US20050087088A1 - Ordnance device for launching failure prone fragments - Google Patents

Ordnance device for launching failure prone fragments Download PDF

Info

Publication number
US20050087088A1
US20050087088A1 US10/677,649 US67764903A US2005087088A1 US 20050087088 A1 US20050087088 A1 US 20050087088A1 US 67764903 A US67764903 A US 67764903A US 2005087088 A1 US2005087088 A1 US 2005087088A1
Authority
US
United States
Prior art keywords
fragments
preformed
ordnance device
failure prone
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/677,649
Inventor
E. Lacy
Samuel Waggener
Maurice Grudza
David Jann
Colin Forsyth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAVY SECRETARY OF United States, AS REPRESENTED BY
Original Assignee
NAVY SECRETARY OF United States, AS REPRESENTED BY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAVY SECRETARY OF United States, AS REPRESENTED BY filed Critical NAVY SECRETARY OF United States, AS REPRESENTED BY
Priority to US10/677,649 priority Critical patent/US20050087088A1/en
Assigned to NAVY, SECRETARY OF THE, UNITED STATES OF AMERICA AS REPRESENTED BY THE, THE reassignment NAVY, SECRETARY OF THE, UNITED STATES OF AMERICA AS REPRESENTED BY THE, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JANN, DAVID C., FORSYTH, COLIN, GRUDZA, MAURICE E., LACY, E. WILLIS, WAGGENER, SAMUEL S.
Publication of US20050087088A1 publication Critical patent/US20050087088A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/24Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction with grooves, recesses or other wall weakenings

Definitions

  • the present invention generally relates to an ordnance device for launching failure prone fragments in a coherent fashion. Specifically, the invention described herein mitigates launch-induced conditions within and along such fragments.
  • a typical ordnance device explosively launches a plurality of inert fragments in a controlled fashion so as to insure impact between one or more fragments and a target.
  • Inert fragments are typically composed of a strong, non-brittle material to insure coherent launch. Fragment strength limits the deposition of kinetic energy within a target to a small volume immediately surrounding the penetration path of the fragment.
  • failure prone fragments produce a large damage volume within a target thereby increasing the likelihood of catastrophic damage.
  • a failure prone fragment for example a fluorine-based polymer matrix with metal powder disposed therein, may deposit both kinetic and chemical energies into a target to achieve a large damage volume.
  • a failure prone fragment may be composed of a brittle, inert composition, for example a tungsten/metal matrix composite, which fractures and disperses upon impact to achieve a large damage volume. Lethality enhancements are achieved by avoiding fracture and/or reaction during launch in favor of rapid mechanical failures and/or chemical reactions upon impact.
  • PTFE-metal compositions are reported to have a yield strength at least one order of magnitude lower than metals, thereby susceptible to stress related failures. Additionally, such materials are less dense than metals and occupy a larger volume resulting in greater divergent forces.
  • Spall is manifested as one or more fractures perpendicular to the flight direction of the fragment. Spall is a consequence of excessive negative pressures within the material caused by the rarefaction of strong compressive waves communicated into the fragment during the detonation process. Lateral fracture is manifested as one or more failures parallel to the flight direction of the fragment. Lateral fractures are a consequence of excessive non-uniform velocity gradients along the fragment width caused by rarefactions within the detonation gases. Explosive induced damage is manifested as deformations and fractures along the fragment adjacent to the explosive charge. Explosive induced damage is a consequence of high-pressure, explosive products interacting with a low-strength fragment.
  • Kuhns et al. discloses one such related art device in U.S. Pat. No. 6,484,642 having a prescribed pattern of internal grooves or recesses partially traversing the thickness of a shell structure composed of steel thereby defining a plurality of inert fragments.
  • An undefined energetic or reactive material occupies the recesses forming a continuous or nearly continuous web.
  • An optional thin liner of metal, plastic, or ceramic is coated, adhered, or mechanically fastened over the reactive material to aid in fragment retention.
  • the described confinement of reactive material serves no other purpose than to produce a high-pressure region within the recesses, via a compression of and/or reaction by the reactive material, so as to facilitate a controlled fragmentation of the shell.
  • the present invention attenuates pressures within a fragment via a buffer-wrap system about the fragments so as to prevent mechanical failures and uncontrolled dispersion.
  • Hornig discloses an enhanced blast device in U.S. Pat. No. 5,852,256 comprised of a unitary casing of reactive material surrounding and contacting an explosive charge. Also described is a unitary liner of reactive material disposed between and contacting a hardened steel casing and an explosive charge.
  • the steel casing facilitates penetration, protects the munition during penetration, and increases compression of the reactive material to enhance its dispersion and reactivity.
  • larger fragments of reactive metal are dispersed within a polymer binder matrix therein having a finer reactive metal powder.
  • the device disperses reactive material in a finely divided form over a relatively large space so as to enhance reactivity with the medium immediately surrounding the device. Dispersal is achieved by maximizing pressure and divergent forces within the reactive material.
  • the present invention attenuates high pressures within a fragment via a buffer-wrap system thereby preventing reaction during launch and minimizing divergent forces.
  • Cuadros discloses another device in U.S. Pat. No. 5,313,890 having a fabric liner woven from high-strength fibers located between and intimately contacting an explosive charge and preformed fragments, namely reactive-fluid filled fragments, as an improvement over ductile metal liners.
  • the fabric liner softens the explosive launch of fragments via the controlled expansion and delayed venting of detonation products. Fragments are disposed between folds in a fabric liner that unfold as the explosive products expand thereby projecting fragments in an outward radial direction. Fragments are retained by an outer casing or enclosure, such as a tubular metal or plastic casing, or tape spirally wound around and contacting the fragments.
  • the present invention provides a coupled arrangement between buffer and wrap so as to attenuate the pressure state in a failure prone fragment.
  • An inner buffer of sufficient density and thickness attenuates the shock communicated into fragments from the detonation event.
  • An outer wrap communicates a shock into the fragment via impact between wrap and partially accelerated fragment further attenuating the negative phase of the incident shock.
  • an ordnance device capable of launching failure prone fragments in a coherent, controllable fashion. It is desired that the device attenuate the incident shock communicated into a fragment via a detonation event and/or attenuate the negative phase of the incident shock within a fragment and/or mitigate explosive induced damage thereon.
  • An object of the present invention is an ordnance device capable of launching low-strength, brittle fragments so as to avoid one or more damage modes inherent to such projectiles.
  • the present invention is comprised of an explosive charge, a buffer element, a plurality of preformed failure prone fragments, and a wrap element arranged in the order described.
  • Formulations of failure prone materials are composed of, but not limited to, aluminum, magnesium, and zirconium powders within a matrix of one or more fluorine rich polymers.
  • failure prone materials may be comprised of brittle, chemically active or inert materials.
  • Buffer elements are composed of a polymer or a metal or a composite of sufficient density and thickness to attenuate an incident shock communicated into the failure prone fragments after detonation of an explosive charge. Failure prone fragments are arranged in a continuous fashion along the buffer element.
  • a wrap element having a first layer and a second layer is provided of sufficient density and thickness so as to communicate a shock into the preformed fragments to further attenuate the incident shock.
  • the first layer is composed of a compressible material of lower density than the second layer.
  • the second layer is composed of a polymer or a metal or a composite. Cylindrical and linear shaped embodiments are described and claimed. Confined and unconfined embodiments are also provided.
  • Alternate embodiments of the present invention include an optional second buffer element between explosive charge and buffer element. Additional embodiments include an optional thin polymer-based intermediate layer between fragments and wrap, as well as a thin polymer-based outer cover over the wrap element. In yet other embodiments, fragment length may vary with location and preformed inert fragments may be interspersed with failure prone fragments.
  • the present invention facilitates the exploitation of failure prone materials within ordnance systems.
  • FIG. 1 is a schematic diagram of an exemplary ordnance device having a single buffer element disposed between explosive charge and fragments with a layered outer wrap.
  • FIG. 2 is a schematic diagram of an exemplary ordnance device having dually arranged buffer elements disposed between explosive charge and fragments with a layered outer wrap.
  • FIG. 3 is a schematic diagram of a preferred embodiment having dually arranged buffer elements and intermediate layer disposed between fragments and layered outer wrap and an outer cover over the outer wrap.
  • FIG. 4 is a perspective view of an exemplary embodiment of a cylindrically shaped device having fragments of fixed dimensions.
  • FIG. 5 is a section view of a cylindrical shaped embodiment having variable length fragments with outer wrap not shown.
  • FIG. 6 is a perspective view of an exemplary embodiment of a linearly shaped device having fragments of fixed dimensions.
  • FIG. 7 is a section view of a linearly shaped embodiment showing arrangement of explosive, buffer, variable length fragments, and wrap within a confinement structure.
  • an exemplary arrangement of the present invention referred herein as an ordnance device 1 , is shown having an explosive charge 2 immediately adjacent to and contacting a buffer element 3 immediately adjacent to and contacting a plurality of fragments 4 immediately adjacent to and contacting a wrap element 5 .
  • fragment 4 refers to preformed projectiles composed of a failure prone composition unless otherwise indicated.
  • Components are assembled and mechanically fastened or adhered via methods and techniques understood in the art.
  • buffer element 3 and wrap element 5 may be planar disposed sheets that are conformally applied over explosive charge 2 and fragments 4 , respectively, thereby confining and supporting the fragments 4 . It is likewise possible of secure a cylindrically shaped buffer element 3 and wrap element 5 over explosive charge 2 and fragments 4 , respectively.
  • the explosive charge 2 projects fragments 4 to a desired velocity via the rapid release of energy during chemical decomposition of the explosive.
  • Explosive compositions known within the art are applicable to the present invention.
  • a variety of shapes are possible for the explosive charge 2 shown in FIGS. 1-3 , including but not limited to rectangular, triangular, square, polygonal, hemispherical, elliptical and combinations thereof.
  • the linear explosive-buffer interface 19 shown in FIG. 1 may be concave, convex or combinations thereof.
  • the buffer element 3 attenuates the shock communicated into the fragments 4 by the explosive charge 2 , as well as mitigates explosive induced damage on the fragments 4 .
  • the buffer element 3 may be composed of a metal, non-limiting examples including steel, copper and aluminum, a polymer, non-limiting examples including polyethylene, plexiglas, and nylon, an elastomer, a non-limiting example being neoprene, or a composite, non-limiting examples including fiber-reinforced plastic, glass-reinforced plastic, and rigid woven fiber compositions, or laminates thereof.
  • buffer element 3 design namely thickness and density.
  • a buffer element 3 composed of copper having a thickness of 0.064-inches was sufficient to mitigate the deleterious effects on fragments 4 composed of PTFE-metal formulations by an explosive charge 2 having a diameter 15 of 4.85-inches.
  • Fragments 4 may be arranged in a column-like formation, as shown in FIGS. 1-3 , between buffer element 3 and wrap element 5 . While a variety of fragment shapes are possible, it is preferred that fragments 4 align in a continuous fashion so as to minimize gaps or voids there between. Fragment size is performance and system dependent.
  • Fragments 4 may be composed of formulations of one or more fluoropolymers and one or more oxidation metals.
  • exemplary fluoropolymers include polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene (ETFE), fluorinated ethylene-propylene copolymer (FEP), polyvinylidene fluoride (PVDF), and perfluoroalkyl-tetrafluoroethylene copolymer (PFA), homopolymers and copolymers of fluorocarbon resins having analogs of ethylene such as polytetrafluoroethylene (PTFE), polymers of chloro-trifluoroethylene, and fluorinated ethylene, and homopolymers and copolymers of fluoroelastomers such as polyfluorocilicones.
  • PCTFE polychlorotrifluoroethylene
  • ETFE ethylene-tetrafluoroethylene
  • FEP fluorinated ethylene-propylene copo
  • Exemplary oxidation metals include aluminum, titanium, magnesium, and zirconium.
  • Solid compositions of the above may be manufactured by the method described by Joshi in U.S. Pat. No. 6,547,993. It is likewise possible to have fragments 4 composed of a chemically active or inert powder, preferably a metal, within a brittle or weak matrix composed of a polymer or ductile metal.
  • the wrap element 5 is comprised of a first layer 6 and a second layer 7 .
  • the first layer 6 is disposed between and contacting both fragments 4 and second layer 7 either mechanically attached or adhered thereon via methods understood in the art.
  • the second layer 7 is preferably composed of a metal, non-limiting examples including steel, copper, and aluminum.
  • alternate embodiments may be composed of a polymer, non-limiting examples including polyethylene and nylon, or a composite, non-limiting examples including fiber-reinforced plastic, glass-reinforced plastic, and rigid woven fiber compositions, or laminates thereof.
  • the wrap element 5 communicates a shock into the fragments 4 of sufficient magnitude to reduce the negative pressures therein.
  • the first layer 6 both compressible and less dense than the second layer 7 , allows the fragments 4 to accelerate prior to contacting the second layer 7 .
  • the interaction between fragments 4 and second layer 7 communicates a second shock into each fragment 4 .
  • the first layer 6 may be composed of a foam, non-limiting examples including open-cell and closed-cell polymers, a non-porous polymer, non-limiting examples including polyethyelene and plexiglass, or an elastomer, a non-limiting example being neoprene. Rigid yet compressible foams were preferred.
  • a wrap element 5 composed of a 0.187-inch thick expanded, closed-cell polyethyelene foam having a density of 4 pounds-per-cubic-foot and a 0.030-inch thick aluminum was sufficient to adequately shock a 1.2-inch thick PTFE-metal fragment launched from a cylindrically shaped explosive charge 2 having an approximate diameter 15 of 10-inches.
  • a second buffer element 8 it may be preferred to provide a second buffer element 8 .
  • a second buffer element 8 is shown disposed between the explosive charge 2 and the buffer element 3 .
  • the second buffer element 8 is preferred to be less dense than the buffer element 3 described above.
  • the second buffer element 8 may be a gas-filled cavity, one example being air, allowing the explosive charge 2 to expand prior to contact with the buffer element 3 .
  • the second buffer element 8 may be a compressible material as described above for the first layer 6 .
  • a thin intermediate layer 9 preferably a polymer, is shown between and contacting fragments 4 and wrap element 5 .
  • a thin outer cover 10 is also shown contacting the wrap element 5 oppositely disposed from the intermediate layer 9 . Both intermediate layer 9 and outer cover 10 are mechanically fastened to, adhered to, or coated onto the wrap element 5 via methods understood in the art.
  • a cylindrically shaped device 11 having a cylinder-shaped explosive charge 2 surrounded by a plurality of layers about a central axis 20 .
  • the explosive charge 2 may consist of an unconfined mass of either cast or pressed explosive material.
  • the explosive charge 2 may be comprised of an explosive filled container as understood in the art.
  • the cylindrically shaped device 11 is secured to an ordnance system via means understood in the art.
  • detonation schemes may be employed within the cylindrically shaped device 11 via methods and devices understood in the art.
  • one or more detonation points may be positioned along or within the explosive charge 2 .
  • an initiation scheme forming a toroidal or planar detonation wave may be employed so as to minimize explosive loading onto the fragments 4 .
  • FIG. 4 likewise dimensioned rectangular-shaped fragments 4 are shown of prescribed length 12 , width 13 , and thickness 14 .
  • other shapes are equally applicable including but not limited to cubes, spheres, and solid polygons.
  • the explosive charge 2 is cylindrically shaped, it is desired to have a slight tapering of the width 13 along the thickness 14 of the fragment 4 so as to accommodate circumference differentials.
  • Preformed or individual fragments 4 are arranged in a contacting fashion to form a desired geometric arrangement, as shown in FIG. 4 .
  • Fragments 4 are dimensioned so as to deliver an optimal mass onto the target, to achieve a desired hit probability, and in some applications to minimize divergent forces along the fragments 4 during their acceleration by the explosive charge 2 .
  • a fragment 4 having an approximate length-to-width ratio of 1.84 and an approximate thickness-to-width ratio of 1.75 adequately balanced design considerations.
  • FIG. 5 shows a sectioned cylindrically shaped device 11 having a plurality of fragments 4 with differing length 12 .
  • fragments 4 composed of such inert materials as steel or tungsten may be intersperse preformed fragments 4 composed of such inert materials as steel or tungsten with the present invention.
  • fragments 4 composed of inert materials may be aligned in row or column formation with fragments 4 composed of failure prone materials. It is also possible to position a single fragment 4 of inert material with fragments 4 composed of failure prone materials disposed thereabout in a repeating pattern.
  • FIG. 6 an exemplary embodiment of a linearly shaped device 17 is shown having an optional confinement structure 18 .
  • Explosive charge 2 , buffer element 3 , fragments 4 , and wrap element 5 are disposed within, mechanically fastened and/or adhered via techniques understood in the art, and thereby surrounded by the confinement structure 18 , as shown in FIG. 7 .
  • a typical confinement structure 18 is a box-like device having several lateral members 21 formed, fastened, attached, or adhered as is understood in the art.
  • Exemplary lateral members 21 are planar shaped elements composed of a metal, plastic, or composite. Fragments 4 are disposed within the confinement structure 18 so as to avoid their contact with lateral members 21 during explosive launch.

Abstract

The present invention is an ordnance device capable of launching discrete failure prone fragments in a coherent, controllable fashion. The described device is comprised of an explosive charge, a buffer element, a plurality of preformed failure prone fragments, and a wrap element in the described order. Buffer element separates failure prone fragments from the explosive charge so as to protect the fragments from damage by explosive detonation products and to reduce an incident pressure wave communicated into the fragments by the detonation. Wrap element further reduces the pressure within fragments by imparting a compressive pulse into the fragments thereby offsetting the negative phase of the incident pressure wave.

Description

    FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • The invention described herein may be manufactured and used by and for the Government of the United States of America for Governmental purposes without the payment of any royalties thereon and therefore.
  • CROSS REFERENCE TO RELATED APPLICATIONS
  • None.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to an ordnance device for launching failure prone fragments in a coherent fashion. Specifically, the invention described herein mitigates launch-induced conditions within and along such fragments.
  • 2. Background
  • A typical ordnance device explosively launches a plurality of inert fragments in a controlled fashion so as to insure impact between one or more fragments and a target. Inert fragments are typically composed of a strong, non-brittle material to insure coherent launch. Fragment strength limits the deposition of kinetic energy within a target to a small volume immediately surrounding the penetration path of the fragment.
  • In comparison, failure prone fragments produce a large damage volume within a target thereby increasing the likelihood of catastrophic damage. A failure prone fragment, for example a fluorine-based polymer matrix with metal powder disposed therein, may deposit both kinetic and chemical energies into a target to achieve a large damage volume. Likewise, a failure prone fragment may be composed of a brittle, inert composition, for example a tungsten/metal matrix composite, which fractures and disperses upon impact to achieve a large damage volume. Lethality enhancements are achieved by avoiding fracture and/or reaction during launch in favor of rapid mechanical failures and/or chemical reactions upon impact.
  • The mechanical properties of non-brittle, inert fragments resist damage associated with the harsh conditions of an explosive launch. Upon ignition of an explosive, a detonation wave expands through an explosive charge sweeping across the fragments and imparting a shock wave into each fragment. Thereafter, individual fragments are accelerated as the shock traverses the fragment. Reflected shocks and rarefactions are imparted into the fragment after the shock reaches surfaces along the fragment and thereafter superimposed on the incident shock creating a complex pressure state wherein tensile and compressive forces coexist.
  • Failure prone fragments are inherently more difficult to explosively launch in a coherent fashion making their application problematic in practical ordnance systems. Polymer-based fragments in particular are less mechanically robust than homogeneous metals. For example, PTFE-metal compositions are reported to have a yield strength at least one order of magnitude lower than metals, thereby susceptible to stress related failures. Additionally, such materials are less dense than metals and occupy a larger volume resulting in greater divergent forces.
  • Failure prone fragments exhibit three launch-induced failure modes, namely spall, lateral fracture, and explosive induced damage. Spall is manifested as one or more fractures perpendicular to the flight direction of the fragment. Spall is a consequence of excessive negative pressures within the material caused by the rarefaction of strong compressive waves communicated into the fragment during the detonation process. Lateral fracture is manifested as one or more failures parallel to the flight direction of the fragment. Lateral fractures are a consequence of excessive non-uniform velocity gradients along the fragment width caused by rarefactions within the detonation gases. Explosive induced damage is manifested as deformations and fractures along the fragment adjacent to the explosive charge. Explosive induced damage is a consequence of high-pressure, explosive products interacting with a low-strength fragment.
  • While metal-polymer materials in devices are disclosed in the related arts, the attenuation of launch-related failures by the invention described herein is neither described nor claimed in the related arts.
  • Kuhns et al. discloses one such related art device in U.S. Pat. No. 6,484,642 having a prescribed pattern of internal grooves or recesses partially traversing the thickness of a shell structure composed of steel thereby defining a plurality of inert fragments. An undefined energetic or reactive material occupies the recesses forming a continuous or nearly continuous web. An optional thin liner of metal, plastic, or ceramic is coated, adhered, or mechanically fastened over the reactive material to aid in fragment retention. The described confinement of reactive material serves no other purpose than to produce a high-pressure region within the recesses, via a compression of and/or reaction by the reactive material, so as to facilitate a controlled fragmentation of the shell. The rapid release of this high pressure within the reactive material, after fragmentation of the shell is completed, allows the uncontrolled particulation and dispersion of the same. In contrast, the present invention attenuates pressures within a fragment via a buffer-wrap system about the fragments so as to prevent mechanical failures and uncontrolled dispersion.
  • Hornig discloses an enhanced blast device in U.S. Pat. No. 5,852,256 comprised of a unitary casing of reactive material surrounding and contacting an explosive charge. Also described is a unitary liner of reactive material disposed between and contacting a hardened steel casing and an explosive charge. The steel casing facilitates penetration, protects the munition during penetration, and increases compression of the reactive material to enhance its dispersion and reactivity. In an alternate embodiment, larger fragments of reactive metal are dispersed within a polymer binder matrix therein having a finer reactive metal powder. The device disperses reactive material in a finely divided form over a relatively large space so as to enhance reactivity with the medium immediately surrounding the device. Dispersal is achieved by maximizing pressure and divergent forces within the reactive material. In contrast, the present invention attenuates high pressures within a fragment via a buffer-wrap system thereby preventing reaction during launch and minimizing divergent forces.
  • Cuadros discloses another device in U.S. Pat. No. 5,313,890 having a fabric liner woven from high-strength fibers located between and intimately contacting an explosive charge and preformed fragments, namely reactive-fluid filled fragments, as an improvement over ductile metal liners. The fabric liner softens the explosive launch of fragments via the controlled expansion and delayed venting of detonation products. Fragments are disposed between folds in a fabric liner that unfold as the explosive products expand thereby projecting fragments in an outward radial direction. Fragments are retained by an outer casing or enclosure, such as a tubular metal or plastic casing, or tape spirally wound around and contacting the fragments. In contrast, the present invention provides a coupled arrangement between buffer and wrap so as to attenuate the pressure state in a failure prone fragment. An inner buffer of sufficient density and thickness attenuates the shock communicated into fragments from the detonation event. An outer wrap communicates a shock into the fragment via impact between wrap and partially accelerated fragment further attenuating the negative phase of the incident shock.
  • What is required is an ordnance device capable of launching failure prone fragments in a coherent, controllable fashion. It is desired that the device attenuate the incident shock communicated into a fragment via a detonation event and/or attenuate the negative phase of the incident shock within a fragment and/or mitigate explosive induced damage thereon.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is an ordnance device capable of launching low-strength, brittle fragments so as to avoid one or more damage modes inherent to such projectiles.
  • The present invention is comprised of an explosive charge, a buffer element, a plurality of preformed failure prone fragments, and a wrap element arranged in the order described. Formulations of failure prone materials are composed of, but not limited to, aluminum, magnesium, and zirconium powders within a matrix of one or more fluorine rich polymers. Likewise, failure prone materials may be comprised of brittle, chemically active or inert materials. Buffer elements are composed of a polymer or a metal or a composite of sufficient density and thickness to attenuate an incident shock communicated into the failure prone fragments after detonation of an explosive charge. Failure prone fragments are arranged in a continuous fashion along the buffer element. A wrap element having a first layer and a second layer is provided of sufficient density and thickness so as to communicate a shock into the preformed fragments to further attenuate the incident shock. The first layer is composed of a compressible material of lower density than the second layer. The second layer is composed of a polymer or a metal or a composite. Cylindrical and linear shaped embodiments are described and claimed. Confined and unconfined embodiments are also provided.
  • Alternate embodiments of the present invention include an optional second buffer element between explosive charge and buffer element. Additional embodiments include an optional thin polymer-based intermediate layer between fragments and wrap, as well as a thin polymer-based outer cover over the wrap element. In yet other embodiments, fragment length may vary with location and preformed inert fragments may be interspersed with failure prone fragments.
  • The present invention facilitates the exploitation of failure prone materials within ordnance systems.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings, in which:
  • FIG. 1 is a schematic diagram of an exemplary ordnance device having a single buffer element disposed between explosive charge and fragments with a layered outer wrap.
  • FIG. 2 is a schematic diagram of an exemplary ordnance device having dually arranged buffer elements disposed between explosive charge and fragments with a layered outer wrap.
  • FIG. 3 is a schematic diagram of a preferred embodiment having dually arranged buffer elements and intermediate layer disposed between fragments and layered outer wrap and an outer cover over the outer wrap.
  • FIG. 4 is a perspective view of an exemplary embodiment of a cylindrically shaped device having fragments of fixed dimensions.
  • FIG. 5 is a section view of a cylindrical shaped embodiment having variable length fragments with outer wrap not shown.
  • FIG. 6 is a perspective view of an exemplary embodiment of a linearly shaped device having fragments of fixed dimensions.
  • FIG. 7 is a section view of a linearly shaped embodiment showing arrangement of explosive, buffer, variable length fragments, and wrap within a confinement structure.
  • REFERENCE NUMERALS
    • 1 Ordnance device
    • 2 Explosive charge
    • 3 Buffer element
    • 4 Fragment
    • 5 Wrap element
    • 6 First Layer
    • 7 Second layer
    • 8 Second buffer element
    • 9 Intermediate layer
    • 10 Outer cover
    • 11 Cylindrically shaped device
    • 12 Length
    • 13 Width
    • 14 Thickness
    • 15 Diameter
    • 17 Linearly shaped device
    • 18 Confinement structure
    • 19 Explosive-buffer interface
    • 20 Central axis
    • 21 Lateral member.
    DESCRIPTION OF THE INVENTION
  • Referring now to FIG. 1, an exemplary arrangement of the present invention, referred herein as an ordnance device 1, is shown having an explosive charge 2 immediately adjacent to and contacting a buffer element 3 immediately adjacent to and contacting a plurality of fragments 4 immediately adjacent to and contacting a wrap element 5. The term fragment 4 refers to preformed projectiles composed of a failure prone composition unless otherwise indicated. Components are assembled and mechanically fastened or adhered via methods and techniques understood in the art. For example, buffer element 3 and wrap element 5 may be planar disposed sheets that are conformally applied over explosive charge 2 and fragments 4, respectively, thereby confining and supporting the fragments 4. It is likewise possible of secure a cylindrically shaped buffer element 3 and wrap element 5 over explosive charge 2 and fragments 4, respectively.
  • The explosive charge 2 projects fragments 4 to a desired velocity via the rapid release of energy during chemical decomposition of the explosive. Explosive compositions known within the art are applicable to the present invention. A variety of shapes are possible for the explosive charge 2 shown in FIGS. 1-3, including but not limited to rectangular, triangular, square, polygonal, hemispherical, elliptical and combinations thereof. Likewise, the linear explosive-buffer interface 19 shown in FIG. 1 may be concave, convex or combinations thereof.
  • The buffer element 3 attenuates the shock communicated into the fragments 4 by the explosive charge 2, as well as mitigates explosive induced damage on the fragments 4. The buffer element 3 may be composed of a metal, non-limiting examples including steel, copper and aluminum, a polymer, non-limiting examples including polyethylene, plexiglas, and nylon, an elastomer, a non-limiting example being neoprene, or a composite, non-limiting examples including fiber-reinforced plastic, glass-reinforced plastic, and rigid woven fiber compositions, or laminates thereof.
  • Shock attenuation and damage mitigation are achieved via buffer element 3 design, namely thickness and density. For example, a buffer element 3 composed of copper having a thickness of 0.064-inches was sufficient to mitigate the deleterious effects on fragments 4 composed of PTFE-metal formulations by an explosive charge 2 having a diameter 15 of 4.85-inches.
  • Fragments 4 may be arranged in a column-like formation, as shown in FIGS. 1-3, between buffer element 3 and wrap element 5. While a variety of fragment shapes are possible, it is preferred that fragments 4 align in a continuous fashion so as to minimize gaps or voids there between. Fragment size is performance and system dependent.
  • Fragments 4 may be composed of formulations of one or more fluoropolymers and one or more oxidation metals. Exemplary fluoropolymers include polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene (ETFE), fluorinated ethylene-propylene copolymer (FEP), polyvinylidene fluoride (PVDF), and perfluoroalkyl-tetrafluoroethylene copolymer (PFA), homopolymers and copolymers of fluorocarbon resins having analogs of ethylene such as polytetrafluoroethylene (PTFE), polymers of chloro-trifluoroethylene, and fluorinated ethylene, and homopolymers and copolymers of fluoroelastomers such as polyfluorocilicones. Exemplary oxidation metals include aluminum, titanium, magnesium, and zirconium. Solid compositions of the above may be manufactured by the method described by Joshi in U.S. Pat. No. 6,547,993. It is likewise possible to have fragments 4 composed of a chemically active or inert powder, preferably a metal, within a brittle or weak matrix composed of a polymer or ductile metal.
  • The wrap element 5 is comprised of a first layer 6 and a second layer 7. The first layer 6 is disposed between and contacting both fragments 4 and second layer 7 either mechanically attached or adhered thereon via methods understood in the art. The second layer 7 is preferably composed of a metal, non-limiting examples including steel, copper, and aluminum. However, alternate embodiments may be composed of a polymer, non-limiting examples including polyethylene and nylon, or a composite, non-limiting examples including fiber-reinforced plastic, glass-reinforced plastic, and rigid woven fiber compositions, or laminates thereof.
  • The wrap element 5 communicates a shock into the fragments 4 of sufficient magnitude to reduce the negative pressures therein. The first layer 6, both compressible and less dense than the second layer 7, allows the fragments 4 to accelerate prior to contacting the second layer 7. The interaction between fragments 4 and second layer 7 communicates a second shock into each fragment 4. The first layer 6 may be composed of a foam, non-limiting examples including open-cell and closed-cell polymers, a non-porous polymer, non-limiting examples including polyethyelene and plexiglass, or an elastomer, a non-limiting example being neoprene. Rigid yet compressible foams were preferred. For example, a wrap element 5 composed of a 0.187-inch thick expanded, closed-cell polyethyelene foam having a density of 4 pounds-per-cubic-foot and a 0.030-inch thick aluminum was sufficient to adequately shock a 1.2-inch thick PTFE-metal fragment launched from a cylindrically shaped explosive charge 2 having an approximate diameter 15 of 10-inches.
  • In some embodiments, it may be preferred to provide a second buffer element 8. Referring now of FIG. 2, a second buffer element 8 is shown disposed between the explosive charge 2 and the buffer element 3. The second buffer element 8 is preferred to be less dense than the buffer element 3 described above. For example, the second buffer element 8 may be a gas-filled cavity, one example being air, allowing the explosive charge 2 to expand prior to contact with the buffer element 3. Alternately, the second buffer element 8 may be a compressible material as described above for the first layer 6. In yet other embodiments, if may be preferred to provide a pair of dually arranged layers about the wrap element 5. Referring now to FIG. 3, a thin intermediate layer 9, preferably a polymer, is shown between and contacting fragments 4 and wrap element 5. A thin outer cover 10, preferably a polymer, is also shown contacting the wrap element 5 oppositely disposed from the intermediate layer 9. Both intermediate layer 9 and outer cover 10 are mechanically fastened to, adhered to, or coated onto the wrap element 5 via methods understood in the art.
  • Referring now to FIG. 4, a cylindrically shaped device 11 is described having a cylinder-shaped explosive charge 2 surrounded by a plurality of layers about a central axis 20. Material arrangements shown in FIGS. 1-3 are equally appropriate. The explosive charge 2 may consist of an unconfined mass of either cast or pressed explosive material. Alternatively, the explosive charge 2 may be comprised of an explosive filled container as understood in the art. The cylindrically shaped device 11 is secured to an ordnance system via means understood in the art.
  • A variety of detonation schemes may be employed within the cylindrically shaped device 11 via methods and devices understood in the art. For example, one or more detonation points may be positioned along or within the explosive charge 2. Alternatively, an initiation scheme forming a toroidal or planar detonation wave may be employed so as to minimize explosive loading onto the fragments 4.
  • Referring again to FIG. 4, likewise dimensioned rectangular-shaped fragments 4 are shown of prescribed length 12, width 13, and thickness 14. However, other shapes are equally applicable including but not limited to cubes, spheres, and solid polygons. When the explosive charge 2 is cylindrically shaped, it is desired to have a slight tapering of the width 13 along the thickness 14 of the fragment 4 so as to accommodate circumference differentials. Preformed or individual fragments 4 are arranged in a contacting fashion to form a desired geometric arrangement, as shown in FIG. 4.
  • Fragments 4 are dimensioned so as to deliver an optimal mass onto the target, to achieve a desired hit probability, and in some applications to minimize divergent forces along the fragments 4 during their acceleration by the explosive charge 2. For example, a fragment 4 having an approximate length-to-width ratio of 1.84 and an approximate thickness-to-width ratio of 1.75 adequately balanced design considerations. Furthermore, a width-to-diameter ratio approximately equal to 0.07 minimized divergent forces.
  • Referring now to FIG. 5 shows a sectioned cylindrically shaped device 11 having a plurality of fragments 4 with differing length 12. In other embodiments, it may be desired to have fragments 4 of differing length 12 and/or width 13 and/or thickness 14.
  • In yet other alternate embodiments, it may be desired to intersperse preformed fragments 4 composed of such inert materials as steel or tungsten with the present invention. For example, fragments 4 composed of inert materials may be aligned in row or column formation with fragments 4 composed of failure prone materials. It is also possible to position a single fragment 4 of inert material with fragments 4 composed of failure prone materials disposed thereabout in a repeating pattern.
  • Referring now to FIG. 6, an exemplary embodiment of a linearly shaped device 17 is shown having an optional confinement structure 18. Explosive charge 2, buffer element 3, fragments 4, and wrap element 5 are disposed within, mechanically fastened and/or adhered via techniques understood in the art, and thereby surrounded by the confinement structure 18, as shown in FIG. 7.
  • A typical confinement structure 18 is a box-like device having several lateral members 21 formed, fastened, attached, or adhered as is understood in the art. Exemplary lateral members 21 are planar shaped elements composed of a metal, plastic, or composite. Fragments 4 are disposed within the confinement structure 18 so as to avoid their contact with lateral members 21 during explosive launch.
  • Detonation schemes, fragment 4 variations, and mixed fragment 4 arrangements as described above for FIGS. 4-5 are equally applicable to the linearly shaped device 17.
  • The description above indicates that a great degree of flexibility is offered in terms of the present invention. Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.

Claims (20)

1. An ordnance device comprising:
(a) an explosive charge;
(b) a fragment layer including a plurality of preformed failure prone fragments;
(c) a metal buffer element disposed between said explosive charge and said fragment layer, said metal buffer element configured to attenuate an incident shock communicated into said fragment layer after detonation of said explosive charge, said preformed failure prone fragments of said fragment layer being arranged in a continuous fashion along said buffer element; and
(d) a wrap element having a first layer and a second layer, said first layer disposed between said second layer and said fragment layer opposite of said buffer element, said first layer composed of a compressible material of lower density than said second layer, said second layer configured to communicate a shock into said fragment layer to further attenuate said incident shock.
2. The ordnance device of claim 1, wherein said fragment layer further comprises a plurality of preformed inert fragments interspersed with said preformed failure prone fragments.
3. The ordnance device of claim 1, wherein said ordnance device is cylindrically shaped.
4. The ordnance device of claim 3, wherein said fragment layer further comprises a plurality of preformed inert fragments interspersed with said preformed failure prone fragments.
5. The ordnance device of claim 1, further comprising:
(e) a second buffer element disposed between said buffer element and said explosive charge, said second buffer element compressible and less dense than said buffer element.
6. The ordnance device of claim 5, wherein said ordnance device is cylindrically shaped.
7. The ordnance device of claim 6, further comprising a plurality of preformed inert fragments interspersed with said preformed failure prone fragments.
8. The ordnance device of claim 5, further comprising:
(f) a polymer-based intermediate layer disposed between and contacting said preformed failure prone fragments and said wrap element; and
(g) a polymer-based outer cover disposed along and contacting said second layer opposite of said first layer.
9. The ordnance device of claim 8, wherein said ordnance device is cylindrically shaped.
10. The ordnance device of claim 9, further comprising a plurality of preformed inert fragments interspersed with said preformed failure prone fragments.
11. The ordnance device of claim 9, wherein said preformed failure prone fragments have a width-to-charge-diameter ratio of approximately 0.07.
12. The ordnance device of claim 9, wherein said preformed failure prone fragments have a location dependent dimensional variability.
13. The ordnance device of claim 1, wherein said ordnance device is linearly shaped.
14. The ordnance device of claim 13, further comprising a plurality of preformed inert fragments interspersed with said preformed failure prone fragments.
15. The ordnance device of claim 13, further comprising:
(e) a confinement structure, said explosive charge, said buffer element, said preformed failure prone fragments and said wrap element disposed within said confinement structure in referenced order so as to allow launch of said preformed failure prone fragments unimpeded by said confinement structure.
16. The ordnance device of claim 15, wherein said preformed failure prone fragments have a location dependent dimensional variability.
17. The ordnance device of claim 15, further comprising a plurality of preformed inert fragments interspersed with said preformed failure prone fragments.
18. A method for launching a preformed failure prone fragments comprising the steps of:
(a) attenuating a first shock along a first surface of said preformed failure prone fragments;
(b) communicating a second shock into a second surface along said preformed failure prone fragments; and
(c) coupling said first shock and said second shock so as to reduce pressure and stress within said preformed failure prone fragments thereby avoiding mechanical failure.
19. The ordnance device of claim 2 wherein said preformed failure prone fragments have a width-to-charge-diameter ratio of approximately 0.07.
20. The ordnance device of claim 3 wherein:
said metal buffer element comprises a copper buffer element having a thickness of at least 0.064 inches; and
said explosive charge has a diameter of at least 4.85 inches.
US10/677,649 2003-09-30 2003-09-30 Ordnance device for launching failure prone fragments Abandoned US20050087088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/677,649 US20050087088A1 (en) 2003-09-30 2003-09-30 Ordnance device for launching failure prone fragments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/677,649 US20050087088A1 (en) 2003-09-30 2003-09-30 Ordnance device for launching failure prone fragments

Publications (1)

Publication Number Publication Date
US20050087088A1 true US20050087088A1 (en) 2005-04-28

Family

ID=34520515

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/677,649 Abandoned US20050087088A1 (en) 2003-09-30 2003-09-30 Ordnance device for launching failure prone fragments

Country Status (1)

Country Link
US (1) US20050087088A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272112A1 (en) * 2000-02-23 2007-11-29 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US20080035007A1 (en) * 2005-10-04 2008-02-14 Nielson Daniel B Reactive material enhanced projectiles and related methods
US7383775B1 (en) * 2005-09-06 2008-06-10 The United States Of America As Represented By The Secretary Of The Navy Reactive munition in a three-dimensionally rigid state
US20080229963A1 (en) * 2004-03-15 2008-09-25 Alliant Techsystems Inc. Reactive material enhanced munition compositions and projectiles containing same
US7770521B2 (en) 2005-06-03 2010-08-10 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US8015924B1 (en) * 2009-05-29 2011-09-13 The United States Of America As Represented By The Secretary Of The Air Force Linear cellular bomb case
US8061275B1 (en) * 2010-01-08 2011-11-22 The United States Of America As Represented By The Secretary Of The Army Warhead selectively releasing fragments of varied sizes and shapes
US8075715B2 (en) 2004-03-15 2011-12-13 Alliant Techsystems Inc. Reactive compositions including metal
JP2012132669A (en) * 2010-12-02 2012-07-12 Nippon Koki Co Ltd End projector type directional warhead
FR2978238A1 (en) * 2011-07-20 2013-01-25 Nexter Munitions Explosive ammunition e.g. ammunition fired by gun, has body containing explosive material and made of two fragmentable and concentric layers that are related to each other by hooping/welding and formed by single spirally rolled sheet
US8387539B1 (en) * 2010-05-10 2013-03-05 The United States Of America As Represented By The Secretary Of The Air Force Sculpted reactive liner with semi-cylindrical linear open cells
FR2993355A1 (en) * 2012-07-16 2014-01-17 Nexter Munitions Explosive ammunition for use in e.g. rocket, has body formed of two concentric fragmentable and inert layers, where body encloses explosive material i.e. explosive containing octogene, and having specific detonation velocity
US20140060374A1 (en) * 2011-01-28 2014-03-06 Eric Scheid Solid Lined Fabric and a Method For Making
US20140230682A1 (en) * 2012-06-01 2014-08-21 ATK Launch Systems Radial firing warhead system and method
USRE45899E1 (en) 2000-02-23 2016-02-23 Orbital Atk, Inc. Low temperature, extrudable, high density reactive materials
US20160258727A1 (en) * 2015-03-02 2016-09-08 Nostromo Holdings, Llc Low collateral damage bi-modal warhead assembly
US20160377398A1 (en) * 2015-06-28 2016-12-29 Aerojet Rocketdyne, Inc. Method for forming fragment wrap of a fragmentation structure
US10066915B1 (en) * 2016-09-21 2018-09-04 The United States Of America As Represented By The Secretary Of The Army Multi-purpose state changing munition
US20180252508A1 (en) * 2017-03-06 2018-09-06 Omnitek Partners Llc High Explosive Fragmentation Mortars
US10184763B2 (en) * 2014-02-11 2019-01-22 Raytheon Company Munition with nose kit connecting to aft casing connector
US20190033047A1 (en) * 2016-01-15 2019-01-31 Saab Bofors Dynamics Switzerland Ltd. Warhead
US10415939B2 (en) * 2014-03-14 2019-09-17 Hirtenberger Defence Europe GmbH Projectile
CN113446909A (en) * 2021-06-29 2021-09-28 中国人民解放军国防科技大学 Low equivalent toxic explosive gasbag recovery type explosion-proof structure
DE102020113411A1 (en) 2020-05-18 2021-11-18 Rheinmetall Waffe Munition Gmbh Device of a defense technology effector
CN115055686A (en) * 2022-08-17 2022-09-16 北京煜鼎增材制造研究院有限公司 Tungsten particle reinforced high-entropy alloy warhead and additive manufacturing method thereof
CN115388717A (en) * 2022-09-06 2022-11-25 上海机电工程研究所 Explosive magnetic reinforced explosive-killing warhead
US20230132848A1 (en) * 2020-03-19 2023-05-04 The Secretary Of State For Defence Casing for a fragmentation weapon, fragmentation weapon, and method of manufacture

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US374874A (en) * 1887-12-13 Alfred chrtstophe koerner
US735658A (en) * 1902-07-12 1903-08-04 Beverly W Dunn Shrapnel.
US3263612A (en) * 1961-02-10 1966-08-02 Aerojet General Co Fragmentation type weapon
US3938442A (en) * 1971-09-27 1976-02-17 The United States Of America As Represented By The Secretary Of The Army Serrated supporting keying system for a beehive projectile
US3945321A (en) * 1974-02-13 1976-03-23 Werkzeugmaschinenfabrik Oerlikon-Buhrle Ag Shell and method of manufacturing the same
US4089267A (en) * 1976-09-29 1978-05-16 The United States Of America As Represented By The Secretary Of The Army High fragmentation munition
US4492166A (en) * 1977-04-28 1985-01-08 Martin Marietta Corporation Submunition having terminal trajectory correction
US4648323A (en) * 1980-03-06 1987-03-10 Northrop Corporation Fragmentation munition
USH540H (en) * 1987-08-20 1988-11-01 The United States Of America As Represented By The Secretary Of The Army Explosive shock attenuator for high fragment velocity warheads
US4982668A (en) * 1988-07-06 1991-01-08 Rheinmetall Gmbh Fragmentation plate for the exterior of an explosive charge device
US5038686A (en) * 1985-11-08 1991-08-13 The United States Of America As Represented By The Secretary Of The Navy Spherical warhead
US5049212A (en) * 1991-03-27 1991-09-17 The United States Of America As Represented By The Secretary Of The Navy High energy explosive yield enhancer using microencapsulation
USH1048H (en) * 1991-08-05 1992-05-05 The United States Of America As Represented By The Secretary Of The Navy Composite fragmenting rod for a warhead case
US5131329A (en) * 1989-12-07 1992-07-21 Rheinmetall Gmbh Fragmentation projectile
US5313890A (en) * 1991-04-29 1994-05-24 Hughes Missile Systems Company Fragmentation warhead device
US5544589A (en) * 1991-09-06 1996-08-13 Daimler-Benz Aerospace Ag Fragmentation warhead
US5852256A (en) * 1979-03-16 1998-12-22 The United States Of America As Represented By The Secretary Of The Air Force Non-focusing active warhead
US5886293A (en) * 1998-02-25 1999-03-23 The United States Of America As Represented By The Secretary Of The Navy Preparation of magnesium-fluoropolymer pyrotechnic material
US6293201B1 (en) * 1999-11-18 2001-09-25 The United States Of America As Represented By The Secretary Of The Navy Chemically reactive fragmentation warhead
US6484642B1 (en) * 2000-11-02 2002-11-26 The United States Of America As Represented By The Secretary Of The Navy Fragmentation warhead
US6547993B1 (en) * 2001-05-09 2003-04-15 The United States Of America As Represented By The Secretary Of The Navy Process for making polytetrafluoroethylene-aluminum composite and product made

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US374874A (en) * 1887-12-13 Alfred chrtstophe koerner
US735658A (en) * 1902-07-12 1903-08-04 Beverly W Dunn Shrapnel.
US3263612A (en) * 1961-02-10 1966-08-02 Aerojet General Co Fragmentation type weapon
US3938442A (en) * 1971-09-27 1976-02-17 The United States Of America As Represented By The Secretary Of The Army Serrated supporting keying system for a beehive projectile
US3945321A (en) * 1974-02-13 1976-03-23 Werkzeugmaschinenfabrik Oerlikon-Buhrle Ag Shell and method of manufacturing the same
US4089267A (en) * 1976-09-29 1978-05-16 The United States Of America As Represented By The Secretary Of The Army High fragmentation munition
US4492166A (en) * 1977-04-28 1985-01-08 Martin Marietta Corporation Submunition having terminal trajectory correction
US5852256A (en) * 1979-03-16 1998-12-22 The United States Of America As Represented By The Secretary Of The Air Force Non-focusing active warhead
US4648323A (en) * 1980-03-06 1987-03-10 Northrop Corporation Fragmentation munition
US5038686A (en) * 1985-11-08 1991-08-13 The United States Of America As Represented By The Secretary Of The Navy Spherical warhead
USH540H (en) * 1987-08-20 1988-11-01 The United States Of America As Represented By The Secretary Of The Army Explosive shock attenuator for high fragment velocity warheads
US4982668A (en) * 1988-07-06 1991-01-08 Rheinmetall Gmbh Fragmentation plate for the exterior of an explosive charge device
US5131329A (en) * 1989-12-07 1992-07-21 Rheinmetall Gmbh Fragmentation projectile
US5049212A (en) * 1991-03-27 1991-09-17 The United States Of America As Represented By The Secretary Of The Navy High energy explosive yield enhancer using microencapsulation
US5313890A (en) * 1991-04-29 1994-05-24 Hughes Missile Systems Company Fragmentation warhead device
USH1048H (en) * 1991-08-05 1992-05-05 The United States Of America As Represented By The Secretary Of The Navy Composite fragmenting rod for a warhead case
US5544589A (en) * 1991-09-06 1996-08-13 Daimler-Benz Aerospace Ag Fragmentation warhead
US5886293A (en) * 1998-02-25 1999-03-23 The United States Of America As Represented By The Secretary Of The Navy Preparation of magnesium-fluoropolymer pyrotechnic material
US6293201B1 (en) * 1999-11-18 2001-09-25 The United States Of America As Represented By The Secretary Of The Navy Chemically reactive fragmentation warhead
US6484642B1 (en) * 2000-11-02 2002-11-26 The United States Of America As Represented By The Secretary Of The Navy Fragmentation warhead
US6547993B1 (en) * 2001-05-09 2003-04-15 The United States Of America As Represented By The Secretary Of The Navy Process for making polytetrafluoroethylene-aluminum composite and product made

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103641B2 (en) 2000-02-23 2015-08-11 Orbital Atk, Inc. Reactive material enhanced projectiles and related methods
USRE45899E1 (en) 2000-02-23 2016-02-23 Orbital Atk, Inc. Low temperature, extrudable, high density reactive materials
US20070272112A1 (en) * 2000-02-23 2007-11-29 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US7977420B2 (en) 2000-02-23 2011-07-12 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US9982981B2 (en) 2000-02-23 2018-05-29 Orbital Atk, Inc. Articles of ordnance including reactive material enhanced projectiles, and related methods
US8075715B2 (en) 2004-03-15 2011-12-13 Alliant Techsystems Inc. Reactive compositions including metal
US20080229963A1 (en) * 2004-03-15 2008-09-25 Alliant Techsystems Inc. Reactive material enhanced munition compositions and projectiles containing same
US8568541B2 (en) 2004-03-15 2013-10-29 Alliant Techsystems Inc. Reactive material compositions and projectiles containing same
US8361258B2 (en) 2004-03-15 2013-01-29 Alliant Techsystems Inc. Reactive compositions including metal
US7886666B2 (en) 2005-06-03 2011-02-15 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US8230789B1 (en) 2005-06-03 2012-07-31 Nowtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US8001879B2 (en) 2005-06-03 2011-08-23 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US20110100245A1 (en) * 2005-06-03 2011-05-05 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US7770521B2 (en) 2005-06-03 2010-08-10 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US7383775B1 (en) * 2005-09-06 2008-06-10 The United States Of America As Represented By The Secretary Of The Navy Reactive munition in a three-dimensionally rigid state
US8122833B2 (en) 2005-10-04 2012-02-28 Alliant Techsystems Inc. Reactive material enhanced projectiles and related methods
US20080035007A1 (en) * 2005-10-04 2008-02-14 Nielson Daniel B Reactive material enhanced projectiles and related methods
US8015924B1 (en) * 2009-05-29 2011-09-13 The United States Of America As Represented By The Secretary Of The Air Force Linear cellular bomb case
US8061275B1 (en) * 2010-01-08 2011-11-22 The United States Of America As Represented By The Secretary Of The Army Warhead selectively releasing fragments of varied sizes and shapes
US8387539B1 (en) * 2010-05-10 2013-03-05 The United States Of America As Represented By The Secretary Of The Air Force Sculpted reactive liner with semi-cylindrical linear open cells
JP2012132669A (en) * 2010-12-02 2012-07-12 Nippon Koki Co Ltd End projector type directional warhead
US8967049B2 (en) * 2011-01-28 2015-03-03 The United States Of America As Represented By The Secretary Of The Navy Solid lined fabric and a method for making
US20140060374A1 (en) * 2011-01-28 2014-03-06 Eric Scheid Solid Lined Fabric and a Method For Making
FR2978238A1 (en) * 2011-07-20 2013-01-25 Nexter Munitions Explosive ammunition e.g. ammunition fired by gun, has body containing explosive material and made of two fragmentable and concentric layers that are related to each other by hooping/welding and formed by single spirally rolled sheet
US9291437B2 (en) * 2012-06-01 2016-03-22 Orbital Atk, Inc. Radial firing warhead system and method
US20140230682A1 (en) * 2012-06-01 2014-08-21 ATK Launch Systems Radial firing warhead system and method
FR2993355A1 (en) * 2012-07-16 2014-01-17 Nexter Munitions Explosive ammunition for use in e.g. rocket, has body formed of two concentric fragmentable and inert layers, where body encloses explosive material i.e. explosive containing octogene, and having specific detonation velocity
US10184763B2 (en) * 2014-02-11 2019-01-22 Raytheon Company Munition with nose kit connecting to aft casing connector
US10267607B2 (en) * 2014-02-11 2019-04-23 Raytheon Company Munition with outer enclosure
US10415939B2 (en) * 2014-03-14 2019-09-17 Hirtenberger Defence Europe GmbH Projectile
US10648783B2 (en) * 2014-03-14 2020-05-12 Hirtenberger Defence Europe GmbH Projectile
US9759533B2 (en) * 2015-03-02 2017-09-12 Nostromo Holdings, Llc Low collateral damage bi-modal warhead assembly
US20160258727A1 (en) * 2015-03-02 2016-09-08 Nostromo Holdings, Llc Low collateral damage bi-modal warhead assembly
US10184767B2 (en) * 2015-06-28 2019-01-22 Aerojet Rocketdyne, Inc. Method for forming fragment wrap of a fragmentation structure
US20160377398A1 (en) * 2015-06-28 2016-12-29 Aerojet Rocketdyne, Inc. Method for forming fragment wrap of a fragmentation structure
US20190033047A1 (en) * 2016-01-15 2019-01-31 Saab Bofors Dynamics Switzerland Ltd. Warhead
US10612899B2 (en) * 2016-01-15 2020-04-07 Saab Bofors Dynamics Switzerland Ltd. Warhead
US10066915B1 (en) * 2016-09-21 2018-09-04 The United States Of America As Represented By The Secretary Of The Army Multi-purpose state changing munition
US20180252508A1 (en) * 2017-03-06 2018-09-06 Omnitek Partners Llc High Explosive Fragmentation Mortars
US11226181B2 (en) * 2017-03-06 2022-01-18 Omnitek Partners, L.L.C. High explosive fragmentation mortars
US20220136809A1 (en) * 2017-03-06 2022-05-05 Omnitek Partners Llc High explosive fragmentation mortars
US11578958B2 (en) * 2017-03-06 2023-02-14 Omnitek Partners Llc High explosive fragmentation mortars
US20230132848A1 (en) * 2020-03-19 2023-05-04 The Secretary Of State For Defence Casing for a fragmentation weapon, fragmentation weapon, and method of manufacture
DE102020113411A1 (en) 2020-05-18 2021-11-18 Rheinmetall Waffe Munition Gmbh Device of a defense technology effector
CN113446909A (en) * 2021-06-29 2021-09-28 中国人民解放军国防科技大学 Low equivalent toxic explosive gasbag recovery type explosion-proof structure
CN115055686A (en) * 2022-08-17 2022-09-16 北京煜鼎增材制造研究院有限公司 Tungsten particle reinforced high-entropy alloy warhead and additive manufacturing method thereof
CN115388717A (en) * 2022-09-06 2022-11-25 上海机电工程研究所 Explosive magnetic reinforced explosive-killing warhead

Similar Documents

Publication Publication Date Title
US20050087088A1 (en) Ordnance device for launching failure prone fragments
US4106410A (en) Layered fragmentation device
US9733049B1 (en) Reactive armor system and method
JP4199118B2 (en) Warhead with multiple projectiles aligned
EP0718590B1 (en) Fragmentation warhead having low velocity radial deployment with predetermined pattern
US7624682B2 (en) Kinetic energy rod warhead with lower deployment angles
US5165040A (en) Pre-stressed cartridge case
US8671841B2 (en) Kinetic munition or projectile with controlled, non-lethal effects
US7621222B2 (en) Kinetic energy rod warhead with lower deployment angles
US7194961B1 (en) Reactive composite projectiles with improved performance
US3263612A (en) Fragmentation type weapon
US9052164B2 (en) Dynamically stressed armor
EA001318B1 (en) Projectile or warhead
US20060162539A1 (en) Reactive protection arrangement
US9784541B1 (en) Increased lethality warhead for high acceleration environments
JP4430070B2 (en) Kinetic energy rod-type warhead with reduced emission angle
US11359901B1 (en) Munitions and methods for operating same
WO2014181226A2 (en) Armor
US20050109234A1 (en) Kinetic energy rod warhead with lower deployment angles
EP3365578B1 (en) Munition comprising a shock attenuation device with stacked nonviscoelastic layers
WO2006087699A2 (en) Armor assembly
US8707868B2 (en) Pre-compressed penetrator element for projectile
US20230132848A1 (en) Casing for a fragmentation weapon, fragmentation weapon, and method of manufacture
RU2009387C1 (en) Process of manufacture of device for localization of explosion products
US20120119015A1 (en) Actuators For Gun-Fired Projectiles and Mortars

Legal Events

Date Code Title Description
AS Assignment

Owner name: NAVY, SECRETARY OF THE, UNITED STATES OF AMERICA A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LACY, E. WILLIS;WAGGENER, SAMUEL S.;GRUDZA, MAURICE E.;AND OTHERS;REEL/FRAME:015016/0437;SIGNING DATES FROM 20040122 TO 20040205

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION