US20050142988A1 - CMP process using slurry containing abrasive of low concentration - Google Patents

CMP process using slurry containing abrasive of low concentration Download PDF

Info

Publication number
US20050142988A1
US20050142988A1 US10/879,030 US87903004A US2005142988A1 US 20050142988 A1 US20050142988 A1 US 20050142988A1 US 87903004 A US87903004 A US 87903004A US 2005142988 A1 US2005142988 A1 US 2005142988A1
Authority
US
United States
Prior art keywords
cmp
slurry
abrasive
additive
cmp process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/879,030
Inventor
Chang Kim
Chi Kim
Tae Lee
Hi Kang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Assigned to HYNIX SEMICONDUCTOR INC. reassignment HYNIX SEMICONDUCTOR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANG, HI SOON, KIM, CHANG GYU, KIM, CHI HONG, LEE, TAE WON
Publication of US20050142988A1 publication Critical patent/US20050142988A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor

Definitions

  • the present invention relates to a CMP process using a CMP (Chemical Mechanical Polishing) slurry containing an abrasive of low concentration. More specifically, the present invention relates to a method for manufacturing a semiconductor device wherein a planarization process is performed using a slurry containing a less than 0.1 wt % abrasive unlike a conventional CMP slurry to improve uniformity of the CMP process in a manufacture process of a semiconductor device, thereby securing yield and reliability of the device.
  • CMP Chemical Mechanical Polishing
  • a CMP process is performed to planarize an interlayer insulating film for insulating a pattern formed in a manufacture process of a semiconductor device, or a film or a pattern formed in a process using a metal.
  • the CMP process which is necessary in the planarization process of the semiconductor device manufacture process is performed using a chemical material having a good reaction property of CMP slurries to remove a material to be chemically removed.
  • an ultrafine abrasive mechanically removes the surface of a wafer by injecting liquid slurry between the surface of the wafer and a rotating elastic pad.
  • a conventional slurry generally contains 5 ⁇ 15 wt % of silica (SiO 2 ) and 0.5 ⁇ 5 wt % of ceria (CeO 2 ) as an abrasive in order to maintain a predetermined polishing speed.
  • the residual polishing particles causes polishing non-uniformity
  • expendable materials such as a pad or diamond of a backing film used to overcome the non-uniformity are frequently exchanged.
  • abrasive particles such as ceria (CeO 2 ), alumina (Al 2 O 3 ) and manganese oxide (MnO 2 ) are used, a filter is also frequently replaced to remove large particles.
  • the residual abrasive in the CMP slurry may be a scratch source, which causes a fatal defect in a device.
  • a CMP slurry is required to improve uniformity of a CMP process in a manufacture process of a semiconductor device.
  • a method for manufacturing a semiconductor device by performing a CMP (Chemical Mechanical Polishing) planarization process using a CMP slurry containing an abrasive having a concentration ranging from 0.01 to 0.1 wt %.
  • CMP Chemical Mechanical Polishing
  • FIG. 1 is a graph illustrating the degree of scratch of a wafer depending on concentration of an abrasive of a slurry
  • FIG. 2 is a graph illustrating the polishing speed when a BPSG oxide film is polished using a slurry containing a 0.05 wt % abrasive ( ⁇ : wafer 1, ⁇ : wafer 2, x: wafer 3); and
  • FIG. 3 is a diagram illustrating a method for regulating a dilution ratio of a slurry.
  • the concentration of the abrasive included in the CMP slurry ranges from 0.01 to 0.1 wt %.
  • a slurry containing an abrasive having a concentration ranging from 0.01 to 0.1 wt % is preferably used in order to maintain the proper polishing speed and minimize the micro-scratch.
  • the concentration of the abrasive included in the CMP slurry ranges from 0.01 to 0.09 wt %, more preferably 0.05 wt %.
  • the abrasive is selected from a group consisting of ceria (CeO 2 ), silica (SiO 2 ), manganese oxide (MnO 2 ) and combinations thereof.
  • the CMP process is used in an interlayer insulating film planarization process, a STI CMP process, a landing plug poly CMP process, a tungsten CMP process, an aluminum CMP process or a copper CMP process.
  • a BPSG oxide film a PSG oxide film, a TEOS oxide film, a P—SiH 4 film, a SiN film or a polysilicon film is polished by regulating the amount of a supplied slurry and flowing water.
  • a slurry used in the STI CMP process is a slurry including an anioinic additive, a cationic additive or a non-ionic additive which may be present in an amount ranging from 0.005 to 1 wt %.
  • the anioinic additive is selected from a group consisting of carboxylic acid, sulfuric acid ester, sulfonic acid, phosphoric acid ester and salts thereof.
  • the cationic additive is selected from a group consisting of primary amine, secondary amine, tertiary amine, quaternary amine and salts thereof.
  • the non-ionic additive is selected from a group consisting of a polyethyleneglycol-type surfactant and a polyhydroxy alcohol-type surfactant.
  • FIG. 1 is a graph illustrating the degree of micro-scratch of a wafer depending on concentration of an abrasive of a slurry diluted by deionized water. As shown in FIG. 1 , it is understood that the concentration of the abrasive decreases as the dilution ratio increases and the micro-scratch also decreases as the concentration of the abrasive decreases.
  • FIG. 2 is a graph illustrating the polishing speed when a BPSG oxide film is polished using a slurry containing a 0.05 wt % abrasive ( ⁇ : wafer 1, ⁇ : wafer 2, x: wafer 3).
  • the polishing speed of FIG. 2 is a result of polishing a BPSG oxide film using a slurry containing a 0.05 wt % abrasive diluted by deionized water 100 times.
  • the BPSG oxide film is polished under the following conditions: at a table revolution per minute of 93 rpm, at a head revolution per minute of 87 rpm and at a pressure of 4 psi. As a result, it is shown that the BPSG oxide film has a polishing speed of 3100 ⁇ /min.
  • Table 1 shows comparison results of the polishing speed of a HDP oxide, a SiN film and a BPSG oxide film using a slurry containing 5 wt % CeO 2 as an abrasive diluted by deionized water to obtain 1) a slurry including a 0.05 wt % abrasive and 2) a slurry including 0.099 wt %.
  • the HDP oxide film has a polishing speed of 1100 ⁇ 1200 ⁇ /min
  • the BPSG oxide film has a polishing speed of 3000 ⁇ 3300 ⁇ /min
  • the SiN film has a polishing speed of 270 ⁇ 290 ⁇ /min.
  • the slurry containing 0.099 wt % CeO 2 as an abrasive it is shown that the TEOS oxide film has a polishing speed of 2445 ⁇ /min, and the BPSG oxide film has a polishing speed of 6365 ⁇ /min.
  • the polishing speed is differentiated depending on quality of films to be polished.
  • it is necessary to regulate the concentration of the abrasive with reference to Table 1.
  • the HDP oxide film and the TEOS oxide film are polished using a slurry containing a 0.1 wt % of abrasive, and the BPSG oxide film is polished using a slurry containing a 0.05 ⁇ 0.1 wt % of abrasive.
  • the proper condition can be established by changing other mechanical polishing conditions.
  • FIG. 3 is a diagram illustrating a method for regulating a dilution ratio of a slurry.
  • the polishing amount depending on quality of films such as a HDP oxide film, a TEOS oxide film, a BPSG oxide film and a P—SiH 4 film is regulated by controlling the amount of a first diluted slurry supplied through a slurry input means 2 and deionized water supplied through a water input means 3 on the polishing pad 1 at the same time.
  • the first diluted slurry is obtained by diluting a slurry containing a 5 wt % abrasive by 50 times.
  • the regulation of the abrasive dilution ratio is important, it is also important to regulate the amount of water supplied to second dilute the first diluted slurry.
  • a planarization process is performed using a slurry containing an abrasive of low concentration of less than 0.1 wt % unlike the conventional CMP slurry, thereby improving uniformity of a CMP process in a manufacture process of a semiconductor device to secure yield and reliability of the device.
  • the slurry according to the present invention since the slurry according to the present invention has the more excellent effect of achieving the planarization degree than that of the conventional slurry, the thickness of deposited films for planarization can be reduced, and the polishing amount can also be reduced, thereby providing the advantageous effect in a previous deposition process as well as in a CMP process.

Abstract

A CMP process using a slurry containing an abrasive of low concentration is disclosed. More specifically, a planarization process is performed using the slurry containing an abrasive of low concentration of less than 0.1 wt % unlike the conventional CMP slurry, thereby improving uniformity of a CMP process in a manufacture process of a semiconductor device to secure yield and reliability of the device. Particularly, since the disclosed slurry has the more excellent effect of achieving the planarization degree than that of the conventional slurry, the thickness of deposited films before the CMP process can be reduced, and the CMP amount can also be minimized.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a CMP process using a CMP (Chemical Mechanical Polishing) slurry containing an abrasive of low concentration. More specifically, the present invention relates to a method for manufacturing a semiconductor device wherein a planarization process is performed using a slurry containing a less than 0.1 wt % abrasive unlike a conventional CMP slurry to improve uniformity of the CMP process in a manufacture process of a semiconductor device, thereby securing yield and reliability of the device.
  • 2. Description of the Prior Art
  • In general, a CMP process is performed to planarize an interlayer insulating film for insulating a pattern formed in a manufacture process of a semiconductor device, or a film or a pattern formed in a process using a metal. The CMP process which is necessary in the planarization process of the semiconductor device manufacture process is performed using a chemical material having a good reaction property of CMP slurries to remove a material to be chemically removed. At the same time, an ultrafine abrasive mechanically removes the surface of a wafer by injecting liquid slurry between the surface of the wafer and a rotating elastic pad.
  • In this slurry process, lots of expendable materials such as a polishing pad, a backing film slurry, a diamond conditioner are used. Particularly, in case of slurry, less than 3% of the slurry is used in the CMP process, and the rest is wasted. As a result, studies have been made on reuse of the wasted slurry but its practicability is still in doubt.
  • When an abrasive particle included in the slurry is large or the abrasive is agglomerated, scratch is generated in a semiconductor device. The generation of scratch is more affected as concentration of the abrasive particle becomes higher, which may degrade yield and reliability of a semiconductor device.
  • A conventional slurry generally contains 5˜15 wt % of silica (SiO2) and 0.5˜5 wt % of ceria (CeO2) as an abrasive in order to maintain a predetermined polishing speed.
  • In the CMP process, since the residual polishing particles causes polishing non-uniformity, expendable materials such as a pad or diamond of a backing film used to overcome the non-uniformity are frequently exchanged. Particularly, when abrasive particles such as ceria (CeO2), alumina (Al2O3) and manganese oxide (MnO2) are used, a filter is also frequently replaced to remove large particles. The residual abrasive in the CMP slurry may be a scratch source, which causes a fatal defect in a device.
  • Therefore, a CMP slurry is required to improve uniformity of a CMP process in a manufacture process of a semiconductor device.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a method for manufacturing a semiconductor device which can secure yield and reliability of the device by improving uniformity of a CMP process.
  • In an embodiment, there is provided a method for manufacturing a semiconductor device by performing a CMP (Chemical Mechanical Polishing) planarization process using a CMP slurry containing an abrasive having a concentration ranging from 0.01 to 0.1 wt %.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become better understood with reference to the accompanying drawings which are given only by way of illustration and thus are not limitative of the present invention, wherein:
  • FIG. 1 is a graph illustrating the degree of scratch of a wafer depending on concentration of an abrasive of a slurry;
  • FIG. 2 is a graph illustrating the polishing speed when a BPSG oxide film is polished using a slurry containing a 0.05 wt % abrasive (▪: wafer 1, ▴: wafer 2, x: wafer 3); and
  • FIG. 3 is a diagram illustrating a method for regulating a dilution ratio of a slurry.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention will be described in detail.
  • In the above-described method, the concentration of the abrasive included in the CMP slurry ranges from 0.01 to 0.1 wt %.
  • If the concentration of the abrasive is less than 0.01 wt %, the content of the abrasive is too low to achieve the mechanical polishing effect. If the concentration of the abrasive is more than 0.1 wt %, the planarization ability is degraded, and micro-scratch is generated according to increase in concentration of polishing particles in the slurry. Accordingly, a slurry containing an abrasive having a concentration ranging from 0.01 to 0.1 wt % is preferably used in order to maintain the proper polishing speed and minimize the micro-scratch.
  • Preferably, the concentration of the abrasive included in the CMP slurry ranges from 0.01 to 0.09 wt %, more preferably 0.05 wt %.
  • The abrasive is selected from a group consisting of ceria (CeO2), silica (SiO2), manganese oxide (MnO2) and combinations thereof.
  • The CMP process is used in an interlayer insulating film planarization process, a STI CMP process, a landing plug poly CMP process, a tungsten CMP process, an aluminum CMP process or a copper CMP process.
  • During the interlayer insulating film planarization process, a BPSG oxide film a PSG oxide film, a TEOS oxide film, a P—SiH4 film, a SiN film or a polysilicon film is polished by regulating the amount of a supplied slurry and flowing water.
  • A slurry used in the STI CMP process is a slurry including an anioinic additive, a cationic additive or a non-ionic additive which may be present in an amount ranging from 0.005 to 1 wt %.
  • The anioinic additive is selected from a group consisting of carboxylic acid, sulfuric acid ester, sulfonic acid, phosphoric acid ester and salts thereof. The cationic additive is selected from a group consisting of primary amine, secondary amine, tertiary amine, quaternary amine and salts thereof. The non-ionic additive is selected from a group consisting of a polyethyleneglycol-type surfactant and a polyhydroxy alcohol-type surfactant.
  • The present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is a graph illustrating the degree of micro-scratch of a wafer depending on concentration of an abrasive of a slurry diluted by deionized water. As shown in FIG. 1, it is understood that the concentration of the abrasive decreases as the dilution ratio increases and the micro-scratch also decreases as the concentration of the abrasive decreases.
  • FIG. 2 is a graph illustrating the polishing speed when a BPSG oxide film is polished using a slurry containing a 0.05 wt % abrasive (▪: wafer 1, ▴: wafer 2, x: wafer 3). The polishing speed of FIG. 2 is a result of polishing a BPSG oxide film using a slurry containing a 0.05 wt % abrasive diluted by deionized water 100 times.
  • Here, the BPSG oxide film is polished under the following conditions: at a table revolution per minute of 93 rpm, at a head revolution per minute of 87 rpm and at a pressure of 4 psi. As a result, it is shown that the BPSG oxide film has a polishing speed of 3100 Å/min.
  • Table 1 shows comparison results of the polishing speed of a HDP oxide, a SiN film and a BPSG oxide film using a slurry containing 5 wt % CeO2 as an abrasive diluted by deionized water to obtain 1) a slurry including a 0.05 wt % abrasive and 2) a slurry including 0.099 wt %.
    TABLE 1
    Polishing speed depending on insulating films
    (unit: Å/min)
    0.05 wt % CeO2 0.099 wt % CeO2
    HDP BPSG TEOS BPSG
    Wafer No. oxide film SiN film oxide film oxide film oxide film
    1 1179 277 3082 2445 6365
    2 1170 285 3279
    3 1141 283 3205
  • As shown in Table 1, if the slurry containing 0.05 wt % CeO2 as an abrasive is used, it is shown that the HDP oxide film has a polishing speed of 1100˜1200 Å/min, the BPSG oxide film has a polishing speed of 3000˜3300 Å/min, and the SiN film has a polishing speed of 270˜290 Å/min. If the slurry containing 0.099 wt % CeO2 as an abrasive is used, it is shown that the TEOS oxide film has a polishing speed of 2445 Å/min, and the BPSG oxide film has a polishing speed of 6365 Å/min.
  • From the above results, the polishing speed is differentiated depending on quality of films to be polished. In order to regulate the proper polishing amount, it is necessary to regulate the concentration of the abrasive with reference to Table 1.
  • As shown in Table 1, it is preferable that the HDP oxide film and the TEOS oxide film are polished using a slurry containing a 0.1 wt % of abrasive, and the BPSG oxide film is polished using a slurry containing a 0.05˜0.1 wt % of abrasive. When the same concentration of the abrasive is applied regardless of quality of films to be polished, the proper condition can be established by changing other mechanical polishing conditions.
  • FIG. 3 is a diagram illustrating a method for regulating a dilution ratio of a slurry. The polishing amount depending on quality of films such as a HDP oxide film, a TEOS oxide film, a BPSG oxide film and a P—SiH4 film is regulated by controlling the amount of a first diluted slurry supplied through a slurry input means 2 and deionized water supplied through a water input means 3 on the polishing pad 1 at the same time. The first diluted slurry is obtained by diluting a slurry containing a 5 wt % abrasive by 50 times. In an embodiment of the present invention, since the regulation of the abrasive dilution ratio is important, it is also important to regulate the amount of water supplied to second dilute the first diluted slurry.
  • As discussed earlier, in an embodiment of the present invention, a planarization process is performed using a slurry containing an abrasive of low concentration of less than 0.1 wt % unlike the conventional CMP slurry, thereby improving uniformity of a CMP process in a manufacture process of a semiconductor device to secure yield and reliability of the device. Specifically, since the slurry according to the present invention has the more excellent effect of achieving the planarization degree than that of the conventional slurry, the thickness of deposited films for planarization can be reduced, and the polishing amount can also be reduced, thereby providing the advantageous effect in a previous deposition process as well as in a CMP process.

Claims (8)

1. A method for manufacturing a semiconductor device wherein a CMP (Chemical Mechanical Polishing) planarization process is performed using a CMP slurry, wherein the CMP slurry contains an abrasive having a concentration ranging from 0.01 to 0.1 wt % of the CMP slurry.
2. The method according to claim 1, wherein the concentration of the abrasive ranges from 0.01 to 0.09 wt %.
3. The method according to claim 1, wherein the abrasive is selected from a group consisting of CeO2, SiO2, MnO2 and combinations thereof.
4. The method according to claim 1, wherein the CMP planarization process comprises an interlayer insulating film planarization process, a STI CMP process, a landing plug poly CMP process, a tungsten CMP process, an aluminum CMP process or a copper CMP process.
5. The method according to claim 4, wherein a BPSG oxide film, a PSG oxide film, a TEOS oxide film, a P—SiH4 film, a SiN film or a polysilicon film is polished in the interlayer insulating film planarization process.
6. The method according to claim 4, wherein the slurry used in the STI CMP process comprises an additive selected from a group consisting of an anionic additive, a cationic additive or a non-ionic additive.
7. The method according to claim 6, wherein the anioinic additive is selected from a group consisting of carboxylic acid, sulfuric acid ester, sulfonic acid, phosphoric acid ester and salts thereof.
the cationic additive is selected from a group consisting of primary amine, secondary amine, tertiary amine, quaternary amine and salts thereof, and
the non-ionic additive is selected from a group consisting of a polyethyleneglycol-type surfactant and a polyhydroxy alcohol-type surfactant.
8. The method according to claim 6, wherein an amount of the additive ranges from 0.005 to 1 wt % of the slurry.
US10/879,030 2003-12-24 2004-06-30 CMP process using slurry containing abrasive of low concentration Abandoned US20050142988A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030096073A KR100576479B1 (en) 2003-12-24 2003-12-24 CMP Process using the slurry containing abrasive of low concentration
KR2003-0096073 2003-12-24

Publications (1)

Publication Number Publication Date
US20050142988A1 true US20050142988A1 (en) 2005-06-30

Family

ID=34698434

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/879,030 Abandoned US20050142988A1 (en) 2003-12-24 2004-06-30 CMP process using slurry containing abrasive of low concentration

Country Status (2)

Country Link
US (1) US20050142988A1 (en)
KR (1) KR100576479B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050196965A1 (en) * 2004-03-08 2005-09-08 Kim Chang G. Method for manufacturing semiconductor device
US20080081542A1 (en) * 2006-09-28 2008-04-03 Samsung Electronics Co., Ltd. Slurry compositions and methods of polishing a layer using the slurry compositions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100618711B1 (en) * 2005-08-18 2006-09-06 주식회사 하이닉스반도체 Method of manufacturing semiconductor device
KR100849716B1 (en) 2006-12-28 2008-08-01 주식회사 하이닉스반도체 Slurry for chemical mecanical polishing, and chemical mechanical polishing apparatus and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294105B1 (en) * 1997-12-23 2001-09-25 International Business Machines Corporation Chemical mechanical polishing slurry and method for polishing metal/oxide layers
US20010045063A1 (en) * 1997-10-31 2001-11-29 Nobuyuki Kambe Abrasive particles for surface polishing
US6444132B1 (en) * 1998-04-23 2002-09-03 Tokyo Magnetic Printing Co., Ltd. Free abrasive slurry compositions
US20030012983A1 (en) * 2001-05-11 2003-01-16 Toyoji Ataka Magnetic recording medium and method of manufacturing the same
US20030022499A1 (en) * 2001-04-05 2003-01-30 Jong-Won Lee Chemical/mechanical polishing slurry, and chemical mechanical polishing process and shallow trench isolation process employing the same
US6572449B2 (en) * 1998-10-06 2003-06-03 Rodel Holdings, Inc. Dewatered CMP polishing compositions and methods for using same
US6620215B2 (en) * 2001-12-21 2003-09-16 Dynea Canada, Ltd. Abrasive composition containing organic particles for chemical mechanical planarization
US6646348B1 (en) * 2000-07-05 2003-11-11 Cabot Microelectronics Corporation Silane containing polishing composition for CMP
US6699402B2 (en) * 1998-12-18 2004-03-02 Advanced Technology Materials, Inc. Chemical mechanical polishing compositions for CMP removal of iridium thin films
US20040180536A1 (en) * 2001-06-12 2004-09-16 Tsuyoshi Fujiwara Method for manufature of semiconductor intergrated circuit device
US20040266183A1 (en) * 2003-06-30 2004-12-30 Miller Anne E. Surfactant slurry additives to improve erosion, dishing, and defects during chemical mechanical polishing of copper damascene with low K dielectrics

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010045063A1 (en) * 1997-10-31 2001-11-29 Nobuyuki Kambe Abrasive particles for surface polishing
US6294105B1 (en) * 1997-12-23 2001-09-25 International Business Machines Corporation Chemical mechanical polishing slurry and method for polishing metal/oxide layers
US6444132B1 (en) * 1998-04-23 2002-09-03 Tokyo Magnetic Printing Co., Ltd. Free abrasive slurry compositions
US6572449B2 (en) * 1998-10-06 2003-06-03 Rodel Holdings, Inc. Dewatered CMP polishing compositions and methods for using same
US6699402B2 (en) * 1998-12-18 2004-03-02 Advanced Technology Materials, Inc. Chemical mechanical polishing compositions for CMP removal of iridium thin films
US6646348B1 (en) * 2000-07-05 2003-11-11 Cabot Microelectronics Corporation Silane containing polishing composition for CMP
US20030022499A1 (en) * 2001-04-05 2003-01-30 Jong-Won Lee Chemical/mechanical polishing slurry, and chemical mechanical polishing process and shallow trench isolation process employing the same
US20030012983A1 (en) * 2001-05-11 2003-01-16 Toyoji Ataka Magnetic recording medium and method of manufacturing the same
US6849164B2 (en) * 2001-05-11 2005-02-01 Fuji Electric Co., Ltd. Magnetic recording medium and method of manufacturing the same
US20040180536A1 (en) * 2001-06-12 2004-09-16 Tsuyoshi Fujiwara Method for manufature of semiconductor intergrated circuit device
US6620215B2 (en) * 2001-12-21 2003-09-16 Dynea Canada, Ltd. Abrasive composition containing organic particles for chemical mechanical planarization
US20040266183A1 (en) * 2003-06-30 2004-12-30 Miller Anne E. Surfactant slurry additives to improve erosion, dishing, and defects during chemical mechanical polishing of copper damascene with low K dielectrics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050196965A1 (en) * 2004-03-08 2005-09-08 Kim Chang G. Method for manufacturing semiconductor device
US7186655B2 (en) * 2004-03-08 2007-03-06 Hynix Semiconductor Inc. Method for manufacturing semiconductor device
US20080081542A1 (en) * 2006-09-28 2008-04-03 Samsung Electronics Co., Ltd. Slurry compositions and methods of polishing a layer using the slurry compositions
US8314028B2 (en) 2006-09-28 2012-11-20 Samsung Electronics Co., Ltd. Slurry compositions and methods of polishing a layer using the slurry compositions

Also Published As

Publication number Publication date
KR20050064592A (en) 2005-06-29
KR100576479B1 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US6267909B1 (en) Planarization composition for removing metal films
US6811470B2 (en) Methods and compositions for chemical mechanical polishing shallow trench isolation substrates
Oliver Chemical-mechanical planarization of semiconductor materials
KR101388956B1 (en) Polishing liquid composition
US7063597B2 (en) Polishing processes for shallow trench isolation substrates
US6964600B2 (en) High selectivity colloidal silica slurry
KR100578596B1 (en) Slurry composition for chemical mechanical polishing, method of planarizing surface of semiconductor device using the same and method of controlling selectivity of slurry composition
US20130078784A1 (en) Cmp slurry and method for manufacturing semiconductor device
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP4374038B2 (en) Substrate processing method
US20050142988A1 (en) CMP process using slurry containing abrasive of low concentration
US9758698B2 (en) Polishing slurry and substrate polishing method using the same
US20060088999A1 (en) Methods and compositions for chemical mechanical polishing substrates
US7125321B2 (en) Multi-platen multi-slurry chemical mechanical polishing process
US20070269908A1 (en) Method for in-line controlling hybrid chemical mechanical polishing process
US20060157450A1 (en) Method for improving hss cmp performance
JP4301305B2 (en) Substrate polishing method and semiconductor device manufacturing method
US7186655B2 (en) Method for manufacturing semiconductor device
US7833908B2 (en) Slurry composition for chemical-mechanical polishing capable of compensating nanotopography effect and method for planarizing surface of semiconductor device using the same
US7857986B2 (en) Chemical mechanical polishing slurry and chemical mechanical polishing apparatus and method
US6211087B1 (en) Chemical wet etch removal of underlayer material after performing chemical mechanical polishing on a primary layer
KR20130069994A (en) Chemical mechanical polishing slurry compositions and polishing method using the same
Doi 7 Chemical Polishing and Mechanical Its Applications
JP2005347455A (en) Method and apparatus for manufacturing semiconductor device
KR20060011421A (en) Polishing method for planarizing wafer

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYNIX SEMICONDUCTOR INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, CHANG GYU;KIM, CHI HONG;LEE, TAE WON;AND OTHERS;REEL/FRAME:015536/0129

Effective date: 20040530

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION