Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20050143787 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 11/035,374
Fecha de publicación30 Jun 2005
Fecha de presentación13 Ene 2005
Fecha de prioridad9 May 2002
También publicado comoUS7076307, US20050004621, US20050131486, US20050131487, US20050149146
Número de publicación035374, 11035374, US 2005/0143787 A1, US 2005/143787 A1, US 20050143787 A1, US 20050143787A1, US 2005143787 A1, US 2005143787A1, US-A1-20050143787, US-A1-2005143787, US2005/0143787A1, US2005/143787A1, US20050143787 A1, US20050143787A1, US2005143787 A1, US2005143787A1
InventoresBirinder Boveja, Angely Widhany
Cesionario originalBoveja Birinder R., Angely Widhany
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator
US 20050143787 A1
Resumen
A method and system of providing electrical pulses to vagal nerve(s) using rechargeable implantable pulse generator for stimulation and/or blocking to provide therapy for neurological and neuropsychiatric disorders comprises implantable and external components. These disorders include (but are not limited to) epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF). The implantable components are a lead and an implantable pulse generator, comprising rechargeable lithium-ion or lithium-ion polymer battery. The external components are a programmer and an external recharger. In one embodiment, the implanted pulse generator may also comprise stimulus-receiver means, and a pulse generator means with rechargeable battery. The implanted stimulus-receiver is adapted to work in conjunction with an external stimulator. In another embodiment, the implanted pulse generator is adapted to be rechargeable, utilizing inductive coupling with an external recharger. Existing vagal nerve stimulators may also be adapted to be used with rechargeable power sources as disclosed herein. The implanted system may also use a lead with two or more electrodes, for vagus nerve(s) modulation with selective stimulation and/or blocking.
Imágenes(42)
Previous page
Next page
Reclamaciones(28)
1. A method of providing electrical pulses with a rechargeable implantable pulse generator for stimulation and/or blocking of vagus nerve(s) and/or its branches or part thereof, for treating or alleviating the symptoms for at least one of neurological, neuropsychiatric disorders, comprising the steps of:
providing said implantable rechargeable pulse generator, comprising a microcontroller, pulse generation circuitry, rechargeable battery, battery recharging circuitry, and a coil;
providing a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof, and in electrical contact with said rechargeable implantable pulse generator;
providing an external power source to charge said rechargeable implantable pulse generator; and
providing an external programmer to program said rechargeable implantable pulse generator.
2. A method of claim 1, wherein said neurological, neuropsychiatric disorders comprises at least one of epilepsy, partial complex epilepsy, generalized epilepsy, involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF).
3. A method of claim 1, wherein said coil is also used for bidirectional telemetry.
4. A method of claim 1, wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a silicone enclosure.
5. A method of claim 4, wherein said implantable rechargeable pulse generator does not require magnetic shielding between said coil and said titanium case.
6. A method of claim 1, wherein said rechargeable implanted pulse generator further comprises one or two feedthrough(s) for unipolar or bipolar configurations respectively.
7. A method of claim 1, wherein said implantable rechargeable pulse generator further comprises means stimulus-receiver means such that, said implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said vagus nerve(s) and/or its branches.
8. A method of claim 1, wherein said at least two electrodes are of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
9. A method of claim 1, wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
10. A method of modulating vagus nerve(s) and/or its branches or part thereof with electrical pulses for treating or alleviating the symptoms of neurological, or neuropsychiatric disorders, comprising at least one of epilepsy, partial complex epilepsy, generalized epilepsy, involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF), and further comprising the steps of:
providing an implantable rechargeable pulse generator, wherein said implantable rechargeable pulse generator comprises a stimulus-receiver means, and an implantable pulse generator means comprising a microcontroller, pulse generation circuitry, rechargeable battery, and battery recharging circuitry;
providing a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof, and in electrical contact with said implantable rechargeable pulse generator;
providing an external power source to charge rechargeable implantable pulse generator.
providing an external programmer to program the said rechargeable implantable pulse generator.
11. A method of claim 10, wherein said rechargeable implantable pulse generator can function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said vagus nerve(s) and/or its branches.
12. A method of claim 10, wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a slicone enclosure.
13. A method of claim 10, wherein said rechargeable implantable pulse generator can be recharged using an external recharger or an external stimulator.
14. A method of claim 10, wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
15. A vagus nerve(s) stimulation and/or blocking system for providing electrical pulses to vagus nerve(s) or its branches or part thereof for treating or alleviating the symptoms for at least one of neurological, and neuropsychiatric disorders, comprising:
a rechargeable implantable pulse generator, comprising, a microprocessor, pulse generation circuitry, rechargeable battery, battery recharging circuitry, and a coil;
a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof and in electrical contact with said implantable rechargeable pulse generator;
an external power source to charge said rechargeable implantable pulse generator; and
an external programmer to program said rechargeable implantable pulse generator.
16. A system of claim 15, wherein said at least one of neurological and neuropsychiatric disorders comprises at least one of epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF).
17. A system of claim 15, wherein said coil is used for bidirectional telemetry, or receiving electrical pulses from said external stimulator.
18. A system of claim 15, wherein said coil used in recharging said pulse generator is around said rechargeable implantable pulse generator case in a silicone enclosure.
19. A system of claim 15, wherein said rechargeable implantable pulse generator does not require a magnetic shield between said coil and said titanium case.
20. A system of claim 15, wherein said rechargeable implantable rechargeable pulse generator does require a magnetic shield between said coil and said titanium case.
21. A system of claim 15, wherein said rechargeable implanted pulse generator further comprises one or two feedthrough(s) for unipolar or bipolar configurations respectively.
22. A system of claim 15, wherein said implantable rechargeable pulse generator further comprises means such that said implantable rechargeable pulse generator can also function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said vagus nerve(s) and/or its branches.
23. A system of claim 15, wherein said at least two electrodes are of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
24. A system of claim 15, wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
25. A system for modulating the vagus nerve(s) and/or its branches or part thereof with electrical pulses, for treating or for alleviating the symptoms for at least one of epilepsy, partial complex epilepsy, generalized epilepsy, involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF), comprising:
a rechargeable implantable pulse generator, comprising a microprocessor, pulse generation circuitry, rechargeable battery, and stimulus-receiver means;
a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof and in electrical contact with said implantable rechargeable pulse generator;
an external power source to charge implantable rechargeable pulse generator; and
an external programmer to program the said rechargeable implantable pulse generator.
25. A system of claim 25, wherein said implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said vagus nerve(s) and/or its branches.
26. A system of claim 25, wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a silicone enclosure.
27. A system of claim 25, wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
Descripción
  • [0001]
    This application is a continuation of application Ser. No. 10/841,995 filed May 8, 2004, entitled “METHOD AND SYSTEM FOR MODULATING THE VAGUS NERVE (10th CRANIAL NERVE) WITH ELECTRICAL PULSES USING IMPLANTED AND EXTERNAL COMPONANTS, TO PROVIDE THERAPY FOR NEUROLOGICAL AND NEUROPSYCHIATRIC DISORDERS”, which is a continuation of application Ser. No. 10/196,533 filed Jul. 16, 2002, which is a continuation of Ser. No. 10/142,298 filed on May 9, 2002. The prior applications being incorporated herein in entirety by reference, and priority is claimed from these applications.
  • FIELD OF INVENTION
  • [0002]
    The present invention relates to electrical stimulation with implanted medical device, more specifically to neuromoduation of vagus nerve(s) with rechargeable implantable pulse generator, to provide therapy for neurological, neuropsychiatric, and other medical disorders.
  • BACKGROUND
  • [0003]
    Implantable neuromodulation systems are known in the art. This patent application is directed to novel method and system for increasing the useful service life of nerve stimulators which are used for applications that can be demanding on the power source. The implantable neurostimulation system for modulating vagus nerve(s) is used to provide therapy for neurological, neuropsychiatric, and other medical disorders such as obesity, and certain cardiac disorders such as atrial fibrillation and congestive heart failure (CHF). Vagus nerve neuromodulation systems generally fall into two categories, RF coupled devices and implantable pulse generators (IPG).
  • [0004]
    U.S. Pat. No. 6,205,359 (Boveja), U.S. Pat. No. 6,356,788 (Boveja), U.S. Pat. No. 6,208,902 (Boveja), U.S. Pat. No. 6,269,270 (Boveja), U.S. Pat. No. 6,611,715 (Boveja), and U.S. Pat. No. 6,668,191 (Boveja) are generally directed to neuromodulating vagus nerve(s) with an RF coupled device. U.S. Patents, U.S. Pat. No. 4,702,254 (Zabara), U.S. Pat. No. 5,023,807 (Zabara), and U.S. Pat. No. 4,867,164 (Zabra) are generally directed to neuromodulation of vagus nerve, preferably using an implanted pulse generator (IPG).
  • [0005]
    The prior art IPG devices are similar to cardiac pacemakers, and have been adapted to deliver pulses at higher frequencies than cardiac pacemakers. In cardiac pacing, pulses are typically delivered at a rate of approximately one Hz (generally 50-70 beats per min.). In contrast, pulses to vagus nerve(s) are typically delivered at frequency of about 20-50 Hz. Electrical pulsed neuromodulation of vagus nerve(s) can be very demanding for an implantable power source. It would be desirable to have an implantable pulse generator comprising a rechargeable power source, such as rechargeable Li-ion battery or re-chargeable Li-ion polymer battery.
  • [0006]
    This patent application discloses two embodiments of implantable pulse generator comprising rechargeable batteries. Even a rechargeable implanted pulse generator does not have an indefinite life, therefore in order to enhance the service life, in one embodiment the implanted pulse generator may comprise stimulus-receiver means, and a pulse generator means with rechargeable battery. The implanted pulse generator of this embodiment is also adapted to function in conjunction with an external stimulator. In another embodiment, the implanted pulse generator is adapted to be rechargeable, utilizing inductive coupling with an external recharger. Existing vagal nerve stimulators may also be adapted to be used with rechargeable power sources as disclosed herein.
  • Background of Neuromodulation
  • [0007]
    The 10th cranial nerve or the vagus nerve plays a role in mediating afferent information from visceral organs to the brain. The vagus nerve arises directly from the brain, but unlike the other cranial nerves extends well beyond the head. At its farthest extension it reaches the lower parts of the intestines. The vagus nerve provides an easily accessible, peripheral route to modulate central nervous system (CNS) function. Observations on the profound effect of electrical stimulation of the vagus nerve on central nervous system (CNS) activity extends back to the 1930's.
  • [0008]
    The present invention is primarily directed to a method and system for selective electrical stimulation and/or blocking or neuromodulation of vagus nerve, for providing adjunct therapy for neurological and neuropsychiatric disorders comprises at least one of epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure(CHF).
  • [0009]
    In the human body there are two vagal nerves (VN), the right VN and the left VN. Each vagus nerve is encased in the carotid sheath along with the carotid artery and jugular vein. The innervation of the right and left vagus nerves is different. The innervation of the right vagus nerve is such that stimulating it results in profound bradycardia (slowing of the heart rate). The left vagus nerve has some innervation to the heart, but mostly innervates the visceral organs such as the gastrointestinal tract. It is known that stimulation of the left vagus nerve does not cause substantial slowing of the heart rate or cause any other significant deleterious side effects.
  • [0010]
    One of the fundamental features of the nervous system is its ability to generate and conduct electrical impulses. Most nerves in the human body are composed of thousands of fibers of different sizes. This is shown schematically in FIG. 1. The different sizes of nerve fibers, which carry signals to and from the brain, are designated by groups A, B, and C. The vagus nerve, for example, may have approximately 100,000 fibers of the three different types, each carrying signals. Each axon or fiber of that nerve conducts only in one direction, in normal circumstances. In the vagus nerve sensory fibers outnumber parasympathetic fibers four to one.
  • [0011]
    In a cross section of peripheral nerve it is seen that the diameter of individual fibers vary substantially, as is also shown schematically in FIG. 2. The largest nerve fibers are approximately 20 μm in diameter and are heavily myelinated (i.e., have a myelin sheath, constituting a substance largely composed of fat), whereas the smallest nerve fibers are less than 1 μm in diameter and are unmyelinated.
  • [0012]
    The diameters of group A and group B fibers include the thickness of the myelin sheaths. Group A is further subdivided into alpha, beta, gamma, and delta fibers in decreasing order of size. There is some overlapping of the diameters of the A, B, and C groups because physiological properties, especially in the form of the action potential, are taken into consideration when defining the groups. The smallest fibers (group C) are unmyelinated and have the slowest conduction rate, whereas the myelinated fibers of group B and group A exhibit rates of conduction that progressively increase with diameter.
  • [0013]
    Nerve cells have membranes that are composed of lipids and proteins (shown schematically in FIGS. 3A and 3B), and have unique properties of excitability such that an adequate disturbance of the cell's resting potential can trigger a sudden change in the membrane conductance. Under resting conditions, the inside of the nerve cell is approximately −90 mV relative to the outside. The electrical signaling capabilities of neurons are based on ionic concentration gradients between the intracellular and extracellular compartments. The cell membrane is a complex of a bilayer of lipid molecules with an assortment of protein molecules embedded in it (FIG. 3A), separating these two compartments. Electrical balance is provided by concentration gradients which are maintained by a combination of selective permeability characteristics and active pumping mechanism.
  • [0014]
    The lipid component of the membrane is a double sheet of phospholipids, elongated molecules with polar groups at one end and the fatty acid chains at the other. The ions that carry the currents used for neuronal signaling are among these water-soluble substances, so the lipid bilayer is also an insulator, across which membrane potentials develop. In biophysical terms, the lipid bilayer is not permeable to ions. In electrical terms, it functions as a capacitor, able to store charges of opposite sign that are attracted to each other but unable to cross the membrane. Embedded in the lipid bilayer is a large assortment of proteins. These are proteins that regulate the passage of ions into or out of the cell. Certain membrane-spanning proteins allow selected ions to flow down electrical or concentration gradients or by pumping them across.
  • [0015]
    These membrane-spanning proteins consist of several subunits surrounding a central aqueous pore (shown in FIG. 3B). Ions whose size and charge “fit” the pore can diffuse through it, allowing these proteins to serve as ion channels. Hence, unlike the lipid bilayer, ion channels have an appreciable permeability (or conductance) to at least some ions. In electrical terms, they function as resistors, allowing a predicable amount of current flow in response to a voltage across them.
  • [0016]
    A nerve cell can be excited by increasing the electrical charge within the neuron, thus increasing the membrane potential inside the nerve with respect to the surrounding extracellular fluid. As shown in FIG. 4, stimuli 4 and 5 are subthreshold, and do not induce a response. Stimulus 6 exceeds a threshold value and induces an action potential (AP) which will be propagated. The threshold stimulus intensity is defined as that value at which the net inward current (which is largely determined by Sodium ions) is just greater than the net outward current (which is largely carried by Potassium ions), and is typically around −55 mV inside the nerve cell relative to the outside (critical firing threshold). If however, the threshold is not reached, the graded depolarization will not generate an action potential and the signal will not be propagated along the axon. This fundamental feature of the nervous system i.e., its ability to generate and conduct electrical impulses, can take the form of action potentials, which are defined as a single electrical impulse passing down an axon. This action potential (nerve impulse or spike) is an “all or nothing” phenomenon, that is to say once the threshold stimulus intensity is reached, an action potential will be generated.
  • [0017]
    FIG. 5A illustrates a segment of the surface of the membrane of an excitable cell. Metabolic activity maintains ionic gradients across the membrane, resulting in a high concentration of potassium (K+) ions inside the cell and a high concentration of sodium (Na+) ions in the extracellular environment. The net result of the ionic gradient is a transmembrane potential that is largely dependent on the K+ gradient. Typically in nerve cells, the resting membrane potential (RMP) is slightly less than 90 mV, with the outside being positive with respect to inside.
  • [0018]
    To stimulate an excitable cell, it is only necessary to reduce the transmembrane potential by a critical amount. When the membrane potential is reduced by an amount ΔV, reaching the critical or threshold potential (TP); Which is shown in FIG. 5B. When the threshold potential (TP) is reached, a regenerative process takes place: sodium ions enter the cell, potassium ions exit the cell, and the transmembrane potential falls to zero (depolarizes), reverses slightly, and then recovers or repolarizes to the resting membrane potential (RMP).
  • [0019]
    For a stimulus to be effective in producing an excitation, it must have an abrupt onset, be intense enough, and last long enough. These facts can be drawn together by considering the delivery of a suddenly rising cathodal constant-current stimulus of duration d to the cell membrane as shown in FIG. 5B.
  • [0020]
    Cell membranes can be reasonably well represented by a capacitance C, shunted by a resistance R as shown by a simplified electrical model in diagram 5C, and shown in a more realistic electrical model in FIG. 6, where neuronal process is divided into unit lengths, which is represented in an electrical equivalent circuit. Each unit length of the process is a circuit with its own membrane resistance (rm), membrane capacitance (cm), and axonal resistance (ra).
  • [0021]
    When the stimulation pulse is strong enough, an action potential will be generated and propagated. As shown in FIG. 7, the action potential is traveling from right to left. Immediately after the spike of the action potential there is a refractory period when the neuron is either unexcitable (absolute refractory period) or only activated to sub-maximal responses by supra-threshold stimuli (relative refractory period). The absolute refractory period occurs at the time of maximal Sodium channel inactivation while the relative refractory period occurs at a later time when most of the Na+ channels have returned to their resting state by the voltage activated K+ current. The refractory period has two important implications for action potential generation and conduction. First, action potentials can be conducted only in one direction, away from the site of its generation, and secondly, they can be generated only up to certain limiting frequencies.
  • [0022]
    A single electrical impulse passing down an axon is shown schematically in FIG. 8. The top portion of the figure (A) shows conduction over mylinated axon (fiber) and the bottom portion (B) shows conduction over nonmylinated axon (fiber). These electrical signals will travel along the nerve fibers.
  • [0023]
    The information in the nervous system is coded by frequency of firing rather than the size of the action potential. This is shown schematically in FIG. 9. The bottom portion of the figure shows a train of action potentials.
  • [0024]
    In terms of electrical conduction, myelinated fibers conduct faster, are typically larger, have very low stimulation thresholds, and exhibit a particular strength-duration curve or respond to a specific pulse width versus amplitude for stimulation, compared to unmyelinated fibers. The A and B fibers can be stimulated with relatively narrow pulse widths, from 50 to 200 microseconds (μs), for example. The A fiber conducts slightly faster than the B fiber and has a slightly lower threshold. The C fibers are very small, conduct electrical signals very slowly, and have high stimulation thresholds typically requiring a wider pulse width (300-1,000 μs) and a higher amplitude for activation. Because of their very slow conduction, C fibers would not be highly responsive to rapid stimulation. Selective stimulation of only A and B fibers is readily accomplished. The requirement of a larger and wider pulse to stimulate the C fibers, however, makes selective stimulation of only C fibers, to the exclusion of the A and B fibers, virtually unachievable inasmuch as the large signal will tend to activate the A and B fibers to some extent as well.
  • [0025]
    As shown in FIG. 10A, when the distal part of a nerve is electrically stimulated, a compound action potential is recorded by an electrode located more proximally. A compound action potential contains several peaks or waves of activity that represent the summated response of multiple fibers having similar conduction velocities. The waves in a compound action potential represent different types of nerve fibers that are classified into corresponding functional categories as shown in the Table one below,
    TABLE 1
    Conduction Fiber
    Fiber Velocity Diameter
    Type (m/sec) (μm) Myelination
    A Fibers
    Alpha  70-120 12-20 Yes
    Beta 40-70  5-12 Yes
    Gamma 10-50 3-6 Yes
    Delta  6-30 2-5 Yes
    B Fibers  5-15 <3 Yes
    C Fibers 0.5-2.0 0.4-1.2 No
  • [0026]
    FIG. 10B further clarifies the differences in action potential conduction velocities between the Aδ-fibers and the C-fibers. For many of the application of current patent application, it is the slow conduction C-fibers that are stimulated by the pulse generator.
  • [0027]
    The modulation of nerve in the periphery, as done by the body, in response to different types of pain is illustrated schematically in FIGS. 11 and 12. As shown schematically in FIG. 11, the electrical impulses in response to acute pain sensations are transmitted to brain through peripheral nerve and the spinal cord. The first-order peripheral neurons at the point of injury transmit a signal along A-type nerve fibers to the dorsal horns of the spinal cord. Here the second-order neurons take over, transfer the signal to the other side of the spinal cord, and pass it through the spinothalamic tracts to thalamus of the brain. As shown in FIG. 12, duller and more persistent pain travel by another-slower route using unmyelinated C-fibers. This route made up from a chain of interconnected neurons, which run up the spinal cord to connect with the brainstem, the thalamus and finally the cerebral cortex. The autonomic nervous system also senses pain and transmits signals to the brain using a similar route to that for dull pain.
  • [0028]
    Vagus nerve stimulation with or without blocking, as performed by the system and method of the current patent application, is a means of directly affecting central function. FIG. 13 shows cranial nerves have both afferent pathway 19 (inward conducting nerve fibers which convey impulses toward the brain) and efferent pathway 21 (outward conducting nerve fibers which convey impulses to an effector). Vagus nerve is composed of 80% afferent sensory fibers carrying information to the brain from the head, neck, thorax, and abdomen. The sensory afferent cell bodies of the vagus reside in the nodose ganglion and relay information to the nucleus tractus solitarius (NTS).
  • [0029]
    The vagus nerve is composed of somatic and visceral afferents and efferents. Usually, nerve stimulation activates signals in both directions (bi-directionally). It is possible however, through the use of special electrodes and waveforms, to selectively stimulate a nerve in one direction only (unidirectionally). The vast majority of vagus nerve fibers are C fibers, and a majority are visceral afferents having cell bodies lying in masses or ganglia in the skull.
  • [0030]
    In considering the anatomy, the vagus nerve spans from the brain stem all the way to the splenic flexure of the colon. Not only is the vagus the parasympathetic nerve to the thoracic and abdominal viscera, it also the largest visceral sensory (afferent) nerve. Sensory fibers outnumber parasympathetic fibers four to one. In the medulla, the vagal fibers are connected to the nucleus of the tractus solitarius (viceral sensory), and three other nuclei. The central projections terminate largely in the nucleus of the solitary tract, which sends fibers to various regions of the brain (e.g., the thalamus, hypothalamus and amygdala).
  • [0031]
    As shown in FIG. 14, the vagus nerve emerges from the medulla of the brain stem dorsal to the olive as eight to ten rootlets. These rootlets converge into a flat cord that exits the skull through the jugular foramen. Exiting the Jugular foramen, the vagus nerve enlarges into a second swelling, the inferior ganglion.
  • [0032]
    In the neck, the vagus lies in a groove between the internal jugular vein and the internal carotid artery. It descends vertically within the carotid sheath, giving off branches to the pharynx, larynx, and constrictor muscles. From the root of the neck downward, the vagus nerve takes a different path on each side of the body to reach the cardiac, pulmonary, and esophageal plexus (consisting of both sympathetic and parasympathetic axons). From the esophageal plexus, right and left gastric nerves arise to supply the abdominal viscera as far caudal as the splenic flexure.
  • [0033]
    In the body, the vagus nerve regulates viscera, swallowing, speech, and taste. It has sensory, motor, and parasympathetic components. Table two below outlines the innervation and function of these components.
    TABLE 2
    Vagus Nerve Components
    Component fibers Structures innervated Functions
    SENSORY Pharynx. larynx, General sensation
    esophagus, external ear
    Aortic bodies, aortic arch Chemo- and baroreception
    Thoracic and abdominal
    viscera
    MOTOR Soft palate, pharynx, Speech, swallowing
    larynx, upper esophagus
    PARA- Thoracic and abdominal Control of cardiovascular
    SYMPATHETIC viscera system, respiratory and
    gastrointestinal tracts
  • [0034]
    On the Afferent side, visceral sensation is carried in the visceral sensory component of the vagus nerve. As shown in FIGS. 15A and 15B, visceral sensory fibers from plexus around the abdominal viscera converge and join with the right and left gastric nerves of the vagus. These nerves pass upward through the esophageal hiatus (opening) of the diaphragm to merge with the plexus of nerves around the esophagus. Sensory fibers from plexus around the heart and lungs also converge with the esophageal plexus and continue up through the thorax in the right and left vagus nerves. As shown in FIG. 15B, the central process of the nerve cell bodies in the inferior vagal ganglion enter the medulla and descend in the tractus solitarius to enter the caudal part of the nucleus of the tractus solitarius. From the nucleus, bilateral connections important in the reflex control of cardiovascular, respiratory, and gastrointestinal functions are made with several areas of the reticular formation and the hypothalamus.
  • [0035]
    The afferent fibers project primarily to the nucleus of the solitary tract (shown schematically in FIGS. 16 and 17) which extends throughout the length of the medulla oblongata. A small number of fibers pass directly to the spinal trigeminal nucleus and the reticular formation. As shown in FIG. 16, the nucleus of the solitary tract has widespread projections to cerebral cortex, basal forebrain, thalamus, hypothalamus, amygdala, hippocampus, dorsal raphe, and cerebellum. Because of the widespread projections of the Nucleus of the Solitary Trap, neuromodulation of the vagal afferent nerve fibers produce alleviation of symptoms of the neurological and neuropsychiatric disorders covered in this patent application, such as epilepsy, depression, involuntary movement disorders including Parkinson's disease, anxiety disorders, neurogenic pain, psycogenic pain, obsessive compulsive disorders, migraines, obesity, dementia including Alzheimer's disease, and the like.
  • PRIOR ART
  • [0036]
    U.S. Pat. Nos. 4,702,254, 4,867,164 and 5,025,807 (Zabara) generally disclose animal research and experimentation related to epilepsy and the like. Applicant's method of neuromodulation is significantly different than that disclosed in Zabara '254, '164’ and '807 patents.
  • [0037]
    U.S. Pat. No. 5,299,569 (Wernicke et al.) is directed to the use of implantable pulse generator technology for treating and controlling neuropsychiatric disorders including schizophrenia, depression, and borderline personality disorder.
  • [0038]
    U.S. Pat. No. 6,205,359 B1 (Boveja) and U.S. Pat. No. 6,356,788 B2 (Boveja) are directed to adjunct therapy for neurological and neuropsychiatric disorders using an implanted lead-receiver and an external stimulator.
  • [0039]
    U.S. Pat. No. 5,807,397 (Barreras) is directed to an implantable stimulator with replenishable, high value capacitive power source.
  • [0040]
    U.S. Pat. No. 5,193,539 (Schulman, et al) is generally directed to an addressable, implantable microstimulator that is of size and shape which is capable of being implanted by expulsion through a hypodermic needle. In the Schulman patent, up to 256 microstimulators may be implanted within a muscle and they can be used to stimulate in any order as each one is addressable, thereby providing therapy for muscle paralysis.
  • [0041]
    U.S. Pat. No. 6,553,263B1 (Meadows et al.) is generally directed to an implantable pulse generator system for spinal cord stimulation, which includes a rechargeable battery. In the Meadows '263 patent there is no disclosure or suggestion for combing a stimulus-receiver module to an implantable pulse generator (IPG) for use with an external stimulator, for providing modulating pulses to vagal nerve(s), as in the applicant's disclosure.
  • [0042]
    U.S. Pat. No. 6,505,077 B1 (Kast et al.) is directed to electrical connection for external recharging coil. In the Kast '077 disclosure, a magnetic shield is required between the externalized coil and the pulse generator case. In one embodiment of the applicant's disclosure, the externalized coil is wrapped around the pulse generator case, without requiring a magnetic shield.
  • [0043]
    U.S. Pat. No. 6,622,041 B2 (Terry, Jr. et al.) is directed to treatment of congestive heart failure and autonomic cardiovascular drive disorders using implantable neurostimulator.
  • SUMMARY OF THE INVENTION
  • [0044]
    Method and system of the current invention provides vagal nerve(s) neuromodulation to provide therapy for at least one of epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure(CHF). The method and system comprises both implantable and external components.
  • [0045]
    In one aspect of the invention, the method and system for modulating vagal nerve(s) comprises implantable pulse generator with rechargeable battery, and battery charging circuitry. The charging of the implantable battery being performed by an external charger via an inductive link.
  • [0046]
    In another aspect of the invention, one embodiment of the implanted pulse generator comprises, a stimulus-receiver module that can be used in conjunction with an external stimulator, and an implanted pulse generator module with rechargeable battery.
  • [0047]
    In another aspect of the invention the implantable pulse generator with rechargeable battery is connected to an implanted lead with at least two electrodes for providing stimulation and/or blocking pulses to vagal nerve(s).
  • [0048]
    In another aspect of the invention, the recharge coil is externalized from the titanium case and is wrapped around the titanium case in an epoxy header, thereby eliminating the need for a magnetic shield.
  • [0049]
    In another aspect of the invention, the recharge coil is also used for bi-directional telemetry.
  • [0050]
    In another aspect of the invention, the rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer battery.
  • [0051]
    In another aspect of the invention, the lead comprises at least two electrodes which are made of one from a group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
  • [0052]
    In another aspect of the invention, the selective stimulation and/or blocking to vagus nerve(s) may be anywhere along the length of the nerve, for example such stimulation may be at the cervical level or at a level near the diaphragm.
  • [0053]
    In another aspect of the invention, the stimulation and/or blocking may be unilateral or bilateral.
  • [0054]
    In another aspect of the invention, the implanted lead body may be made of a material selected from the group consisting of polyurethane, silicone, and silicone with polytetrafluoroethylene.
  • [0055]
    In yet another aspect of the invention, the implanted lead comprises at least two electrodes selected from the group consisting of spiral electrodes, cuff electrodes, steroid eluting electrodes, wrap-around electrodes, and hydrogel electrodes.
  • [0056]
    Various other features, objects and advantages of the invention will be made apparent from the following description taken together with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0057]
    For the purpose of illustrating the invention, there are shown in accompanying drawing forms which are presently preferred, it being understood that the invention is not intended to be limited to the precise arrangement and instrumentalities shown.
  • [0058]
    FIG. 1 is a diagram of the structure of a nerve.
  • [0059]
    FIG. 2 is a diagram showing different types of nerve fibers.
  • [0060]
    FIGS. 3A and 3B are schematic illustrations of the biochemical makeup of nerve cell membrane.
  • [0061]
    FIG. 4 is a figure demonstrating subthreshold and suprathreshold stimuli.
  • [0062]
    FIGS. 5A, 5B, 5C are schematic illustrations of the electrical properties of nerve cell membrane.
  • [0063]
    FIG. 6 is a schematic illustration of electrical circuit model of nerve cell membrane.
  • [0064]
    FIG. 7 is an illustration of propagation of action potential in nerve cell membrane.
  • [0065]
    FIG. 8 is an illustration showing propagation of action potential along a myelinated axon and non-myelinated axon.
  • [0066]
    FIG. 9 is an illustration showing a train of action potentials.
  • [0067]
    FIG. 10A is a diagram showing recordings of compound action potentials.
  • [0068]
    FIG. 10B is a schematic diagram showing conduction of first pain and second pain.
  • [0069]
    FIG. 11 is a schematic illustration showing mild stimulation being carried over the large diameter A-fibers.
  • [0070]
    FIG. 12 is a schematic illustration showing painful stimulation being carried over small diameter C-fibers
  • [0071]
    FIG. 13 is a schematic diagram of brain showing afferent and efferent pathways.
  • [0072]
    FIG. 14 is a schematic diagram showing the vagus nerve at the level of the nucleus of the solitary tract.
  • [0073]
    FIG. 15A is a schematic diagram showing the thoracic and visceral innervations of the vagal nerves.
  • [0074]
    FIG. 15B is a schematic diagram of the medullary section of the brain.
  • [0075]
    FIG. 16 is a simplified block diagram illustrating the connections of solitary tract nucleus to other centers of the brain.
  • [0076]
    FIG. 17 is a schematic diagram of brain showing the relationship of the solitary tract nucleus to other centers of the brain.
  • [0077]
    FIG. 18 is a simplified general block diagram of an implantable pulse generator.
  • [0078]
    FIG. 19A shows the pulse train transmitted to the vagus nerve(s).
  • [0079]
    FIG. 19B shows the ramp-up and ramp-down characteristic of the pulse train.
  • [0080]
    FIG. 20A shows energy density of different types of batteries.
  • [0081]
    FIG. 20B shows discharge curves for different types of batteries.
  • [0082]
    FIG. 21 shows a block diagram of an implantable stimulator which can be used as a stimulus-receiver or an implanted pulse generator with rechargeable battery.
  • [0083]
    FIG. 22 is a block diagram highlighting battery charging circuit of the implantable stimulator of FIG. 21.
  • [0084]
    FIG. 23 is a schematic diagram highlighting stimulus-receiver portion of implanted stimulator of one embodiment.
  • [0085]
    FIG. 24 depicts externalizing recharge and telemetry coil from the titanium case.
  • [0086]
    FIG. 25A depicts coil around the titanium case with two feedthroughs for a bipolar configuration.
  • [0087]
    FIG. 25B depicts coil around the titanium case with one feedthrough for a unipolar configuration.
  • [0088]
    FIG. 25C depicts two feedthroughs for the external coil which are common with the feedthroughs for the lead terminal.
  • [0089]
    FIG. 25D depicts one feedthrough for the external coil which is common to the feedthrough for the lead terminal.
  • [0090]
    FIGS. 26A and 26B depict recharge coil on the titanium case with a magnetic shield in-between.
  • [0091]
    FIG. 27 shows in block diagram form an implantable rechargable pulse generator.
  • [0092]
    FIG. 28 depicts in block diagram form the implanted and external components of an implanted rechargable system.
  • [0093]
    FIG. 29 depicts the alignment function of rechargable implantable pulse generator.
  • [0094]
    FIG. 30 is a block diagram of the external recharger.
  • [0095]
    FIG. 31 depicts an implantable system with tripolar lead for selective unidirectional blocking of vagus nerve(s) stimulation FIG. 32 depicts selective efferent blocking in the large diameter A and B fibers.
  • [0096]
    FIG. 33 depicts unilateral stimulation of vagus nerve at near the diaphram level.
  • [0097]
    FIG. 34 depicts bilateral stimulation of vagus nerves with one stimulator.
  • [0098]
    FIG. 35 is a schematic diagram of the implantable lead with two electrodes.
  • [0099]
    FIG. 36 is a schematic diagram of the implantable lead with three electrodes.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0100]
    In the method and system of this invention, electrical pulses for stimulation and/or blocking are applied to vagus nerve(s) for afferent neuromodulation. An implantable lead is surgically implanted in the patient. The vagus nerve(s) is/are surgically exposed and isolated, the electrodes on the distal end of the lead are wrapped around the vagus nerve(s), and the proximal end of the lead is tunneled subcutaneously. A pulse generator means is connected to the proximal end of the lead, and surgically implanted in a subcutaneous or submuscular pocket.
  • [0101]
    Shown in conjunction with FIG. 18, is an overall schematic of an implantable pulse generator system to deliver electrical pulses for modulating the vagus nerve(s) and providing therapy. The implantable pulse generator unit 391 is a microprocessor based device, where the entire circuitry is encased in a hermetically sealed titanium can. As shown in the overall block diagram, the logic & control unit 398 provides the proper timing for the output circuitry 385 to generate electrical pulses that are delivered to a pair of electrodes via a lead 40. Timing is provided by oscillator 393. The pair of electrodes to which the stimulation energy is delivered is switchable. Programming of the implantable pulse generator (IPG) is done via an external programmer 85. Once programmed via an external programmer 85, the implanted pulse generator 391 provides appropriate electrical stimulation pulses to the vagal nerve(s) 54 via the stimulating electrode pair 61,62.
  • [0102]
    Each parameter may be individually programmed and stored in memory. The range of programmable electrical stimulation parameters are shown in table 3 below.
    TABLE 3
    Programmable electrical parameter range
    PARAMER RANGE
    Pulse Amplitude 0.1 Volt-10 Volts
    Pulse width 20 μS-5 mSec.
    Frequency 3 Hz-300 Hz
    On-time 5 Secs-24 hours
    Off-time 5 Secs-24 hours
    Ramp ON/OFF
  • [0103]
    The pulses delivered to the nerve tissue for stimulation therapy are shown graphically in FIG. 19A. As shown in FIG. 19B, for patient comfort when the electrical stimulation is turned on, the electrical stimulation may be ramped up and ramped down, instead of abrupt delivery of electrical pulses.
  • [0104]
    Because of the rapidity of the pulses required for modulating nerve tissue 54 (unlike cardiac pacing), there is a real need for power sources that will provide an acceptable service life under conditions of continuous delivery of high frequency pulses. FIG. 20A shows a graph of the energy density of several commonly used battery technologies. Lithium batteries have by far the highest energy density of commonly available batteries. Also, a lithium battery maintains a nearly constant voltage during discharge. This is shown in conjunction with FIG. 20B, which is normalized to the performance of the lithium battery. Lithium-ion batteries also have a long cycle life, and no memory effect. However, Lithium-ion batteries are not as tolerant to overcharging and overdischarging. One of the most recent development in rechargable battery technology is the Lithium-ion polymer battery. Recently the major battery manufacturers (Sony, Panasonic, Sanyo) have announced plans for Lithium-ion polymer battery production.
  • [0105]
    For the practice of the current invention, two embodiments of implantable pulse generators may be used. Both embodiments comprise re-chargeable power sources, such as Lithium-ion polymer battery.
  • [0106]
    In one embodiment, the implanted device comprises a stimulus-receiver module and a pulse generator module. Advantageously, this embodiment provides an ideal power source, since the power source can be an external stimulator coupled with an implanted stimulus-receiver, or the power source can be from the implanted rechargeable battery. Shown in conjunction with FIG. 21 is a simplified overall block diagram of this embodiment. A coil 48C which is external to the titanium case may be used both as a secondary of a stimulus-receiver, or may also be used as the forward and back telemetry coil. The coil 48C may be externalized at the header portion 79C of the implanted device, and may be wrapped around the titanium can, eliminating the need for a magnetic shield. In this case, the coil is encased in the same material as the header 79C. Alternatively, the coil may be positioned on the titanium case, with a magnetic shield.
  • [0107]
    In this embodiment, as disclosed in FIG. 21, the IPG circuitry within the titanium case is used for all stimulation pulses whether the energy source is the internal battery 740 or an external power source. The external device serves as a source of energy, and as a programmer that sends telemetry to the IPG. An external stimulator and recharger may also be combined within the same enclosure. For programming, the energy is sent as high frequency sine waves with superimposed telemetry wave driving the external coil 46C. The telemetry is passed through coupling capacitor 727 to the IPG's telemetry circuit 742. For pulse delivery using external power source, the stimulus-receiver portion will receive the energy coupled to the implanted coil 48C and, using the power conditioning circuit 726, rectify it to produce DC, filter and regulate the DC, and couple it to the IPG's voltage regulator 738 section so that the IPG can run from the externally supplied energy rather than the implanted battery 740.
  • [0108]
    The system of this embodiment provides a power sense circuit 728 that senses the presence of external power communicated with the power control 730, when adequate and stable power is available from an external source. The power control circuit controls a switch 736 that selects either implanted battery power 740 or conditioned external power from 726. The logic and control section 732 and memory 744 includes the IPG's microcontroller, pre-programmed instructions, and stored changeable parameters. Using input for the telemetry circuit 742 and power control 730, this section controls the output circuit 734 that generates the output pulses.
  • [0109]
    Shown in conjunction with FIG. 22, this embodiment of the invention is practiced with a rechargeable battery. This circuit is energized when external power is available. It senses the charge state of the battery and provides appropriate charge current to safely recharge the battery without overcharging. Recharging circuitry is described later.
  • [0110]
    The stimulus-receiver portion of the circuitry is shown in conjunction with FIG. 23. Capacitor C1 (729) makes the combination of C1 and L1 sensitive to the resonant frequency and less sensitive to other frequencies, and energy from an external (primary) coil 46C is inductively transferred to the implanted unit via the secondary coil 48C. The AC signal is rectified DC via diode 731, and filtered via capacitor 733. A regulator 735 set the output voltage and limits it to a value just above the maximum IPG cell voltage. The output capacitor C4 (737), typically a tantalum capacitor with a value of 100 micro-Farads or greater, stores charge so that the circuit can supply the IPG with high values of current for a short time duration with minimal voltage change during a pulse while the current draw from the external source remains relatively constant. Also shown in conjunction with FIG. 23, a capacitor C3 (727) couples signals for forward and back telemetry.
  • [0111]
    In another embodiment, existing nerve stimulators and cardiac pacemakers can be modified to incorporate rechargeable batteries. Among the nerve stimulators that can be adopted with rechargeable batteries can for example be the vagus nerve stimulator manufactured by Cyberonics Inc. (Houston, Tex.). U.S. Pat. No. 4,702,254 (Zabara), U.S. Pat. No. 5,023,807 (Zabara), and U.S. Pat. No. 4,867,164 (Zabara) on Neurocybernetic Prostheses, which can be practiced with rechargeable power source as disclosed in the next section. These patents are incorporated herein by reference.
  • [0112]
    As shown in conjunction with FIG. 24, in both embodiments, the coil is externalized from the titanium case 57. The RF pulses transmitted via coil 46 and received via subcutaneous coil 48A are rectified via a diode bridge. These DC pulses are processed and the resulting current applied to recharge the battery 694/740 in the implanted pulse generator. In one embodiment the coil 48C may be externalized at the header portion 79 of the implanted device, and may be wrapped around the titanium can, as shown in FIGS. 25A and 25B. Shown in FIG. 25A is a bipolar configuration which requires two feedthroughs 76,77. Advantageously, as shown in FIG. 25B unipolar configuration may also be used which requires only one feedthrough 75. The other end is electronically connected to the case. In both cases, the coil is encased in the same material as the header 79. Advantageously, as shown in conjunction with FIGS. 25C and 25D, the feedthrough for the coil can be combined with the feedthrough for the lead terminal. This can be applied both for bipolar and unipolar configurations.
  • [0113]
    In one embodiment, the coil may also be positioned on the titanium case as shown in conjunction with FIGS. 26A and 26B. FIG. 26A shows a diagram of the finished implantable stimulator 391 R of one embodiment. FIG. 26B shows the pulse generator with some of the components used in assembly in an exploded view. These components include a coil cover 7, the secondary coil 48 and associated components, a magnetic shield 9, and a coil assembly carrier 11. The coil assembly carrier 11 has at least one positioning detail 13 located between the coil assembly and the feed through for positioning the electrical connection. The positioning detail 13 secures the electrical connection.
  • [0114]
    A schematic diagram of the implanted pulse generator (IPG 391 R), with re-chargeable battery 694, is shown in conjunction with FIG. 27. The IPG 391 R includes logic and control circuitry 673 connected to memory circuitry 691. The operating program and stimulation parameters are typically stored within the memory 691 via forward telemetry. Stimulation pulses are provided to the nerve tissue 54 via output circuitry 677 controlled by the microcontroller.
  • [0115]
    The operating power for the IPG 391 R is derived from a rechargeable power source 694. The rechargeable power source 694 comprises a rechargeable lithium-ion or lithium-ion polymer battery. Recharging occurs inductively from an external charger to an implanted coil 48B underneath the skin 60. The rechargeable battery 694 may be recharged repeatedly as needed. Additionally, the IPG 391R is able to monitor and telemeter the status of its rechargable battery 691 each time a communication link is established with the external programmer 85.
  • [0116]
    Much of the circuitry included within the IPG 391 R may be realized on a single application specific integrated circuit (ASIC). This allows the overall size of the IPG 391 R to be quite small, and readily housed within a suitable hermetically-sealed case. The IPG case is preferably made from a titanium and is shaped in a rounded case.
  • [0117]
    Shown in conjunction with FIG. 28 are the recharging elements of the invention. The re-charging system uses a portable external charger to couple energy into the power source of the IPG 391 R. The DC-to-AC conversion circuitry 696 of the re-charger receives energy from a battery 672 in the re-charger. A charger base station 680 and conventional AC power line may also be used. The AC signals amplified via power amplifier 674 are inductively coupled between an external coil 46B and an implanted coil 48B located subcutaneously with the implanted pulse generator (IPG) 391 R. The AC signal received via implanted coil 48B is rectified 686 to a DC signal which is used for recharging the rechargeable battery 694 of the IPG, through a charge controller IC 682. Additional circuitry within the IPG 391 R includes, battery protection IC 688 which controls a FET switch 690 to make sure that the rechargeable battery 694 is charged at the proper rate, and is not overcharged. The battery protection IC 688 can be an off-the-shelf IC available from Motorola (part no. MC 33349N-3R1). This IC monitors the voltage and current of the implanted rechargeable battery 694 to ensure safe operation. If the battery voltage rises above a safe maximum voltage, the battery protection IC 688 opens charge enabling FET switches 690, and prevents further charging. A fuse 692 acts as an additional safeguard, and disconnects the battery 694 if the battery charging current exceeds a safe level. As also shown in FIG. 28, charge completion detection is achieved by a back-telemetry transmitter 684, which modulates the secondary load by changing the full-wave rectifier into a half-wave rectifier/voltage clamp. This modulation is in turn, sensed by the charger as a change in the coil voltage due to the change in the reflected impedance. When detected through a back telemetry receiver 676, either an audible alarm is generated or a LED is turned on.
  • [0118]
    A simplified block diagram of charge completion and misalignment detection circuitry is shown in conjunction with FIG. 29. As shown, a switch regulator 686 operates as either a full-wave rectifier circuit or a half-wave rectifier circuit as controlled by a control signal (CS) generated by charging and protection circuitry 698. The energy induced in implanted coil 48B (from external coil 46B) passes through the switch rectifier 686 and charging and protection circuitry 698 to the implanted rechargeable battery 694. As the implanted battery 694 continues to be charged, the charging and protection circuitry 698 continuously monitors the charge current and battery voltage. When the charge current and battery voltage reach a predetermined level, the charging and protection circuitry 698 triggers a control signal. This control signal causes the switch rectifier 686 to switch to half-wave rectifier operation. When this change happens, the voltage sensed by voltage detector 702 causes the alignment indicator 706 to be activated. This indicator 706 may be an audible sound or a flashing LED type of indicator.
  • [0119]
    The indicator 706 may similarly be used as a misalignment indicator. In normal operation, when coils 46B (external) and 48B (implanted) are properly aligned, the voltage VS sensed by voltage detector 704 is at a minimum level because maximum energy transfer is taking place. If and when the coils 46B and 48B become misaligned, then less than a maximum energy transfer occurs, and the voltage VS sensed by detection circuit 704 increases significantly. If the voltage VS reaches a predetermined level, alignment indicator 706 is activated via an audible speaker and/or LEDs for visual feedback. After adjustment, when an optimum energy transfer condition is established, causing VS to decrease below the predetermined threshold level, the alignment indicator 706 is turned off.
  • [0120]
    The elements of the external recharger are shown as a block diagram in conjunction with FIG. 30. In this disclosure, the words charger and recharger are used interchangeably. The charger base station 680 receives its energy from a standard power outlet 714, which is then converted to 5 volts DC by a AC-to-DC transformer 712. When the re-charger is placed in a charger base station 680, the re-chargeable battery 672 of the re-charger is fully recharged in a few hours and is able to recharge the battery 694 of the IPG 391 R. If the battery 672 of the external re-charger falls below a prescribed limit of 2.5 volt DC, the battery 672 is trickle charged until the voltage is above the prescribed limit, and then at that point resumes a normal charging process.
  • [0121]
    As also shown in FIG. 30, a battery protection circuit 718 monitors the voltage condition, and disconnects the battery 672 through one of the FET switches 716, 720 if a fault occurs until a normal condition returns. A fuse 724 will disconnect the battery 672 should the charging or discharging current exceed a prescribed amount.
  • [0122]
    Since another key concept of this invention is to deliver afferent stimulation, in one aspect efferent stimulation of selected types of fibers may be substantially blocked, utilizing the “greenwave” effect. In such a case, as shown in conjunction with FIGS. 31 and 32, a tripolar lead is utilized. As depicted on the top right portion of FIG. 31, there is a depolarization peak 10 on the vagus nerve bundle corresponding to electrode 61 (cathode) and the two hyper-polarization peaks 8, 12 corresponding to electrodes 62, 63 (anodes). With the microcontroller controlling the tripolar device, the size and timing of the hyper-polarizations 8, 12 can be controlled. As was shown previously in FIGS. 2 and 10A, since the speed of conduction is different between the larger diameter A and B fibers and the smaller diameter c-fibers, by appropriately timing the pulses, collision blocks can be created for conduction via the large diameter A and B fibers in the efferent direction. This is depicted schematically in FIG. 32. A number of blocking techniques are known in the art, such as collision blocking, high frequency blocking, and anodal blocking. Any of these well known blocking techniques may be used with the practice of this invention, and are considered within the scope of this invention.
  • [0123]
    In one aspect of the invention, the pulsed electrical stimulation and/or blocking to the vagus nerve(s) may be provided anywhere along the length of the vagus nerve(s). As was shown earlier in conjunction with FIG. 31, the pulsed electrical stimulation may be at the cervical level. Alternatively, shown in conjunction with FIG. 33, the stimulation to the vagus nerve(s) may be around the diaphramatic level. Either above the diaphragm or below the diaphragm. Further, the stimulation may be unilateral or bilateral, i.e. stimulation is to one or both vagus nerves. FIG. 34 depicts bilateral vagal nerve stimulation at around the level of the diaphragm. Any combination of vagal nerve(s) stimulation, either unilateral or bilateral, anywhere along the length of the vagal nerve(s) is considered within the scope of this invention.
  • [0124]
    Referring now to FIG. 35, the implanted lead component of the system is similar to cardiac pacemaker leads, except for distal portion (or electrode end) of the lead. This figure shows a pair of electrodes 61,62 that are used for providing electrical pulses for stimulation. Alternatively, FIG. 36 depicts a lead with tripolar electrodes 62,61,63 for stimulation and/or blocking. The lead terminal preferably is linear bipolar, even though it can be bifurcated, and plug(s) into the cavity of the pulse generator means. The lead body 59 insulation may be constructed of medical grade silicone, silicone reinforced with polytetrafluoro-ethylene (PTFE), or polyurethane. The electrodes 61,62 for stimulating the vagus nerve 54 may either wrap around the nerve once or may be spiral shaped. These stimulating electrodes may be made of pure platinum, platinum/Iridium alloy or platinum/iridium coated with titanium nitride. The conductor connecting the terminal to the electrodes 61,62 is made of an alloy of nickel-cobalt. The implanted lead design variables are also summarized in table four below.
    TABLE 4
    Lead design variables
    Conductor
    Proximal (connecting Distal
    End Lead body- proximal End
    Lead Insulation and distal Electrode - Electrode -
    Terminal Materials Lead-Coating ends) Material Type
    Linear Polyurethane Antimicrobial Alloy of Pure Spiral
    bipolar coating Nickel- Platinum electrode
    Cobalt
    Bifurcated Silicone Anti- Platinum- Wrap-around
    Inflammatory Iridium electrode
    coating (Pt/Ir) Alloy
    Silicone with Lubricious Pt/Ir coated Steroid
    Polytetrafluoroethylene coating with Titanium eluting
    (PTFE) Nitride
    Carbon Hydrogel
    electrodes
    Cuff
    electrodes
  • [0125]
    Once the lead is fabricated, coating such as anti-microbial, anti-inflammatory, or lubricious coating may be applied to the body of the lead.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3796221 *7 Jul 197112 Mar 1974Hagfors NApparatus for delivering electrical stimulation energy to body-implanted apparatus with signal-receiving means
US3942535 *26 Jul 19749 Mar 1976G. D. Searle & Co.Rechargeable tissue stimulating system
US4573481 *25 Jun 19844 Mar 1986Huntington Institute Of Applied ResearchImplantable electrode array
US4702254 *30 Dic 198527 Oct 1987Jacob ZabaraNeurocybernetic prosthesis
US4867164 *26 Oct 198719 Sep 1989Jacob ZabaraNeurocybernetic prosthesis
US5025807 *25 Ene 198925 Jun 1991Jacob ZabaraNeurocybernetic prosthesis
US5193539 *18 Dic 199116 Mar 1993Alfred E. Mann Foundation For Scientific ResearchImplantable microstimulator
US5263480 *7 Ago 199223 Nov 1993Cyberonics, Inc.Treatment of eating disorders by nerve stimulation
US5299569 *3 May 19915 Abr 1994Cyberonics, Inc.Treatment of neuropsychiatric disorders by nerve stimulation
US5405367 *3 Mar 199311 Abr 1995Alfred E. Mann Foundation For Scientific ResearchStructure and method of manufacture of an implantable microstimulator
US5807397 *1 Ago 199615 Sep 1998Plexus, Inc.Implantable stimulator with replenishable, high value capacitive power source and method therefor
US5978713 *6 Feb 19982 Nov 1999Intermedics Inc.Implantable device with digital waveform telemetry
US5997476 *7 Oct 19977 Dic 1999Health Hero Network, Inc.Networked system for interactive communication and remote monitoring of individuals
US6067474 *31 Jul 199823 May 2000Advanced Bionics CorporationImplantable device with improved battery recharging and powering configuration
US6104955 *15 Dic 199715 Ago 2000Medtronic, Inc.Method and apparatus for electrical stimulation of the gastrointestinal tract
US6205359 *26 Oct 199820 Mar 2001Birinder Bob BovejaApparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6270457 *31 Dic 19997 Ago 2001Cardiac Intelligence Corp.System and method for automated collection and analysis of regularly retrieved patient information for remote patient care
US6356788 *30 Nov 200012 Mar 2002Birinder Bob BovejaApparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6418346 *14 Dic 19999 Jul 2002Medtronic, Inc.Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6443891 *20 Sep 20003 Sep 2002Medtronic, Inc.Telemetry modulation protocol system for medical devices
US6505075 *22 May 20007 Ene 2003Richard L. WeinerPeripheral nerve stimulation method
US6505077 *19 Jun 20007 Ene 2003Medtronic, Inc.Implantable medical device with external recharging coil electrical connection
US6553263 *28 Jul 200022 Abr 2003Advanced Bionics CorporationImplantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6591137 *9 Nov 20008 Jul 2003Neuropace, Inc.Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders
US6611715 *19 Abr 200126 Ago 2003Birinder R. BovejaApparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US6615084 *15 Nov 20002 Sep 2003Transneuronix, Inc.Process for electrostimulation treatment of morbid obesity
US6622041 *21 Ago 200116 Sep 2003Cyberonics, Inc.Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US6708064 *24 Dic 200116 Mar 2004Ali R. RezaiModulation of the brain to affect psychiatric disorders
US6735475 *24 Ene 200211 May 2004Advanced Bionics CorporationFully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain
US7076307 *8 May 200411 Jul 2006Boveja Birinder RMethod and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US20020099419 *4 Abr 200125 Jul 2002Biocontrol Medical Bcm Ltd.Method and apparatus for selective control of nerve fibers
US20020198572 *30 Jul 200226 Dic 2002Medtronic, Inc.Peripheral nerve stimulation apparatus
US20030036773 *2 Ago 200220 Feb 2003Whitehurst Todd K.Systems and methods for treatment of coronary artery disease
US20030045914 *31 Ago 20016 Mar 2003Biocontrol Medical Ltd.Treatment of disorders by unidirectional nerve stimulation
US20030212440 *16 Jul 200213 Nov 2003Boveja Birinder R.Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system
US20040167583 *6 Ene 200426 Ago 2004Enteromedics, Inc.Electrode band apparatus and method
US20050004621 *8 May 20046 Ene 2005Boveja Birinder R.Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external componants, to provide therapy for neurological and neuropsychiatric disorders
US20050143789 *25 Feb 200530 Jun 2005Whitehurst Todd K.Methods and systems for stimulating a peripheral nerve to treat chronic pain
US20050154419 *4 Mar 200514 Jul 2005Whitehurst Todd K.Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US71677506 Ene 200423 Ene 2007Enteromedics, Inc.Obesity treatment with electrically induced vagal down regulation
US71943138 Jun 200420 Mar 2007Cardiac Pacemakers, Inc.Baroreflex therapy for disordered breathing
US723991810 Jun 20053 Jul 2007Ndi Medical Inc.Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US728386710 Jun 200516 Oct 2007Ndi Medical, LlcImplantable system and methods for acquisition and processing of electrical signals from muscles and/or nerves and/or central nervous system tissue
US734320210 Jun 200511 Mar 2008Ndi Medical, Llc.Method for affecting urinary function with electrode implantation in adipose tissue
US74441836 Ene 200428 Oct 2008Enteromedics, Inc.Intraluminal electrode apparatus and method
US7493171 *27 May 200517 Feb 2009Boston Scientific Neuromodulation Corp.Treatment of pathologic craving and aversion syndromes and eating disorders by electrical brain stimulation and/or drug infusion
US749974811 Abr 20053 Mar 2009Cardiac Pacemakers, Inc.Transvascular neural stimulation device
US755534130 Jun 2009Cardiac Pacemakers, Inc.System to treat AV-conducted ventricular tachyarrhythmia
US756519810 Jun 200521 Jul 2009Medtronic Urinary Solutions, Inc.Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence
US761699010 Nov 2009Cardiac Pacemakers, Inc.Implantable and rechargeable neural stimulator
US764711412 Ene 2010Cardiac Pacemakers, Inc.Baroreflex modulation based on monitored cardiovascular parameter
US76727272 Mar 2010Enteromedics Inc.Neural electrode treatment
US76762639 Mar 2010Neurovista CorporationMinimally invasive system for selecting patient-specific therapy parameters
US76762752 May 20059 Mar 2010Pacesetter, Inc.Endovascular lead for chronic nerve stimulation
US769357722 Ene 20076 Abr 2010Enteromedics Inc.Irritable bowel syndrome treatment
US770688424 Dic 200327 Abr 2010Cardiac Pacemakers, Inc.Baroreflex stimulation synchronized to circadian rhythm
US772054022 Ene 200718 May 2010Enteromedics, Inc.Pancreatitis treatment
US772977113 Ago 20071 Jun 2010Enteromedics Inc.Nerve stimulation and blocking for treatment of gastrointestinal disorders
US77343416 Jun 20068 Jun 2010Cardiac Pacemakers, Inc.Method and apparatus for gastrointestinal stimulation via the lymphatic system
US77389619 Oct 200615 Jun 2010Endostim, Inc.Method and apparatus for treatment of the gastrointestinal tract
US774732329 Jun 2010Cardiac Pacemakers, Inc.Adaptive baroreflex stimulation therapy for disordered breathing
US774732528 Sep 200529 Jun 2010Neurovista CorporationSystems and methods for monitoring a patient's neurological disease state
US77611672 Oct 200620 Jul 2010Medtronic Urinary Solutions, Inc.Systems and methods for clinician control of stimulation systems
US77833539 Nov 200624 Ago 2010Cardiac Pacemakers, Inc.Automatic neural stimulation modulation based on activity and circadian rhythm
US778794617 Sep 200431 Ago 2010Cardiac Pacemakers, Inc.Patient monitoring, diagnosis, and/or therapy systems and methods
US781380511 Ene 200612 Oct 2010Pacesetter, Inc.Subcardiac threshold vagal nerve stimulation
US781380910 Jun 200512 Oct 2010Medtronic, Inc.Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US782248617 Ago 200526 Oct 2010Enteromedics Inc.Custom sized neural electrodes
US784433830 Jun 200430 Nov 2010Enteromedics Inc.High frequency obesity treatment
US785332914 Dic 2010Neurovista CorporationMonitoring efficacy of neural modulation therapy
US786986911 Ene 2011Pacesetter, Inc.Subcardiac threshold vagal nerve stimulation
US786988124 Dic 200311 Ene 2011Cardiac Pacemakers, Inc.Baroreflex stimulator with integrated pressure sensor
US788749315 Feb 2011Cardiac Pacemakers, Inc.Implantable device employing movement sensing for detecting sleep-related disorders
US78949066 Jun 200622 Feb 2011Cardiac Pacemakers, Inc.Amelioration of chronic pain by endolymphatic stimulation
US79041767 Sep 20068 Mar 2011Bio Control Medical (B.C.M.) Ltd.Techniques for reducing pain associated with nerve stimulation
US79300352 May 200719 Abr 2011Neurovista CorporationProviding output indicative of subject's disease state
US797914112 Jul 2011Cardiac Pacemakers, Inc.Transvascular reshaping lead system
US798699522 Ene 200726 Jul 2011Enteromedics Inc.Bulimia treatment
US800079323 May 200816 Ago 2011Cardiac Pacemakers, Inc.Automatic baroreflex modulation based on cardiac activity
US800255323 Ago 2011Cardiac Pacemakers, Inc.Sleep quality data collection and evaluation
US801020411 Mar 201030 Ago 2011Enteromedics Inc.Nerve blocking for treatment of gastrointestinal disorders
US802405020 Sep 2011Cardiac Pacemakers, Inc.Lead for stimulating the baroreceptors in the pulmonary artery
US803673611 Oct 2011Neuro Vista CorporationImplantable systems and methods for identifying a contra-ictal condition in a subject
US804608525 Oct 2011Enteromedics Inc.Controlled vagal blockage therapy
US806891829 Nov 2011Enteromedics Inc.Remote monitoring and control of implantable devices
US810334924 Ene 2012Enteromedics Inc.Neural electrode treatment
US812169323 Oct 200821 Feb 2012Cardiac Pacemakers, Inc.Baroreflex stimulation to treat acute myocardial infarction
US812656024 Dic 200328 Feb 2012Cardiac Pacemakers, Inc.Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US81265615 Nov 200928 Feb 2012Cardiac Pacemakers, Inc.Implantable and rechargeable neural stimulator
US813137330 Mar 20106 Mar 2012Cardiac Pacemakers, Inc.Baroreflex stimulation synchronized to circadian rhythm
US814016720 Nov 200720 Mar 2012Enteromedics, Inc.Implantable therapy system with external component having multiple operating modes
US816070914 May 200717 Abr 2012Endostim, Inc.Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure
US816569224 Abr 2012Medtronic Urinary Solutions, Inc.Implantable pulse generator power management
US817066814 Jul 20061 May 2012Cardiac Pacemakers, Inc.Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy
US819025728 May 200929 May 2012Cardiac Pacemakers, Inc.System to treat AV-conducted ventricular tachyarrhythmia
US819530412 Oct 20075 Jun 2012Medtronic Urinary Solutions, Inc.Implantable systems and methods for acquisition and processing of electrical signals
US820033112 Jun 2012Cardiac Pacemakers, Inc.System and method for filtering neural stimulation
US820033212 Jun 2012Cardiac Pacemakers, Inc.System and method for filtering neural stimulation
US820459124 Ene 200719 Jun 2012Bio Control Medical (B.C.M.) Ltd.Techniques for prevention of atrial fibrillation
US82244362 Abr 200717 Jul 2012Cardiac Research, Inc.Unidirectional neural stimulation systems, devices and methods
US82244386 Ene 201017 Jul 2012Levin Bruce HMethod for directed intranasal administration of a composition
US82853899 Oct 2012Cardiac Pacemakers, Inc.Automatic neural stimulation modulation based on motion and physiological activity
US829593414 Nov 200623 Oct 2012Neurovista CorporationSystems and methods of reducing artifact in neurological stimulation systems
US829594323 Oct 2012Medtronic, Inc.Implantable medical lead with biased electrode
US832101222 Dic 200927 Nov 2012The Invention Science Fund I, LlcDevice, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject
US832641820 Ago 20084 Dic 2012Medtronic, Inc.Evaluating therapeutic stimulation electrode configurations based on physiological responses
US83264264 Dic 2012Enteromedics, Inc.Implantable device with heat storage
US836425814 Jun 201029 Ene 2013The Invention Science Fund I, LlcDevice, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject
US836994322 Oct 20095 Feb 2013Cardiac Pacemakers, Inc.Method and apparatus for neural stimulation via the lymphatic system
US83699525 Feb 2013Enteromedics, Inc.Bulimia treatment
US839197026 Ago 20085 Mar 2013The Feinstein Institute For Medical ResearchDevices and methods for inhibiting granulocyte activation by neural stimulation
US841233629 Dic 20092 Abr 2013Autonomic Technologies, Inc.Integrated delivery and visualization tool for a neuromodulation system
US84123382 Abr 2013Setpoint Medical CorporationDevices and methods for optimizing electrode placement for anti-inflamatory stimulation
US844263817 May 201014 May 2013Cardiac Pacemakers, Inc.Adaptive baroreflex stimulation therapy for disordered breathing
US84426404 Ene 201014 May 2013Cardiac Pacemakers, Inc.Neural stimulation modulation based on monitored cardiovascular parameter
US844740321 May 2013Endostim, Inc.Device and implantation system for electrical stimulation of biological systems
US84474044 Mar 201121 May 2013Endostim, Inc.Device and implantation system for electrical stimulation of biological systems
US84577464 Ago 20114 Jun 2013Cardiac Pacemakers, Inc.Implantable systems and devices for providing cardiac defibrillation and apnea therapy
US846787518 Jun 2013Medtronic, Inc.Stimulation of dorsal genital nerves to treat urologic dysfunctions
US84730621 May 200925 Jun 2013Autonomic Technologies, Inc.Method and device for the treatment of headache
US84730766 Sep 201125 Jun 2013Cardiac Pacemakers, Inc.Lead for stimulating the baroreceptors in the pulmonary artery
US849464122 Abr 201023 Jul 2013Autonomic Technologies, Inc.Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism
US851406716 Ago 201120 Ago 2013Elwha LlcSystematic distillation of status data relating to regimen compliance
US85212999 Nov 201127 Ago 2013Enteromedics Inc.Remote monitoring and control of implantable devices
US853278720 Nov 200710 Sep 2013Enteromedics Inc.Implantable therapy system having multiple operating modes
US853522213 Mar 200717 Sep 2013Cardiac Pacemakers, Inc.Sleep detection using an adjustable threshold
US853852314 Sep 201217 Sep 2013Medtronic, Inc.Evaluating therapeutic stimulation electrode configurations based on physiological responses
US853853319 Oct 201117 Sep 2013Enteromedics Inc.Controlled vagal blockage therapy
US853853413 Mar 201217 Sep 2013Endostim, Inc.Systems and methods for electrically stimulating the lower esophageal sphincter to treat gastroesophageal reflux disease
US853854221 Jul 201117 Sep 2013Enteromedics Inc.Nerve stimulation and blocking for treatment of gastrointestinal disorders
US85431992 Sep 201124 Sep 2013Cyberonics, Inc.Implantable systems and methods for identifying a contra-ictal condition in a subject
US854321025 Ene 200924 Sep 2013Endostim, Inc.Device and implantation system for electrical stimulation of biological systems
US85716517 Feb 201129 Oct 2013Bio Control Medical (B.C.M.) Ltd.Techniques for reducing pain associated with nerve stimulation
US857166229 Ene 200829 Oct 2013Simon Fraser UniversityTransvascular nerve stimulation apparatus and methods
US85889084 Feb 200919 Nov 2013University Of Virginia Patent FoundationSystem, method and computer program product for detection of changes in health status and risk of imminent illness
US858893311 Ene 201019 Nov 2013Cyberonics, Inc.Medical lead termination sleeve for implantable medical devices
US859900916 Ago 20113 Dic 2013Elwha LlcSystematic distillation of status data relating to regimen compliance
US860359823 Jul 200810 Dic 2013Tokitae LlcMulti-layer insulation composite material having at least one thermally-reflective layer with through openings, storage container using the same, and related methods
US860635617 Ago 200410 Dic 2013Cardiac Pacemakers, Inc.Autonomic arousal detection system and method
US861200223 Dic 201017 Dic 2013Setpoint Medical CorporationNeural stimulation devices and systems for treatment of chronic inflammation
US86263013 Jun 20137 Ene 2014Cardiac Pacemakers, Inc.Automatic baroreflex modulation based on cardiac activity
US863071922 Oct 201214 Ene 2014Medtronic, Inc.Implantable medical lead with biased electrode
US863492122 Feb 201221 Ene 2014Cardiac Pacemakers, Inc.Implantable and rechargeable neural stimulator
US864987031 Oct 200711 Feb 2014Medtronic Uninary Solutions, Inc.Systems and methods including lead and electrode structures sized and configured for implantation in adipose tissue
US865775615 Feb 201125 Feb 2014Cardiac Pacemakers, Inc.Implantable device employing movement sensing for detecting sleep-related disorders
US866064815 Nov 201225 Feb 2014Cardiac Pacemakers, Inc.Implantable and rechargeable neural stimulator
US86909349 May 20118 Abr 2014The Invention Science Fund I, LlcMethod, device and system for modulating an activity of brown adipose tissue in a vertebrate subject
US87032595 Jun 201222 Abr 2014The Invention Science Fund I, LlcMulti-layer insulation composite material including bandgap material, storage container using same, and related methods
US87062521 Jul 201022 Abr 2014Medtronic, Inc.Systems and methods for clinician control of stimulation system
US87125294 Mar 201129 Abr 2014Endostim, Inc.Device and implantation system for electrical stimulation of biological systems
US87125304 Mar 201129 Abr 2014Endostim, Inc.Device and implantation system for electrical stimulation of biological systems
US872364016 Ago 201113 May 2014Elwha LlcDistillation of status data relating to regimen compliance responsive to the presence and absence of wireless signals relating to one or more threshold frequencies
US872524328 Dic 200513 May 2014Cyberonics, Inc.Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8725247 *25 Jun 201213 May 2014Cardiac Pacemakers, Inc.Unidirectional neural stimulation systems, devices and methods
US872525114 Ene 201313 May 2014The Invention Science Fund I, LlcDevice, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject
US872912924 Mar 200520 May 2014The Feinstein Institute For Medical ResearchNeural tourniquet
US876206522 Jun 200524 Jun 2014Cyberonics, Inc.Closed-loop feedback-driven neuromodulation
US876846230 May 20121 Jul 2014Cardiac Pacemakers, Inc.System and method for filtering neural stimulation
US87815744 Mar 201315 Jul 2014Autonomic Technologies, Inc.Integrated delivery and visualization tool for a neuromodulation system
US87815975 May 201015 Jul 2014Cyberonics, Inc.Systems for monitoring a patient's neurological disease state
US87866242 Jun 201022 Jul 2014Cyberonics, Inc.Processing for multi-channel signals
US87880349 May 201222 Jul 2014Setpoint Medical CorporationSingle-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US87880379 Nov 201222 Jul 2014The Invention Science Fund I, LlcDevice, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject
US879040013 Jun 201229 Jul 2014Elwha LlcBreast implant with covering and analyte sensors responsive to external power source
US879535913 Jun 20125 Ago 2014Elwha LlcBreast implant with regionalized analyte sensors and internal power source
US87987532 Jul 20135 Ago 2014Endostim, Inc.Device and implantation system for electrical stimulation of biological systems
US880549430 Jul 201312 Ago 2014Cardiac Pacemakers, Inc.System and method to deliver therapy in presence of another therapy
US880550125 Ene 201212 Ago 2014Cardiac Pacemakers, Inc.Baroreflex stimulation to treat acute myocardial infarction
US880551323 Abr 201312 Ago 2014Cardiac Pacemakers, Inc.Neural stimulation modulation based on monitored cardiovascular parameter
US880837313 Jun 201219 Ago 2014Elwha LlcBreast implant with regionalized analyte sensors responsive to external power source
US881041728 Ago 200919 Ago 2014The Invention Science Fund I, LlcBeverage immersate with detection capability
US881681416 Ago 201126 Ago 2014Elwha LlcSystematic distillation of status data responsive to whether or not a wireless signal has been received and relating to regimen compliance
US88185131 Mar 201226 Ago 2014Cardiac Pacemakers, Inc.Baroreflex stimulation synchronized to circadian rhythm
US88251647 Jun 20112 Sep 2014Enteromedics Inc.Neural modulation devices and methods
US883172914 Abr 20129 Sep 2014Endostim, Inc.Systems and methods for treating gastroesophageal reflux disease
US884939029 Dic 200930 Sep 2014Cyberonics, Inc.Processing for multi-channel signals
US885576715 Nov 20137 Oct 2014Setpoint Medical CorporationNeural stimulation devices and systems for treatment of chronic inflammation
US885577523 Oct 20127 Oct 2014Cyberonics, Inc.Systems and methods of reducing artifact in neurological stimulation systems
US88622334 Feb 201314 Oct 2014Enteromedics Inc.Electrode band system and methods of using the system to treat obesity
US886817228 Dic 200521 Oct 2014Cyberonics, Inc.Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US887421115 Dic 201028 Oct 2014Cardiac Pacemakers, Inc.Hypertension therapy based on activity and circadian rhythm
US888632510 Jul 201311 Nov 2014Autonomic Technologies, Inc.Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism
US88863399 Jun 201011 Nov 2014Setpoint Medical CorporationNerve cuff with pocket for leadless stimulator
US888794423 Jun 201118 Nov 2014Tokitae LlcTemperature-stabilized storage systems configured for storage and stabilization of modular units
US88978786 May 201025 Nov 2014Cardiac Pacemakers, Inc.Method and apparatus for gastrointestinal stimulation via the lymphatic system
US889806928 Ago 200925 Nov 2014The Invention Science Fund I, LlcDevices and methods for detecting an analyte in salivary fluid
US890933717 May 20129 Dic 2014Cardiac Pacemakers, Inc.System to treat AV-conducted ventricular tachyarrhythmia
US891411417 Nov 200416 Dic 2014The Feinstein Institute For Medical ResearchInhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US891574123 Ago 201123 Dic 2014Cardiac Pacemakers, Inc.Sleep quality data collection and evaluation
US89299865 Nov 20126 Ene 2015Nevro CorporationMedical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods
US892999015 Dic 20106 Ene 2015Cardiac Pacemakers, Inc.Transvascular neural stimulation device and method for treating hypertension
US89562959 Sep 201317 Feb 2015Cardiac Pacemakers, Inc.Sleep detection using an adjustable threshold
US89683779 May 20113 Mar 2015The Invention Science Fund I, LlcMethod, device and system for modulating an activity of brown adipose tissue in a vertebrate subject
US897988524 Feb 201217 Mar 2015Elwha LlcDevices, systems, and methods to control stomach volume
US897988724 Feb 201217 Mar 2015Elwha LlcDevices, systems, and methods to control stomach volume
US898633724 Feb 201224 Mar 2015Elwha LlcDevices, systems, and methods to control stomach volume
US89961161 Nov 201031 Mar 2015Setpoint Medical CorporationModulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
US90115109 May 201121 Abr 2015The Invention Science Fund I, LlcMethod, device and system for modulating an activity of brown adipose tissue in a vertebrate subject
US901481912 Nov 201321 Abr 2015Cardiac Pacemakers, Inc.Autonomic arousal detection system and method
US902059519 May 201028 Abr 2015Cardiac Pacemakers, Inc.Baroreflex activation therapy with conditional shut off
US90205973 May 201228 Abr 2015Endostim, Inc.Device and implantation system for electrical stimulation of biological systems
US90247662 Sep 20095 May 2015The Invention Science Fund, LlcBeverage containers with detection capability
US902623126 Sep 20145 May 2015Simon Fraser UniversityTransvascular nerve stimulation apparatus and methods
US903724413 Feb 200819 May 2015Virender K. SharmaMethod and apparatus for electrical stimulation of the pancreatico-biliary system
US90372452 Sep 201219 May 2015Endostim, Inc.Endoscopic lead implantation method
US904298817 Nov 200526 May 2015Cyberonics, Inc.Closed-loop vagus nerve stimulation
US904418812 May 20142 Jun 2015Cyberonics, Inc.Methods and systems for managing epilepsy and other neurological disorders
US90611477 Mar 201423 Jun 2015Endostim, Inc.Device and implantation system for electrical stimulation of biological systems
US910805831 Jul 201418 Ago 2015Simon Fraser UniversityTransvascular nerve stimulation apparatus and methods
US910805931 Jul 201418 Ago 2015Simon Fraser UniversityTransvascular nerve stimulation apparatus and methods
US911380129 Dic 200625 Ago 2015Cyberonics, Inc.Methods and systems for continuous EEG monitoring
US913829516 Dic 201122 Sep 2015Tokitae LlcTemperature-stabilized medicinal storage systems
US913935129 Nov 201022 Sep 2015Tokitae LlcTemperature-stabilized storage systems with flexible connectors
US914047629 Mar 201322 Sep 2015Tokitae LlcTemperature-controlled storage systems
US914448813 Jun 201229 Sep 2015Elwha LlcBreast implant with analyte sensors responsive to external power source
US914448913 Jun 201229 Sep 2015Elwha LlcBreast implant with covering, analyte sensors and internal power source
US916206216 Sep 201320 Oct 2015Enteromedics Inc.Controlled vagal blockage therapy
US91620647 Oct 201420 Oct 2015Setpoint Medical CorporationNeural stimulation devices and systems for treatment of chronic inflammation
US916837731 Jul 201427 Oct 2015Simon Fraser UniversityTransvascular nerve stimulation apparatus and methods
US91740405 Sep 20133 Nov 2015Enteromedics Inc.Nerve stimulation and blocking for treatment of gastrointestinal disorders
US91740417 Nov 20143 Nov 2015Setpoint Medical CorporationNerve cuff with pocket for leadless stimulator
US917479127 Dic 20073 Nov 2015Tokitae LlcTemperature-stabilized storage systems
US92052557 Sep 20068 Dic 2015Medtronic Urinary Solutions, Inc.Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US92059698 Feb 20108 Dic 2015Tokitae LlcTemperature-stabilized storage systems
US921118513 Jun 201215 Dic 2015Elwha LlcBreast implant with analyte sensors and internal power source
US921140931 Mar 200915 Dic 2015The Feinstein Institute For Medical ResearchMethods and systems for reducing inflammation by neuromodulation of T-cell activity
US921141021 Jul 201415 Dic 2015Setpoint Medical CorporationExtremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US92162945 Mar 201422 Dic 2015Medtronic Urinary Solutions, Inc.Systems and methods for clinician control of stimulation systems
US92208982 Oct 201329 Dic 2015Simon Fraser UniversityTransvascular nerve stimulation apparatus and methods
US92270762 May 20145 Ene 2016Nevro CorporationMolded headers for implantable signal generators, and associated systems and methods
US92381331 Sep 201119 Ene 2016The Invention Science Fund I, LlcMethod, device and system for modulating an activity of brown adipose tissue in a vertebrate subject
US925959123 Dic 200816 Feb 2016Cyberonics, Inc.Housing for an implantable medical device
US926594814 Oct 201423 Feb 2016Cardiac Pacemakers, Inc.Automatic neural stimulation modulation based on activity
US928959518 Nov 201322 Mar 2016Cyberonics, Inc.Medical lead termination sleeve for implantable medical devices
US930209624 Mar 20155 Abr 2016Bruce H. LevinApparatus for treating cerebral neurovascular disorders including headaches by neural stimulation
US931463510 Feb 200919 Abr 2016Cardiac Pacemakers, Inc.Automatic baroreflex modulation responsive to adverse event
US932090029 Dic 200626 Abr 2016Cyberonics, Inc.Methods and systems for determining subject-specific parameters for a neuromodulation therapy
US932090815 Ene 201026 Abr 2016Autonomic Technologies, Inc.Approval per use implanted neurostimulator
US20040167583 *6 Ene 200426 Ago 2004Enteromedics, Inc.Electrode band apparatus and method
US20040172084 *3 Feb 20032 Sep 2004Knudson Mark B.Method and apparatus for treatment of gastro-esophageal reflux disease (GERD)
US20040172085 *29 Sep 20032 Sep 2004Beta Medical, Inc.Nerve stimulation and conduction block therapy
US20040172086 *29 Sep 20032 Sep 2004Beta Medical, Inc.Nerve conduction block treatment
US20040172088 *6 Ene 20042 Sep 2004Enteromedics, Inc.Intraluminal electrode apparatus and method
US20040176812 *29 Sep 20039 Sep 2004Beta Medical, Inc.Enteric rhythm management
US20050038484 *30 Jun 200417 Feb 2005Enteromedics, Inc.Controlled vagal blockage therapy
US20050070970 *12 Ene 200431 Mar 2005Knudson Mark B.Movement disorder stimulation with neural block
US20050070974 *12 Ene 200431 Mar 2005Knudson Mark B.Obesity and eating disorder stimulation treatment with neural block
US20050131485 *21 Ene 200516 Jun 2005Enteromedics, Inc.High frequency vagal blockage therapy
US20050143785 *8 Jun 200430 Jun 2005Imad LibbusBaroreflex therapy for disordered breathing
US20050149126 *24 Dic 20037 Jul 2005Imad LibbusBaroreflex stimulation to treat acute myocardial infarction
US20050149127 *24 Dic 20037 Jul 2005Imad LibbusAutomatic baroreflex modulation responsive to adverse event
US20050149130 *24 Dic 20037 Jul 2005Imad LibbusBaroreflex stimulation synchronized to circadian rhythm
US20050149132 *24 Dic 20037 Jul 2005Imad LibbusAutomatic baroreflex modulation based on cardiac activity
US20050149146 *31 Ene 20057 Jul 2005Boveja Birinder R.Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator
US20060004421 *10 Jun 20055 Ene 2006Bennett Maria ESystems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence
US20060020298 *23 Ago 200426 Ene 2006Camilleri Michael LSystems and methods for curbing appetite
US20060095080 *4 Nov 20044 May 2006Cardiac Pacemakers, Inc.System and method for filtering neural stimulation
US20060224202 *5 Abr 20055 Oct 2006Julia MoffittSystem to treat AV-conducted ventricular tachyarrhythmia
US20060229677 *11 Abr 200512 Oct 2006Cardiac Pacemakers, Inc.Transvascular neural stimulation device
US20060229685 *9 Jun 200612 Oct 2006Knudson Mark BMethod and apparatus for treatment of gastro-esophageal reflux disease (GERD)
US20070043400 *17 Ago 200522 Feb 2007Donders Adrianus PNeural electrode treatment
US20070043411 *17 Ago 200522 Feb 2007Enteromedics Inc.Neural electrode
US20070093875 *24 Oct 200526 Abr 2007Cardiac Pacemakers, Inc.Implantable and rechargeable neural stimulator
US20070135856 *22 Ene 200714 Jun 2007Enteromedics, Inc.Bulimia treatment
US20070135857 *22 Ene 200714 Jun 2007Enteromedics, Inc.GI inflammatory disease treatment
US20070135858 *22 Ene 200714 Jun 2007Enteromedics, Inc.Pancreatitis treatment
US20070142864 *9 Nov 200621 Jun 2007Imad LibbusAutomatic neural stimulation modulation based on activity
US20070142870 *22 Ene 200721 Jun 2007Enteromedics, Inc.Irritable bowel syndrome treatment
US20070150027 *22 Dic 200528 Jun 2007Rogers Lesco LNon-invasive device and method for electrical stimulation of neural tissue
US20070179543 *24 Ene 20072 Ago 2007Tamir Ben-DavidTechniques for prevention of atrial fibrillation
US20070282376 *6 Jun 20066 Dic 2007Shuros Allan CMethod and apparatus for neural stimulation via the lymphatic system
US20070282386 *6 Jun 20066 Dic 2007Shuros Allan CMethod and apparatus for gastrointestinal stimulation via the lymphatic system
US20070282390 *6 Jun 20066 Dic 2007Shuros Allan CAmelioration of chronic pain by endolymphatic stimulation
US20080021512 *13 Ago 200724 Ene 2008Enteromedics Inc.Nerve stimulation and blocking for treatment of gastrointestinal disorders
US20080065158 *7 Sep 200613 Mar 2008Omry Ben-EzraTechniques for reducing pain associated with nerve stimulation
US20080086179 *9 Oct 200610 Abr 2008Virender K SharmaMethod and apparatus for treatment of the gastrointestinal tract
US20080132974 *12 Oct 20075 Jun 2008Ndi Medical, Inc.Implantable systems and methods for acquisition and processing of electrical signals for therapeutic and/or functional restoration purposes
US20080161874 *31 Oct 20073 Jul 2008Ndi Medical, Inc.Systems and methods for a trial stage and/or long-term treatment of disorders of the body using neurostimulation
US20080195171 *13 Feb 200814 Ago 2008Sharma Virender KMethod and Apparatus for Electrical Stimulation of the Pancreatico-Biliary System
US20080221644 *9 Mar 200711 Sep 2008Enteromedics, Inc.Remote monitoring and control of implantable devices
US20080243196 *2 Abr 20072 Oct 2008Imad LibbusUnidirectional neural stimulation systems, devices and methods
US20080243204 *27 Mar 20082 Oct 2008University Of Florida Research Foundation, Inc.Variational parameter neurostimulation paradigm for treatment of neurologic disease
US20080300654 *20 Nov 20074 Dic 2008Scott Anthony LambertImplantable therapy system
US20080300656 *20 Nov 20074 Dic 2008Adrianus DondersImplantable therapy system
US20080300657 *20 Nov 20074 Dic 2008Mark Raymond StultzTherapy system
US20090054947 *20 Ago 200826 Feb 2009Medtronic, Inc.Electrode configurations for directional leads
US20090132001 *14 May 200721 May 2009Soffer Edy EUse of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure
US20090145164 *27 Dic 200711 Jun 2009Searete Llc, A Limited Liability Corporation Of The State Of DelawareTemperature-stabilized storage systems
US20090145912 *11 Dic 200711 Jun 2009Searete Llc, A Limited Liability Corporation Of The State Of DelawareTemperature-stabilized storage containers
US20090149900 *13 Feb 200911 Jun 2009Julia MoffittTransvascular neural stimulation device
US20090234408 *28 May 200917 Sep 2009Julia MoffittSystem to treat av-conducted ventricular tachyarrhythmia
US20090264951 *22 Oct 2009Sharma Virender KDevice and Implantation System for Electrical Stimulation of Biological Systems
US20100016927 *21 Ene 2010Anthony CaparsoTransvascular reshaping lead system
US20100018981 *23 Jul 200828 Ene 2010Searete LlcMulti-layer insulation composite material having at least one thermally-reflective layer with through openings, storage container using the same, and related methods
US20100094375 *15 Dic 200915 Abr 2010Enteromedics Inc.Neural electrode treatment
US20100137940 *6 Ene 20103 Jun 2010Levin Bruce HMethod for Directed Intranasal Administration of a Composition
US20100213200 *8 Feb 201026 Ago 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareTemperature-stabilized storage systems
US20100217346 *6 May 201026 Ago 2010Shuros Allan CMethod and apparatus for gastrointestinal stimulation via the lymphatic system
US20100256708 *3 Abr 20097 Oct 2010Thornton Arnold WImplantable device with heat storage
US20100274321 *28 Oct 2010Imad LibbusBaroreflex activation therapy with conditional shut off
US20100280569 *27 Ago 20084 Nov 2010Eric BobillierDevice and method for reducing weight
US20100324436 *4 Feb 200923 Dic 2010University Of Virginia Patent FoundationSystem, Method and Computer Program Product for Detection of Changes in Health Status and Risk of Imminent Illness
US20110004266 *6 May 20106 Ene 2011Sharma Virender KMethod and Apparatus for Treatment of the Gastrointestinal Tract
US20110034968 *10 Feb 2011Enteromedics Inc.Controlled vagal blockage therapy
US20110050431 *2 Sep 20093 Mar 2011Hood Leroy EBeverage containers with detection capability
US20110053283 *28 Ago 20093 Mar 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareBeverage Immersate with detection capability
US20110054938 *28 Ago 20093 Mar 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareDevices and methods for detecting an analyte in salivary fluid
US20110127273 *2 Jun 2011TOKITAE LLC, a limited liability company of the State of DelawareTemperature-stabilized storage systems including storage structures configured for interchangeable storage of modular units
US20110150924 *23 Jun 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareDevice, Method, and system for neural modulation as vaccine adjuvant in a vertebrate subject
US20110155745 *29 Nov 201030 Jun 2011Searete LLC, a limited liability company of the State of DelawareTemperature-stabilized storage systems with flexible connectors
US20120265273 *25 Jun 201218 Oct 2012Imad LibbusUnidirectional neural stimulation systems, devices and methods
USD7363835 Nov 201211 Ago 2015Nevro CorporationImplantable signal generator
USD7369305 Abr 201318 Ago 2015Nevro CorporationImplantable signal generator
EP1897586A1 *7 Sep 200712 Mar 2008Biocontrol Medical Ltd.Techniques for reducing pain associated with nerve stimulation
WO2006101917A2 *16 Mar 200628 Sep 2006Purdue Research FoundationDevices for treatment of central nervous system injuries
WO2008123923A2 *20 Mar 200816 Oct 2008Cardiac Pacemakers, Inc.Unidirectional neural stimulation systems, devices and methods
WO2008123923A3 *20 Mar 20084 Dic 2008Cardiac Pacemakers IncUnidirectional neural stimulation systems, devices and methods
WO2012154865A3 *9 May 201231 Ene 2013Setpoint Medical CorporationSingle-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
Clasificaciones
Clasificación de EE.UU.607/45
Clasificación internacionalA61N1/36, A61N1/08, A61N1/362, A61N1/34, A61N1/40
Clasificación cooperativaA61N1/36071, A61N1/3627, A61N1/40, A61N1/36082, A61N1/08, A61N1/36114, A61N1/36007
Clasificación europeaA61N1/36Z3J, A61N1/08, A61N1/40, A61N1/36, A61N1/36B, A61N1/36Z3C, A61N1/36Z, A61N1/36Z3E, A61N1/362C
Eventos legales
FechaCódigoEventoDescripción
14 Sep 2006ASAssignment
Owner name: NEURO AND CARDIAC TECHNOLOGIES, LLC, WISCONSIN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOVEJA, BIRINDER R.;WIDHANY, ANGELY;REEL/FRAME:018728/0352;SIGNING DATES FROM 20060911 TO 20060914