to the mid-portion 60 of support stent 54, where valve assembly 52 is positioned. Within support stent mid-portion 60 valve assembly 52 is preferably positioned co-axially and at a small distance, for example, from 0.5 to 3 cm, from the interior surface 64 of support stent 54. Valve assembly 52 is attached by connecting membrane 66 to stent supports 68, which optimally have holes or projections 70 to anchor said membranes 66. Any annular space between interior surface 64 and valve assembly 54 is filled with appropriate material to prevent flow around valve assembly 54. Valve leaflets are shown in closed 72 and open 74 positions.
  • Valve assembly 54 is shown in a closed position wherein leaflets 70 inhibit flow.
  • The effective cross-sectional area of valve assembly 54 will preferably be from about 40 to 80% of the cross-sectional area across support stent midsection 60.
  • The preferred embodiments representing an implantable prosthetic valve in accordance with the present invention are relatively easy to manufacture as they are generally flat throughout most of the production process and only at the final stage of mounting the other elements of the valve assembly on the support frame, a three dimensional form is established.
  • A typical size of an aortic prosthetic valve is from about 19 to about 26 mm in diameter. A maximal size of a catheter inserted into the femoral artery should be no more than 9 mm in diameter. The present invention introduces a device, which has the ability to change its diameter from about 4 mm to about 26 mm. Artificial valves are not new; however, artificial valves in accordance with the present invention posses the ability to change shape and size for the purpose of delivery and as such are novel. These newly designed valves require new manufacturing methods and technical inventions and improvements, some of which were described herein.
  • As mentioned earlier, the material of which the valve is made from can be either biological or artificial. In any case new technologies are needed to create such a valve.
  • To attach the valve to the body, the blood vessels determine the size during delivery, and the requirements for it to work efficiently, there is a need to mount it on a collapsible construction which can be crimped to a small size, be expanded to a larger size, and be strong enough to act as a support for the valve function. This construction, which is in somewhat similar to a large “stent”, can be made of different materials such as Nitinol, biocompatible stainless steel, polymeric material or a combination of all. Special requirement for the stent are a subject of some of the embodiments discussed herein.
  • The mounting of the valve onto a collapsible stent is a new field of problems. New solutions to this problem are described herein.
  • Another major aspect of the design of the valve of the present invention is the attachment to the body.
  • In the traditional procedure the valve is sutured in place by a complicated suturing procedure. In the case of the percutaneous procedure there is no direct access to the implantation site therefore different attachment techniques are needed.
  • Another new problem that is dealt herein is the delivery procedure, which is new and unique. Positioning of the device in the body in an accurate location and orientation requires special marking and measuring methods of the device and surgical site as was disclosed herein.
  • Artificial polymer valves require special treatment and special conditions when kept on a shelf, as well as a special sterilization procedure. One of the consequences of the shelf treatment is the need to crimp the valve during the implantation procedure. A series of devices and inventions to allow the crimping procedure are disclosed herein.
  • It should be clear that the description of the embodiments and attached Figures set forth in this specification serves only for a better understanding of the invention, without limiting its scope as covered by the following claims.
  • It should also be clear that a person skilled in the art, after reading the present specification could make adjustments or amendments to the attached Figures and above described embodiments that would still be covered by the following claims.

Claims (75)

1. A valve prosthesis device suitable for implantation in corporeal ducts, the device comprising:
a support stent, and
a valve assembly comprising a flexible conduit having an inlet end and an outlet end,
wherein when flow is allowed to pass through the valve prosthesis device from the inlet to the outlet, the valve assembly is kept in an open position; wherein a reverse flow is prevented as the collapsible slack portions of the valve assembly collapse inwardly providing blockage to the reverse flow; and where the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
2. The valve prosthesis device of claim 1, wherein the support stent comprises a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the body duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location
3. The valve prosthesis device of claim 1, wherein the support stent is provided with a plurality of longitudinally rigid support beams of fixed length.
4. The valve prosthesis device of claim 1, wherein the valve assembly comprises pliant material attached to the support beams and provides collapsible slack portions of the conduit at the outlet.
5. The valve prosthesis of claim 1, wherein the device is configured so that an artificial sinus is formed adjacent to the valve assembly.
6. The valve prosthesis of claim 1, wherein the retrograde flow will be substantially non-laminar.
7. A valve prosthesis device suitable for implantation in corporeal ducts, the device comprising:
a support stent, comprised of a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the body duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location, the support stent provided with a plurality of longitudinally rigid support beams of fixed length; and
a valve assembly comprising a flexible conduit having an inlet end and an outlet, made of pliant material attached to the support beams providing collapsible slack portions of the conduit at the outlet,
wherein when flow is allowed to pass through the valve prosthesis device from the inlet to the outlet, the valve assembly is kept in an open position, wherein a reverse flow is prevented as the collapsible slack portions of the valve assembly collapse inwardly providing blockage to the reverse flow, and wherein the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
8. The valve prosthesis device of claim 7, wherein the support stent comprises an annular frame.
9. The valve prosthesis device of claim 7, wherein said valve assembly has a tricuspid configuration.
10. The valve prosthesis device of claim 7, wherein said valve assembly is made from biocompatible material.
11. The valve prosthesis device of claim 10, wherein the valve assembly is made from pericardial tissue, or other biological tissue.
12. The valve prosthesis device of claim 7, wherein said valve assembly is made from biocompatible polymers.
13. The valve prosthesis device of claim 12, wherein the valve assembly is made from materials selected from polyurethane and polyethylene terephthalate.
14. The valve prosthesis device of claim 13, wherein said valve assembly comprises a main body made from polyethylene terephthalate and leaflets made from polyurethane.
15. The valve prosthesis device of claim 7, wherein said support stent is made from nickel titanium.
16. The valve prosthesis device of claim 7, wherein the support beams are substantially equidistant and substantially parallel so as to provide anchorage for the valve assembly.
17. The valve prosthesis device of claim 7, wherein the support beams are provided with bores so as to allow stitching or tying of the valve assembly to the beams.
18. The valve prosthesis device of claim 7, wherein the support beams are chemically adhered to the support stent.
19. The valve prosthesis device of claim 7, wherein said valve assembly is riveted to the support beams.
20. The valve prosthesis device of claim 7, wherein said valve assembly is stitched to the support beams.
21. The valve prosthesis device of claim 7, wherein said beams are manufactured by injection using a mold, or by machining.
22. The valve prosthesis device of claim 7, wherein said valve assembly is rolled over the support stent at the inlet.
23. The valve prosthesis device of claim 7, wherein said valve device is manufactured using forging or dipping techniques.
24. The valve prosthesis device of claim 7, wherein said valve assembly leaflets are longer than needed to exactly close the outlet, thus when they are in the collapsed state substantial portions of the leaflets fall on each other creating better sealing.
25. The valve prosthesis device of claim 7, wherein said valve assembly is made from a coiled polymer, coated by a coating layer of the same polymer.
26. The valve prosthesis device of claim 25, wherein said polymer is polyurethane.
27. The valve prosthesis device of claim 7, wherein the support stent is provided with heavy metal markers so as to enable tracking and determining the valve device position and orientation.
28. The valve prosthesis device of claim 27, wherein the heavy metal markers are selected from the group consisting of gold, platinum-iridium, and tantalum.
29. The valve prosthesis device of claim 7, wherein the valve assembly leaflets are provided with radio-opaque material at the outlet, so as to help tracking the valve device operation in vivo.
30. The valve prosthesis device of claim 29, wherein said radio-opaque material comprises gold thread.
31. The valve prosthesis device of claim 7, wherein the diameter of said support stent, when fully deployed is in the range of from about 19 to about 26 mm.
32. The valve prosthesis device of claim 7, wherein the diameter of said support stent may be expanded from about 4 to about 26 mm.
33. The valve prosthesis device of claim 7, wherein the support beams are provided with bores and wherein the valve assembly is attached to the support beams by means of U-shaped rigid members that are fastened to the valve assembly and that are provided with extruding portions that fit into matching bores on the support beams.
34. The valve prosthesis device of claim 7, wherein the support beams comprise rigid support beams in the form of frame construction, and the valve assembly pliant material is inserted through a gap in the frame and a fastening rod is inserted through a pocket formed between the pliant material and the frame and holds the valve in position.
35. The valve prosthesis device of claim 7, wherein the main body of the valve assembly is made from coiled wire coated with a coating material.
36. The valve prosthesis device of claim 35, wherein the coiled wire and the coating material is made from polyurethane.
37. The valve prosthesis device of claim 7, wherein a strengthening wire is interlaced in the valve assembly at the outlet of the conduit so as to define a fault line about which the collapsible slack portion of the valve assembly may flap.
38. The valve prosthesis device of claim 37, wherein the strengthening-wire is made from nickel titanium alloy.
39. A valve prosthesis device suitable for implantation in corporeal ducts, the device comprising a main conduit body having an inlet and an outlet and pliant leaflets attached at the outlet so that when flow passes through the conduit from the inlet to the outlet the leaflets are in an open position allowing the flow to exit the outlet, and when the flow is reversed the leaflets collapse so as to block the outlet, wherein the main body is made from polyethylene terephtalate and collapsible leaflets are made form polyurethane and wherein the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
40. The valve prosthesis device of claim 39, wherein support beams made from polyurethane are provided on the main body and wherein the leaflets are attached to the main body at the support beams.
41. The valve prosthesis device of claim 39, wherein said support beams are chemically adhered to the main body.
42. A valve prosthesis device suitable for implantation in corporeal ducts, the device comprising:
a support stent, comprised of a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the body duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location, the support stent provided with a plurality of longitudinally rigid support beams of fixed length;
a valve assembly comprising a flexible conduit having an inlet end and an outlet, made of pliant material attached to the support beams providing collapsible slack portions of the conduit at the outlet; and
substantially equidistant rigid support beams interlaced or attached to the slack portion of the valve assembly material, arranged longitudinally,
wherein the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
43. A valve prosthesis device suitable for implantation in corporeal ducts, the device comprising:
an expandable support frame, the support frame provided with a plurality of longitudinally rigid support beams of fixed length; and
a valve assembly comprising a flexible conduit having an inlet end and an outlet, made of pliant material attached to the support beams providing collapsible slack portions of the conduit at the outlet,
wherein when flow is allowed to pass through the valve prosthesis device from the inlet to the outlet, the valve assembly is kept in an open position, wherein a reverse flow is prevented as the collapsible slack portions of the valve assembly collapse inwardly providing blockage to the reverse flow, and wherein the device is configured so that retrograde flow will be altered from laminar flow and directed towards the leaflets to effect closing.
44. The valve prosthetic device of claim 43, wherein the expandable support frame comprises a deployable construction adapted to be initially crimped in a narrow configuration suitable for catheterization through the corporeal duct to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location.
45. The valve prosthetic device of claim 43, wherein the support beams have a U-shaped cross section.
46. The valve prosthetic device of claim 45, wherein a holder is used to secure the pliant material to the support beams.
47. The valve prosthetic device of claim 43, wherein the support frame comprises three segments that form a circular assembly when assembled.
48. The valve prosthetic device of claim 43, wherein the support beams point inwardly with respect to a central longitudinal axis of the device.
49. The valve prosthetic device of claim 47, wherein the support beams point outwardly with respect to a central longitudinal axis of the device.
50. The valve prosthetic device of claim 43, further provided with a restricting tapered housing, for housing it in a crimped state
51. The valve prosthetic device of claim 43, wherein hooks are provided to secure the device in position after it is deployed.
52. The valve prosthetic device of claim 43, wherein the support beams comprise longitudinal bars having a narrow slit used as the commissural attachment so that extensions the pliant material are tightly inserted through it.
53. The valve prosthetic device of claim 52, wherein the extensions of the pliant material are wrapped about rigid bars serving as anchorage means.
54. The valve prosthetic device of claim 53, wherein extensions of the pliant material are sutured to each other at the rigid bars.
55. The valve prosthetic device of claim 54, wherein a bottom portion of the pliant material is attached to the inlet.
56. The valve prosthetic device of claim 43, wherein the support beams are each provided with a rounded pole, forming a loop through which the pliant material is inserted.
57. The valve prosthetic device of claim 43, wherein the pliant material is provided with longitudinal bars attached to the pliant material at positions assigned for attachment to the support frame, in order to prevent localized stress from forming.
58. The valve prosthetic device of claim 43, further provided with longitudinal bars having protrusions that are inserted in bores in the pliant material, a sheet of PET and through bores provided on the support beams.
59. The valve prosthetic device of claim 43, wherein the pliant material is sutured leaving the slack portions free of sutures.
60. The valve prosthetic device of claim 43, wherein a connecting member with a split portion is used to connect leaflets of the pliant material to the support beams, the split connecting member compressing the pliant material in position.
61. The valve prosthetic device of claim 60, wherein a portion of the connecting member is perpendicular to the split portion.
62. The valve prosthetic device of claim 43, wherein the support frame is provided with metallic members coupled to the stent and rigid members are positioned on two opposite sides of the metallic member and held against each other, holding a portion of the pliant material between them, sutured, the metallic members wrapped with PET.
63. The valve prosthetic device of claim 3, wherein the device is further provided with spring to reduce wear of the pliant material.
64. The valve prosthetic device of claim 63, wherein the spring is provided with a spiral.
65. The valve prosthetic device of claim 63, wherein the spring is made from stainless steel.
66. The valve prosthetic device of claim 63, wherein the spring is attached to slots provided on the support frame.
67. The valve prosthetic device of claim 43, wherein the pliant material is sutured to the support frame forming pockets.
68. The valve prosthetic device of claim 67, wherein attachment bars are provided on the stent support at a portion of the stent close to the outlet, on which the pliant material is coupled to, and wherein the pliant material is attached circumferentially to the inlet, leaving slack pliant material.
69. The valve prosthetic device of claim 43, wherein the outlet is tapered with respect to the inlet.
70. The valve prosthetic device of claim 69, wherein the support frame at the outlet is wider in diameter than the pliant material forming the outlet.
71. The valve prosthetic device of claim 43, wherein the pliant material is reinforced using PET.
72. The valve prosthetic device of claim 43, wherein the support frame is a tube having an inner wall, having sinusoidal fold lines, wherein the pliant material is sutured to the inner wall of the tube along suture lines.
73. The valve prosthetic device of claim 72, wherein additional piece of PET is added below the suture lines.
74. The valve prosthetic device of claim 43, wherein the device is incorporated with an angioplasty balloon.
75. The valve prosthetic device of claim 74, wherein the balloon has a central longitudinal axis that runs along a flow path through the device, and a perimeter, the balloon comprising four inflatable portions, one portion located along a central axis and the other three located on the perimeter, the pliant material in the form of leaflets is distributed about the perimeter.
US10/677,947 2003-10-02 2003-10-02 Implantable prosthetic valve with non-laminar flow Abandoned US20050075725A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US10/677,947 US20050075725A1 (en) 2003-10-02 2003-10-02 Implantable prosthetic valve with non-laminar flow
AU2004279385A AU2004279385B2 (en) 2003-10-02 2004-10-01 Implantable prosthetic valve with non-laminar flow
JP2006534149A JP4852421B2 (en) 2003-10-02 2004-10-01 Implantable prosthetic valve with non-laminar flow
CA002541065A CA2541065A1 (en) 2003-10-02 2004-10-01 Implantable prosthetic valve with non-laminar flow
EP16191929.5A EP3156007B1 (en) 2003-10-02 2004-10-01 Implantable prosthetic valve with non-laminar flow
EP04785349.4A EP1667614B2 (en) 2003-10-02 2004-10-01 Implantable prosthetic valve with non-laminar flow
PCT/US2004/032388 WO2005034812A1 (en) 2003-10-02 2004-10-01 Implantable prosthetic valve with non-laminar flow
US12/171,588 US8080054B2 (en) 2003-10-02 2008-07-11 Implantable prosthetic valve with non-laminar flow
JP2011103782A JP5514767B2 (en) 2003-10-02 2011-05-06 Implantable prosthetic valve with non-laminar flow
US13/330,370 US9241793B2 (en) 2003-10-02 2011-12-19 Method of implanting a prosthetic aortic valve having non-laminar flow
US14/991,852 US10154900B2 (en) 2003-10-02 2016-01-08 Implantable prosthetic valve with non-laminar flow
US15/679,456 US10772723B2 (en) 2003-10-02 2017-08-17 Implantable prosthetic valve with non-laminar flow
US17/015,677 US11076955B2 (en) 2003-10-02 2020-09-09 Implantable prosthetic heart valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/677,947 US20050075725A1 (en) 2003-10-02 2003-10-02 Implantable prosthetic valve with non-laminar flow

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/171,588 Continuation US8080054B2 (en) 2003-10-02 2008-07-11 Implantable prosthetic valve with non-laminar flow

Publications (1)

Publication Number Publication Date
US20050075725A1 true US20050075725A1 (en) 2005-04-07

Family

ID=34393839

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/677,947 Abandoned US20050075725A1 (en) 2003-10-02 2003-10-02 Implantable prosthetic valve with non-laminar flow
US12/171,588 Expired - Fee Related US8080054B2 (en) 2003-10-02 2008-07-11 Implantable prosthetic valve with non-laminar flow
US13/330,370 Active 2025-06-16 US9241793B2 (en) 2003-10-02 2011-12-19 Method of implanting a prosthetic aortic valve having non-laminar flow
US14/991,852 Active 2024-04-29 US10154900B2 (en) 2003-10-02 2016-01-08 Implantable prosthetic valve with non-laminar flow
US15/679,456 Active 2024-08-19 US10772723B2 (en) 2003-10-02 2017-08-17 Implantable prosthetic valve with non-laminar flow
US17/015,677 Expired - Lifetime US11076955B2 (en) 2003-10-02 2020-09-09 Implantable prosthetic heart valve

Family Applications After (5)

Application Number Title Priority Date Filing Date
US12/171,588 Expired - Fee Related US8080054B2 (en) 2003-10-02 2008-07-11 Implantable prosthetic valve with non-laminar flow
US13/330,370 Active 2025-06-16 US9241793B2 (en) 2003-10-02 2011-12-19 Method of implanting a prosthetic aortic valve having non-laminar flow
US14/991,852 Active 2024-04-29 US10154900B2 (en) 2003-10-02 2016-01-08 Implantable prosthetic valve with non-laminar flow
US15/679,456 Active 2024-08-19 US10772723B2 (en) 2003-10-02 2017-08-17 Implantable prosthetic valve with non-laminar flow
US17/015,677 Expired - Lifetime US11076955B2 (en) 2003-10-02 2020-09-09 Implantable prosthetic heart valve

Country Status (6)

Country Link
US (6) US20050075725A1 (en)
EP (2) EP3156007B1 (en)
JP (2) JP4852421B2 (en)
AU (1) AU2004279385B2 (en)
CA (1) CA2541065A1 (en)
WO (1) WO2005034812A1 (en)

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033220A1 (en) * 1998-09-10 2005-02-10 Percardia, Inc. Left ventricular conduit with blood vessel graft
US20050107871A1 (en) * 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
US20060004442A1 (en) * 2004-06-30 2006-01-05 Benjamin Spenser Paravalvular leak detection, sealing, and prevention
US20060095117A1 (en) * 2004-11-03 2006-05-04 Popelar Carl F Apparatus and method for temporarily clamping a tubular graft to a prosthetic cardiac valve
US20060259136A1 (en) * 2005-05-13 2006-11-16 Corevalve Sa Heart valve prosthesis and methods of manufacture and use
US20060276813A1 (en) * 2005-05-20 2006-12-07 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US20070005129A1 (en) * 2000-02-28 2007-01-04 Christoph Damm Anchoring system for implantable heart valve prostheses
US20070100440A1 (en) * 2005-10-28 2007-05-03 Jen.Cardiotec Gmbh Device for the implantation and fixation of prosthetic valves
US20070142906A1 (en) * 2005-11-04 2007-06-21 Jen. Cardiotec Gmbh Self-expandable medical instrument for treating defects in a patient's heart
US20070203560A1 (en) * 2006-02-27 2007-08-30 Cardiacmd, Inc., A California Corporation Methods and devices for delivery of prosthetic heart valves and other prosthetics
US20070208417A1 (en) * 2006-03-01 2007-09-06 Cook Incorporated Methods of reducing retrograde flow
EP1849440A1 (en) * 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
US20080071369A1 (en) * 2006-09-19 2008-03-20 Yosi Tuval Valve fixation member having engagement arms
US20080091261A1 (en) * 2006-10-13 2008-04-17 Creighton University Implantable valve prosthesis
US20080177381A1 (en) * 2007-01-19 2008-07-24 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
WO2007149933A3 (en) * 2006-06-21 2008-10-16 Aortx Inc Prosthetic valve implantation systems
US20080255661A1 (en) * 2007-04-13 2008-10-16 Helmut Straubinger Medical device for treating a heart valve insufficiency or stenosis
US20080255660A1 (en) * 2007-04-13 2008-10-16 Volker Guyenot Medical device for treating a heart valve insufficiency
US20090054968A1 (en) * 2001-08-03 2009-02-26 Jenavalve Technology Inc. Implant implantation unit and procedure for implanting the unit
US20090125098A1 (en) * 2007-11-09 2009-05-14 Cook Incorporated Aortic valve stent graft
US20090171447A1 (en) * 2005-12-22 2009-07-02 Von Segesser Ludwig K Stent-valves for valve replacement and associated methods and systems for surgery
US20090209955A1 (en) * 2006-06-20 2009-08-20 Forster David C Prosthetic valve implant site preparation techniques
US20090216310A1 (en) * 2008-02-26 2009-08-27 Helmut Straubinger Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US20090216313A1 (en) * 2008-02-26 2009-08-27 Helmut Straubinger Stent for the positioning and anchoring of a valvular prosthesis
US20090216312A1 (en) * 2008-02-26 2009-08-27 Helmut Straubinger Stent for the Positioning and Anchoring of a Valvular Prosthesis in an Implantation Site in the Heart of a Patient
US20090234443A1 (en) * 2005-01-20 2009-09-17 Ottma Ruediger Catheter for the Transvascular Implantation of Prosthetic Heart Valves
US20090240320A1 (en) * 2008-03-18 2009-09-24 Yosi Tuval Valve suturing and implantation procedures
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20100131056A1 (en) * 2007-05-02 2010-05-27 Lapeyre Industries Llc Mechanical prosthetic heart valve
US20100179641A1 (en) * 2007-02-15 2010-07-15 Ryan Timothy R Multi-layered stents and methods of implanting
US20100204785A1 (en) * 2007-09-28 2010-08-12 Alkhatib Yousef F Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US7780627B2 (en) 2002-12-30 2010-08-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7785341B2 (en) 2004-02-27 2010-08-31 Aortx, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20100292780A1 (en) * 2009-05-15 2010-11-18 Helmut Straubinger Device for compressing a stent as well as system and method for loading a stent into a medical delivery system
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US20110015616A1 (en) * 2007-04-13 2011-01-20 Helmut Straubinger Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20110208290A1 (en) * 2008-02-26 2011-08-25 Helmut Straubinger Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8057396B2 (en) 2006-05-24 2011-11-15 Phoenix Biomedical, Inc. Device for assessing a cardiac valve
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8376865B2 (en) 2006-06-20 2013-02-19 Cardiacmd, Inc. Torque shaft and torque shaft drive
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8500799B2 (en) 2006-06-20 2013-08-06 Cardiacmd, Inc. Prosthetic heart valves, support structures and systems and methods for implanting same
WO2013160651A1 (en) * 2012-04-23 2013-10-31 Aortech International Plc Valve
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8709076B1 (en) * 2013-03-01 2014-04-29 Cormatrix Cardiovascular, Inc. Two-piece prosthetic valve
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
USRE45130E1 (en) 2000-02-28 2014-09-09 Jenavalve Technology Gmbh Device for fastening and anchoring cardiac valve prostheses
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US20150073543A1 (en) * 2010-03-26 2015-03-12 Thubrikar Aortic Valve, Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
CN104780868A (en) * 2012-09-25 2015-07-15 爱德华兹生命科学公司 Systems and methods for replacing native heart valve and aorta with prosthetic heart valve and conduit
US9138335B2 (en) 2006-07-31 2015-09-22 Syntheon Cardiology, Llc Surgical implant devices and methods for their manufacture and use
US9265607B2 (en) 2009-02-20 2016-02-23 St. Jude Medical, Inc. Devices and methods for collapsing prosthetic heart valves
US9370419B2 (en) 2005-02-23 2016-06-21 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9393110B2 (en) 2010-10-05 2016-07-19 Edwards Lifesciences Corporation Prosthetic heart valve
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
WO2016138423A1 (en) * 2015-02-27 2016-09-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Retrievable self-expanding non-thrombogenic low-profile percutaneous atrioventricular valve prosthesis
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9597182B2 (en) 2010-05-20 2017-03-21 Jenavalve Technology Inc. Catheter system for introducing an expandable stent into the body of a patient
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US9636221B2 (en) 2007-09-26 2017-05-02 St. Jude Medical, Inc. Collapsible prosthetic heart valves
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9675449B2 (en) 2008-07-15 2017-06-13 St. Jude Medical, Llc Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US9744031B2 (en) 2010-05-25 2017-08-29 Jenavalve Technology, Inc. Prosthetic heart valve and endoprosthesis comprising a prosthetic heart valve and a stent
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9820851B2 (en) 2007-09-28 2017-11-21 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9867699B2 (en) 2008-02-26 2018-01-16 Jenavalve Technology, Inc. Endoprosthesis for implantation in the heart of a patient
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9878127B2 (en) 2012-05-16 2018-01-30 Jenavalve Technology, Inc. Catheter delivery system for heart valve prosthesis
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US20180085215A1 (en) * 2014-12-14 2018-03-29 Trisol Medical Ltd. Prosthetic valve and deployment system
US9937030B2 (en) 2010-03-05 2018-04-10 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
EP3261584A4 (en) * 2015-02-27 2018-10-10 University of Pittsburgh of the Commonwealth System of Higher Education Double component mandrel for electrospun stentless, multi-leaflet valve fabrication
US10292817B2 (en) 2008-06-06 2019-05-21 Edwards Lifesciences Corporation Low profile transcatheter heart valve
EP2861186B1 (en) 2012-06-19 2019-07-24 Boston Scientific Scimed, Inc. Replacement heart valve
EP3050541B1 (en) 2008-05-01 2019-08-14 Edwards Lifesciences Corporation Prosthetic mitral valve assembly
US10413405B2 (en) 2007-12-14 2019-09-17 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US10517722B2 (en) 2016-03-24 2019-12-31 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US10561494B2 (en) 2011-02-25 2020-02-18 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US10595993B2 (en) 2013-12-05 2020-03-24 Edwards Lifesciences Corporation Method of making an introducer sheath with an inner liner
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
US10695171B2 (en) 2010-11-05 2020-06-30 Cook Medical Technologies Llc Stent structures for use with valve replacements
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US10945837B2 (en) 2013-08-12 2021-03-16 Mitral Valve Technologies Sarl Apparatus and methods for implanting a replacement heart valve
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013595B2 (en) 2017-08-11 2021-05-25 Edwards Lifesciences Corporation Sealing element for prosthetic heart valve
US11027870B2 (en) 2010-12-16 2021-06-08 Edwards Lifesciences Corporation Prosthetic heart valve delivery systems and packaging
US11026781B2 (en) 2017-05-22 2021-06-08 Edwards Lifesciences Corporation Valve anchor and installation method
US11058536B2 (en) * 2004-10-02 2021-07-13 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US20220015853A1 (en) * 2020-07-15 2022-01-20 Arete Innovation LLC Surgical sleeve
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US11284999B2 (en) 2008-01-24 2022-03-29 Medtronic, Inc. Stents for prosthetic heart valves
US11298227B2 (en) * 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
US11331186B2 (en) 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11344412B2 (en) 2019-08-20 2022-05-31 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11399932B2 (en) 2019-03-26 2022-08-02 Edwards Lifesciences Corporation Prosthetic heart valve
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US11406493B2 (en) 2014-09-12 2022-08-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US11419712B2 (en) 2017-09-27 2022-08-23 Vascutek Limited Endoluminal device
US11446141B2 (en) 2018-10-19 2022-09-20 Edwards Lifesciences Corporation Prosthetic heart valve having non-cylindrical frame
US11458008B2 (en) 2016-09-07 2022-10-04 Vascutek Limited Hybrid prosthesis and delivery system
US11471261B2 (en) 2016-09-30 2022-10-18 Vascutek Limited Vascular graft
US11554033B2 (en) 2017-05-17 2023-01-17 Vascutek Limited Tubular medical device
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11730589B2 (en) 2010-03-05 2023-08-22 Edwards Lifesciences Corporation Prosthetic heart valve having an inner frame and an outer frame
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
US11857411B2 (en) 2017-08-18 2024-01-02 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
US11883281B2 (en) 2017-05-31 2024-01-30 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11951000B2 (en) 2022-08-04 2024-04-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
JP2007535342A (en) 2004-03-11 2007-12-06 パーキュテイニアス カルディオバスキュラー ソリューションズ ピー・ティー・ワイ リミテッド Percutaneous prosthetic heart valve
AU2006315812B2 (en) 2005-11-10 2013-03-28 Cardiaq Valve Technologies, Inc. Balloon-expandable, self-expanding, vascular prosthesis connecting stent
DE102006062384A1 (en) * 2006-12-22 2008-06-26 Aesculap Ag & Co. Kg Tubular vascular prosthesis for replacement of the ascending aorta
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
DE102007031148A1 (en) * 2007-06-27 2009-01-08 Aesculap Ag aortic sinus
EP3492043A3 (en) * 2007-08-21 2019-09-04 Symetis SA A replacement valve
JP5309207B2 (en) * 2008-04-01 2013-10-09 メドトロニック ヴァスキュラー インコーポレイテッド Double wall stent system
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US8287591B2 (en) * 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
CA2749026C (en) 2008-09-29 2018-01-09 Impala, Inc. Heart valve
EP2845569A1 (en) 2008-10-01 2015-03-11 Cardiaq Valve Technologies, Inc. Delivery system for vascular implant
US8690936B2 (en) 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
WO2010121076A2 (en) 2009-04-15 2010-10-21 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US8439970B2 (en) 2009-07-14 2013-05-14 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US20110224785A1 (en) 2010-03-10 2011-09-15 Hacohen Gil Prosthetic mitral valve with tissue anchors
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
CA2803149C (en) 2010-06-21 2018-08-14 Impala, Inc. Replacement heart valve
CN103153384B (en) 2010-06-28 2016-03-09 科利柏心脏瓣膜有限责任公司 For the device of device in the delivery of vascular of chamber
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
WO2012012761A2 (en) 2010-07-23 2012-01-26 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
EP2618784B1 (en) 2010-09-23 2016-05-25 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
SG191008A1 (en) 2010-12-14 2013-07-31 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
DE102011009555A1 (en) * 2011-01-21 2012-07-26 Aesculap Ag Vascular prosthesis with integrated aortic valve
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
US9119716B2 (en) 2011-07-27 2015-09-01 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
CA2857997C (en) 2011-12-09 2021-01-05 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US8652145B2 (en) 2011-12-14 2014-02-18 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
EP3424469A1 (en) 2012-02-22 2019-01-09 Syntheon TAVR, LLC Actively controllable stent, stent graft and heart valve
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9301835B2 (en) 2012-06-04 2016-04-05 Edwards Lifesciences Corporation Pre-assembled bioprosthetic valve and sealed conduit
WO2014022124A1 (en) * 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9510946B2 (en) 2012-09-06 2016-12-06 Edwards Lifesciences Corporation Heart valve sealing devices
ES2931210T3 (en) 2012-11-21 2022-12-27 Edwards Lifesciences Corp Retention Mechanisms for Prosthetic Heart Valves
US10543085B2 (en) 2012-12-31 2020-01-28 Edwards Lifesciences Corporation One-piece heart valve stents adapted for post-implant expansion
WO2014105760A1 (en) 2012-12-31 2014-07-03 Edwards Lifesciences Corporation Post-implant expandable surgical heart valve configurations
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US11007058B2 (en) * 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
TR201816620T4 (en) 2013-05-20 2018-11-21 Edwards Lifesciences Corp Heart valve prosthesis delivery device.
US9724083B2 (en) 2013-07-26 2017-08-08 Edwards Lifesciences Cardiaq Llc Systems and methods for sealing openings in an anatomical wall
WO2015023862A2 (en) 2013-08-14 2015-02-19 Mitral Valve Technologies Sa Replacement heart valve apparatus and methods
EP3848004A1 (en) 2013-11-11 2021-07-14 Edwards Lifesciences CardiAQ LLC Valve stent frame
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US9901444B2 (en) 2013-12-17 2018-02-27 Edwards Lifesciences Corporation Inverted valve structure
PL3107500T3 (en) 2014-02-18 2022-01-31 Edwards Lifesciences Corporation Flexible commissure frame
CA3205860A1 (en) 2014-02-20 2015-08-27 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
US10004599B2 (en) 2014-02-21 2018-06-26 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
CR20160366A (en) 2014-02-21 2016-11-15 Mitral Valve Tecnhnologies Sarl DEVICES, SYSTEMS AND METHODS OF SUPPLY OF PROSTHETIC MITRAL VALVE AND ANCHORAGE DEVICE
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
US10195025B2 (en) 2014-05-12 2019-02-05 Edwards Lifesciences Corporation Prosthetic heart valve
CA2948379C (en) 2014-05-19 2022-08-09 J. Brent Ratz Replacement mitral valve with annular flap
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
IL250181B1 (en) 2014-07-20 2023-12-01 Bruckheimer Elchanan Pulmonary artery implant apparatus
US10195026B2 (en) 2014-07-22 2019-02-05 Edwards Lifesciences Corporation Mitral valve anchoring
EP3174502B1 (en) 2014-07-30 2022-04-06 Cardiovalve Ltd Apparatus for implantation of an articulatable prosthetic valve
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
CN106999283B (en) * 2014-12-19 2019-05-03 国立研究开发法人国立循环器病研究中心 Artificial valve forms substrate and artificial valve
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
US10231834B2 (en) 2015-02-09 2019-03-19 Edwards Lifesciences Corporation Low profile transseptal catheter and implant system for minimally invasive valve procedure
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US10792471B2 (en) 2015-04-10 2020-10-06 Edwards Lifesciences Corporation Expandable sheath
US10327896B2 (en) 2015-04-10 2019-06-25 Edwards Lifesciences Corporation Expandable sheath with elastomeric cross sectional portions
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10064718B2 (en) 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10232564B2 (en) 2015-04-29 2019-03-19 Edwards Lifesciences Corporation Laminated sealing member for prosthetic heart valve
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
WO2016209970A1 (en) 2015-06-22 2016-12-29 Edwards Lifescience Cardiaq Llc Actively controllable heart valve implant and methods of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
WO2017004369A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
CR20170597A (en) 2015-07-02 2018-04-20 Edwards Lifesciences Corp INTEGRATED HYBRID HEART VALVES
US9974650B2 (en) 2015-07-14 2018-05-22 Edwards Lifesciences Corporation Prosthetic heart valve
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US10314703B2 (en) 2015-09-21 2019-06-11 Edwards Lifesciences Corporation Cylindrical implant and balloon
US10470876B2 (en) 2015-11-10 2019-11-12 Edwards Lifesciences Corporation Transcatheter heart valve for replacing natural mitral valve
US10376364B2 (en) 2015-11-10 2019-08-13 Edwards Lifesciences Corporation Implant delivery capsule
DE202017007326U1 (en) 2016-01-29 2020-10-20 Neovasc Tiara Inc. Valve prosthesis to prevent flow obstruction
US10179043B2 (en) 2016-02-12 2019-01-15 Edwards Lifesciences Corporation Prosthetic heart valve having multi-level sealing member
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US11096781B2 (en) 2016-08-01 2021-08-24 Edwards Lifesciences Corporation Prosthetic heart valve
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
EP3500214A4 (en) 2016-08-19 2019-07-24 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve and methods of use
WO2018039631A1 (en) 2016-08-26 2018-03-01 Edwards Lifesciences Corporation Multi-portion replacement heat valve prosthesis
US10575944B2 (en) 2016-09-22 2020-03-03 Edwards Lifesciences Corporation Prosthetic heart valve with reduced stitching
US11771434B2 (en) 2016-09-28 2023-10-03 Restore Medical Ltd. Artery medical apparatus and methods of use thereof
EP3531977A1 (en) 2016-10-28 2019-09-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
CN109996581B (en) 2016-11-21 2021-10-15 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
US11135056B2 (en) 2017-05-15 2021-10-05 Edwards Lifesciences Corporation Devices and methods of commissure formation for prosthetic heart valve
US10869759B2 (en) 2017-06-05 2020-12-22 Edwards Lifesciences Corporation Mechanically expandable heart valve
US11026785B2 (en) 2017-06-05 2021-06-08 Edwards Lifesciences Corporation Mechanically expandable heart valve
WO2018225059A1 (en) 2017-06-05 2018-12-13 Restore Medical Ltd Double walled fixed length stent like apparatus and methods of use thereof
US10463482B2 (en) * 2017-06-14 2019-11-05 William Joseph Drasler Free edge supported mitral valve
US10813757B2 (en) 2017-07-06 2020-10-27 Edwards Lifesciences Corporation Steerable rail delivery system
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
CN111263622A (en) 2017-08-25 2020-06-09 内奥瓦斯克迪亚拉公司 Sequentially deployed transcatheter mitral valve prosthesis
WO2019051476A1 (en) 2017-09-11 2019-03-14 Incubar, LLC Conduit vascular implant sealing device for reducing endoleak
WO2019089741A1 (en) * 2017-11-01 2019-05-09 Boston Scientific Scimed, Inc. Esophageal stent including a valve member
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
WO2019147846A2 (en) 2018-01-25 2019-08-01 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
USD944398S1 (en) 2018-06-13 2022-02-22 Edwards Lifesciences Corporation Expanded heart valve stent
EP3876870B1 (en) 2018-11-08 2023-12-20 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11278402B2 (en) 2019-02-21 2022-03-22 Medtronic, Inc. Prosthesis for transcatheter delivery having an infolding longitudinal segment for a smaller radially compressed profile
JP7438236B2 (en) 2019-04-01 2024-02-26 ニオバスク ティアラ インコーポレイテッド Controllably deployable prosthetic valve
CA3136334A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
AU2020279750B2 (en) 2019-05-20 2023-07-13 Neovasc Tiara Inc. Introducer with hemostasis mechanism
AU2020295566B2 (en) 2019-06-20 2023-07-20 Neovasc Tiara Inc. Low profile prosthetic mitral valve

Family Cites Families (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029556A (en) 1958-03-10 1962-04-17 Marvin I Glass Toy
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) * 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3548417A (en) 1967-09-05 1970-12-22 Ronnie G Kischer Heart valve having a flexible wall which rotates between open and closed positions
US3671979A (en) * 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3714671A (en) * 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3755823A (en) * 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
GB1402255A (en) 1971-09-24 1975-08-06 Smiths Industries Ltd Medical or surgical devices of the kind having an inflatable balloon
US4035849A (en) * 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) * 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4222126A (en) * 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4265694A (en) * 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4574803A (en) * 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) * 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4373216A (en) * 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4339831A (en) * 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) * 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4345340A (en) * 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4406022A (en) * 1981-11-16 1983-09-27 Kathryn Roy Prosthetic valve means for cardiovascular surgery
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
GB8300636D0 (en) * 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4535483A (en) * 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
US4612011A (en) * 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
US4585705A (en) 1983-11-09 1986-04-29 Dow Corning Corporation Hard organopolysiloxane release coating
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US4627436A (en) * 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4592340A (en) * 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US5007896A (en) * 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
DE3442088A1 (en) * 1984-11-17 1986-05-28 Beiersdorf Ag, 2000 Hamburg HEART VALVE PROSTHESIS
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
US4759758A (en) * 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
DE3530262A1 (en) * 1985-08-22 1987-02-26 Siemens Ag CIRCUIT ARRANGEMENT FOR TESTING A PASSIVE BUS NETWORK SYSTEM (CSMA / CD ACCESS METHOD)
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
CH672247A5 (en) * 1986-03-06 1989-11-15 Mo Vysshee Tekhnicheskoe Uchil
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US4762128A (en) * 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4796629A (en) * 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4829990A (en) * 1987-06-25 1989-05-16 Thueroff Joachim Implantable hydraulic penile erector
US4851001A (en) * 1987-09-17 1989-07-25 Taheri Syde A Prosthetic valve for a blood vein and an associated method of implantation of the valve
US5266073A (en) 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5032128A (en) * 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
DE8815082U1 (en) * 1988-11-29 1989-05-18 Biotronik Mess- Und Therapiegeraete Gmbh & Co Ingenieurbuero Berlin, 1000 Berlin, De
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US4994077A (en) * 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5609626A (en) * 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
WO1990014804A1 (en) * 1989-05-31 1990-12-13 Baxter International Inc. Biological valvular prosthesis
US5047041A (en) * 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US4986830A (en) * 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5089015A (en) * 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5591185A (en) * 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5037434A (en) * 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5059177A (en) 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5085635A (en) * 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5152771A (en) 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5282847A (en) * 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
JPH05184611A (en) 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
US5295958A (en) * 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5397351A (en) * 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
US5558644A (en) 1991-07-16 1996-09-24 Heartport, Inc. Retrograde delivery catheter and method for inducing cardioplegic arrest
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5769812A (en) * 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5192297A (en) * 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5756476A (en) * 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5683448A (en) * 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5332402A (en) * 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
DE4327825C2 (en) * 1992-11-24 1996-10-02 Mannesmann Ag Throttle check element
US6346074B1 (en) 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
GB9312666D0 (en) * 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
CA2125258C (en) 1993-08-05 1998-12-22 Dinah B Quiachon Multicapsule intraluminal grafting system and method
US5545209A (en) * 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5480424A (en) * 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5728068A (en) * 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5554185A (en) * 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5639274A (en) * 1995-06-02 1997-06-17 Fischell; Robert E. Integrated catheter system for balloon angioplasty and stent delivery
US5571175A (en) 1995-06-07 1996-11-05 St. Jude Medical, Inc. Suture guard for prosthetic heart valve
US5716417A (en) * 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
DE19532846A1 (en) 1995-09-06 1997-03-13 Georg Dr Berg Valve for use in heart
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
FR2742994B1 (en) 1995-12-28 1998-04-03 Sgro Jean-Claude INTRACORPOREAL LIGHT SURGICAL TREATMENT ASSEMBLY
US5855602A (en) * 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
EP0808614B1 (en) * 1996-05-23 2003-02-26 Samsung Electronics Co., Ltd. Flexible self-expandable stent and method for making the same
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US6217585B1 (en) * 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
US5749890A (en) * 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
NL1004827C2 (en) * 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
EP0850607A1 (en) * 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
GB9701479D0 (en) * 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6206917B1 (en) 1997-05-02 2001-03-27 St. Jude Medical, Inc. Differential treatment of prosthetic devices
US6245102B1 (en) * 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5925063A (en) * 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
DE69841333D1 (en) * 1997-12-29 2010-01-07 Cleveland Clinic Foundation SYSTEM FOR THE MINIMAL INVASIVE INTRODUCTION OF A HEARTLAP BIOPROTHESIS
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6174327B1 (en) * 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US6524336B1 (en) * 1998-04-09 2003-02-25 Cook Incorporated Endovascular graft
US6527979B2 (en) 1999-08-27 2003-03-04 Corazon Technologies, Inc. Catheter systems and methods for their use in the treatment of calcified vascular occlusions
US6334873B1 (en) 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
DE19857887B4 (en) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring support for a heart valve prosthesis
FR2788217A1 (en) * 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6350277B1 (en) * 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
DK1154738T3 (en) 1999-01-27 2010-07-26 Medtronic Inc Cardiac arrest devices
US6425916B1 (en) * 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
DE19907646A1 (en) 1999-02-23 2000-08-24 Georg Berg Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire.
US6210408B1 (en) * 1999-02-24 2001-04-03 Scimed Life Systems, Inc. Guide wire system for RF recanalization of vascular blockages
US6231602B1 (en) * 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
US6440164B1 (en) * 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US7018406B2 (en) * 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
FR2815844B1 (en) 2000-10-31 2003-01-17 Jacques Seguin TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
DE19955490A1 (en) 1999-11-18 2001-06-13 Thermamed Gmbh Medical heating device
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US7195641B2 (en) * 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
ES2307590T3 (en) 2000-01-27 2008-12-01 3F Therapeutics, Inc HEART VALVE PROTESICA.
DK1255510T5 (en) 2000-01-31 2009-12-21 Cook Biotech Inc Stent Valve Klapper
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
DE10049812B4 (en) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart
DE10049815B4 (en) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
DE10049814B4 (en) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
DE10049813C1 (en) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
AU2571802A (en) 2000-11-21 2002-06-03 Rex Medical Lp Percutaneous aortic valve
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
JP4076857B2 (en) 2000-12-15 2008-04-16 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Stent with valve and method of use
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
NL1017275C2 (en) 2001-02-02 2002-08-05 Univ Eindhoven Tech Heart valve prosthesis has through passage with wall at least partly formed by flexible valve components with free outer ends and movable radially for opening and closing through passage
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US7556646B2 (en) * 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7374571B2 (en) * 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6936067B2 (en) 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
KR100393548B1 (en) * 2001-06-05 2003-08-02 주식회사 엠아이텍 Stent
FR2826863B1 (en) * 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US6790237B2 (en) * 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6740105B2 (en) * 2001-11-23 2004-05-25 Mind Guard Ltd. Expandable delivery appliance particularly for delivering intravascular devices
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7125418B2 (en) * 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
US7351256B2 (en) * 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US6926735B2 (en) * 2002-12-23 2005-08-09 Scimed Life Systems, Inc. Multi-lumen vascular grafts having improved self-sealing properties
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
AU2004233848B2 (en) 2003-04-24 2010-03-04 Cook Medical Technologies Llc Artificial valve prosthesis with improved flow dynamics
EP1635736A2 (en) * 2003-06-05 2006-03-22 FlowMedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US20050004665A1 (en) * 2003-07-02 2005-01-06 Lishan Aklog Annuloplasty rings and methods for repairing cardiac valves
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
WO2005076973A2 (en) 2004-02-05 2005-08-25 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
CN101683291A (en) 2004-02-27 2010-03-31 奥尔特克斯公司 Prosthetic heart valve delivery systems and methods
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
JP2007535342A (en) 2004-03-11 2007-12-06 パーキュテイニアス カルディオバスキュラー ソリューションズ ピー・ティー・ワイ リミテッド Percutaneous prosthetic heart valve
US7758633B2 (en) * 2004-04-12 2010-07-20 Boston Scientific Scimed, Inc. Varied diameter vascular graft
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
EP1753374A4 (en) 2004-04-23 2010-02-10 3F Therapeutics Inc Implantable prosthetic valve
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US7704277B2 (en) 2004-09-14 2010-04-27 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
CN101180010B (en) 2005-05-24 2010-12-01 爱德华兹生命科学公司 Rapid deployment prosthetic heart valve
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20080058856A1 (en) 2005-06-28 2008-03-06 Venkatesh Ramaiah Non-occluding dilation device
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8778017B2 (en) 2005-10-26 2014-07-15 Cardiosolutions, Inc. Safety for mitral valve implant
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
WO2007067942A1 (en) 2005-12-07 2007-06-14 Arbor Surgical Technologies, Inc. Connection systems for two piece prosthetic heart valve assemblies
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
US7655034B2 (en) 2006-11-14 2010-02-02 Medtronic Vascular, Inc. Stent-graft with anchoring pins
US9510943B2 (en) 2007-01-19 2016-12-06 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
ES2781686T3 (en) 2007-12-14 2020-09-04 Edwards Lifesciences Corp Leaflet Junction Frame for a Prosthetic Valve
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
EP4119097A1 (en) 2008-06-06 2023-01-18 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
WO2010121076A2 (en) 2009-04-15 2010-10-21 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US8439970B2 (en) 2009-07-14 2013-05-14 Edwards Lifesciences Corporation Transapical delivery system for heart valves
CN115192259A (en) 2010-10-05 2022-10-18 爱德华兹生命科学公司 Artificial heart valve
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation

Cited By (363)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736327B2 (en) 1998-09-10 2010-06-15 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US20080262602A1 (en) * 1998-09-10 2008-10-23 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US8216174B2 (en) 1998-09-10 2012-07-10 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US7704222B2 (en) 1998-09-10 2010-04-27 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US20050033220A1 (en) * 1998-09-10 2005-02-10 Percardia, Inc. Left ventricular conduit with blood vessel graft
US8597226B2 (en) 1998-09-10 2013-12-03 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US20070005129A1 (en) * 2000-02-28 2007-01-04 Christoph Damm Anchoring system for implantable heart valve prostheses
USRE45130E1 (en) 2000-02-28 2014-09-09 Jenavalve Technology Gmbh Device for fastening and anchoring cardiac valve prostheses
US7896913B2 (en) 2000-02-28 2011-03-01 Jenavalve Technology, Inc. Anchoring system for implantable heart valve prostheses
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US9949824B2 (en) 2001-08-03 2018-04-24 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US8585756B2 (en) 2001-08-03 2013-11-19 Jenavalve Technology, Inc. Methods of treating valves
US20100070027A1 (en) * 2001-08-03 2010-03-18 Jenavalve Technology Inc. Implant implantation unit and procedure for implanting the unit
US20090054968A1 (en) * 2001-08-03 2009-02-26 Jenavalve Technology Inc. Implant implantation unit and procedure for implanting the unit
US8579965B2 (en) 2001-08-03 2013-11-12 Jenavalve Technology, Inc. Methods of implanting an implantation device
US11007052B2 (en) 2001-08-03 2021-05-18 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US8303653B2 (en) 2001-08-03 2012-11-06 Philipp Bonhoeffer Implant implantation unit and procedure for implanting the unit
US8216301B2 (en) 2001-08-03 2012-07-10 Philipp Bonhoeffer Implant implantation unit
US8206437B2 (en) 2001-08-03 2012-06-26 Philipp Bonhoeffer Implant implantation unit and procedure for implanting the unit
US9889002B2 (en) 2001-08-03 2018-02-13 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US7780627B2 (en) 2002-12-30 2010-08-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US20050107871A1 (en) * 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
US9301843B2 (en) 2003-12-19 2016-04-05 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US10869764B2 (en) 2003-12-19 2020-12-22 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8128692B2 (en) 2004-02-27 2012-03-06 Aortx, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US20110082540A1 (en) * 2004-02-27 2011-04-07 Forster David C Prosthetic Heart Valves, Scaffolding Structures, and Systems and Methods for Implantation of Same
US8728156B2 (en) 2004-02-27 2014-05-20 Cardiac MD, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US9168134B2 (en) 2004-02-27 2015-10-27 Cardiacmd, Inc. Method for delivering a prosthetic heart valve with an expansion member
US7785341B2 (en) 2004-02-27 2010-08-31 Aortx, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US8430925B2 (en) 2004-02-27 2013-04-30 Cardiacmd, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US8608770B2 (en) 2004-02-27 2013-12-17 Cardiacmd, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US20060004442A1 (en) * 2004-06-30 2006-01-05 Benjamin Spenser Paravalvular leak detection, sealing, and prevention
US9918834B2 (en) 2004-09-02 2018-03-20 Boston Scientific Scimed, Inc. Cardiac valve, system and method
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US8932349B2 (en) 2004-09-02 2015-01-13 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US11304803B2 (en) * 2004-10-02 2022-04-19 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US11058536B2 (en) * 2004-10-02 2021-07-13 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US20060095117A1 (en) * 2004-11-03 2006-05-04 Popelar Carl F Apparatus and method for temporarily clamping a tubular graft to a prosthetic cardiac valve
US9775705B2 (en) 2005-01-20 2017-10-03 Jenavalve Technology, Inc. Methods of implanting an endoprosthesis
US10492906B2 (en) 2005-01-20 2019-12-03 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US9788945B2 (en) 2005-01-20 2017-10-17 Jenavalve Technology, Inc. Systems for implanting an endoprosthesis
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US8679174B2 (en) 2005-01-20 2014-03-25 JenaValve Technology, GmbH Catheter for the transvascular implantation of prosthetic heart valves
US20090234443A1 (en) * 2005-01-20 2009-09-17 Ottma Ruediger Catheter for the Transvascular Implantation of Prosthetic Heart Valves
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US9370419B2 (en) 2005-02-23 2016-06-21 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9808341B2 (en) 2005-02-23 2017-11-07 Boston Scientific Scimed Inc. Valve apparatus, system and method
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9861473B2 (en) 2005-04-15 2018-01-09 Boston Scientific Scimed Inc. Valve apparatus, system and method
US8512399B2 (en) 2005-04-15 2013-08-20 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060265056A1 (en) * 2005-05-13 2006-11-23 Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
US20060259136A1 (en) * 2005-05-13 2006-11-16 Corevalve Sa Heart valve prosthesis and methods of manufacture and use
US8226710B2 (en) 2005-05-13 2012-07-24 Medtronic Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
USD732666S1 (en) 2005-05-13 2015-06-23 Medtronic Corevalve, Inc. Heart valve prosthesis
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US9060857B2 (en) 2005-05-13 2015-06-23 Medtronic Corevalve Llc Heart valve prosthesis and methods of manufacture and use
USD812226S1 (en) 2005-05-13 2018-03-06 Medtronic Corevalve Llc Heart valve prosthesis
US9504564B2 (en) 2005-05-13 2016-11-29 Medtronic Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US10478291B2 (en) 2005-05-13 2019-11-19 Medtronic CV Luxembourg S.a.r.l Heart valve prosthesis and methods of manufacture and use
US11284997B2 (en) 2005-05-13 2022-03-29 Medtronic CV Luxembourg S.a.r.l Heart valve prosthesis and methods of manufacture and use
WO2006124649A3 (en) * 2005-05-13 2007-03-22 Corevalve Inc Heart valve prothesis and methods of manufacture and use
US7799072B2 (en) * 2005-05-20 2010-09-21 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US8979924B2 (en) 2005-05-20 2015-03-17 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US20060276813A1 (en) * 2005-05-20 2006-12-07 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US20100298927A1 (en) * 2005-05-20 2010-11-25 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US11337812B2 (en) 2005-06-10 2022-05-24 Boston Scientific Scimed, Inc. Venous valve, system and method
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US9028542B2 (en) 2005-06-10 2015-05-12 Boston Scientific Scimed, Inc. Venous valve, system, and method
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US9474609B2 (en) 2005-09-21 2016-10-25 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8672997B2 (en) 2005-09-21 2014-03-18 Boston Scientific Scimed, Inc. Valve with sinus
US8460365B2 (en) 2005-09-21 2013-06-11 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US10548734B2 (en) 2005-09-21 2020-02-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
USRE45962E1 (en) 2005-10-28 2016-04-05 Jenavalve Technology Gmbh Device for the implantation and fixation of prosthetic valves
USRE45790E1 (en) 2005-10-28 2015-11-03 Jenavalve Technology Gmbh Device for the implantation and fixation of prosthetic valves
US10363134B2 (en) 2005-10-28 2019-07-30 Jenavalve Technology, Inc. Device for the implantation and fixation of prosthetic valves
US9855142B2 (en) 2005-10-28 2018-01-02 JenaValve Technologies, Inc. Device for the implantation and fixation of prosthetic valves
US11116628B2 (en) 2005-10-28 2021-09-14 Jenavalve Technology, Inc. Device for the implantation and fixation of prosthetic valves
US9402717B2 (en) 2005-10-28 2016-08-02 Jenavalve Technology, Inc. Device for the implantation and fixation of prosthetic valves
US9044320B2 (en) 2005-10-28 2015-06-02 Jenavalve Technology Gmbh Device for the implantation and fixation of prosthetic valves
US8092521B2 (en) 2005-10-28 2012-01-10 Jenavalve Technology, Inc. Device for the implantation and fixation of prosthetic valves
US8834561B2 (en) 2005-10-28 2014-09-16 Jenavalve Technology Gmbh Device for the implantation and fixation of prosthetic valves
US20070100440A1 (en) * 2005-10-28 2007-05-03 Jen.Cardiotec Gmbh Device for the implantation and fixation of prosthetic valves
US8551160B2 (en) 2005-10-28 2013-10-08 Jenavalve Technology, Inc. Device for the implantation and fixation of prosthetic valves
US20070142906A1 (en) * 2005-11-04 2007-06-21 Jen. Cardiotec Gmbh Self-expandable medical instrument for treating defects in a patient's heart
US8062355B2 (en) * 2005-11-04 2011-11-22 Jenavalve Technology, Inc. Self-expandable medical instrument for treating defects in a patient's heart
US9839515B2 (en) 2005-12-22 2017-12-12 Symetis, SA Stent-valves for valve replacement and associated methods and systems for surgery
US10299922B2 (en) 2005-12-22 2019-05-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10265167B2 (en) 2005-12-22 2019-04-23 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10314701B2 (en) 2005-12-22 2019-06-11 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20090171447A1 (en) * 2005-12-22 2009-07-02 Von Segesser Ludwig K Stent-valves for valve replacement and associated methods and systems for surgery
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7749266B2 (en) 2006-02-27 2010-07-06 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8403981B2 (en) 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US20070203560A1 (en) * 2006-02-27 2007-08-30 Cardiacmd, Inc., A California Corporation Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US7648527B2 (en) 2006-03-01 2010-01-19 Cook Incorporated Methods of reducing retrograde flow
US20100131053A1 (en) * 2006-03-01 2010-05-27 Cook Incorporated Methods of reducing retrograde flow
US9101468B2 (en) 2006-03-01 2015-08-11 Cook Medical Technologies Llc Methods of reducing retrograde flow
US8323332B2 (en) 2006-03-01 2012-12-04 Cook Medical Technologies Llc Methods of reducing retrograde flow
US20070208417A1 (en) * 2006-03-01 2007-09-06 Cook Incorporated Methods of reducing retrograde flow
US10058421B2 (en) 2006-03-28 2018-08-28 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US9331328B2 (en) 2006-03-28 2016-05-03 Medtronic, Inc. Prosthetic cardiac valve from pericardium material and methods of making same
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
EP1849440A1 (en) * 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
US8585594B2 (en) 2006-05-24 2013-11-19 Phoenix Biomedical, Inc. Methods of assessing inner surfaces of body lumens or organs
US8057396B2 (en) 2006-05-24 2011-11-15 Phoenix Biomedical, Inc. Device for assessing a cardiac valve
US8376865B2 (en) 2006-06-20 2013-02-19 Cardiacmd, Inc. Torque shaft and torque shaft drive
US20090209955A1 (en) * 2006-06-20 2009-08-20 Forster David C Prosthetic valve implant site preparation techniques
US8500799B2 (en) 2006-06-20 2013-08-06 Cardiacmd, Inc. Prosthetic heart valves, support structures and systems and methods for implanting same
WO2007149933A3 (en) * 2006-06-21 2008-10-16 Aortx Inc Prosthetic valve implantation systems
US8142492B2 (en) 2006-06-21 2012-03-27 Aortx, Inc. Prosthetic valve implantation systems
US20090228098A1 (en) * 2006-06-21 2009-09-10 Forster David C Prosthetic valve implantation systems
US9827125B2 (en) 2006-07-31 2017-11-28 Edwards Lifesciences Cardiaq Llc Sealable endovascular implants and methods for their use
US9138335B2 (en) 2006-07-31 2015-09-22 Syntheon Cardiology, Llc Surgical implant devices and methods for their manufacture and use
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US10004601B2 (en) 2006-09-19 2018-06-26 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US11304801B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8052750B2 (en) 2006-09-19 2011-11-08 Medtronic Ventor Technologies Ltd Valve prosthesis fixation techniques using sandwiching
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
US8876894B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Leaflet-sensitive valve fixation member
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8348995B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies, Ltd. Axial-force fixation member for valve
US20080071369A1 (en) * 2006-09-19 2008-03-20 Yosi Tuval Valve fixation member having engagement arms
US8348996B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
US11304802B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US20080071366A1 (en) * 2006-09-19 2008-03-20 Yosi Tuval Axial-force fixation member for valve
US20080071361A1 (en) * 2006-09-19 2008-03-20 Yosi Tuval Leaflet-sensitive valve fixation member
US9138312B2 (en) 2006-09-19 2015-09-22 Medtronic Ventor Technologies Ltd. Valve prostheses
US9642704B2 (en) 2006-09-19 2017-05-09 Medtronic Ventor Technologies Ltd. Catheter for implanting a valve prosthesis
US8771345B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US8747460B2 (en) 2006-09-19 2014-06-10 Medtronic Ventor Technologies Ltd. Methods for implanting a valve prothesis
US8771346B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthetic fixation techniques using sandwiching
WO2008035337A3 (en) * 2006-09-19 2009-04-23 Ventor Technologies Ltd Fixation member for valve
US20080091261A1 (en) * 2006-10-13 2008-04-17 Creighton University Implantable valve prosthesis
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8348999B2 (en) 2007-01-08 2013-01-08 California Institute Of Technology In-situ formation of a valve
US20080177381A1 (en) * 2007-01-19 2008-07-24 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
US8105375B2 (en) * 2007-01-19 2012-01-31 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
US9421083B2 (en) 2007-02-05 2016-08-23 Boston Scientific Scimed Inc. Percutaneous valve, system and method
US8470023B2 (en) 2007-02-05 2013-06-25 Boston Scientific Scimed, Inc. Percutaneous valve, system, and method
US10226344B2 (en) 2007-02-05 2019-03-12 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US11504239B2 (en) 2007-02-05 2022-11-22 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US20100179641A1 (en) * 2007-02-15 2010-07-15 Ryan Timothy R Multi-layered stents and methods of implanting
US9339386B2 (en) 2007-04-13 2016-05-17 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficency
US9918835B2 (en) 2007-04-13 2018-03-20 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficency
US20080255660A1 (en) * 2007-04-13 2008-10-16 Volker Guyenot Medical device for treating a heart valve insufficiency
US20080255661A1 (en) * 2007-04-13 2008-10-16 Helmut Straubinger Medical device for treating a heart valve insufficiency or stenosis
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9445896B2 (en) 2007-04-13 2016-09-20 Jenavalve Technology, Inc. Methods for treating a heart valve insufficiency or stenosis
US10543084B2 (en) 2007-04-13 2020-01-28 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US7914575B2 (en) 2007-04-13 2011-03-29 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US8685085B2 (en) 2007-04-13 2014-04-01 JenaValve Technologies GmbH Medical device for treating a heart valve insufficiency
US20110015616A1 (en) * 2007-04-13 2011-01-20 Helmut Straubinger Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
US20110238159A1 (en) * 2007-04-13 2011-09-29 Volker Guyenot Medical device for treating a heart valve insufficiency
US9295551B2 (en) 2007-04-13 2016-03-29 Jenavalve Technology Gmbh Methods of implanting an endoprosthesis
US10182907B2 (en) * 2007-05-02 2019-01-22 Novostia Sa Mechanical prosthetic heart valve
US20100131056A1 (en) * 2007-05-02 2010-05-27 Lapeyre Industries Llc Mechanical prosthetic heart valve
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US11007053B2 (en) 2007-09-26 2021-05-18 St. Jude Medical, Llc Collapsible prosthetic heart valves
US9693859B2 (en) 2007-09-26 2017-07-04 St. Jude Medical, Llc Collapsible prosthetic heart valves
US11903823B2 (en) 2007-09-26 2024-02-20 St. Jude Medical, Llc Collapsible prosthetic heart valves
US9636221B2 (en) 2007-09-26 2017-05-02 St. Jude Medical, Inc. Collapsible prosthetic heart valves
US10292813B2 (en) 2007-09-26 2019-05-21 St. Jude Medical, Llc Collapsible prosthetic heart valves
US11534294B2 (en) 2007-09-28 2022-12-27 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US11660187B2 (en) 2007-09-28 2023-05-30 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US11013596B2 (en) 2007-09-28 2021-05-25 St. Jude Medical, Llc Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US10299919B2 (en) 2007-09-28 2019-05-28 St. Jude Medical, Llc Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US11382740B2 (en) 2007-09-28 2022-07-12 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US9603705B2 (en) 2007-09-28 2017-03-28 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US20100204785A1 (en) * 2007-09-28 2010-08-12 Alkhatib Yousef F Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US10426604B2 (en) 2007-09-28 2019-10-01 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US8454686B2 (en) * 2007-09-28 2013-06-04 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US9820851B2 (en) 2007-09-28 2017-11-21 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US8961595B2 (en) 2007-09-28 2015-02-24 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US20090125098A1 (en) * 2007-11-09 2009-05-14 Cook Incorporated Aortic valve stent graft
US11033384B2 (en) 2007-11-09 2021-06-15 Cook Medical Technologies Llc Aortic valve stent graft
US10105218B2 (en) 2007-11-09 2018-10-23 Cook Medical Technologies Llc Aortic valve stent graft
US8715337B2 (en) * 2007-11-09 2014-05-06 Cook Medical Technologies Llc Aortic valve stent graft
US10413404B2 (en) 2007-12-14 2019-09-17 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US10413406B2 (en) 2007-12-14 2019-09-17 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US10413405B2 (en) 2007-12-14 2019-09-17 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8414641B2 (en) 2007-12-21 2013-04-09 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8137394B2 (en) 2007-12-21 2012-03-20 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US11284999B2 (en) 2008-01-24 2022-03-29 Medtronic, Inc. Stents for prosthetic heart valves
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US11607311B2 (en) 2008-01-24 2023-03-21 Medtronic, Inc. Stents for prosthetic heart valves
US11786367B2 (en) 2008-01-24 2023-10-17 Medtronic, Inc. Stents for prosthetic heart valves
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
US20110208290A1 (en) * 2008-02-26 2011-08-25 Helmut Straubinger Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9987133B2 (en) 2008-02-26 2018-06-05 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10575947B2 (en) 2008-02-26 2020-03-03 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10702382B2 (en) 2008-02-26 2020-07-07 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US20090216312A1 (en) * 2008-02-26 2009-08-27 Helmut Straubinger Stent for the Positioning and Anchoring of a Valvular Prosthesis in an Implantation Site in the Heart of a Patient
US9439759B2 (en) 2008-02-26 2016-09-13 Jenavalve Technology, Inc. Endoprosthesis for implantation in the heart of a patient
US10154901B2 (en) 2008-02-26 2018-12-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US20090216313A1 (en) * 2008-02-26 2009-08-27 Helmut Straubinger Stent for the positioning and anchoring of a valvular prosthesis
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8790395B2 (en) 2008-02-26 2014-07-29 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9265631B2 (en) 2008-02-26 2016-02-23 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US20090216310A1 (en) * 2008-02-26 2009-08-27 Helmut Straubinger Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9877828B2 (en) 2008-02-26 2018-01-30 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9867699B2 (en) 2008-02-26 2018-01-16 Jenavalve Technology, Inc. Endoprosthesis for implantation in the heart of a patient
US9707075B2 (en) 2008-02-26 2017-07-18 Jenavalve Technology, Inc. Endoprosthesis for implantation in the heart of a patient
US11602430B2 (en) 2008-03-18 2023-03-14 Medtronic Ventor Technologies Ltd. Valve suturing and implantation procedures
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US20090240320A1 (en) * 2008-03-18 2009-09-24 Yosi Tuval Valve suturing and implantation procedures
US11278408B2 (en) 2008-03-18 2022-03-22 Medtronic Venter Technologies, Ltd. Valve suturing and implantation procedures
US11717401B2 (en) 2008-05-01 2023-08-08 Edwards Lifesciences Corporation Prosthetic heart valve assembly
EP3549555B1 (en) 2008-05-01 2021-06-16 Edwards Lifesciences Corporation Prosthetic mitral valve assembly
US10952846B2 (en) 2008-05-01 2021-03-23 Edwards Lifesciences Corporation Method of replacing mitral valve
EP3050541B1 (en) 2008-05-01 2019-08-14 Edwards Lifesciences Corporation Prosthetic mitral valve assembly
US10413407B2 (en) 2008-06-06 2019-09-17 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US10426611B2 (en) 2008-06-06 2019-10-01 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US10292817B2 (en) 2008-06-06 2019-05-21 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US9681949B2 (en) 2008-07-15 2017-06-20 St. Jude Medical, Llc Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US11504228B2 (en) 2008-07-15 2022-11-22 St. Jude Medical, Llc Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US9675449B2 (en) 2008-07-15 2017-06-13 St. Jude Medical, Llc Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US10314694B2 (en) 2008-07-15 2019-06-11 St. Jude Medical, Llc Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US10010410B2 (en) 2008-07-15 2018-07-03 St. Jude Medical, Llc Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
US10080658B2 (en) 2009-02-20 2018-09-25 St. Jude Medical, Llc Devices and methods for collapsing prosthetic heart valves
US9265607B2 (en) 2009-02-20 2016-02-23 St. Jude Medical, Inc. Devices and methods for collapsing prosthetic heart valves
EP2398421B1 (en) * 2009-02-20 2017-09-27 St. Jude Medical, Inc. Devices and methods for collapsing prosthetic heart valves
US8468667B2 (en) 2009-05-15 2013-06-25 Jenavalve Technology, Inc. Device for compressing a stent
US20100292780A1 (en) * 2009-05-15 2010-11-18 Helmut Straubinger Device for compressing a stent as well as system and method for loading a stent into a medical delivery system
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US11911256B2 (en) 2010-03-05 2024-02-27 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US11730589B2 (en) 2010-03-05 2023-08-22 Edwards Lifesciences Corporation Prosthetic heart valve having an inner frame and an outer frame
US10561486B2 (en) 2010-03-05 2020-02-18 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US9937030B2 (en) 2010-03-05 2018-04-10 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US9549814B2 (en) * 2010-03-26 2017-01-24 Thubrikar Aortic Valve, Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
US20150073543A1 (en) * 2010-03-26 2015-03-12 Thubrikar Aortic Valve, Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
US9925044B2 (en) 2010-04-01 2018-03-27 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US10716665B2 (en) 2010-04-01 2020-07-21 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US11554010B2 (en) 2010-04-01 2023-01-17 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US11833041B2 (en) 2010-04-01 2023-12-05 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US10307251B2 (en) 2010-05-20 2019-06-04 Jenavalve Technology, Inc. Catheter system for introducing an expandable stent into the body of a patient
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US11147669B2 (en) 2010-05-20 2021-10-19 Jenavalve Technology, Inc. Catheter system for introducing an expandable stent into the body of a patient
US10856978B2 (en) 2010-05-20 2020-12-08 Jenavalve Technology, Inc. Catheter system
US9597182B2 (en) 2010-05-20 2017-03-21 Jenavalve Technology Inc. Catheter system for introducing an expandable stent into the body of a patient
US10603164B2 (en) 2010-05-25 2020-03-31 Jenavalve Technology, Inc. Prosthetic heart valve and endoprosthesis comprising a prosthetic heart valve and a stent
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9744031B2 (en) 2010-05-25 2017-08-29 Jenavalve Technology, Inc. Prosthetic heart valve and endoprosthesis comprising a prosthetic heart valve and a stent
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US10433959B2 (en) 2010-10-05 2019-10-08 Edwards Lifesciences Corporation Prosthetic heart valve
US9393110B2 (en) 2010-10-05 2016-07-19 Edwards Lifesciences Corporation Prosthetic heart valve
US10433958B2 (en) 2010-10-05 2019-10-08 Edwards Lifesciences Corporation Prosthetic heart valve
US10478292B2 (en) 2010-10-05 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
US10537423B2 (en) 2010-10-05 2020-01-21 Edwards Lifesciences Corporation Prosthetic heart valve
US11911270B2 (en) 2010-11-05 2024-02-27 Cook Medical Technologies Llc Stent structures for use with valve replacements
US10695171B2 (en) 2010-11-05 2020-06-30 Cook Medical Technologies Llc Stent structures for use with valve replacements
US11554011B2 (en) 2010-11-05 2023-01-17 Cook Medical Technologies Llc Stent structures for use with valve replacements
US11602428B2 (en) 2010-11-05 2023-03-14 Cook Medical Technologies Llc Stent structures for use with valve replacements
US11027870B2 (en) 2010-12-16 2021-06-08 Edwards Lifesciences Corporation Prosthetic heart valve delivery systems and packaging
US11399934B2 (en) 2011-02-25 2022-08-02 Edwards Lifesciences Corporation Prosthetic heart valve
US10561494B2 (en) 2011-02-25 2020-02-18 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US11801132B2 (en) 2011-02-25 2023-10-31 Edwards Lifesciences Corporation Prosthetic heart valve
US11737871B2 (en) 2011-02-25 2023-08-29 Edwards Lifesciences Corporation Prosthetic heart valve
US11129713B2 (en) 2011-02-25 2021-09-28 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US11737868B2 (en) 2011-02-25 2023-08-29 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
WO2013160651A1 (en) * 2012-04-23 2013-10-31 Aortech International Plc Valve
CN104661618A (en) * 2012-04-23 2015-05-27 奥泰克国际有限公司 Valve
US9878127B2 (en) 2012-05-16 2018-01-30 Jenavalve Technology, Inc. Catheter delivery system for heart valve prosthesis
EP2861186B1 (en) 2012-06-19 2019-07-24 Boston Scientific Scimed, Inc. Replacement heart valve
CN104780868A (en) * 2012-09-25 2015-07-15 爱德华兹生命科学公司 Systems and methods for replacing native heart valve and aorta with prosthetic heart valve and conduit
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US8709076B1 (en) * 2013-03-01 2014-04-29 Cormatrix Cardiovascular, Inc. Two-piece prosthetic valve
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US10945837B2 (en) 2013-08-12 2021-03-16 Mitral Valve Technologies Sarl Apparatus and methods for implanting a replacement heart valve
US11793630B2 (en) 2013-08-12 2023-10-24 Mitral Valve Technologies Sarl Apparatus and methods for implanting a replacement heart valve
US10433954B2 (en) 2013-08-30 2019-10-08 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US11446143B2 (en) 2013-11-06 2022-09-20 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US10849740B2 (en) 2013-11-06 2020-12-01 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US10595993B2 (en) 2013-12-05 2020-03-24 Edwards Lifesciences Corporation Method of making an introducer sheath with an inner liner
US11406493B2 (en) 2014-09-12 2022-08-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US20180085215A1 (en) * 2014-12-14 2018-03-29 Trisol Medical Ltd. Prosthetic valve and deployment system
US11045311B2 (en) * 2014-12-14 2021-06-29 Trisol Medical Ltd. Prosthetic valve and deployment system
US10583004B2 (en) * 2015-02-27 2020-03-10 University of Pittsburgh — Of the Commonwealth System of Higher Education Retrievable self-expanding non-thrombogenic low-profile percutaneous atrioventricular valve prosthesis
US11771555B2 (en) 2015-02-27 2023-10-03 University of Pittsburgh—of the Commonwealth System of Higher Education Retrievable self-expanding non-thrombogenic low-profile percutaneous atrioventricular valve prosthesis
EP3261584A4 (en) * 2015-02-27 2018-10-10 University of Pittsburgh of the Commonwealth System of Higher Education Double component mandrel for electrospun stentless, multi-leaflet valve fabrication
US20180071088A1 (en) * 2015-02-27 2018-03-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Retrievable Self-expanding Non-thrombogenic Low-profile Percutaneous Atrioventricular Valve Prosthesis
US11129711B2 (en) 2015-02-27 2021-09-28 University of Pittsburgh—of the Commonwealth System of Higher Education Double component mandrel for electrospun stentless, multi-leaflet valve fabrication
WO2016138423A1 (en) * 2015-02-27 2016-09-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Retrievable self-expanding non-thrombogenic low-profile percutaneous atrioventricular valve prosthesis
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10517722B2 (en) 2016-03-24 2019-12-31 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US11116629B2 (en) 2016-03-24 2021-09-14 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11458008B2 (en) 2016-09-07 2022-10-04 Vascutek Limited Hybrid prosthesis and delivery system
US11471261B2 (en) 2016-09-30 2022-10-18 Vascutek Limited Vascular graft
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US11484406B2 (en) 2016-11-17 2022-11-01 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
US11344408B2 (en) 2016-12-06 2022-05-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
US11938021B2 (en) 2017-01-23 2024-03-26 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11554033B2 (en) 2017-05-17 2023-01-17 Vascutek Limited Tubular medical device
US11026781B2 (en) 2017-05-22 2021-06-08 Edwards Lifesciences Corporation Valve anchor and installation method
US11883281B2 (en) 2017-05-31 2024-01-30 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11547544B2 (en) 2017-07-18 2023-01-10 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US11013595B2 (en) 2017-08-11 2021-05-25 Edwards Lifesciences Corporation Sealing element for prosthetic heart valve
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11857411B2 (en) 2017-08-18 2024-01-02 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
US11850148B2 (en) 2017-08-21 2023-12-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11419712B2 (en) 2017-09-27 2022-08-23 Vascutek Limited Endoluminal device
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11446141B2 (en) 2018-10-19 2022-09-20 Edwards Lifesciences Corporation Prosthetic heart valve having non-cylindrical frame
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11298227B2 (en) * 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11399932B2 (en) 2019-03-26 2022-08-02 Edwards Lifesciences Corporation Prosthetic heart valve
US11712335B2 (en) 2019-05-04 2023-08-01 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11344412B2 (en) 2019-08-20 2022-05-31 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11331186B2 (en) 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11337807B2 (en) 2019-08-26 2022-05-24 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US20220015853A1 (en) * 2020-07-15 2022-01-20 Arete Innovation LLC Surgical sleeve
US11951000B2 (en) 2022-08-04 2024-04-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods

Also Published As

Publication number Publication date
US9241793B2 (en) 2016-01-26
CA2541065A1 (en) 2005-04-21
JP2011172969A (en) 2011-09-08
AU2004279385A1 (en) 2005-04-21
JP5514767B2 (en) 2014-06-04
JP4852421B2 (en) 2012-01-11
WO2005034812A1 (en) 2005-04-21
US11076955B2 (en) 2021-08-03
US10772723B2 (en) 2020-09-15
EP3156007A1 (en) 2017-04-19
US20160120644A1 (en) 2016-05-05
US8080054B2 (en) 2011-12-20
US20170340441A1 (en) 2017-11-30
EP1667614B2 (en) 2020-04-08
EP1667614A1 (en) 2006-06-14
US20200405480A1 (en) 2020-12-31
EP3156007B1 (en) 2020-11-25
US20080275549A1 (en) 2008-11-06
EP1667614B1 (en) 2016-12-07
US20120158118A1 (en) 2012-06-21
JP2007522829A (en) 2007-08-16
US10154900B2 (en) 2018-12-18
AU2004279385B2 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
US11076955B2 (en) Implantable prosthetic heart valve
US11166810B2 (en) Implantable prosthetic valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: PERCUTANEOUS VALVE TECHNOLOGIES, INC., NEW JERSEY

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT SERIAL NUMBER 10/677,946 PREVIOUSLY RECORDED AT REEL 015041 FRAME 0685;ASSIGNOR:ROWE, STANTON J.;REEL/FRAME:015961/0001

Effective date: 20031203

AS Assignment

Owner name: EDWARDS LIFESCIENCES CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROWE, STANTON;REEL/FRAME:015462/0213

Effective date: 20041209

AS Assignment

Owner name: EDWARDS LIFESCIENCES PVT, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:PERCUTANEOUS VALVE TECHNOLOGIES, INC.;REEL/FRAME:016185/0718

Effective date: 20041012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION