US20050115845A1 - Cap device for mixing different kinds of materials separately contained therein and in bottle - Google Patents

Cap device for mixing different kinds of materials separately contained therein and in bottle Download PDF

Info

Publication number
US20050115845A1
US20050115845A1 US10/995,700 US99570004A US2005115845A1 US 20050115845 A1 US20050115845 A1 US 20050115845A1 US 99570004 A US99570004 A US 99570004A US 2005115845 A1 US2005115845 A1 US 2005115845A1
Authority
US
United States
Prior art keywords
cap body
cap
additive
bottle
additive container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/995,700
Inventor
Young Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020030085338A external-priority patent/KR100571711B1/en
Application filed by Individual filed Critical Individual
Publication of US20050115845A1 publication Critical patent/US20050115845A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
    • B65D51/28Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials
    • B65D51/2807Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials the closure presenting means for placing the additional articles or materials in contact with the main contents by acting on a part of the closure without removing the closure, e.g. by pushing down, pulling up, rotating or turning a part of the closure, or upon initial opening of the container
    • B65D51/2857Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials the closure presenting means for placing the additional articles or materials in contact with the main contents by acting on a part of the closure without removing the closure, e.g. by pushing down, pulling up, rotating or turning a part of the closure, or upon initial opening of the container the additional article or materials being released by displacing or removing an element enclosing it
    • B65D51/2878Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials the closure presenting means for placing the additional articles or materials in contact with the main contents by acting on a part of the closure without removing the closure, e.g. by pushing down, pulling up, rotating or turning a part of the closure, or upon initial opening of the container the additional article or materials being released by displacing or removing an element enclosing it the element being a lid or cover seated on a passage between the auxiliary container and the main container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
    • B65D51/28Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials
    • B65D51/2807Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials the closure presenting means for placing the additional articles or materials in contact with the main contents by acting on a part of the closure without removing the closure, e.g. by pushing down, pulling up, rotating or turning a part of the closure, or upon initial opening of the container
    • B65D51/2857Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials the closure presenting means for placing the additional articles or materials in contact with the main contents by acting on a part of the closure without removing the closure, e.g. by pushing down, pulling up, rotating or turning a part of the closure, or upon initial opening of the container the additional article or materials being released by displacing or removing an element enclosing it
    • B65D51/2864Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials the closure presenting means for placing the additional articles or materials in contact with the main contents by acting on a part of the closure without removing the closure, e.g. by pushing down, pulling up, rotating or turning a part of the closure, or upon initial opening of the container the additional article or materials being released by displacing or removing an element enclosing it the element being a plug or like element closing a passage between the auxiliary container and the main container

Definitions

  • the present invention relates, in general, to caps for bottles which contain therein a variety of materials, such as drinks, liquid medicines or liquid chemicals. More particularly, the present invention relates to a cap device for such bottles, which is capable of mixing an additive contained within the cap device with a bottled material to prepare a mixture according to a simple rotating action of the cap device relative to a bottle, thus allowing a user to easily prepare the mixture just before drinking or using the mixture.
  • the user roughly measures the amount of the additive to be added to the bottled material. Therefore, in the case of mixing of an additive with a bottled drink to produce a mixed beverage, the rough measurement of the amount of the additive may result in change in taste and quality of the mixed beverage. In the case of mixing of an additive with a bottled liquid medicine or a bottled liquid chemical to produce a mixed medicine or a mixed chemical, the rough measurement of the amount of the additive may result in incomplete dissolution of effective ingredients of the additive in the medicine or the chemical and a failure of accomplishment of desired medical or chemical effects of the mixed medicine or the mixed chemical.
  • mixtures are prepared by manufacturers at factories and are marketed in a bottled state, in place of allowing users to mix additives with bottled materials to prepare mixtures just before drinking or using the mixtures, it is possible to avoid the above-described problems experienced in the mixing of the additives with the bottled materials performed by the users.
  • the mixtures which are prepared by the manufacturers and marketed in the bottled state are problematic in that the effects of ingredients of the bottled mixtures may be gradually degraded as time goes by, in addition to change in colors of the mixtures.
  • the bottled mixtures may generate floating matters and deposit therein with passage of time.
  • a cap device for bottles which is capable of mixing an additive contained therein with a material contained in a bottle to prepare a mixture, in Korean Patent Application No. 10-2002-31470.
  • a plurality of radial ribs are provided at a valve means, and are supported at outside ends thereof on an inner surface of a neck of the bottle.
  • the outside ends of the above radial ribs are formed as free ends, the radial ribs may be easily bent or deformed. Therefore, the valve means may be easily displaced in the neck of the bottle.
  • the present invention has been made keeping in mind the above problems occurring in the related art, for example, Korean Patent Application No. 10-2002-31470, and it is an aspect of the present invention to provide a cap device for bottles, which is capable of mixing an additive contained therein with a bottled material to prepare a mixture according to a simple rotating action of the cap device relative to a bottle, performed by a user, thereby allowing the user to easily prepare the mixture just before drinking or using the mixture.
  • a cap device for bottles having a cap body tightened to a mouth of a bottle through screw-type engagement with a funnel part integrally formed in the cap body to discharge an additive from the cap body into the bottle through a lower end thereof.
  • the cap device has a cap cover provided on the cap body to cover an open upper end of the cap body while defining a space inside both the cap body and the cap cover to contain the additive in the space.
  • the cap device further has a valve means for opening or closing the lower end of the funnel part of the cap body according to a rotating action of the cap body relative to the externally threaded mouth of the bottle, wherein the valve means comprises a valve member having: a conical valve part to be brought into close contact with or spaced apart from the lower end of the funnel part of the cap body, thereby closing or opening the lower end of the funnel part, respectively.
  • the valve means comprises a valve member having: a conical valve part to be brought into close contact with or spaced apart from the lower end of the funnel part of the cap body, thereby closing or opening the lower end of the funnel part, respectively.
  • a plurality of radial ribs extending outward from an external surface of the conical valve part in radial directions, and a ring is integrated with the outside ends of the radial ribs for attachment to an inner surface of a neck of the bottle.
  • the conical valve part can have an upwardly protruding shank having an external threading on its side surface
  • a cap device for bottles comprising: a cap body tightened to a mouth of a bottle through screw-type engagement, the cap body being opened at an upper end thereof, with a cylindrical space defined in the cap body and valve means provided in the cap body at a lower end of the cylindrical space; an additive container having a space to contain an additive therein, the additive container being received in the cylindrical space of the cap body, with a discharging port provided on a lower end of the additive container to come in close contact with the valve means of the cap body, and an upper end of the additive container being opened and projected upward from the open upper end of the cap body; a cap cover tightened to the open upper end of the cap body through screw-type engagement; and a means for locking the cap cover to the upper end of the additive container.
  • a cap device for bottles comprising: a cap body tightened to a mouth of a bottle through screw-type engagement, the cap body being opened at an upper end thereof, with a cylindrical space defined in the cap body and valve means provided in the cap body at a lower end of the cylindrical space; an additive container having a space to contain an additive therein, the additive container being received in the cylindrical space of the cap body, with a discharging opening provided on a lower end of the additive container to come in close contact with the valve means of the cap body, and an upper end of the additive container being opened and projected upward from the open upper end of the cap body; a control unit assembled with the open upper end of the cap body to rotate relative to the cap body, with an internal thead provided on an inner circumferential surface of the control unit to be tightened to an outer circumferential surface of the upper end of the additive container through screw-type engagement, so that the control unit controls a vertical movement of the additive container; and a cap cover tightened to an
  • a cap device for bottles comprising: a cap body tightened to an open lower end of a bottle through screw-type engagement, the cap body being opened at a lower end thereof, with a cylindrical space defined in the cap body and valve means provided in the cap body at an upper end of the cylindrical space; an additive container having a space to contain an additive therein, the additive container being received in the cylindrical space of the cap body, with a discharging opening provided on an upper end of the additive container to come in close contact with the valve means of the cap body, and a lower end of the additive container being opened and projected downward from the open lower end of the cap body; and a control unit having a cup shape which is closed at a bottom thereof, the control unit being assembled with the open lower end of the cap body to rotate relative to the cap body, with an internal thread provided on an inner circumferential surface of the control unit to be tightened to an outer circumferential surface of the lower end of the additive container through screw-type engagement, so that the control unit
  • FIG. 1 is an exploded perspective view showing a construction of a cap device, according to a first embodiment of the present invention
  • FIG. 2 is a perspective view of the cap device of FIG. 1 , when the assembled cap device is tightened to a mouth of a bottle;
  • FIGS. 3 a and 3 b are sectional views showing an operation of the cap device of FIG. 1 ;
  • FIG. 4 a is a perspective view of a valve means of the cap device, according to a second embodiment of the present invention.
  • FIG. 4 b is a sectional view showing an operation of the valve means of FIG. 4 a , which is installed in the cap device tightened to a mouth of a bottle;
  • FIG. 5 is a perspective view of a cap device according to a third embodiment of the present invention, when the cap device is tightened to a mouth of a bottle;
  • FIG. 6 is a sectional view showing a construction of the cap device of FIG. 5 ;
  • FIGS. 7 a , 7 b and 7 c are sectional views showing an operation of the cap device of FIG. 5 ;
  • FIG. 8 is an exploded perspective view of the cap device of FIG. 5 ;
  • FIG. 9 is a sectional view of a cap device according to a fourth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle;
  • FIG. 10 is a sectional view of a cap device according to a fifth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle;
  • FIG. 11 is a sectional view of a cap device according to a sixth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle;
  • FIG. 12 is a sectional view of a cap device according to a seventh embodiment of the present invention.
  • FIGS. 1 through 3 b are views of a cap device for bottles according to the first embodiment of the present invention.
  • the cap device according to the first embodiment of the present invention comprises a cap body 50 , and a cap cover 100 provided on the cap body 50 to define a space therein to contain an additive in the space.
  • the cap device further has a valve means to allow the space defined by both the cap body 50 and the cap cover 100 to selectively communicate with an interior of a bottle 13 .
  • the cap body 50 is tightened to an externally threaded mouth 12 of the bottle 13 , with a funnel part 52 integrally formed in the cap body 50 to discharge the additive into the bottle 13 through a lower end thereof.
  • the cap cover 100 is provided on the cap body 50 to cover an open upper end of the cap body 50 while defining the space inside both the cap body 50 and the cap cover 100 to contain the additive in the space.
  • the valve means comprises a valve member V having a conical valve part 14 acting as a valve seat to be brought into close contact with or spaced apart from the lower end of the funnel part 52 of the cap body 50 .
  • the conical valve part 14 of the valve member V thus closes or opens the lower end of the funnel part 52 according to the rotating action of the cap body 50 relative to the externally threaded mouth 12 of the bottle 13 .
  • a plurality of radial ribs 124 extend outward from an external surface of the conical valve part 14 in radial directions such that outside ends of the radial ribs 124 are supported on the inner surface of a neck of the bottle 13 .
  • a circular ring 24 having a predetermined thickness integrally surrounds the outside ends of the radial ribs 124 .
  • the valve means separates from the lower end of the funnel part 52 , thus, opening the lower end of the funnel part 52 of the cap body 50 . Therefore, the space defined by the cap body 50 and the cap cover 100 of the cap device communicates with the interior of the bottle 13 , as shown in FIGS. 3 a and 3 b .
  • the additive is thus discharged from the space defined by the cap body 50 and the cap cover 100 into the bottle 13 to be mixed with a material contained in the bottle 13 to produce a mixture.
  • a vacuum pressure may act on the surface of the additive contained in the space of the cap device, when the cap cover 100 is completely closed.
  • the additive cannot smoothly flow from the space of the cap device into the bottle 13 , even when the space communicates with the interior of the bottle 13 by an operation of the valve means.
  • a small vent hole provided with a valve cock C to open or close the vent hole is formed at a top surface of the cap cover 100 .
  • valve cock C When the valve cock C opens the vent hole, atmospheric air is introduced into the space of the cap device through the vent hole, thereby preventing any vacuum pressure from acting on the surface of the additive in the space.
  • the additive thus smoothly flows from the space of the cap device into the bottle 13 , so that the additive is easily added to the material in the bottle 13 to produce a desired mixture.
  • FIGS. 4 a and 4 b are views of a valve means of the cap device, according to the second embodiment of the present invention.
  • a sealing means is provided at a junction between the valve member V and the lower end of the funnel part 52 of the cap body 50 , thus accomplishing an airtight or watertight sealing effect at the junction.
  • the sealing means is provided at the conical valve part 14 of the valve member V. That is, the sealing means comprises a plugging shank 14 S of a conical valve body extending upward from a valve holder 14 T of the valve part 14 . An external thread is formed around the plugging shank 14 S, such that the external thread of the plugging shank 14 S has the same pitch as an internal thread of the lower end of the funnel part 52 of the cap body 50 . In order to engage with the external thread of the plugging shank 14 S, the lower end of the funnel part 52 is provided with an engaging part 52 S on an internal surface thereof. Due to the sealing means, the desired sealing effect at the junction between the valve member V and the funnel part 52 is accomplished.
  • the cap body 50 of the cap device When the cap body 50 of the cap device is rotated to move up relative to the externally threaded mouth 12 of the bottle 13 , the lower end of the funnel part 52 is rotated to move in the same direction relative to the plugging shank 14 S. In such a case, the internal thread 52 S of the funnel part 52 moves upward along the external thread of the plugging shank 14 S to open the lower end of the funnel part 52 . Due to the screw-type engagement of the valve member V with the lower end of the funnel part 52 , it is possible to accomplish the airtight or watertight sealing effect at the junction between the valve member V and the lower end of the funnel part 52 .
  • FIGS. 5 through 8 are views of a cap device according to a third embodiment of the present invention.
  • the cap device according to the third embodiment of the present invention includes a cap body 100 B, an additive container 50 and a cap cover 100 A.
  • the cap body 100 B is tightened to an externally threaded mouth 10 of a bottle 13 , and defines a cylindrical space 103 inside the mouth 10 when the cap body 100 B is tightened to the mouth 10 .
  • the additive container 50 is received in the cylindrical space 103 of the cap body 100 B and has a space 51 therein to contain an additive in the space 51 .
  • the cap cover 100 A is tightened to an open upper end of the cap body 100 B to cover the open upper end of the cap body 100 B.
  • the cap body 100 B has a double-walled structure at a lower portion thereof, as shown in FIG. 6 .
  • the double-walled structure of the cap body 100 B includes an outer sidewall 101 and an inner sidewall 102 .
  • the outer sidewall 101 has an internal thread on an inner circumferential surface thereof for engagement to externally threading formed on the mouth 10 of the bottle 13 .
  • the cylindrical space 103 is defined inside the inner sidewall 102 with a valve means 222 provided in the inner sidewall 102 of the cap body 100 B at a lower end of the cylindrical space 103 . As best seen in FIG.
  • the valve means 222 includes a plurality of radial ribs 222 - 1 which extend inward from the inner sidewall 102 of the cap body 100 B in radial directions at the lower end of the cylindrical space 103 .
  • the valve means 222 further includes a circular valve part integrated with inside ends of the radial ribs 222 - 1 .
  • the circular valve part has both an annular groove part 222 - 2 and a dome part 222 - 3 .
  • the dome part 222 - 3 is provided on a central area of the valve part, while the annular groove part 222 - 2 is provided around the dome part 222 - 3 .
  • the annular groove part 222 - 2 is inclined upward and outward on an outside surface thereof, thus providing a first inclined surface.
  • the radial ribs 222 - 1 , the annular groove part 222 - 2 and the dome part 222 - 3 are integrated with each other into a single structure.
  • the circular valve part having the annular groove part 222 - 2 and the dome part 222 - 3 is brought into close contact with a flanged discharging port 52 of the container 50 , as will be described in detail later herein, thus executing a valve function.
  • the additive flows from the space 51 of the container 50 into the bottle 13 through a plurality of spaces defined between the radial ribs 222 - 1 , thus being added to a bottled material to prepare a desired mixture.
  • the inner sidewall 102 of the cap body 100 B is inserted into the mouth 10 of the bottle 13 when the cap body 100 B is tightened to the mouth 10 of the bottle 13 .
  • the cap body 100 B is also opened at the upper end thereof, thus having the open upper end 104 . That is, the open upper end 104 of the cap body 100 B is projected upward from the remaining part of the cap body 100 B, and has an external thread on the outer circumferential surface thereof, with a plurality of air paths 105 (see FIG. 8 ) vertically provided on the externally threaded outer circumferential surface of the open upper end 104 of the cap body 100 B.
  • the air paths 105 guide atmospheric air to a vent hole H of the additive container 50 , as will be described in detail later herein.
  • the additive container 50 which is a cylindrical body, is opened at the upper and lower ends thereof, as shown in FIG. 6 .
  • the additive container 50 has the flanged discharging port 52 at a bottom wall thereof.
  • the flanged discharging port 52 is projected downward from the bottom wall of the container 50 , and is inclined upward and inward on a lower end surface thereof, thus providing a second inclined surface, as best seen in FIG. 6 .
  • the flanged discharging port 52 is able to be in close contact with the annular groove 222 - 2 of the valve means 222 of the cap body 100 B when the valve means 222 is closing the discharging port 52 .
  • the flanged discharging port 52 is in linear contact with the annular groove 222 - 2 of the valve means 222 , thus providing a higher contact pressure which prevents the additive from undesirably leaking from the container 50 into the bottle 13 .
  • the additive container 50 defines the space 51 therein to contain the additive in the space 51 .
  • the additive container 50 is also rounded along an inside corner of the bottom wall thereof, thus providing a rounded surface S on the inside corner of the bottom wall. Due to the rounded surface S, the additive is smoothly discharged from the space 51 of the container 50 into the bottle 13 through the flanged discharging port 52 in response to an operation of the valve means 222 to open the flanged discharging port 52 .
  • the cap device of the third embodiment further includes a means for locking the cap cover 100 A to the upper end of the additive container 50 while allowing the container 50 to move vertically, in conjunction with a rotation of the cap cover 100 A.
  • the locking means includes an outside locking part 53 that is provided around the outer circumferential surface of the upper end of the additive container 50 .
  • the locking means further includes an inside locking part 111 that is provided around the inner circumferential surface of the cap cover 100 A to engage with the outside locking part 53 of the container 50 .
  • the additive container 50 is locked to the cap cover 100 A by engagement of the outside locking part 53 with the inside locking part 111 , so that the cap cover 100 A is removed from the container 50 when the cap cover 100 A is rotated with an external rotating force which is stronger than a predetermined reference force.
  • the container 50 moves vertically in conjunction with the rotation of the cap cover 100 A.
  • the additive container 50 has the vent hole H at a predetermined position on the upper portion of a sidewall thereof.
  • the vent hole H of the container 50 is closed by the upper end 104 of the cap body 100 B.
  • the cap cover 100 A is loosened from the upper end 104 of the cap body 100 B as shown in FIG. 7 a , the upper portion of the container 50 having the vent hole H moves upward so that the vent hole H is exposed above the upper end 104 of the cap body 100 B.
  • atmospheric air is guided into the container 50 via the air paths 105 (see FIG. 8 ) of the cap body 100 B and the vent hole H of the container 50 .
  • the cap device of the third embodiment further includes a stop protrusion 54 .
  • the stop protrusion 54 is an annular ring which is provided around the outer circumferential surface of the additive container 50 at an intermediate position.
  • the stop protrusion 54 limits an upward movement of the additive container 50 within a predetermined range. That is, the stop protrusion 54 of the container 50 is stopped by the cap body 100 A during the upward movement of the container 50 , thus limiting the upward movement of the container 50 within the predetermined range.
  • the provision of the stop protrusion 54 on the container 50 is to accomplish the following operational effect. That is, at a last stage of loosening the cap cover 100 A from the cap body 100 B, the stop protrusion 54 of the container 50 is stopped by the cap body 100 A.
  • the inside locking part 111 of the cap cover 100 A escapes from the outside locking part 53 of the container 50 , so that the cap cover 100 A can be completely removed from the cap body 100 B.
  • the locking force to lock the inside locking part 111 of the cap cover 100 A to the outside locking part 53 of the container 50 allows the container 50 to move upward in the vertical direction by the rotation of the cap cover 100 A until the stop protrusion 54 of the container 50 is stopped by the cap body 100 A.
  • the locking force to lock the inside locking part 11 of the cap cover 100 A to the outside locking part 53 of the container 50 cannot remove the stop protrusion 54 from the cap body 100 B. Therefore, when the cap cover 100 A in the above state is further rotated with the external rotating force which is stronger than the predetermined reference force, the inside locking part 111 of the cap cover 100 A forcibly escapes from the outside locking part 53 of the container 50 . Thus, the cap cover 100 A can be completely removed from the cap body 100 B.
  • the cap cover 100 A is tightened to the open upper end 104 of the cap body 100 B through screw-type engagement.
  • the cap cover 100 A has the inside locking part 111 on the inner circumferential surface thereof, as described above.
  • the inside locking part 111 of the cap cover 100 A is locked to the outside locking part 53 of the container 50 .
  • the inside locking part 111 and the outside locking part 53 constitute the locking means which locks the cap cover 100 A to the container 50 .
  • cap cover 100 A When the cap cover 100 A is fully tightened to the open upper end 104 of the cap body 100 B through the screw-type engagement, the cap cover 100 A closes and seals the open upper end 104 of the cap body 100 B.
  • the cap cover 100 A is fully tightened to the open upper end 104 of the cap body 100 B through the screw-type engagement, thus sealing the space 51 of the container 50 which contains both the additive and the compressed gas therein.
  • an example of the additive to be contained in the container 50 can be powdered green tea or medical drugs in the form of granules or powders, while an example of the compressed gas to be injected into the container 50 can be nitrogen gas or air.
  • the cap device with both the additive and the compressed gas contained in the sealed space 51 of the container 50 is shown in FIG. 6 .
  • the cap cover 100 A is rotated to slightly open the cap device, as shown in FIG. 7 a .
  • the flanged discharging port 52 of the container 50 is slightly spaced apart from the annular groove 222 - 2 (see FIG. 6 ) of the valve means 222 of the cap body 100 B.
  • the additive is discharged from the space 51 of the container 50 into the bottle 13 through the plurality of spaces defined between the radial ribs 222 - 1 (see FIG. 6 ) and added to the bottled material to prepare the desired mixture.
  • the compressed gas in the space 51 promotes the discharge of the additive.
  • the slightly opened cap cover 100 A is further rotated to further open the cap device, as shown in FIG. 7 b , the upper portion of the container 50 having the vent hole H moves upward so that the vent hole H is exposed above the upper end 104 of the cap body 100 B.
  • the vent hole H communicates with the atmosphere through the air paths 105 (see FIG. 8 ) which are provided on the outer circumferential surface of the upper end 104 of the cap body 100 B. Therefore, atmospheric air is guided into the space 51 of the container 50 through the air paths 105 and the vent hole H to allow the additive to be almost completely discharged from the space 51 into the bottle 13 , due to gravity.
  • the cap cover 100 A in the above state is further rotated by an external rotating force which is stronger than the predetermined reference force, the inside locking part 111 of the cap cover 100 A forcibly escapes from the outside locking part 53 of the container 50 .
  • the cap cover 100 A is completely removed from the cap body 100 B.
  • a user can drink or use the mixture by discharging the mixture from the bottle 13 through the open upper end of the container 50 .
  • the entire part of the cap device may be completely removed from the mouth 10 of the bottle 13 , as desired, by loosening the cap body 100 B from the mouth 10 of the bottle 13 .
  • the cap device in the state of FIG. 6 may be completely removed from the mouth 10 of the bottle 13 by loosening the cap body 100 B from the mouth 10 of the bottle 13 .
  • FIG. 9 is a sectional view of a cap device according to a fourth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle.
  • the cap device according to the fourth embodiment of the present invention comprises a cap body 100 B, an additive container 50 and a cap cover 100 A.
  • the cap body 100 B is tightened to an externally threaded mouth 10 of a bottle 13 , and defines a cylindrical space 103 inside the mouth 10 when the cap body 100 B is tightened to the mouth 10 .
  • the additive container 50 is received in the cylindrical space 103 of the cap body 100 B and has a space 51 therein to contain an additive in the space 51 .
  • the cap cover 100 A is tightened to an open upper end of the cap body 100 B to cover the open upper end of the cap body 100 B.
  • the cap body 100 B has a double-walled structure at a lower portion thereof, in the same manner as that described for the third embodiment of the present invention.
  • the double-walled structure of the cap body 100 B includes an outer sidewall 101 and an inner sidewall 102 .
  • a valve means 222 is provided in the inner sidewall 102 of the cap body 100 B at a lower end of the cylindrical space 103 .
  • the valve means 222 according to the fourth embodiment includes a plurality of vertical ribs 222 - 1 which extend downward from the cap body 100 B in vertical directions at the lower end of the cylindrical space 103 of the cap body 100 B.
  • the valve means 222 further includes a circular valve part integrated with lower ends of the radial ribs 222 - 1 .
  • the circular valve part has a dome part 222 - 3 which is provided on a central area of the valve part.
  • the general shape of the additive container 50 according to the fourth embodiment remains the same as that described for the third embodiment.
  • the additive container 50 according to the fourth embodiment does not have any stop projection on the circumferential outer surface thereof, and the lower end of the container 50 has no bottom wall, but linearly extends downward, thus forming a wide discharging opening 52 , different from the third embodiment.
  • the lower end surface of the discharging opening 52 of the container 50 is inclined upward and inward, thus providing an inclined surface.
  • the discharging opening 52 of the container 50 is brought into close contact with the dome part 222 - 3 of the valve means 222 at the inclined surface thereof.
  • the container 50 can contain therein a semisolid additive, such as ice cream, mustard sauce, thick soypaste mixed with red peppers or mayonnaise, while the bottle 13 can contain therein a desired material, such as a soda pop, a functional beverage, or soybean sauce.
  • a semisolid additive such as ice cream, mustard sauce, thick soypaste mixed with red peppers or mayonnaise
  • a desired material such as a soda pop, a functional beverage, or soybean sauce.
  • the cap cover 100 A is rotated relative to the cap body 100 B.
  • the container 50 moves upward in the vertical direction. Therefore, the ice cream is discharged from the space 51 of the container 50 into the bottle 13 through a plurality of wide spaces defined between the vertical ribs 222 - 1 , thus being added to the soda pop in the bottle 13 to prepare the desired mixture.
  • a user shakes the bottle 13 in the above state it is possible to more easily and quickly mix the ice cream with the soda pop.
  • FIG. 10 is a sectional view of a cap device according to a fifth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle.
  • the cap device according to the fifth embodiment comprises a cap body 100 B which is tightened to the mouth 10 of the bottle 13 through screw-type engagement.
  • the cap body 100 B defines a cylindrical space 103 therein.
  • the cap device further includes an additive container 50 having a space 51 to contain an additive therein.
  • the additive container 50 is received in the cylindrical space 103 of the cap body 100 B.
  • the cap device further includes a cylindrical control unit 100 C which is assembled with the open upper end of the cap body 100 B by an engaging ring 113 to rotate relative to the cap body 100 B, with an internal thread provided on an inner circumferential surface of the control unit 100 C to be tightened to an outer circumferential surface of the upper end of the additive container 50 through screw-type engagement.
  • the control unit 100 C controls a vertical movement of the additive container 50 .
  • the cap device further includes a cap cover 100 A which is tightened to the upper end of the control unit 100 C.
  • an O-ring 112 is provided at a junction between the cap body 100 B and the control unit 100 C to accomplish a sealing effect at the junction.
  • the engaging ring 113 extends upward from the upper end surface of the cap body 100 B, and is inserted into an annular groove which is formed along the lower end of the control unit 100 C.
  • the cylindrical control unit 100 C rotates relative to the cap body 100 B.
  • the cap device according to the fifth embodiment further includes a valve means 222 with the same construction as that of the fourth embodiment.
  • the cylindrical control unit 100 C is tightened to the outer circumferential surface of the upper end of the additive container 50 through the screw-type engagement.
  • the container 50 moves upward and downward in a vertical direction by a rotation of the control unit 100 C.
  • the container 50 functions well for containing therein and discharging a semisolid additive, such as ice cream, mustard sauce, thick soypaste mixed with red peppers or mayonnaise, while the bottle 13 contains therein a desired material, such as a soda pop, a functional beverage, or soybean sauce.
  • FIG. 11 is a sectional view of a cap device according to a sixth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle.
  • the cap device according to the sixth embodiment includes a cap body 100 B which is tightened to the mouth 10 of the bottle 13 through screw-type engagement.
  • the cap body 100 B defines a cylindrical space 103 therein.
  • the cap device further includes an additive container 50 having a space 51 to contain an additive therein.
  • the additive container 50 is received in the cylindrical space 103 of the cap body 100 B.
  • the cap device further includes a cylindrical control unit 100 C which is assembled with the open upper end of the cap body 100 B by an engaging ring 113 to rotate relative to the cap body 100 B.
  • the engaging ring 113 extends upward from the upper end surface of the cap body 100 B.
  • the cap device further includes a cap cover 100 A which is tightened to the upper end of the control unit 100 C.
  • both the inner sidewall of the cap body 100 B and the additive container 50 extend downward from a neck into an interior of the bottle 13 to a predetermined length.
  • the cylindrical control unit 100 C extends upward to a length which corresponds to the length of the downward extensions of both the cap body 100 B and the additive container 50 .
  • the cap cover 100 A is made of a plastic material, with a discharging hole 114 provided on the top wall of the cap cover 100 A.
  • the discharging hole 114 of the cap cover 100 A may be provided with a cap (not shown).
  • both the cap body 100 B and the additive container 50 extend downward from the neck into the interior of the bottle 13 as described above, a user easily mixes the additive with the bottled material to prepare a desired mixture.
  • the bottle 13 may be made of a soft plastic material which allows the user to discharge the mixture from the bottle 13 to the outside through the discharging hole 114 by compressing the bottle 13 .
  • FIG. 12 is a sectional view of a cap device according to a seventh embodiment of the present invention, when the cap device is tightened to a mouth of a bottle.
  • the cap device according to the seventh embodiment includes a cap body 100 B which is tightened to an open lower end 10 of the bottle 13 through screw-type engagement.
  • the cap body 100 B is opened at a lower end thereof, with a cylindrical space 103 defined in the cap body 100 B and a valve means 222 provided in the cap body 100 B at an upper end of the cylindrical space 103 .
  • the cap device further includes an additive container 50 which has a space 51 to contain an additive therein.
  • the additive container 50 is received in the cylindrical space 103 of the cap body 10 B, with a discharging opening 52 provided on an upper end of the additive container 50 to come in close contact with the valve means 222 of the cap body 100 B.
  • a lower end of the additive container 50 is opened and projected downward from the open lower end of the cap body 100 B.
  • the cap device further includes a cylindrical control unit 100 C.
  • the cylindrical control unit 100 C is assembled with the open lower end of the cap body 100 B by an engaging ring 113 to rotate relative to the cap body 100 B, with an internal thread provided on an inner circumferential surface of the control unit 100 C to be tightened to an outer circumferential surface of the lower end of the additive container 50 through screw-type engagement.
  • the control unit 100 C thus controls a vertical movement of the additive container 50 .
  • the control unit 100 C has a cup shape with a closed bottom, thus serving as a cap cover.
  • the cap device according to the seventh embodiment is provided at the lower end of the bottle 13 , different from the sixth embodiment in which the cap device is provided at the mouth of the bottle, the cap device according to the seventh embodiment provides the same operation and effect as those of the sixth embodiment.

Abstract

A cap device for bottles allows an additive and a material to be separately stored in the cap device and a bottle, thus preventing the additive from being undesirably added to the bottled material. Furthermore, the cap device may contain a semisolid additive therein, as desired, thus allowing a user to mix the semisolid additive with the bottled material to prepare a mixture. The cap device has a cap body tightened to a mouth or an open lower end of the bottle, with an additive discharging means provided in the cap body to discharge the additive from a space inside the cap body into the bottle. The cap device further has a valve means for opening or closing the discharging means, according to a rotating action of the cap device relative to the bottle. The valve means includes a valve part which is brought into close contact with or spaced apart from the discharging means, thus closing or opening the discharging means to allow the additive to be discharged into the bottle to prepare the mixture. The valve means further includes a plurality of radial or vertical ribs which are integrated with the valve part into a single structure.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates, in general, to caps for bottles which contain therein a variety of materials, such as drinks, liquid medicines or liquid chemicals. More particularly, the present invention relates to a cap device for such bottles, which is capable of mixing an additive contained within the cap device with a bottled material to prepare a mixture according to a simple rotating action of the cap device relative to a bottle, thus allowing a user to easily prepare the mixture just before drinking or using the mixture.
  • 2. Description of the Related Art
  • In the related art, most of conventional disposable bottles circulated and sold in markets each contain therein only a single kind of material, such as a drink, a liquid medicine or a liquid chemical, and are closed by caps at mouths thereof. When a user wants to add an additive to the material contained in such a capped bottle so as to prepare a mixture prior to drinking or using the mixture, the user must add the additive from a separate container to the bottled material after removing a cap from the bottle. Therefore, it is necessary for manufacturers of the additives and the bottled materials to contain such additives and materials in separate containers and bottles prior to marketing them, thus undesirably wasting natural resources due to the production of the separate containers and capped bottles. In addition, the adding of the additive from the separate container to the bottled material to mix them after removing the cap from the bottle is inconvenient to the user in that the user is forced to separately purchase and handle the additive container and the bottle.
  • Furthermore, it is extremely difficult for the user to add a precise amount of the additive from the separate container to the material contained in the bottle, and thus, the user roughly measures the amount of the additive to be added to the bottled material. Therefore, in the case of mixing of an additive with a bottled drink to produce a mixed beverage, the rough measurement of the amount of the additive may result in change in taste and quality of the mixed beverage. In the case of mixing of an additive with a bottled liquid medicine or a bottled liquid chemical to produce a mixed medicine or a mixed chemical, the rough measurement of the amount of the additive may result in incomplete dissolution of effective ingredients of the additive in the medicine or the chemical and a failure of accomplishment of desired medical or chemical effects of the mixed medicine or the mixed chemical.
  • Of course, when mixtures are prepared by manufacturers at factories and are marketed in a bottled state, in place of allowing users to mix additives with bottled materials to prepare mixtures just before drinking or using the mixtures, it is possible to avoid the above-described problems experienced in the mixing of the additives with the bottled materials performed by the users. However, the mixtures which are prepared by the manufacturers and marketed in the bottled state are problematic in that the effects of ingredients of the bottled mixtures may be gradually degraded as time goes by, in addition to change in colors of the mixtures. Furthermore, the bottled mixtures may generate floating matters and deposit therein with passage of time.
  • In an effort to overcome the above-described problems, the inventor of the present invention proposed a cap device for bottles, which is capable of mixing an additive contained therein with a material contained in a bottle to prepare a mixture, in Korean Patent Application No. 10-2002-31470. In the above cap device disclosed in Korean Patent Application No. 10-2002-31470, a plurality of radial ribs are provided at a valve means, and are supported at outside ends thereof on an inner surface of a neck of the bottle. However, since the outside ends of the above radial ribs are formed as free ends, the radial ribs may be easily bent or deformed. Therefore, the valve means may be easily displaced in the neck of the bottle.
  • Furthermore, it is necessary to separately store the additive in the cap device and the material in the bottle so that the additive is not undesirably added to the bottled material. Therefore, a sealing means for allowing the additive and the material to be separately stored in the cap device and the bottle is required.
  • That is, it is necessary to accomplish an airtight or watertight sealing effect at a junction between a part of the cap device containing the additive therein and another part of the cap device which communicates with the bottle containing the material therein, thus preventing an undesired premature mixing of the additive with the bottled material and thereby preventing any physical or chemical change in the additive and the bottled material due to the undesired premature mixing of them. When the airtight or watertight sealing effect at the above junction is accomplished, the operational effect of the cap device is enhanced.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention has been made keeping in mind the above problems occurring in the related art, for example, Korean Patent Application No. 10-2002-31470, and it is an aspect of the present invention to provide a cap device for bottles, which is capable of mixing an additive contained therein with a bottled material to prepare a mixture according to a simple rotating action of the cap device relative to a bottle, performed by a user, thereby allowing the user to easily prepare the mixture just before drinking or using the mixture.
  • It is another aspect of the present invention to provide a cap device for bottles, in which a valve means is stably placed at a desired position in a neck of the bottle, without being undesirably displaced.
  • It is a further aspect of the present invention to provide a cap device for bottles, which allows the additive and the material to be separately stored in the cap device and the bottle, respectively, such that the additive is prevented from being prematurely added to the bottled material.
  • It is still another aspect of the present invention to provide a cap device for bottles, which contains a semisolid additive therein, and allows a user to mix the semisolid additive with a bottled material to prepare a mixture by simply rotating the cap device relative to a bottle just before drinking or using the mixture.
  • Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
  • The above and/or other aspects are achieved by providing a cap device for bottles having a cap body tightened to a mouth of a bottle through screw-type engagement with a funnel part integrally formed in the cap body to discharge an additive from the cap body into the bottle through a lower end thereof. The cap device has a cap cover provided on the cap body to cover an open upper end of the cap body while defining a space inside both the cap body and the cap cover to contain the additive in the space. The cap device further has a valve means for opening or closing the lower end of the funnel part of the cap body according to a rotating action of the cap body relative to the externally threaded mouth of the bottle, wherein the valve means comprises a valve member having: a conical valve part to be brought into close contact with or spaced apart from the lower end of the funnel part of the cap body, thereby closing or opening the lower end of the funnel part, respectively. In addition, a plurality of radial ribs extending outward from an external surface of the conical valve part in radial directions, and a ring is integrated with the outside ends of the radial ribs for attachment to an inner surface of a neck of the bottle. In the alternative, the conical valve part can have an upwardly protruding shank having an external threading on its side surface corresponding to internal threading formed on the inner surface of the lower end of the funnel part.
  • In an alternative embodiment, the objects of this invention can be achieved by providing a cap device for bottles, comprising: a cap body tightened to a mouth of a bottle through screw-type engagement, the cap body being opened at an upper end thereof, with a cylindrical space defined in the cap body and valve means provided in the cap body at a lower end of the cylindrical space; an additive container having a space to contain an additive therein, the additive container being received in the cylindrical space of the cap body, with a discharging port provided on a lower end of the additive container to come in close contact with the valve means of the cap body, and an upper end of the additive container being opened and projected upward from the open upper end of the cap body; a cap cover tightened to the open upper end of the cap body through screw-type engagement; and a means for locking the cap cover to the upper end of the additive container.
  • In another alternative embodiment, the objects of this invention can be achieved by providing a cap device for bottles, comprising: a cap body tightened to a mouth of a bottle through screw-type engagement, the cap body being opened at an upper end thereof, with a cylindrical space defined in the cap body and valve means provided in the cap body at a lower end of the cylindrical space; an additive container having a space to contain an additive therein, the additive container being received in the cylindrical space of the cap body, with a discharging opening provided on a lower end of the additive container to come in close contact with the valve means of the cap body, and an upper end of the additive container being opened and projected upward from the open upper end of the cap body; a control unit assembled with the open upper end of the cap body to rotate relative to the cap body, with an internal thead provided on an inner circumferential surface of the control unit to be tightened to an outer circumferential surface of the upper end of the additive container through screw-type engagement, so that the control unit controls a vertical movement of the additive container; and a cap cover tightened to an upper end of the control unit.
  • Also, in another embodiment, the objects of this invention can be achieved by providing a cap device for bottles, comprising: a cap body tightened to an open lower end of a bottle through screw-type engagement, the cap body being opened at a lower end thereof, with a cylindrical space defined in the cap body and valve means provided in the cap body at an upper end of the cylindrical space; an additive container having a space to contain an additive therein, the additive container being received in the cylindrical space of the cap body, with a discharging opening provided on an upper end of the additive container to come in close contact with the valve means of the cap body, and a lower end of the additive container being opened and projected downward from the open lower end of the cap body; and a control unit having a cup shape which is closed at a bottom thereof, the control unit being assembled with the open lower end of the cap body to rotate relative to the cap body, with an internal thread provided on an inner circumferential surface of the control unit to be tightened to an outer circumferential surface of the lower end of the additive container through screw-type engagement, so that the control unit controls a vertical movement of the additive container.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is an exploded perspective view showing a construction of a cap device, according to a first embodiment of the present invention;
  • FIG. 2 is a perspective view of the cap device of FIG. 1, when the assembled cap device is tightened to a mouth of a bottle;
  • FIGS. 3 a and 3 b are sectional views showing an operation of the cap device of FIG. 1;
  • FIG. 4 a is a perspective view of a valve means of the cap device, according to a second embodiment of the present invention;
  • FIG. 4 b is a sectional view showing an operation of the valve means of FIG. 4 a, which is installed in the cap device tightened to a mouth of a bottle;
  • FIG. 5 is a perspective view of a cap device according to a third embodiment of the present invention, when the cap device is tightened to a mouth of a bottle;
  • FIG. 6 is a sectional view showing a construction of the cap device of FIG. 5;
  • FIGS. 7 a, 7 b and 7 c are sectional views showing an operation of the cap device of FIG. 5;
  • FIG. 8 is an exploded perspective view of the cap device of FIG. 5;
  • FIG. 9 is a sectional view of a cap device according to a fourth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle;
  • FIG. 10 is a sectional view of a cap device according to a fifth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle;
  • FIG. 11 is a sectional view of a cap device according to a sixth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle; and
  • FIG. 12 is a sectional view of a cap device according to a seventh embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made in detail to the present preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
  • First Embodiment
  • FIGS. 1 through 3 b are views of a cap device for bottles according to the first embodiment of the present invention. As shown in FIGS. 1 through 3 b, the cap device according to the first embodiment of the present invention comprises a cap body 50, and a cap cover 100 provided on the cap body 50 to define a space therein to contain an additive in the space. The cap device further has a valve means to allow the space defined by both the cap body 50 and the cap cover 100 to selectively communicate with an interior of a bottle 13.
  • In a detailed description, the cap body 50 is tightened to an externally threaded mouth 12 of the bottle 13, with a funnel part 52 integrally formed in the cap body 50 to discharge the additive into the bottle 13 through a lower end thereof.
  • The cap cover 100 is provided on the cap body 50 to cover an open upper end of the cap body 50 while defining the space inside both the cap body 50 and the cap cover 100 to contain the additive in the space.
  • In the first embodiment of the present invention, the valve means comprises a valve member V having a conical valve part 14 acting as a valve seat to be brought into close contact with or spaced apart from the lower end of the funnel part 52 of the cap body 50. The conical valve part 14 of the valve member V thus closes or opens the lower end of the funnel part 52 according to the rotating action of the cap body 50 relative to the externally threaded mouth 12 of the bottle 13. A plurality of radial ribs 124 extend outward from an external surface of the conical valve part 14 in radial directions such that outside ends of the radial ribs 124 are supported on the inner surface of a neck of the bottle 13. In order to allow the outside ends of the radial ribs 124 to be stably supported on the inner surface of the neck of the bottle 13, a circular ring 24 having a predetermined thickness integrally surrounds the outside ends of the radial ribs 124.
  • When the cap body 50 of the cap device having the above-described construction is rotated to move up relative to the externally threaded mouth 12 of the bottle 13, the valve means separates from the lower end of the funnel part 52, thus, opening the lower end of the funnel part 52 of the cap body 50. Therefore, the space defined by the cap body 50 and the cap cover 100 of the cap device communicates with the interior of the bottle 13, as shown in FIGS. 3 a and 3 b. The additive is thus discharged from the space defined by the cap body 50 and the cap cover 100 into the bottle 13 to be mixed with a material contained in the bottle 13 to produce a mixture.
  • In the cap device of FIGS. 1, 2, 3 a and 3 b, a vacuum pressure may act on the surface of the additive contained in the space of the cap device, when the cap cover 100 is completely closed. In such a case, the additive cannot smoothly flow from the space of the cap device into the bottle 13, even when the space communicates with the interior of the bottle 13 by an operation of the valve means. In order to allow the additive to smoothly flow from the space into the bottle 13 in response to the communication of the space with the interior of the bottle 13, a small vent hole provided with a valve cock C to open or close the vent hole is formed at a top surface of the cap cover 100. When the valve cock C opens the vent hole, atmospheric air is introduced into the space of the cap device through the vent hole, thereby preventing any vacuum pressure from acting on the surface of the additive in the space. The additive thus smoothly flows from the space of the cap device into the bottle 13, so that the additive is easily added to the material in the bottle 13 to produce a desired mixture.
  • Second Embodiment
  • FIGS. 4 a and 4 b are views of a valve means of the cap device, according to the second embodiment of the present invention. As shown in FIGS. 4 a and 4 b, a sealing means is provided at a junction between the valve member V and the lower end of the funnel part 52 of the cap body 50, thus accomplishing an airtight or watertight sealing effect at the junction.
  • The sealing means is provided at the conical valve part 14 of the valve member V. That is, the sealing means comprises a plugging shank 14S of a conical valve body extending upward from a valve holder 14T of the valve part 14. An external thread is formed around the plugging shank 14S, such that the external thread of the plugging shank 14S has the same pitch as an internal thread of the lower end of the funnel part 52 of the cap body 50. In order to engage with the external thread of the plugging shank 14S, the lower end of the funnel part 52 is provided with an engaging part 52S on an internal surface thereof. Due to the sealing means, the desired sealing effect at the junction between the valve member V and the funnel part 52 is accomplished.
  • When the cap body 50 of the cap device is rotated to move up relative to the externally threaded mouth 12 of the bottle 13, the lower end of the funnel part 52 is rotated to move in the same direction relative to the plugging shank 14S. In such a case, the internal thread 52S of the funnel part 52 moves upward along the external thread of the plugging shank 14S to open the lower end of the funnel part 52. Due to the screw-type engagement of the valve member V with the lower end of the funnel part 52, it is possible to accomplish the airtight or watertight sealing effect at the junction between the valve member V and the lower end of the funnel part 52.
  • Third Embodiment
  • FIGS. 5 through 8 are views of a cap device according to a third embodiment of the present invention. As shown in FIGS. 5 through 8, the cap device according to the third embodiment of the present invention includes a cap body 100B, an additive container 50 and a cap cover 100A. The cap body 100B is tightened to an externally threaded mouth 10 of a bottle 13, and defines a cylindrical space 103 inside the mouth 10 when the cap body 100B is tightened to the mouth 10. The additive container 50 is received in the cylindrical space 103 of the cap body 100B and has a space 51 therein to contain an additive in the space 51. The cap cover 100A is tightened to an open upper end of the cap body 100B to cover the open upper end of the cap body 100B.
  • In a detailed description, the cap body 100B has a double-walled structure at a lower portion thereof, as shown in FIG. 6. The double-walled structure of the cap body 100B includes an outer sidewall 101 and an inner sidewall 102. The outer sidewall 101 has an internal thread on an inner circumferential surface thereof for engagement to externally threading formed on the mouth 10 of the bottle 13. The cylindrical space 103 is defined inside the inner sidewall 102 with a valve means 222 provided in the inner sidewall 102 of the cap body 100B at a lower end of the cylindrical space 103. As best seen in FIG. 6, the valve means 222 includes a plurality of radial ribs 222-1 which extend inward from the inner sidewall 102 of the cap body 100B in radial directions at the lower end of the cylindrical space 103. The valve means 222 further includes a circular valve part integrated with inside ends of the radial ribs 222-1. The circular valve part has both an annular groove part 222-2 and a dome part 222-3. The dome part 222-3 is provided on a central area of the valve part, while the annular groove part 222-2 is provided around the dome part 222-3. The annular groove part 222-2 is inclined upward and outward on an outside surface thereof, thus providing a first inclined surface. In this embodiment, the radial ribs 222-1, the annular groove part 222-2 and the dome part 222-3 are integrated with each other into a single structure. The circular valve part having the annular groove part 222-2 and the dome part 222-3 is brought into close contact with a flanged discharging port 52 of the container 50, as will be described in detail later herein, thus executing a valve function. When the valve part of the cap body 100B opens the flanged discharging port 52 of the container 50, the additive flows from the space 51 of the container 50 into the bottle 13 through a plurality of spaces defined between the radial ribs 222-1, thus being added to a bottled material to prepare a desired mixture.
  • The inner sidewall 102 of the cap body 100B is inserted into the mouth 10 of the bottle 13 when the cap body 100B is tightened to the mouth 10 of the bottle 13. The cap body 100B is also opened at the upper end thereof, thus having the open upper end 104. That is, the open upper end 104 of the cap body 100B is projected upward from the remaining part of the cap body 100B, and has an external thread on the outer circumferential surface thereof, with a plurality of air paths 105 (see FIG. 8) vertically provided on the externally threaded outer circumferential surface of the open upper end 104 of the cap body 100B. The air paths 105 guide atmospheric air to a vent hole H of the additive container 50, as will be described in detail later herein.
  • The additive container 50, which is a cylindrical body, is opened at the upper and lower ends thereof, as shown in FIG. 6. The additive container 50 has the flanged discharging port 52 at a bottom wall thereof. The flanged discharging port 52=is projected downward from the bottom wall of the container 50, and is inclined upward and inward on a lower end surface thereof, thus providing a second inclined surface, as best seen in FIG. 6. Thus, the flanged discharging port 52 is able to be in close contact with the annular groove 222-2 of the valve means 222 of the cap body 100B when the valve means 222 is closing the discharging port 52. In the above state, the flanged discharging port 52 is in linear contact with the annular groove 222-2 of the valve means 222, thus providing a higher contact pressure which prevents the additive from undesirably leaking from the container 50 into the bottle 13. The additive container 50 defines the space 51 therein to contain the additive in the space 51. The additive container 50 is also rounded along an inside corner of the bottom wall thereof, thus providing a rounded surface S on the inside corner of the bottom wall. Due to the rounded surface S, the additive is smoothly discharged from the space 51 of the container 50 into the bottle 13 through the flanged discharging port 52 in response to an operation of the valve means 222 to open the flanged discharging port 52.
  • The cap device of the third embodiment further includes a means for locking the cap cover 100A to the upper end of the additive container 50 while allowing the container 50 to move vertically, in conjunction with a rotation of the cap cover 100A. The locking means includes an outside locking part 53 that is provided around the outer circumferential surface of the upper end of the additive container 50. The locking means further includes an inside locking part 111 that is provided around the inner circumferential surface of the cap cover 100A to engage with the outside locking part 53 of the container 50. Thus, the additive container 50 is locked to the cap cover 100A by engagement of the outside locking part 53 with the inside locking part 111, so that the cap cover 100A is removed from the container 50 when the cap cover 100A is rotated with an external rotating force which is stronger than a predetermined reference force. In other words, when the cap cover 100A is rotated with an appropriate rotating force, the container 50 moves vertically in conjunction with the rotation of the cap cover 100A.
  • The additive container 50 has the vent hole H at a predetermined position on the upper portion of a sidewall thereof. When the cap cover 100A is fully tightened to the upper end 104 of the cap body 100B as shown in FIG. 6, the vent hole H of the container 50 is closed by the upper end 104 of the cap body 100B. However, when the cap cover 100A is loosened from the upper end 104 of the cap body 100B as shown in FIG. 7 a, the upper portion of the container 50 having the vent hole H moves upward so that the vent hole H is exposed above the upper end 104 of the cap body 100B. In the above state, atmospheric air is guided into the container 50 via the air paths 105 (see FIG. 8) of the cap body 100B and the vent hole H of the container 50.
  • The cap device of the third embodiment further includes a stop protrusion 54. The stop protrusion 54 is an annular ring which is provided around the outer circumferential surface of the additive container 50 at an intermediate position. The stop protrusion 54 limits an upward movement of the additive container 50 within a predetermined range. That is, the stop protrusion 54 of the container 50 is stopped by the cap body 100A during the upward movement of the container 50, thus limiting the upward movement of the container 50 within the predetermined range. The provision of the stop protrusion 54 on the container 50 is to accomplish the following operational effect. That is, at a last stage of loosening the cap cover 100A from the cap body 100B, the stop protrusion 54 of the container 50 is stopped by the cap body 100A. In the above state, when the cap cover 100A is rotated with an external rotating force which is stronger than the predetermined reference force, the inside locking part 111 of the cap cover 100A escapes from the outside locking part 53 of the container 50, so that the cap cover 100A can be completely removed from the cap body 100B. In other words, the locking force to lock the inside locking part 111 of the cap cover 100A to the outside locking part 53 of the container 50 allows the container 50 to move upward in the vertical direction by the rotation of the cap cover 100A until the stop protrusion 54 of the container 50 is stopped by the cap body 100A. However, once the stop protrusion 54 of the container 50 is stopped by the cap body 100A, the locking force to lock the inside locking part 11 of the cap cover 100A to the outside locking part 53 of the container 50 cannot remove the stop protrusion 54 from the cap body 100B. Therefore, when the cap cover 100A in the above state is further rotated with the external rotating force which is stronger than the predetermined reference force, the inside locking part 111 of the cap cover 100A forcibly escapes from the outside locking part 53 of the container 50. Thus, the cap cover 100A can be completely removed from the cap body 100B.
  • As shown in FIGS. 5 and 6, the cap cover 100A is tightened to the open upper end 104 of the cap body 100B through screw-type engagement. The cap cover 100A has the inside locking part 111 on the inner circumferential surface thereof, as described above. The inside locking part 111 of the cap cover 100A is locked to the outside locking part 53 of the container 50. The inside locking part 111 and the outside locking part 53 constitute the locking means which locks the cap cover 100A to the container 50.
  • When the cap cover 100A is fully tightened to the open upper end 104 of the cap body 100B through the screw-type engagement, the cap cover 100A closes and seals the open upper end 104 of the cap body 100B.
  • The operation and effect of the cap device according to the third embodiment having the above-mentioned construction will be described herein below. After both a desired additive and compressed gas are injected into the space 51 of the container 50, the cap cover 100A is fully tightened to the open upper end 104 of the cap body 100B through the screw-type engagement, thus sealing the space 51 of the container 50 which contains both the additive and the compressed gas therein. In the third embodiment of the present invention, an example of the additive to be contained in the container 50 can be powdered green tea or medical drugs in the form of granules or powders, while an example of the compressed gas to be injected into the container 50 can be nitrogen gas or air. The cap device with both the additive and the compressed gas contained in the sealed space 51 of the container 50, is shown in FIG. 6.
  • To prepare a mixture by mixing the additive with a bottled material, the cap cover 100A is rotated to slightly open the cap device, as shown in FIG. 7 a. In the above state, the flanged discharging port 52 of the container 50 is slightly spaced apart from the annular groove 222-2 (see FIG. 6) of the valve means 222 of the cap body 100B. Thus, the additive is discharged from the space 51 of the container 50 into the bottle 13 through the plurality of spaces defined between the radial ribs 222-1 (see FIG. 6) and added to the bottled material to prepare the desired mixture. While the additive is discharged from the space 51 of the container 50 into the bottle 13, the compressed gas in the space 51 promotes the discharge of the additive.
  • When the slightly opened cap cover 100A is further rotated to further open the cap device, as shown in FIG. 7 b, the upper portion of the container 50 having the vent hole H moves upward so that the vent hole H is exposed above the upper end 104 of the cap body 100B. Thus, the vent hole H communicates with the atmosphere through the air paths 105 (see FIG. 8) which are provided on the outer circumferential surface of the upper end 104 of the cap body 100B. Therefore, atmospheric air is guided into the space 51 of the container 50 through the air paths 105 and the vent hole H to allow the additive to be almost completely discharged from the space 51 into the bottle 13, due to gravity.
  • When the cap cover 100A in the state of FIG. 7 b is further rotated, the stop protrusion 54 that is provided on the outer circumferential surface of the additive container 50 at the intermediate position is stopped by the cap body 100A, thus stopping the upward movement of the additive container 50.
  • When the cap cover 100A in the above state is further rotated by an external rotating force which is stronger than the predetermined reference force, the inside locking part 111 of the cap cover 100A forcibly escapes from the outside locking part 53 of the container 50. Thus, the cap cover 100A is completely removed from the cap body 100B.
  • After the additive from the container 50 is mixed with the material contained in the bottle 13 to prepare the desired mixture according to the above-mentioned operation of the cap device, a user can drink or use the mixture by discharging the mixture from the bottle 13 through the open upper end of the container 50.
  • In the above state, the entire part of the cap device may be completely removed from the mouth 10 of the bottle 13, as desired, by loosening the cap body 100B from the mouth 10 of the bottle 13.
  • Meanwhile, when the user desires to drink or use the bottled material without mixing the additive of the cap device with the bottled material, the cap device in the state of FIG. 6 may be completely removed from the mouth 10 of the bottle 13 by loosening the cap body 100B from the mouth 10 of the bottle 13.
  • Fourth Embodiment
  • FIG. 9 is a sectional view of a cap device according to a fourth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle. As shown in FIG. 9, the cap device according to the fourth embodiment of the present invention comprises a cap body 100B, an additive container 50 and a cap cover 100A. The cap body 100B is tightened to an externally threaded mouth 10 of a bottle 13, and defines a cylindrical space 103 inside the mouth 10 when the cap body 100B is tightened to the mouth 10. The additive container 50 is received in the cylindrical space 103 of the cap body 100B and has a space 51 therein to contain an additive in the space 51. The cap cover 100A is tightened to an open upper end of the cap body 100B to cover the open upper end of the cap body 100B.
  • In a detailed description, the cap body 100B has a double-walled structure at a lower portion thereof, in the same manner as that described for the third embodiment of the present invention. The double-walled structure of the cap body 100B includes an outer sidewall 101 and an inner sidewall 102. A valve means 222 is provided in the inner sidewall 102 of the cap body 100B at a lower end of the cylindrical space 103. Different from the valve means according to the third embodiment, the valve means 222 according to the fourth embodiment includes a plurality of vertical ribs 222-1 which extend downward from the cap body 100B in vertical directions at the lower end of the cylindrical space 103 of the cap body 100B. The valve means 222 further includes a circular valve part integrated with lower ends of the radial ribs 222-1. The circular valve part has a dome part 222-3 which is provided on a central area of the valve part.
  • The general shape of the additive container 50 according to the fourth embodiment remains the same as that described for the third embodiment. However, the additive container 50 according to the fourth embodiment does not have any stop projection on the circumferential outer surface thereof, and the lower end of the container 50 has no bottom wall, but linearly extends downward, thus forming a wide discharging opening 52, different from the third embodiment. The lower end surface of the discharging opening 52 of the container 50 is inclined upward and inward, thus providing an inclined surface. The discharging opening 52 of the container 50 is brought into close contact with the dome part 222-3 of the valve means 222 at the inclined surface thereof.
  • The operation and effect of the cap device according to the fourth embodiment having the above-mentioned construction will be described herein below.
  • The container 50 can contain therein a semisolid additive, such as ice cream, mustard sauce, thick soypaste mixed with red peppers or mayonnaise, while the bottle 13 can contain therein a desired material, such as a soda pop, a functional beverage, or soybean sauce. To mix the semisolid additive, for example, ice cream, with the bottled material, for example, soda pop, to prepare a mixture, the cap cover 100A is rotated relative to the cap body 100B. Thus, the container 50 moves upward in the vertical direction. Therefore, the ice cream is discharged from the space 51 of the container 50 into the bottle 13 through a plurality of wide spaces defined between the vertical ribs 222-1, thus being added to the soda pop in the bottle 13 to prepare the desired mixture. When a user shakes the bottle 13 in the above state, it is possible to more easily and quickly mix the ice cream with the soda pop.
  • Fifth Embodiment
  • FIG. 10 is a sectional view of a cap device according to a fifth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle. As shown in FIG. 10, the cap device according to the fifth embodiment comprises a cap body 100B which is tightened to the mouth 10 of the bottle 13 through screw-type engagement. The cap body 100B defines a cylindrical space 103 therein. The cap device further includes an additive container 50 having a space 51 to contain an additive therein. The additive container 50 is received in the cylindrical space 103 of the cap body 100B. The cap device further includes a cylindrical control unit 100C which is assembled with the open upper end of the cap body 100B by an engaging ring 113 to rotate relative to the cap body 100B, with an internal thread provided on an inner circumferential surface of the control unit 100C to be tightened to an outer circumferential surface of the upper end of the additive container 50 through screw-type engagement. Thus, the control unit 100C controls a vertical movement of the additive container 50. The cap device further includes a cap cover 100A which is tightened to the upper end of the control unit 100C. In the cap device, an O-ring 112 is provided at a junction between the cap body 100B and the control unit 100C to accomplish a sealing effect at the junction. The engaging ring 113 extends upward from the upper end surface of the cap body 100B, and is inserted into an annular groove which is formed along the lower end of the control unit 100C. Thus, the cylindrical control unit 100C rotates relative to the cap body 100B. The cap device according to the fifth embodiment further includes a valve means 222 with the same construction as that of the fourth embodiment.
  • As shown in FIG. 10, the cylindrical control unit 100C is tightened to the outer circumferential surface of the upper end of the additive container 50 through the screw-type engagement. Thus, the container 50 moves upward and downward in a vertical direction by a rotation of the control unit 100C. In the same manner as that described for the fourth embodiment, the container 50 functions well for containing therein and discharging a semisolid additive, such as ice cream, mustard sauce, thick soypaste mixed with red peppers or mayonnaise, while the bottle 13 contains therein a desired material, such as a soda pop, a functional beverage, or soybean sauce.
  • Sixth Embodiment
  • FIG. 11 is a sectional view of a cap device according to a sixth embodiment of the present invention, when the cap device is tightened to a mouth of a bottle. As shown in FIG. 11, the cap device according to the sixth embodiment includes a cap body 100B which is tightened to the mouth 10 of the bottle 13 through screw-type engagement. The cap body 100B defines a cylindrical space 103 therein. The cap device further includes an additive container 50 having a space 51 to contain an additive therein. The additive container 50 is received in the cylindrical space 103 of the cap body 100B. The cap device further includes a cylindrical control unit 100C which is assembled with the open upper end of the cap body 100B by an engaging ring 113 to rotate relative to the cap body 100B. The engaging ring 113 extends upward from the upper end surface of the cap body 100B. The cap device further includes a cap cover 100A which is tightened to the upper end of the control unit 100C.
  • The general construction of the cap device according to the sixth embodiment remains the same as that described for the fifth embodiment. However, both the inner sidewall of the cap body 100B and the additive container 50 extend downward from a neck into an interior of the bottle 13 to a predetermined length. Furthermore, the cylindrical control unit 100C extends upward to a length which corresponds to the length of the downward extensions of both the cap body 100B and the additive container 50. The cap cover 100A is made of a plastic material, with a discharging hole 114 provided on the top wall of the cap cover 100A. The discharging hole 114 of the cap cover 100A may be provided with a cap (not shown).
  • Because both the cap body 100B and the additive container 50 extend downward from the neck into the interior of the bottle 13 as described above, a user easily mixes the additive with the bottled material to prepare a desired mixture.
  • In the present invention, the bottle 13 may be made of a soft plastic material which allows the user to discharge the mixture from the bottle 13 to the outside through the discharging hole 114 by compressing the bottle 13.
  • Seventh Embodiment
  • FIG. 12 is a sectional view of a cap device according to a seventh embodiment of the present invention, when the cap device is tightened to a mouth of a bottle. As shown in FIG. 12, the cap device according to the seventh embodiment includes a cap body 100B which is tightened to an open lower end 10 of the bottle 13 through screw-type engagement. The cap body 100B is opened at a lower end thereof, with a cylindrical space 103 defined in the cap body 100B and a valve means 222 provided in the cap body 100B at an upper end of the cylindrical space 103. The cap device further includes an additive container 50 which has a space 51 to contain an additive therein. The additive container 50 is received in the cylindrical space 103 of the cap body 10B, with a discharging opening 52 provided on an upper end of the additive container 50 to come in close contact with the valve means 222 of the cap body 100B. A lower end of the additive container 50 is opened and projected downward from the open lower end of the cap body 100B. The cap device further includes a cylindrical control unit 100C. The cylindrical control unit 100C is assembled with the open lower end of the cap body 100B by an engaging ring 113 to rotate relative to the cap body 100B, with an internal thread provided on an inner circumferential surface of the control unit 100C to be tightened to an outer circumferential surface of the lower end of the additive container 50 through screw-type engagement. The control unit 100C thus controls a vertical movement of the additive container 50.
  • The control unit 100C has a cup shape with a closed bottom, thus serving as a cap cover.
  • Even though the cap device according to the seventh embodiment is provided at the lower end of the bottle 13, different from the sixth embodiment in which the cap device is provided at the mouth of the bottle, the cap device according to the seventh embodiment provides the same operation and effect as those of the sixth embodiment.
  • Although embodiments of the present invention has been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (20)

1. A cap device for a bottle having a mouth and neck, said cap device comprising:
a cap body formed to be tightened to said mouth of said bottle through screw-type engagement;
a funnel part integrally formed in the cap body to discharge an additive from the cap body into the bottle through a lower end thereof;
a cap cover provided on the cap body to cover an open upper end of the cap body while defining a space inside both the cap body and the cap cover; and
a valve means formed to open and close the lower end of the funnel part of the cap body according to a rotating action of the cap body relative to the externally threaded mouth of the bottle, wherein the valve means comprises a valve member having:
a conical valve part having a plurality of radial ribs extending outward from an external surface of the conical valve part in radial directions;
a ring integrated around the radial ribs for placement on an inner surface of said neck of the bottle;
said conical valve part formed to close the lower end of the funnel part when brought into closed contact with the lower end of the funnel part; and,
said conical valve part and ribs formed to open the lower end of the funnel part when the lower end of the funnel part is spaced apart from the lower end of the funnel part.
2. The cap device for bottles according to claim 1, wherein said conical valve part has
an upwardly extending plugging shank, said plugging shank having an externally threaded surface formed around the plugging shank; and,
said lower end of the funnel part having a threaded inner surface having the same pitch as the external thread of the plugging shank.
3. A cap device for a bottle having a mouth and neck, said cap device comprising:
a cap body formed to be tightened to said mouth of said bottle through screw-type engagement;
said cap body having an open upper end and a cylindrical space defined in the cap body; a
valve member disposed at a lower end of the cap body;
an additive container disposed in the cylindrical space of the cap body;
said additive container having a space to contain an additive therein, a discharging port provided on a lower end of the additive container positioned to be opened and closed by the valve member of the cap body;
said additive container having an open upper end; and,
a cap cover tightened to the open upper end of the cap body through screw-type engagement.
4. The cap device according to claim 3, wherein
the valve member comprises:
a plurality of radial ribs extending inward from the cap body in radial directions at the lower end of the cylindrical space of the cap body; and,
a circular valve part integrated with inside ends of the radial ribs, said circular valve part having both a dome part provided on a central area of the valve part and an annular groove part provided around the dome part.
5. The cap device according to claim 4 wherein said annular groove part is inclined upward and outward on an outside surface thereof, thus providing a first inclined surface; and,
the discharging port of the additive container is projected downward from a bottom wall of the container and is inclined upward and inward on a lower-end-surface thereof, thus providing a second inclined surface.
6. The cap device for bottles according to claim 3, wherein the additive container is rounded along an inside corner of a bottom wall leading to the discharging port.
7. The cap device for bottles according to claim 3, further comprising:
an outside locking part provided around an outer circumferential surface of the upper end of the additive container; and,
an inside locking part provided around an inner circumferential surface of the cap cover to engage with the outside locking part.
8. The cap device for bottles according to claim 3, further comprising:
a vent hole provided on an upper portion of a sidewall of the additive container; and
a plurality of air paths provided on an outer circumferential surface of the upper end of the cap body.
9. The cap device for bottles according to claim 3, further comprising:
a stop protrusion provided on an outer circumferential surface of the additive container at an intermediate position formed and arranged to stop the cap body at a predetermined distance during an upward movement of the additive container.
10. The cap device for bottles according to claim 3, wherein the valve member comprises:
a plurality of vertical ribs extending downward from the cap body in vertical directions at the lower end of the cylindrical space of the cap body;
a circular valve part integrated with lower ends of the vertical ribs, the circular valve part having a dome part on a central area thereof; and,
the discharging port of the additive container formed by linear extension of the lower end of the additive container downward.
11. The cap device as described in claim 10 wherein the discharging port is inclined upward and inward on a lower end surface thereof to provide an inclined surface so that the discharging port is brought into close contact with the dome part of the valve part at the inclined surface thereof when the discharging port is closed by the valve member.
12. A cap device for a bottle having a mouth, said cap device comprising:
a cap body tightened to said mouth of said bottle through screw-type engagement, the cap body having an open upper end and defining a cylindrical space in the cap body;
a valve member provided in the cap body at a lower end of the cylindrical space;
an additive container disposed in the cylindrical space of the cap body;
said additive container having a space therein to contain an additive therein;
a discharging opening disposed on a lower end of the additive container positioned to be closed and opened by the valve member of the cap body;
a control unit assembled with the open upper end of the cap body to rotate relative to the cap body;
said control unit having an internal threading provided on an inner circumferential surface of the control unit formed to be tightened to a threaded outer circumferential surface of the upper end of the additive container through screw-type engagement; and,
a cap cover tightened to an upper end of the control unit.
13. The cap device according to claim 12, further comprising:
an O-ring provided at a junction between the cap body and the control unit.
14. The cap device according to claim 12, wherein the valve member comprises:
a plurality of vertical ribs extending downward from the cap body in vertical directions at the lower end of the cylindrical space of the cap body; and,
a circular valve part integrated with lower ends of the vertical ribs, the circular valve part having a dome part on a central area thereof.
15. The cap device according to claim 14 wherein the lower end of the additive container having the discharging opening is inclined upward and inward on an end surface thereof to provide an inclined surface so that the lower end of the additive container is brought into close contact with the dome part of the valve part at the inclined surface thereof when the discharging opening is closed by the valve member.
16. The cap device according to claims 12, wherein the cap cover is provided with a discharging hole.
17. A cap device for a bottle having a mouth at a lower end of said bottle, said cap device comprising:
a cap body tightened to said mouth of said bottle through screw-type engagement, the cap body having an open upper end and defining a cylindrical space in the cap body;
the cap body being opened at a lower end thereof, with a cylindrical space defined in the cap body and valve member provided in the cap body at an upper end of the cylindrical space;
an additive container having a space to contain an additive therein, the additive container being received in the cylindrical space of the cap body;
a discharging opening provided on an upper end of the additive container to come in close contact with the valve member of the cap body;
a lower end of the additive container being opened and projected downward from the open lower end of the cap body; and
a control unit having a cup shape which is closed at a bottom thereof, the control unit being assembled with the open lower end of the cap body to rotate relative to the cap body, with an internal thread provided on an inner circumferential surface of the control unit to be tightened to an outer circumferential surface of the lower end of the additive container through screw-type engagement, so that the control unit controls a vertical movement of the additive container.
18. The cap device according to claim 17, further comprising:
an O-ring provided at a junction between the cap body and the control unit.
19. The cap device according to claim 18, wherein the valve member comprises:
a plurality of vertical ribs extending upward from the cap body in vertical directions at the upper end of the cylindrical space of the cap body; and,
a circular valve part integrated with upper ends of the vertical ribs, the circular valve part having a dome part on a central area thereof.
20. The cap device according to claim 19 wherein the upper end of the additive container having the discharging opening is inclined downward and inward on an end surface thereof to provide an inclined surface so that the upper end of the additive container is brought into close contact with the dome part of the valve part at the inclined surface thereof when the discharging opening is closed by the valve member.
US10/995,700 2003-11-28 2004-11-23 Cap device for mixing different kinds of materials separately contained therein and in bottle Abandoned US20050115845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2003-0085338 2003-11-28
KR1020030085338A KR100571711B1 (en) 2003-04-12 2003-11-28 bottle cap assembly for simultaneously dissolve additives

Publications (1)

Publication Number Publication Date
US20050115845A1 true US20050115845A1 (en) 2005-06-02

Family

ID=34617328

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/995,700 Abandoned US20050115845A1 (en) 2003-11-28 2004-11-23 Cap device for mixing different kinds of materials separately contained therein and in bottle

Country Status (1)

Country Link
US (1) US20050115845A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040154937A1 (en) * 2003-02-10 2004-08-12 Cho Young Kook Cap device for mixing different kinds of materials separately contained therein and in bottle
US20060118435A1 (en) * 2004-11-04 2006-06-08 Jerry Cronin Multi-chamber container and cap therefor
WO2009027981A2 (en) * 2007-08-30 2009-03-05 M.L.I.S. Projects Ltd Multi-compartment container system
US20100025356A1 (en) * 2005-12-12 2010-02-04 Lee Jeong-Min Cap assembly having storage chamber for secondary material with integral type working member
US20110054437A1 (en) * 2008-04-17 2011-03-03 Philippe Perovitch Device for conserving, extemporaneously preparing, and administering an active principle
US8006844B2 (en) 2007-09-21 2011-08-30 Ivex Protective Packaging, Inc. Packaging system for producing a foam-in-bag and method of mixing foam
WO2011151834A2 (en) * 2010-06-03 2011-12-08 Tal Sharon A container having two or more compartments
US8381935B1 (en) 2011-09-06 2013-02-26 Ronald Mark Buck Cup lid with integrated container
US20130228486A1 (en) * 2012-03-05 2013-09-05 Ronald Mark Buck Top mounting bottle container
US8590730B2 (en) 2011-09-06 2013-11-26 Ronald Mark Buck Top mounting can container
US8596491B2 (en) 2011-09-06 2013-12-03 Ronald Mark Buck Cup lid with integrated container
US8701906B1 (en) 2008-12-31 2014-04-22 Blast Max Llc Ingredient dispensing cap for mixing beverages with push-pull drinking spout
US8708181B2 (en) 2011-09-06 2014-04-29 Ronald Mark Buck Lid with integrated container
US20140230659A1 (en) * 2013-02-14 2014-08-21 Garrett S. Waggoner Additive delivery systems and containers
US8857665B2 (en) 2011-11-15 2014-10-14 John H. Owoc Beverage container with secondary internal dispensing chamber
US8870010B2 (en) 2011-09-06 2014-10-28 Top-That!, Llc Cup lid with integrated container
US8919592B2 (en) 2011-09-06 2014-12-30 Top-That!, Llc Cup lid with integrated container
US8939312B1 (en) 2014-05-30 2015-01-27 Top-That! Llc Container lid system with a lid portion and food container portion
US8973776B1 (en) 2014-05-16 2015-03-10 Top-That!, Llc Cup with nestable food container and cover
US9038845B1 (en) 2014-05-02 2015-05-26 Top-That! Llc Container lid with one or more cavities
US9067716B2 (en) 2011-09-30 2015-06-30 Federico Intriago Cap assembly for dispensing a dispensable component and method of making and using the same
US9078535B1 (en) 2014-05-09 2015-07-14 Top-That! Llc Container lid with a food compartment and a sip-hole
US9181009B1 (en) 2014-05-16 2015-11-10 Snacktops, Inc. Cup with outwardly protruding straw channel and nestable food container and cover
US9434519B2 (en) * 2014-05-02 2016-09-06 H2M Beverages, Llc Dispensing cap
US9452870B1 (en) 1987-01-20 2016-09-27 Michael Anderson Two-piece double-sealed dispensing capsule with button blast and drink through feature
US9567142B1 (en) 2011-05-27 2017-02-14 Michael Anderson One-piece dispensing capsule with integral plunger
US9622605B2 (en) 2011-09-06 2017-04-18 Snacktops, Inc. Cup lid with integrated container
FR3045581A1 (en) * 2015-12-21 2017-06-23 R S Company BEVERAGE DOSETTE
CN107264974A (en) * 2017-07-31 2017-10-20 上海惠健生物技术有限公司 Storage device, the bottle cap with storage chamber and its assembly method and application method
US10888826B2 (en) 2014-11-21 2021-01-12 Cirkul, Inc. Adjustable additive cartridge systems and methods
US20220002067A1 (en) * 2019-03-21 2022-01-06 Henkel Ag & Co. Kgaa Packaging System For At Least One Product Preparation Component, And Corresponding Method For Handling The Product Preparation Component
US20220002068A1 (en) * 2019-03-21 2022-01-06 Henkel Ag & Co. Kgaa Packaging System For At Least One Product Preparation Component And Corresponding Method For Handling The Product Preparation Component
WO2022261690A1 (en) * 2021-06-16 2022-12-22 Moritz Slawomir Device for dosing a dosing agent for a liquid bottled in a bottle
US11583811B2 (en) 2014-11-21 2023-02-21 Cirkul, Inc. Adjustable additive cartridge systems

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452870B1 (en) 1987-01-20 2016-09-27 Michael Anderson Two-piece double-sealed dispensing capsule with button blast and drink through feature
US20040154937A1 (en) * 2003-02-10 2004-08-12 Cho Young Kook Cap device for mixing different kinds of materials separately contained therein and in bottle
US20110192735A1 (en) * 2004-11-04 2011-08-11 Viz Enterprises, Llc Multi-Chamber Container and Cap Therefor
US7503453B2 (en) 2004-11-04 2009-03-17 Viz Enterprises, Llc Multi-chamber container and cap therefor
US20090133366A1 (en) * 2004-11-04 2009-05-28 Viz Enterprises, Llc. Multi-chamber container and cap therefor
US7854104B2 (en) 2004-11-04 2010-12-21 Viz Enterprises, Llc Multi-chamber container and cap therefor
US20060118435A1 (en) * 2004-11-04 2006-06-08 Jerry Cronin Multi-chamber container and cap therefor
US20100025356A1 (en) * 2005-12-12 2010-02-04 Lee Jeong-Min Cap assembly having storage chamber for secondary material with integral type working member
US8844715B2 (en) * 2005-12-12 2014-09-30 Jeong-min Lee Cap assembly having storage chamber for secondary material with integral type working member
WO2009027981A3 (en) * 2007-08-30 2010-03-04 M.L.I.S. Projects Ltd Multi-compartment container system
WO2009027981A2 (en) * 2007-08-30 2009-03-05 M.L.I.S. Projects Ltd Multi-compartment container system
US8006844B2 (en) 2007-09-21 2011-08-30 Ivex Protective Packaging, Inc. Packaging system for producing a foam-in-bag and method of mixing foam
US20110054437A1 (en) * 2008-04-17 2011-03-03 Philippe Perovitch Device for conserving, extemporaneously preparing, and administering an active principle
US8870844B2 (en) * 2008-04-17 2014-10-28 Philippe Perovitch Device for conserving, extemporaneously preparing, and administering an active principle
US8701906B1 (en) 2008-12-31 2014-04-22 Blast Max Llc Ingredient dispensing cap for mixing beverages with push-pull drinking spout
WO2011151834A3 (en) * 2010-06-03 2012-01-26 Tal Sharon A container having two or more compartments
WO2011151834A2 (en) * 2010-06-03 2011-12-08 Tal Sharon A container having two or more compartments
US9567142B1 (en) 2011-05-27 2017-02-14 Michael Anderson One-piece dispensing capsule with integral plunger
US8870010B2 (en) 2011-09-06 2014-10-28 Top-That!, Llc Cup lid with integrated container
US8708181B2 (en) 2011-09-06 2014-04-29 Ronald Mark Buck Lid with integrated container
US8714393B2 (en) 2011-09-06 2014-05-06 Ronald Mark Buck Cup lid with integrated container
US9622605B2 (en) 2011-09-06 2017-04-18 Snacktops, Inc. Cup lid with integrated container
US8381935B1 (en) 2011-09-06 2013-02-26 Ronald Mark Buck Cup lid with integrated container
US8596491B2 (en) 2011-09-06 2013-12-03 Ronald Mark Buck Cup lid with integrated container
US8919592B2 (en) 2011-09-06 2014-12-30 Top-That!, Llc Cup lid with integrated container
US8590730B2 (en) 2011-09-06 2013-11-26 Ronald Mark Buck Top mounting can container
US8695845B2 (en) 2011-09-06 2014-04-15 Ronald Mark Buck Top mounting can container
US9260228B2 (en) 2011-09-06 2016-02-16 Snacktops, Inc. Lid with integrated container
US9067716B2 (en) 2011-09-30 2015-06-30 Federico Intriago Cap assembly for dispensing a dispensable component and method of making and using the same
US8857665B2 (en) 2011-11-15 2014-10-14 John H. Owoc Beverage container with secondary internal dispensing chamber
US20130228486A1 (en) * 2012-03-05 2013-09-05 Ronald Mark Buck Top mounting bottle container
US20140230659A1 (en) * 2013-02-14 2014-08-21 Garrett S. Waggoner Additive delivery systems and containers
US9795242B2 (en) * 2013-02-14 2017-10-24 Cirkul, Inc. Additive delivery systems and containers
US11213159B2 (en) 2013-02-14 2022-01-04 Cirkul, Inc. Additive delivery systems and containers
US9038845B1 (en) 2014-05-02 2015-05-26 Top-That! Llc Container lid with one or more cavities
US9434519B2 (en) * 2014-05-02 2016-09-06 H2M Beverages, Llc Dispensing cap
US9078535B1 (en) 2014-05-09 2015-07-14 Top-That! Llc Container lid with a food compartment and a sip-hole
US9181009B1 (en) 2014-05-16 2015-11-10 Snacktops, Inc. Cup with outwardly protruding straw channel and nestable food container and cover
US8973776B1 (en) 2014-05-16 2015-03-10 Top-That!, Llc Cup with nestable food container and cover
US8939312B1 (en) 2014-05-30 2015-01-27 Top-That! Llc Container lid system with a lid portion and food container portion
US10888826B2 (en) 2014-11-21 2021-01-12 Cirkul, Inc. Adjustable additive cartridge systems and methods
US11406946B2 (en) 2014-11-21 2022-08-09 Cirkul, Inc. Adjustable additive cartridge systems and methods
US11583811B2 (en) 2014-11-21 2023-02-21 Cirkul, Inc. Adjustable additive cartridge systems
FR3045581A1 (en) * 2015-12-21 2017-06-23 R S Company BEVERAGE DOSETTE
WO2017109379A1 (en) * 2015-12-21 2017-06-29 R.S Company Single-serve container for a beverage
CN107264974A (en) * 2017-07-31 2017-10-20 上海惠健生物技术有限公司 Storage device, the bottle cap with storage chamber and its assembly method and application method
US20220002067A1 (en) * 2019-03-21 2022-01-06 Henkel Ag & Co. Kgaa Packaging System For At Least One Product Preparation Component, And Corresponding Method For Handling The Product Preparation Component
US20220002068A1 (en) * 2019-03-21 2022-01-06 Henkel Ag & Co. Kgaa Packaging System For At Least One Product Preparation Component And Corresponding Method For Handling The Product Preparation Component
WO2022261690A1 (en) * 2021-06-16 2022-12-22 Moritz Slawomir Device for dosing a dosing agent for a liquid bottled in a bottle

Similar Documents

Publication Publication Date Title
US20050115845A1 (en) Cap device for mixing different kinds of materials separately contained therein and in bottle
US6994211B2 (en) Cap device for mixing different kinds of materials separately contained therein and in bottle
US8448797B2 (en) Bottle containing two kinds of materials separately in two spaces
US7070046B2 (en) Cap device for mixing different kinds of materials separately contained therein and in bottle
US6945393B2 (en) Cap device for attachment to a container
EP1687208B1 (en) Cap with storage chamber for secondary material and product with the same
US6974024B2 (en) Cap device for mixing different kinds of materials separately contained therein and in bottle
US20100012532A1 (en) Container closure having a spout and means for introducing an additive into the contents of the container
US20070170142A1 (en) Bottle cap
US20090321286A1 (en) Container closure having a lifting cap for introducing an additive into the contents of the container
US20150336724A1 (en) Universal bottle cap
KR100593246B1 (en) Bottle
US20070284265A1 (en) Volumetric dispenser
NZ572198A (en) A bottle cap with a compartment holding liquid to add to the liquid in the bottle before opening
JP2004244110A (en) Lid of vessel and vessel capable of mixing different substances
US6908011B2 (en) Cap device for mixing different kinds of materials separately contained therein and in bottle
US20120223100A1 (en) Bottle cap for dispersing powdered supplement in situ
KR20090110695A (en) The bottle having a capsule to mix some ingredients for drinking
JP2017520489A (en) Universal bottle cap
US20090283528A1 (en) Enhanced liquid container
US11203472B2 (en) Dispensing device for a drink bottle
US20100237079A1 (en) Container and divider therefor
KR20070119319A (en) Bottle lid for falling and mixing different kind material
KR100579444B1 (en) Cap
KR100593244B1 (en) Cap

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION