US20050131417A1 - Kit for treating bony defects - Google Patents

Kit for treating bony defects Download PDF

Info

Publication number
US20050131417A1
US20050131417A1 US10/924,240 US92424004A US2005131417A1 US 20050131417 A1 US20050131417 A1 US 20050131417A1 US 92424004 A US92424004 A US 92424004A US 2005131417 A1 US2005131417 A1 US 2005131417A1
Authority
US
United States
Prior art keywords
osteoinductive
mixture
container
osteoconductive
fill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/924,240
Inventor
James Ahern
Arthur Gertzman
Karen Roche
Moon Sunwoo
Steven Wolfe
Stephen Kuslich
John Kuslich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musculoskeletal Transplant Foundation
Spineology Inc
Original Assignee
Musculoskeletal Transplant Foundation
Spineology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musculoskeletal Transplant Foundation, Spineology Inc filed Critical Musculoskeletal Transplant Foundation
Priority to US10/924,240 priority Critical patent/US20050131417A1/en
Assigned to SPINEOLOGY, INC., MUSCULOSKELETAL TRANSPLANT FOUNDATION reassignment SPINEOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHERN, JAMES W., GERTZMAN, ARTHUR, ROCHE, KAREN, WOLFE, STEVEN, KUSLICH, STEPHEN D.- DECEASED, SIGNED BY LEGAL REPRESENTATIVE JOHN E. KUSLICH, SUNWOO, MOON HAE
Publication of US20050131417A1 publication Critical patent/US20050131417A1/en
Assigned to MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC. reassignment MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC. SECURITY AGREEMENT Assignors: SPINEOLOGY, INC.
Priority to US12/754,388 priority patent/US8562613B2/en
Assigned to SPINEOLOGY, INC. reassignment SPINEOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7097Stabilisers comprising fluid filler in an implant, e.g. balloon; devices for inserting or filling such implants
    • A61B17/7098Stabilisers comprising fluid filler in an implant, e.g. balloon; devices for inserting or filling such implants wherein the implant is permeable or has openings, e.g. fenestrated screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4601Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for introducing bone substitute, for implanting bone graft implants or for compacting them in the bone cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30011Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite

Definitions

  • the present invention relates generally to the field of materials adapted to replace or assist a component of the skeleton of a living body. More specifically, the present invention relates to a system that surgeons can use for healing and supporting bony defects.
  • Bone grafts are commonly used in a wide variety of orthopedic procedures.
  • bone graft is often used to aid the healing of bony defects.
  • defects may arise from trauma or a pathologic condition, or the surgeon may require graft to support bony healing subsequent to a surgical procedure such as joint fusion or arthrodesis.
  • Autogenous bone also called autograft
  • autograft is generally considered to be the “gold standard” in terms of biological performance. Autograft is often collected from the patient's hip. However, collecting autograft from the patient's hip is associated with a significant incidence of post-operative pain and the potential for additional medical complications. In addition, the volume of autograft material available from the patient's hip may not be sufficient for the graft procedure.
  • Allograft such as morselized granules of cortical and cancellous bone, provides an osteoconductive material with some compressive strength, which can be readily incorporated via the same healing process that occurs with autogenous bone.
  • Osteoconductivity refers to a material's ability to provide a suitable structure or scaffold for the growth of new blood vessels and, ultimately, bone.
  • DBM demineralized bone matrix
  • Allograft which is demineralized during its processing is commonly referred to as DBM, or demineralized bone matrix.
  • DBM is an osteoinductive material, meaning that it can lead to the formation of bone by recruiting mesenchymal stem cells from the surrounding tissues, and these cells can ultimately differentiate into new bone.
  • the Optimesh® System (patented by Spineology, Inc. in U.S. Pat. Nos. 5,549,679; 5,571,189, 6,383,188; 6,620,162; 6,620,169 and U.S. Patent Application Nos.: 09/909,667 and 10/440,036 all of which are incorporated herein by reference) includes various tools and a porous container used to contain bone graft or other fill material when fusing intervertebral spaces and treating defects in intravertebral bones or other bones. While the current Optimesh® System utilizes the concept of fill material extrusion, it would be advantageous to capitalize on the characteristics of both the osteoconductive and osteoinductive materials.
  • the present invention includes a method and apparatus for healing and supporting bony defects.
  • the method and apparatus of the present invention combine the advantageous features of osteoconductive and osteoinductive allograft materials.
  • the present invention capitalizes upon the unique properties of each component by utilizing a mesh container placed in a bony defect.
  • the allograft mixture is injected into the mesh container such that the osteoconductive material provides compressive strength to support the bony defect and the osteoinductive material encourages bone growth to aid in the healing of the bony defect.
  • the allograft mixture is formulated to be flowable, that is the material may be discharged from a small diameter tube of length significantly longer than the tube's diameter.
  • the allograft mixture is also packable such that the mixture may fill a small mesh container or pouch so that the mesh fills to its geometric limits as it is filled with the allograft mixture.
  • the allograft mixture includes non-demineralized cortical cancellous allograft granules or other suitable osteoconductive material, which may be fully contained by the mesh due to their physical size, and can thereby provide some structural strength to the bony defect.
  • the granules provide a focus for load bearing or load sharing just as the pebbles in concrete.
  • the ratio of cortical to cancellous allograft may be in the range of 25:75-100:0.
  • the granules may be mixed with DBM or other suitable osteoinductive material, which is a fine particulate, and a lubricating carrier.
  • DBM or other suitable osteoinductive material, which is a fine particulate, and a lubricating carrier.
  • DBM or other suitable osteoinductive material
  • a lubricating carrier As the mesh is filled with the cortical cancellous allograft granules, some of the particulate DBM may be retained within the filled mesh, but a portion of it may be free to flow out through the pores of the mesh. This results in a surrounding “halo” of osteoinductive material at the margins of the filled mesh, in direct apposition with the surrounding host tissue where it can initiate recruitment of the stem cells, thus encouraging bone growth to heal the bony defect.
  • the allograft mixture may generally be comprised of three components: non-demineralized cortical cancellous allograft granules or other suitable osteoconductive material, demineralized bone matrix (“DBM”) or other suitable osteoinductive material and sodium hyaluronan (HA), or other suitable lubricating carrier.
  • the non-demineralized cortical cancellous allograft granules may generally be 200-2000 microns in size and may have an aspect ratio of about 1.5 longer than wide.
  • the DBM may generally be 100-1000 microns in size and tends to be more uniform and rounded in shape.
  • the lubricating carrier may generally be a viscous liquid, for example, sodium hyaluronan in varying molecular weights, alginate, dextran, gelatin, collagen and others.
  • the DBM is more likely than the non-demineralized granules to be suspended in the lubricating carrier due to the geometric and size difference between the DBM and the non-demineralized granules.
  • Ceramic materials may be added as alternatives to the cortical cancellous granules.
  • the ceramics are also load bearing, load sharing, and osteoconductive.
  • the ceramic material formulation may include, for example, calcium hydroxyapatite, tricalcium phosphate and calcium sulfate among others. Calcium hydroxyapatite resorbs very slowly, over a period of years. Tricalcium phosphate resorbs slowly, in about 3-6 months. Calcium sulfate resorbs more quickly, in less than 3 months.
  • the tendency for the DBM to flow with the carrier is particularly noticeable when the mixture is delivered and packed into the mesh container 10 .
  • the DBM particles flow through the mesh pores under the force applied by the emptying of the filled tube into the confined mesh container.
  • the smaller of the DBM particles flow through the mesh pores into the bony defect.
  • These DBM particles are the sole osteoinductive elements in the mixture.
  • the DBM makes intimate contact with the irregular surfaces of the bony defect and consequently causes new bone to grow precisely at the surfaces where bony fusion is intended.
  • the mesh pores may act as a sieve or filter that preferentially retains the non-demineralized granules. This filtering feature may allow the larger, irregularly shaped granules to pack tightly together within the mesh while the fluid component, also carrying the particles of DBM, may fill the interstices of the packed granules and flow through the pores of the mesh.
  • the relationship between the sizes of the DBM, the mesh pores and the granules may generally be described as follows: If the granules have a size equal to X, then the DBM size may generally be in the range of 0.3-0.7 ⁇ and the pore size may generally be in the range of 0.5-2.5X.
  • the formulation of the mixture may generally be in the range of about 2 parts DBM, 8 parts non-demineralized allograft granules and 8 parts lubricating carrier.
  • the non-demineralized granules are primarily osteoconductive (supporting bone growth on the surface, but not strongly inducing growth), while the DBM is both osteoconductive and osteoinductive (encourages bone to grow). Because the DBM is osteoinductive, as the DBM flows out of the mesh pores in the fluid carrier, the DBM creates an increased potential for bone growth surrounding the mesh container, at the host-mesh interface, which may help to speed bony healing, or incorporation of the mesh and graft into the host bone structure.
  • a single mesh container 10 may have varying pore sizes, resulting in a differential porosity. That is, where the pores are larger, more fill material will flow out of the pores and where the pores are smaller less fill material will flow out of the pores.
  • This differential porosity allows the surgeon to direct the flow of material out of the mesh pores and thus optimize the placement of the osteoinductive DBM more precisely to promote bony growth at the defect site.
  • FIG. 3 shows a preferred tool 20 , patented as U.S. Pat. No. 6,620,169 to Spineology, Inc, that may be used to process and inject the fill material mixture.
  • the tool 20 shown in FIG. 3 is used to process the fill material mixture and inject the mixture into fill tubes.
  • FIG. 4 shows the preferred embodiment where the fill material mixture is extruded from a fill tube 30 having at least one opening to direct the flow of the fill material mixture into the porous container 10 for optimal fill material placement.
  • bone morphogenic protein for example, bone morphogenic protein, vascular endothelial growth factor, platelet derived growth factor, insulin-like growth factor, chondrocyte growth factor, fibroblast growth factor, antiviral agents, antibiotic agents and others may be added to the formulation.

Abstract

The present invention is a kit and a method of using a kit for treating bone including a fill material mixture made of osteoconductive material, osteoinductive material and a lubricating carrier, a porous container to receive the fill material mixture and a tool that flowably introduces the fill material mixture into the porous container.

Description

    FIELD OF INVENTION
  • The present invention relates generally to the field of materials adapted to replace or assist a component of the skeleton of a living body. More specifically, the present invention relates to a system that surgeons can use for healing and supporting bony defects.
  • BACKGROUND OF THE INVENTION
  • Bone grafts are commonly used in a wide variety of orthopedic procedures. In particular, bone graft is often used to aid the healing of bony defects. Such defects may arise from trauma or a pathologic condition, or the surgeon may require graft to support bony healing subsequent to a surgical procedure such as joint fusion or arthrodesis.
  • Autogenous bone, also called autograft, is generally considered to be the “gold standard” in terms of biological performance. Autograft is often collected from the patient's hip. However, collecting autograft from the patient's hip is associated with a significant incidence of post-operative pain and the potential for additional medical complications. In addition, the volume of autograft material available from the patient's hip may not be sufficient for the graft procedure.
  • Specially processed donor bone, or allograft, is frequently used as an alternative to autograft. Allograft, such as morselized granules of cortical and cancellous bone, provides an osteoconductive material with some compressive strength, which can be readily incorporated via the same healing process that occurs with autogenous bone. Osteoconductivity refers to a material's ability to provide a suitable structure or scaffold for the growth of new blood vessels and, ultimately, bone.
  • Allograft which is demineralized during its processing is commonly referred to as DBM, or demineralized bone matrix. DBM is an osteoinductive material, meaning that it can lead to the formation of bone by recruiting mesenchymal stem cells from the surrounding tissues, and these cells can ultimately differentiate into new bone.
  • The Optimesh® System (patented by Spineology, Inc. in U.S. Pat. Nos. 5,549,679; 5,571,189, 6,383,188; 6,620,162; 6,620,169 and U.S. Patent Application Nos.: 09/909,667 and 10/440,036 all of which are incorporated herein by reference) includes various tools and a porous container used to contain bone graft or other fill material when fusing intervertebral spaces and treating defects in intravertebral bones or other bones. While the current Optimesh® System utilizes the concept of fill material extrusion, it would be advantageous to capitalize on the characteristics of both the osteoconductive and osteoinductive materials.
  • SUMMARY OF THE INVENTION
  • To maximize the benefits of osteoinductive and osteoconductive fill materials, there is a need for carefully selecting and controlling the fill material flow into bony defects. It would be a particularly useful improvement to the Optimesh® System to fill the porous container with a fill material mixture that is filtered, under pressure, by the container such that bone inducing material flows out of the porous container and contacts the surrounding tissue, while the container restrains osteoconductive material in the container to provide support and rigidity to the defect.
  • The present invention includes a method and apparatus for healing and supporting bony defects. The method and apparatus of the present invention combine the advantageous features of osteoconductive and osteoinductive allograft materials. The present invention capitalizes upon the unique properties of each component by utilizing a mesh container placed in a bony defect. The allograft mixture is injected into the mesh container such that the osteoconductive material provides compressive strength to support the bony defect and the osteoinductive material encourages bone growth to aid in the healing of the bony defect.
  • The allograft mixture is formulated to be flowable, that is the material may be discharged from a small diameter tube of length significantly longer than the tube's diameter. The allograft mixture is also packable such that the mixture may fill a small mesh container or pouch so that the mesh fills to its geometric limits as it is filled with the allograft mixture.
  • The allograft mixture includes non-demineralized cortical cancellous allograft granules or other suitable osteoconductive material, which may be fully contained by the mesh due to their physical size, and can thereby provide some structural strength to the bony defect. The granules provide a focus for load bearing or load sharing just as the pebbles in concrete. The ratio of cortical to cancellous allograft may be in the range of 25:75-100:0.
  • The granules may be mixed with DBM or other suitable osteoinductive material, which is a fine particulate, and a lubricating carrier. As the mesh is filled with the cortical cancellous allograft granules, some of the particulate DBM may be retained within the filled mesh, but a portion of it may be free to flow out through the pores of the mesh. This results in a surrounding “halo” of osteoinductive material at the margins of the filled mesh, in direct apposition with the surrounding host tissue where it can initiate recruitment of the stem cells, thus encouraging bone growth to heal the bony defect.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The allograft mixture may generally be comprised of three components: non-demineralized cortical cancellous allograft granules or other suitable osteoconductive material, demineralized bone matrix (“DBM”) or other suitable osteoinductive material and sodium hyaluronan (HA), or other suitable lubricating carrier. The non-demineralized cortical cancellous allograft granules may generally be 200-2000 microns in size and may have an aspect ratio of about 1.5 longer than wide. The DBM may generally be 100-1000 microns in size and tends to be more uniform and rounded in shape. The lubricating carrier may generally be a viscous liquid, for example, sodium hyaluronan in varying molecular weights, alginate, dextran, gelatin, collagen and others. The DBM is more likely than the non-demineralized granules to be suspended in the lubricating carrier due to the geometric and size difference between the DBM and the non-demineralized granules.
  • Ceramic materials may be added as alternatives to the cortical cancellous granules. The ceramics are also load bearing, load sharing, and osteoconductive. The ceramic material formulation may include, for example, calcium hydroxyapatite, tricalcium phosphate and calcium sulfate among others. Calcium hydroxyapatite resorbs very slowly, over a period of years. Tricalcium phosphate resorbs slowly, in about 3-6 months. Calcium sulfate resorbs more quickly, in less than 3 months.
  • As shown in FIG. 1, the tendency for the DBM to flow with the carrier is particularly noticeable when the mixture is delivered and packed into the mesh container 10. The DBM particles flow through the mesh pores under the force applied by the emptying of the filled tube into the confined mesh container. The smaller of the DBM particles flow through the mesh pores into the bony defect. These DBM particles are the sole osteoinductive elements in the mixture. As the DBM is forced through the mesh pores, the DBM makes intimate contact with the irregular surfaces of the bony defect and consequently causes new bone to grow precisely at the surfaces where bony fusion is intended.
  • The mesh pores, generally about 250-5000 microns, may act as a sieve or filter that preferentially retains the non-demineralized granules. This filtering feature may allow the larger, irregularly shaped granules to pack tightly together within the mesh while the fluid component, also carrying the particles of DBM, may fill the interstices of the packed granules and flow through the pores of the mesh.
  • The relationship between the sizes of the DBM, the mesh pores and the granules may generally be described as follows: If the granules have a size equal to X, then the DBM size may generally be in the range of 0.3-0.7× and the pore size may generally be in the range of 0.5-2.5X.
  • The formulation of the mixture may generally be in the range of about 2 parts DBM, 8 parts non-demineralized allograft granules and 8 parts lubricating carrier.
  • The non-demineralized granules are primarily osteoconductive (supporting bone growth on the surface, but not strongly inducing growth), while the DBM is both osteoconductive and osteoinductive (encourages bone to grow). Because the DBM is osteoinductive, as the DBM flows out of the mesh pores in the fluid carrier, the DBM creates an increased potential for bone growth surrounding the mesh container, at the host-mesh interface, which may help to speed bony healing, or incorporation of the mesh and graft into the host bone structure.
  • As shown in FIG. 2, a single mesh container 10 may have varying pore sizes, resulting in a differential porosity. That is, where the pores are larger, more fill material will flow out of the pores and where the pores are smaller less fill material will flow out of the pores. This differential porosity allows the surgeon to direct the flow of material out of the mesh pores and thus optimize the placement of the osteoinductive DBM more precisely to promote bony growth at the defect site.
  • FIG. 3 shows a preferred tool 20, patented as U.S. Pat. No. 6,620,169 to Spineology, Inc, that may be used to process and inject the fill material mixture. In a preferred embodiment, the tool 20 shown in FIG. 3 is used to process the fill material mixture and inject the mixture into fill tubes. FIG. 4 shows the preferred embodiment where the fill material mixture is extruded from a fill tube 30 having at least one opening to direct the flow of the fill material mixture into the porous container 10 for optimal fill material placement.
  • Additional components, for example, bone morphogenic protein, vascular endothelial growth factor, platelet derived growth factor, insulin-like growth factor, chondrocyte growth factor, fibroblast growth factor, antiviral agents, antibiotic agents and others may be added to the formulation.

Claims (11)

1. A kit for treating bone comprising:
a fill material mixture including osteoconductive material, osteoinductive material and a lubricating carrier, the osteoconductive material having a particle size X, the osteoinductive material having a particle size about 0.3X-0.7X;
a porous container to receive the fill material mixture, the container having pore sizes about 0.5X-2.5X;
a tool that flowably introduces the fill material mixture into the porous container at sustained or intermittent pressures of at least 300 psi such that the fill material mixture is packed into the container;
and a halo layer of osteoinductive material at least 1 mm forms around at least a portion of an exterior surface of the porous container.
2. The device of claim 1 wherein the ratio of the fill material mixture is about 1 part osteoinductive material to 2 parts osteoconductive material to 2 parts lubricating carrier;
3. The device of claim 1 wherein the osteoinductive material is demineralized bone material.
4. The device of claim 1 wherein the osteoconductive material is selected from the group consisting of: cortical cancellous allograft, cortical cancellous autograft, cortico cancellous xenograft, hydroxyapatite, tricalcium phosphate, calcium sulfate, calcium carbonates and any combination thereof.
5. The device of claim 1 wherein the mixture is selected from a group consisting of: demineralized bone material, morselized bone graft, cortical cancellous allograft, cortical cancellous autograft, cortical cancellous xenograft, hydroxyapatite, tricalcium phosphate, calcium sulfate, calcium carbonates and any combination thereof.
6. A method of treating bone comprising the steps of:
inserting a porous container into a bony defect;
introducing the fill material mixture into the porous container at a pressure of at least 300 psi such that the fill material mixture is packed into the container forming a halo layer of osteoinductive material at least 1 mm around at least a portion of an exterior surface of the porous container.
7. The method of claim 6 wherein the ratio of the fill material mixture is about 1 part osteoinductive material to 2 parts osteoconductive material to 2 parts lubricating carrier;
8. The method of claim 6 wherein the particle size of the osteoconductive material is X, the particle size of the osteoinductive material is about 0.3X-0.7X and the container pore sizes are about 0.5X-2.5X.
9. The method of claim 6 wherein the osteoinductive material is demineralized bone material.
10. The method of claim 6 wherein the osteoconductive material is selected from the group consisting of: cortical cancellous allograft, cortical cancellous autograft, cortico cancellous xenograft, hydroxyapatite, tricalcium phosphate, calcium sulfate, calcium carbonates and any combination thereof.
11. The method of claim 6 wherein the mixture is selected from a group consisting of: demineralized bone material, morselized bone graft, cortical cancellous allograft, cortical cancellous autograft, cortical cancellous xenograft, hydroxyapatite, tricalcium phosphate, calcium sulfate, calcium carbonates and any combination thereof.
US10/924,240 2003-08-22 2004-08-23 Kit for treating bony defects Abandoned US20050131417A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/924,240 US20050131417A1 (en) 2003-08-22 2004-08-23 Kit for treating bony defects
US12/754,388 US8562613B2 (en) 2003-08-22 2010-04-05 Method kit for treating bony defects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49714603P 2003-08-22 2003-08-22
US10/924,240 US20050131417A1 (en) 2003-08-22 2004-08-23 Kit for treating bony defects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/754,388 Division US8562613B2 (en) 2003-08-22 2010-04-05 Method kit for treating bony defects

Publications (1)

Publication Number Publication Date
US20050131417A1 true US20050131417A1 (en) 2005-06-16

Family

ID=34656940

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/924,240 Abandoned US20050131417A1 (en) 2003-08-22 2004-08-23 Kit for treating bony defects
US12/754,388 Active 2026-01-15 US8562613B2 (en) 2003-08-22 2010-04-05 Method kit for treating bony defects

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/754,388 Active 2026-01-15 US8562613B2 (en) 2003-08-22 2010-04-05 Method kit for treating bony defects

Country Status (1)

Country Link
US (2) US20050131417A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261781A1 (en) * 2004-04-15 2005-11-24 Sennett Andrew R Cement-directing orthopedic implants
US20070098756A1 (en) * 2005-11-01 2007-05-03 Keyvan Behnam Bone Matrix Compositions and Methods
WO2007100952A2 (en) * 2006-02-28 2007-09-07 Zimmer Spine, Inc. Vertebroplasty-device and method
US20070231788A1 (en) * 2003-12-31 2007-10-04 Keyvan Behnam Method for In Vitro Assay of Demineralized Bone Matrix
US20080027546A1 (en) * 2006-07-25 2008-01-31 Semler Eric J Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US20090087471A1 (en) * 2007-06-15 2009-04-02 Shimp Lawrence A Method of treating tissue
US20090130173A1 (en) * 2007-06-15 2009-05-21 Keyvan Behnam Bone matrix compositions and methods
US20090157087A1 (en) * 2007-07-10 2009-06-18 Guobao Wei Delivery system attachment
US20090155378A1 (en) * 2003-12-31 2009-06-18 Keyvan Behnam Osteoinductive demineralized cancellous bone
US20090220605A1 (en) * 2007-06-15 2009-09-03 Osteotech Bone matrix compositions having nanoscale textured surfaces
US20090226523A1 (en) * 2007-10-19 2009-09-10 Keyvan Behnam Demineralized bone matrix compositions and methods
US20090242081A1 (en) * 2008-03-26 2009-10-01 Richard Bauer Aluminum Treatment Composition
US20100049251A1 (en) * 2008-03-28 2010-02-25 Kuslich Stephen D Method and device for interspinous process fusion
US20100204699A1 (en) * 2009-02-12 2010-08-12 Guobao Wei Delivery system cartridge
US20110004308A1 (en) * 2009-06-17 2011-01-06 Marino James F Expanding intervertebral device and methods of use
US7879103B2 (en) 2005-04-15 2011-02-01 Musculoskeletal Transplant Foundation Vertebral disc repair
US20110054408A1 (en) * 2007-07-10 2011-03-03 Guobao Wei Delivery systems, devices, tools, and methods of use
US20110054532A1 (en) * 2007-07-03 2011-03-03 Alexandre De Moura Interspinous mesh
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US8328876B2 (en) 2003-12-31 2012-12-11 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US20150297792A1 (en) * 2006-08-31 2015-10-22 Warsaw Orthopedic, Inc. Demineralized cancellous strip dbm graft
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US9445918B1 (en) 2012-10-22 2016-09-20 Nuvasive, Inc. Expandable spinal fusion implants and related instruments and methods
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US9980715B2 (en) 2014-02-05 2018-05-29 Trinity Orthopedics, Llc Anchor devices and methods of use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016222603A1 (en) 2016-11-16 2018-05-17 Aesculap Ag Implant and a kit for treating a bone defect
DE102016222602A1 (en) 2016-11-16 2018-05-17 Aesculap Ag Implant and kits for treating a bone defect
DE102017220710A1 (en) 2017-11-20 2019-05-23 Aesculap Ag Implant and kit for treating and / or biologically reconstructing a bone defect

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549679A (en) * 1994-05-20 1996-08-27 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5989289A (en) * 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
US6033438A (en) * 1997-06-03 2000-03-07 Sdgi Holdings, Inc. Open intervertebral spacer
US6096081A (en) * 1996-01-16 2000-08-01 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US6224630B1 (en) * 1998-05-29 2001-05-01 Advanced Bio Surfaces, Inc. Implantable tissue repair device
US6383188B2 (en) * 2000-02-15 2002-05-07 The Spineology Group Llc Expandable reamer
US20020058947A1 (en) * 2000-02-28 2002-05-16 Stephen Hochschuler Method and apparatus for treating a vertebral body
US20020068974A1 (en) * 2000-07-21 2002-06-06 Kuslich Stephen D. Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US6402784B1 (en) * 1997-07-10 2002-06-11 Aberdeen Orthopaedic Developments Limited Intervertebral disc nucleus prosthesis
US6620162B2 (en) * 2001-07-20 2003-09-16 Spineology, Inc. Device for inserting fill material particles into body cavities
US6620169B1 (en) * 1999-08-26 2003-09-16 Spineology Group, Llc. Tools and method for processing and injecting bone graft
US20030212426A1 (en) * 2002-05-08 2003-11-13 Olson, Stanley W. Tactical detachable anatomic containment device and therapeutic treatment system
US20030220649A1 (en) * 1994-05-06 2003-11-27 Qi-Bin Bao Intervertebral disc prosthesis
US6695851B2 (en) * 1995-03-27 2004-02-24 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US20040054414A1 (en) * 2002-09-18 2004-03-18 Trieu Hai H. Collagen-based materials and methods for augmenting intervertebral discs
US6805697B1 (en) * 1999-05-07 2004-10-19 University Of Virginia Patent Foundation Method and system for fusing a spinal region
US20050065609A1 (en) * 2001-11-19 2005-03-24 Douglas Wardlaw Intervertebral disc prosthesis
US6969404B2 (en) * 1999-10-08 2005-11-29 Ferree Bret A Annulus fibrosis augmentation methods and apparatus
US6991653B2 (en) * 2002-03-21 2006-01-31 Sdgi Holdings, Inc. Vertebral body and disc space replacement devices
US20060106462A1 (en) * 2002-04-16 2006-05-18 Tsou Paul M Implant material for minimally invasive spinal interbody fusion surgery
US20080086133A1 (en) * 2003-05-16 2008-04-10 Spineology Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030220649A1 (en) * 1994-05-06 2003-11-27 Qi-Bin Bao Intervertebral disc prosthesis
US5571189A (en) * 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5549679A (en) * 1994-05-20 1996-08-27 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US6695851B2 (en) * 1995-03-27 2004-02-24 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US5989289A (en) * 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
US6096081A (en) * 1996-01-16 2000-08-01 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US6033438A (en) * 1997-06-03 2000-03-07 Sdgi Holdings, Inc. Open intervertebral spacer
US6402784B1 (en) * 1997-07-10 2002-06-11 Aberdeen Orthopaedic Developments Limited Intervertebral disc nucleus prosthesis
US6224630B1 (en) * 1998-05-29 2001-05-01 Advanced Bio Surfaces, Inc. Implantable tissue repair device
US6805697B1 (en) * 1999-05-07 2004-10-19 University Of Virginia Patent Foundation Method and system for fusing a spinal region
US6620169B1 (en) * 1999-08-26 2003-09-16 Spineology Group, Llc. Tools and method for processing and injecting bone graft
US6969404B2 (en) * 1999-10-08 2005-11-29 Ferree Bret A Annulus fibrosis augmentation methods and apparatus
US6383188B2 (en) * 2000-02-15 2002-05-07 The Spineology Group Llc Expandable reamer
US20020058947A1 (en) * 2000-02-28 2002-05-16 Stephen Hochschuler Method and apparatus for treating a vertebral body
US20020068974A1 (en) * 2000-07-21 2002-06-06 Kuslich Stephen D. Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US20060149379A1 (en) * 2000-07-21 2006-07-06 Spineology, Inc. Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US20040073308A1 (en) * 2000-07-21 2004-04-15 Spineology, Inc. Expandable porous mesh bag device and methods of use for reduction, filling, fixation, and supporting of bone
US7226481B2 (en) * 2000-07-21 2007-06-05 Spineology, Inc. Expandable porous mesh bag device and methods of use for reduction, filling, fixation, and supporting of bone
US6620162B2 (en) * 2001-07-20 2003-09-16 Spineology, Inc. Device for inserting fill material particles into body cavities
US20050065609A1 (en) * 2001-11-19 2005-03-24 Douglas Wardlaw Intervertebral disc prosthesis
US6991653B2 (en) * 2002-03-21 2006-01-31 Sdgi Holdings, Inc. Vertebral body and disc space replacement devices
US20060106462A1 (en) * 2002-04-16 2006-05-18 Tsou Paul M Implant material for minimally invasive spinal interbody fusion surgery
US20030212426A1 (en) * 2002-05-08 2003-11-13 Olson, Stanley W. Tactical detachable anatomic containment device and therapeutic treatment system
US20040054414A1 (en) * 2002-09-18 2004-03-18 Trieu Hai H. Collagen-based materials and methods for augmenting intervertebral discs
US20080086133A1 (en) * 2003-05-16 2008-04-10 Spineology Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155378A1 (en) * 2003-12-31 2009-06-18 Keyvan Behnam Osteoinductive demineralized cancellous bone
US9415136B2 (en) 2003-12-31 2016-08-16 Warsaw Orthopedic, Inc. Osteoinductive demineralized cancellous bone
US8734525B2 (en) 2003-12-31 2014-05-27 Warsaw Orthopedic, Inc. Osteoinductive demineralized cancellous bone
US9034358B2 (en) 2003-12-31 2015-05-19 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US8328876B2 (en) 2003-12-31 2012-12-11 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US20070231788A1 (en) * 2003-12-31 2007-10-04 Keyvan Behnam Method for In Vitro Assay of Demineralized Bone Matrix
US8100973B2 (en) 2004-04-15 2012-01-24 Soteira, Inc. Cement-directing orthopedic implants
US20050261781A1 (en) * 2004-04-15 2005-11-24 Sennett Andrew R Cement-directing orthopedic implants
US7879103B2 (en) 2005-04-15 2011-02-01 Musculoskeletal Transplant Foundation Vertebral disc repair
US8911759B2 (en) 2005-11-01 2014-12-16 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US8992965B2 (en) 2005-11-01 2015-03-31 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US20070098756A1 (en) * 2005-11-01 2007-05-03 Keyvan Behnam Bone Matrix Compositions and Methods
US10328179B2 (en) 2005-11-01 2019-06-25 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US20070110820A1 (en) * 2005-11-01 2007-05-17 Keyvan Behnam Bone Matrix Compositions and Methods
US20070233258A1 (en) * 2006-02-28 2007-10-04 Zimmer Spine, Inc. Vertebroplasty- device and method
WO2007100952A2 (en) * 2006-02-28 2007-09-07 Zimmer Spine, Inc. Vertebroplasty-device and method
WO2007100952A3 (en) * 2006-02-28 2008-02-07 Zimmer Spine Inc Vertebroplasty-device and method
US7959683B2 (en) 2006-07-25 2011-06-14 Musculoskeletal Transplant Foundation Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US20080027546A1 (en) * 2006-07-25 2008-01-31 Semler Eric J Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US9642936B2 (en) * 2006-08-31 2017-05-09 Warsaw Orthopedic, Inc. Demineralized cancellous strip DBM graft
US20150297792A1 (en) * 2006-08-31 2015-10-22 Warsaw Orthopedic, Inc. Demineralized cancellous strip dbm graft
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US8623025B2 (en) 2006-12-15 2014-01-07 Gmedelaware 2 Llc Delivery apparatus and methods for vertebrostenting
US20090220605A1 (en) * 2007-06-15 2009-09-03 Osteotech Bone matrix compositions having nanoscale textured surfaces
US10220115B2 (en) 2007-06-15 2019-03-05 Warsaw Orthopedic, Inc. Bone matrix compositions having nanoscale textured surfaces
US9717822B2 (en) 2007-06-15 2017-08-01 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US8357384B2 (en) 2007-06-15 2013-01-22 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US10357511B2 (en) 2007-06-15 2019-07-23 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US20090130173A1 (en) * 2007-06-15 2009-05-21 Keyvan Behnam Bone matrix compositions and methods
US20090087471A1 (en) * 2007-06-15 2009-04-02 Shimp Lawrence A Method of treating tissue
US9554920B2 (en) 2007-06-15 2017-01-31 Warsaw Orthopedic, Inc. Bone matrix compositions having nanoscale textured surfaces
US8642061B2 (en) 2007-06-15 2014-02-04 Warsaw Orthopedic, Inc. Method of treating bone tissue
US8540752B2 (en) 2007-07-03 2013-09-24 Spine Tek, Inc. Interspinous mesh
US20110054532A1 (en) * 2007-07-03 2011-03-03 Alexandre De Moura Interspinous mesh
US20090234277A1 (en) * 2007-07-10 2009-09-17 Guobao Wei Delivery system
US10028837B2 (en) 2007-07-10 2018-07-24 Warsaw Orthopedic, Inc. Delivery system attachment
US9492278B2 (en) 2007-07-10 2016-11-15 Warsaw Orthopedic, Inc. Delivery system
US20090157087A1 (en) * 2007-07-10 2009-06-18 Guobao Wei Delivery system attachment
US9358113B2 (en) 2007-07-10 2016-06-07 Warsaw Orthopedic, Inc. Delivery system
US20110054408A1 (en) * 2007-07-10 2011-03-03 Guobao Wei Delivery systems, devices, tools, and methods of use
US20090192474A1 (en) * 2007-07-10 2009-07-30 Guobao Wei Delivery system
US9333082B2 (en) 2007-07-10 2016-05-10 Warsaw Orthopedic, Inc. Delivery system attachment
US8435566B2 (en) 2007-10-19 2013-05-07 Warsaw Orthopedic, Inc. Demineralized bone matrix compositions and methods
US20090226523A1 (en) * 2007-10-19 2009-09-10 Keyvan Behnam Demineralized bone matrix compositions and methods
US8202539B2 (en) 2007-10-19 2012-06-19 Warsaw Orthopedic, Inc. Demineralized bone matrix compositions and methods
US20090242081A1 (en) * 2008-03-26 2009-10-01 Richard Bauer Aluminum Treatment Composition
US20100049251A1 (en) * 2008-03-28 2010-02-25 Kuslich Stephen D Method and device for interspinous process fusion
US10588646B2 (en) 2008-06-17 2020-03-17 Globus Medical, Inc. Devices and methods for fracture reduction
US9687255B2 (en) 2008-06-17 2017-06-27 Globus Medical, Inc. Device and methods for fracture reduction
US9220598B2 (en) 2009-02-12 2015-12-29 Warsaw Orthopedic, Inc. Delivery systems, tools, and methods of use
US20100204699A1 (en) * 2009-02-12 2010-08-12 Guobao Wei Delivery system cartridge
US20100268232A1 (en) * 2009-02-12 2010-10-21 Osteotech, Inc. Delivery systems, tools, and methods of use
US10098681B2 (en) 2009-02-12 2018-10-16 Warsaw Orthopedic, Inc. Segmented delivery system
US9101475B2 (en) 2009-02-12 2015-08-11 Warsaw Orthopedic, Inc. Segmented delivery system
US9011537B2 (en) 2009-02-12 2015-04-21 Warsaw Orthopedic, Inc. Delivery system cartridge
US20110004308A1 (en) * 2009-06-17 2011-01-06 Marino James F Expanding intervertebral device and methods of use
US8529628B2 (en) 2009-06-17 2013-09-10 Trinity Orthopedics, Llc Expanding intervertebral device and methods of use
US9445918B1 (en) 2012-10-22 2016-09-20 Nuvasive, Inc. Expandable spinal fusion implants and related instruments and methods
US10350084B1 (en) 2012-10-22 2019-07-16 Nuvasive, Inc. Expandable spinal fusion implant, related instruments and methods
US11399954B2 (en) 2012-10-22 2022-08-02 Nuvasive, Inc. Expandable spinal fusion implant, related instruments and methods
US9980715B2 (en) 2014-02-05 2018-05-29 Trinity Orthopedics, Llc Anchor devices and methods of use

Also Published As

Publication number Publication date
US8562613B2 (en) 2013-10-22
US20100286702A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US8562613B2 (en) Method kit for treating bony defects
CA2269342C (en) Spinal spacer
JP4481566B2 (en) Composite bone marrow transplant, preparation method and kit
Kawanabe et al. Treatment of osteomyelitis with antibiotic-soaked porous glass ceramic
AU738218B2 (en) Bone graft composites and spacers
US6039762A (en) Reinforced bone graft substitutes
Ilan et al. Bone graft substitutes
US20130345815A1 (en) Bone grafts
US20050177238A1 (en) Radiolucent bone graft
JP2007061639A (en) Ceramic fusion implant and composition containing osteoinductive factors
WO2000054821A1 (en) Molded implants for orthopedic applications
WO2005074614A2 (en) Bone graft substitute
JP2003530915A (en) Assembled implant
Nich et al. Bone substitution in revision hip replacement
US20120310348A1 (en) Bone grafts
Passuti et al. Experimental data regarding macroporous biphasic calcium phosphate ceramics
AU773116B2 (en) Spinal spacer
Passuti et al. Données expérimentales concernant les céramiques macroporeuses biphasées en phosphates de calcium
CA2547680A1 (en) Spinal spacer
CA2367376A1 (en) Molded implants for orthopedic applications

Legal Events

Date Code Title Description
AS Assignment

Owner name: MUSCULOSKELETAL TRANSPLANT FOUNDATION, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AHERN, JAMES W.;GERTZMAN, ARTHUR;ROCHE, KAREN;AND OTHERS;REEL/FRAME:015699/0444;SIGNING DATES FROM 20050210 TO 20050217

Owner name: SPINEOLOGY, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AHERN, JAMES W.;GERTZMAN, ARTHUR;ROCHE, KAREN;AND OTHERS;REEL/FRAME:015699/0444;SIGNING DATES FROM 20050210 TO 20050217

AS Assignment

Owner name: MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC., NEW J

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPINEOLOGY, INC.;REEL/FRAME:018563/0350

Effective date: 20061130

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SPINEOLOGY, INC., MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC.;REEL/FRAME:027805/0445

Effective date: 20120131