US20050164950A1 - Orally administered small peptides synergize statin activity - Google Patents

Orally administered small peptides synergize statin activity Download PDF

Info

Publication number
US20050164950A1
US20050164950A1 US10/913,800 US91380004A US2005164950A1 US 20050164950 A1 US20050164950 A1 US 20050164950A1 US 91380004 A US91380004 A US 91380004A US 2005164950 A1 US2005164950 A1 US 2005164950A1
Authority
US
United States
Prior art keywords
peptide
group
amino acids
amino acid
protecting group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/913,800
Inventor
Alan Fogelman
Gattadahalli Anantharamaiah
Mohamad Navab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
UAB Research Foundation
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to US10/913,800 priority Critical patent/US20050164950A1/en
Assigned to UNIVERSITY OF ALABAMA RESEARCH FOUNDATION, THE reassignment UNIVERSITY OF ALABAMA RESEARCH FOUNDATION, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANANTHARAMAIAH, GATTADAHALLI M.
Assigned to REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE reassignment REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAVAB, MOHAMAD, FOGELMAN, ALAN M.
Publication of US20050164950A1 publication Critical patent/US20050164950A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/06Tripeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/03Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/16Central respiratory analeptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/775Apolipopeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0815Tripeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1016Tetrapeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1019Tetrapeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1021Tetrapeptides with the first amino acid being acidic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/02Linear peptides containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • This invention relates to the field of atherosclerosis.
  • this invention pertains to the identification of a class of peptides that are orally administrable and that ameliorate one or more symptoms of atherosclerosis.
  • Cardiovascular disease is a leading cause of morbidity and mortality, particularly in the United States and in Western European countries.
  • Several causative factors are implicated in the development of cardiovascular disease including hereditary predisposition to the disease, gender, lifestyle factors such as smoking and diet, age, hypertension, and hyperlipidemia, including hypercholesterolemia.
  • hyperlipidemia and hypercholesteremia provide a significant risk factor associated with atherosclerosis.
  • Cholesterol is present in the blood as free and esterified cholesterol within lipoprotein particles, commonly known as chylomicrons, very low density lipoproteins (VLDLs), low density lipoproteins (LDLs), and high density lipoproteins (HDLs). Concentration of total cholesterol in the blood is influenced by (1) absorption of cholesterol from the digestive tract, (2) synthesis of cholesterol from dietary constituents such as carbohydrates, proteins, fats and ethanol, and (3) removal of cholesterol from blood by tissues, especially the liver, and subsequent conversion of the cholesterol to bile acids, steroid hormones, and biliary cholesterol.
  • VLDLs very low density lipoproteins
  • LDLs low density lipoproteins
  • HDLs high density lipoproteins
  • Genetic factors include concentration of rate-limiting enzymes in cholesterol biosynthesis, concentration of receptors for low density lipoproteins in the liver, concentration of rate-limiting enzymes for conversion of cholesterols bile acids, rates of synthesis and secretion of lipoproteins and gender of person.
  • Environmental factors influencing the hemostasis of blood cholesterol concentration in humans include dietary composition, incidence of smoking, physical activity, and use of a variety of pharmaceutical agents. Dietary variables include amount and type of fat (saturated and polyunsaturated fatty acids), amount of cholesterol, amount and type of fiber, and perhaps amounts of vitamins such as vitamin C and D and minerals such as calcium.
  • HDL high density lipoprotein
  • apo apolipoprotein
  • apo A-I Human apo A-I has been a subject of intense study because of its anti-atherogenic properties. Exchangeable apolipoproteins, including apo A-I, possess lipid-associating domains (Brouillette and Anantharamaiah (1995) Biochim. Biophys. Acta 1256:103-129; Segrest et al. (1974) FEBS Lett. 38: :247-253). Apo A-I has been postulated to possess eight tandem repeating 22mer sequences, most of which have the potential to form class A amphipathic helical structures (Segrest et al. (1974) FEBS Lett. 38: :247-253).
  • Characteristics of the class A amphipathic helix include the presence of positively charged residues at the polar-nonpolar interface and negatively charged residues at the center of the polar face (Segrest et al. (1974) FEBS Lett. 38: 247-253; Segrest et al. (1990) Proteins: Structure, Function, and Genetics 8: 103-117).
  • Apo A-I has been shown to strongly associate with phospholipids to form complexes and to promote cholesterol efflux from cholesterol-enriched cells.
  • the delivery and maintenance of serum levels of apo A-I to effectively mitigate one or more symptoms of atherosclerosis has heretofore proven elusive.
  • This invention provides novel peptides and amino acid pairs, administration of which mitigates one or more symptoms of atherosclerosis and other inflammatory conditions such as rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Alzheimer's disease, congestive heart failure, endothelial dysfunction, viral illnesses such as influenza A, and diseases such as multiple sclerosis.
  • peptides comprising a class A amphipathic helix when formulated with “D” amino acid residue(s) and/or having protected amino and carboxyl termini can be orally administered to an organism, are readily taken up and delivered to the serum, and are effective to mitigate one or more symptoms of atherosclerosis.
  • the peptides can be formulated with all “L” amino acid residues and are still effective, particular when administered by routes other than oral administration.
  • small peptides e.g., ranging in length from about three amino acides to about 11 amino acids
  • hydrophobic terminal amino acids or terminal amino acids rendered hydrophobic by one or more hydrophobic blocking goups and having internal acidic and/or basic, and/or aliphatic, and/or aromatic amino acids as described herin are also capable of mitigating one or more symptoms of atherosclerosis or other pathologies characterized by an inflammatory response.
  • the peptides, and/or amino acid pairs, of this invention are typically effective to stimulate the formation and cycling of pre-beta high density lipoprotein-like particles and/or to promote lipid transport and detoxification.
  • the peptides, and/or amino acid pairs, described herein are also effective for preventing the onset or inhibiting or eliminating one or more symptoms of osteoporosis.
  • the peptides, and/or amino acid pairs can be used to enhance (e.g., synergically enhance) the activity of statins and/or Ezetimibe or other cholesterol uptake inhibitors, thereby permitting the effective use of statins or cholesterol uptake inhibitors at lower dosages and/or cause the statins or cholesterol uptake inhibitors to be significantly more anti-inflammatory at any given dose.
  • this invention provides peptides or a combination of peptides, and/or amino acid pairs, that ameliorates one or more symptoms of an inflammatory condition (e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Altzheimer's disease, a viral illnesses, asthma, diabetes, etc.).
  • an inflammatory condition e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Altzheimer's disease, a viral illnesses, asthma, diabetes, etc.
  • Certain preferred peptides range in length from 3 to about 5 amino acids; are soluble in ethyl acetate at a concentration greater than about 4 mg/mL; are soluble in aqueous buffer at pH 7.0; when contacted with a phospholipid in an aqueous environment, forms particles with a diameter of approximately 7.5 nm and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm; have a molecular weight less than about 900 daltons; convert pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory; and do not have the amino acid sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys-Arg-Asp and Ser are all L amino acids.
  • these peptides protects a phospholipid (e.g., 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (SAPC)), and 1-stearoyl-2-arachidonyl-sn-glycero-3-phosphorylethanolamine (SAPE).
  • PAPC 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
  • SAPC 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
  • SAPE 1-stearoyl-2-arachidonyl-sn-glycero-3-phosphorylethanolamine
  • these peptides can include, but need not be limited to any of the small peptides described herein.
  • this invention provides peptides or a combination of peptides, and/or amino acid pairs, that ameliorates one or more symptoms of an inflammatory condition (e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Altzheimer's disease, a viral illnesses, asthma, diabetes, etc.).
  • an inflammatory condition e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Altzheimer's disease, a viral illnesses, asthma, diabetes, etc.
  • Certain preferred peptides are characterized by the formula: X 1 —X 2 —X 3 n — 4 where n is 0 or 1; X 1 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; X 4 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; and, when n is 0, X 2 is an amino acid selected from the group consisting of an acidic amino acid, a basic amino acid, and a histidine; and, when when n is 1: X 2 and X 3 are independently an acidic amino acid, a basic amino acid, an aliphatic amino acid, or an aromatic amino acid such that when X 2 is an acidic amino acid; X 3 is a basic amino acid, an aliphatic amino acid, or an aromatic amino acid; when X 2 is a basic amino acid; X 3 is an acidic amino acid, an aliphatic amino acid, or an aromatic amino acid; and when X 2 is an aliphatic or aromatic
  • Certain preferred peptides convert pro-inflammatory HDL to anti-inflammatory HDL or make anti-inflammatory HDL more anti-inflammatory.
  • the peptide does not have the amino acid sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys, Arg, Asp, and Ser are all L amino acids.
  • Peptides of this invention include peptides according to the formula above, and/or peptides comprising a peptide of the formula above and/or concatamers of such peptides.
  • X 1 and X 4 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, ornithine (Orn) bearing a hydrophobic protecting group, aspartic acid (Asp) bearing a hydrophobic protecting group, cysteine (Cys) bearing a hydropho
  • the peptide is a tri-mer (i.e., n is 0).
  • X 1 is Glu, Leu, Lys, Orn, Phe, Trp, or norLeu
  • X 2 is acidic (e.g., aspartic acid, glutamic acid, etc.), or basic (e.g., lysine, arginine, histidine, etc.)
  • X 4 is Ser, Thr, Ile, Leu, Trp, Tyr, Phe, or norleu.
  • the peptide comprises the amino acid sequence of a peptide listed in Table 3.
  • the peptide is a protected trimer as shown in Table 3.
  • n is 1 and the peptide is or comprises a tetramer in which X 2 and X 3 are independently an acidic amino acid or a basic amino acid such that when X 2 is an acidic amino acid, X 3 is a basic amino acid and when X 2 is a basic amino acid, X 3 is an acidic amino acid.
  • X 1 and X 4 can include independently selected amino acids, e.g., as indicated above.
  • X 2 and X 3 are independently selected from Asp, Glu, Lys, Arg, and His.
  • the peptide comprises the amino acid sequence of a peptide listed in Table 4.
  • the peptide is a protected tetramer as show in Table 4.
  • n is 1 and the peptide is or comprises a tetramer in which X 2 and X 3 are independently an acidic, a basic, or a aliphatic amino acid with one of X 2 or X 3 being an acidic or a basic amino acid such that when X 2 is an acidic or a basic amino acid, X 3 is an aliphatic amino acid; and when X 3 is an acid or a basic amino acid, X 2 is an aliphatic amino acid.
  • X 1 and X 4 can include independently selected amino acids, e.g., as indicated above.
  • X 2 and X 3 are independently selected from the group consisting of Asp, Glu, Lys, Arg, His, and Ile, more preferably from the group consisting of Asp, Arg, Leu, and Glu.
  • the peptide comprises the amino acid sequence of a peptide listed in Table 5.
  • the peptide is a protected tetramer as show in Table 5.
  • n is 1 and the peptide is or comprises a tetramer in which X 2 , X 3 are independently an acidic, a basic, or an aromatic amino acid with one of X 2 or X 3 being an acidic or a basic amino acid such that when X 2 is an acidic or a basic amino acid, X 3 is an aromatic amino acid; and when X 3 is an acid or a basic amino acid, X 2 is an aromatic amino acid.
  • X 1 and X 4 can include independently selected amino acids, e.g., as indicated above.
  • X 2 and X 3 are independently selected from the group consisting of Asp, Arg, Glu, Trp, Tyr, Phe, and Lys.
  • the peptide comprises the amino acid sequence of a peptide listed in Table 6. In certain embodiments, the peptide is a protected tetramer as show in Table 6.
  • This invention also provides for peptides that are or comprise a pentamer (5-mer) characterized by the formula: X 1 —X 2 —X 3 —X 4 —X 5 , where X 1 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; X 5 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; and X 2 , X 3 , and X 4 are independently selected aromatic amino acids or histidine; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • a pentamer 5-mer
  • X 1 and X 5 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met), phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, ornithine (Orn) bearing a hydrophobic protecting group, as
  • X 2 , X 3 , and X 4 are independently is selected from the group consisting of Phe, Val, Trp, Tyr, and His.
  • the peptide comprises the amino acid sequence of a peptide listed in Table 7. In certain embodiments, the peptide is a protected tetramer as show in Table 7.
  • the peptide ranges in length from 5 to 11 amino acids; the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups; the non-terminal amino acids form at least one acidic domain and at least one basic domain; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • the peptide ranges in length from 5 to 11 amino acids; the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups; the non-terminal amino acids form at least one acidic domain or one basic domain and at least one aliphatic domain; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • the peptide ranges in length from 5 to 11 amino acids; the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups; the non-terminal amino acids form at least one acidic domain or one basic domain and at least one aromatic domain; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • the peptide ranges in length from 6 to 11 amino acids; the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups; the non-terminal amino acids form at least one aromatic domain or two or more aromatic domains separated by one or more histidines; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • this invention also provides for peptides that ameliorate one or more symptoms of an inflammatory condition and that comprise one or more amphipathic helices.
  • this invention includes a peptide or a concatamer of a peptide that ranges in length from about 10 to about 30 amino acids, preferably from about 18 to about 30 amino acids; that comprises at least one class A amphipathic helix; that comprises one or more aliphatic or aromatic amino acids at the center of the non-polar face of said amphipathic helix; that protects a phospholipid against oxidation by an oxidizing agent; and that is not the D-18A peptide.
  • the peptide comprises the amino acid sequence of a peptide listed in Table 2 or Table 12.
  • the peptide is a protected tetramer as show in Table 2 or Table 12.
  • the peptides of this invention protect a phospholipid (e.g., 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (SAPC)), 1-stearoyl-2-arachidonyl-sn-glycero-3-phosphorylethanolamine (SAPE)) against oxidation by an oxidizing agent (e.g., 13(S)—HPODE, 15(S)—HPETE, HPODE, HPETE, HODE, HETE, etc.).
  • PAPC 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
  • SAPC 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
  • SAPE 1-stearoyl-2-arachidonyl-sn-glycer
  • Any of the peptides described herein can bear one or more hydrophobic protecting groups on the amino terminal amino acid (e.g., X 1 ) and/or the carboxyl terminal amino acid (e.g., X 4 , X 5 , etc.).
  • the protecting group(s) can be attached to the amino or carboxyl terminus and/or to a side chain (R group) of the amino acid.
  • the protecting group(s) can be directly coupled (e.g., through a covalent bond) or indirectly coupled (e.g., through a linker).
  • Preferred hydrophobic protecting groups include, but are not limited to t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-meth
  • the said hydrophobic protecting group is selected from the group consisting of Boc, Fmoc, nicotinyl, and OtBu.
  • the N-terminus of the peptide is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and Nicotinyl- and/or the C-terminus of the peptide is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
  • the peptides can also, optionally, include at least one D amino acid.
  • the peptides include a plurality of D- amino acids or can even compirse all D-amino acids.
  • the peptide comprise alternating D- and L-amino aicds.
  • the peptides can also be all L-form amino acids.
  • the peptides can be isolated (e.g., substanitaly pure), dry or in solution, and/or combined with a pharmacologically acceptable excipient.
  • the peptide is mixed with a pharmacologically acceptable excipient suitable for oral administration to a mammal (e.g., a human or a non-human mammal).
  • the peptide can be provided as a unit formulation in a pharmaceutically acceptable excipient and/or as a time release formulation.
  • the peptides can also be coupled to one or more biotins (e.g., directly, through a linker, and/or through the amino acid side chain).
  • the biotin is coupled to a lysine (Lys).
  • this invention also provides pairs of amino acids that ameliorate one or more symptoms of an inflammatory condition.
  • the amino acid pair typically comprises a first amino acid bearing at least one protecting group; and a second amino acid bearing at least one protecting group; where the first amino acid and the second amino acid are different species of amino acid, and where the pair of amino acids converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • the pair of amino acids when contacted with a phospholipid in an aqueous environment, forms particles with a diameter of approximately 7.5 nm and forms stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm.
  • the first and second amino acids are independently selected from the group consisting of an acidic amino acid, a basic amino acid, and a non-polar amino acid.
  • the first amino aicd is acidic or basic and the second amino acid is non-polar, or the first amino acid is non-polar and said second amino acid is acidic or basic.
  • both amino acids are acidic or basic.
  • the first and second amino acid can, optionaly, be covalently coupled together, e.g., directly or through a linker.
  • the amino acids are joined through a peptide linkage thereby forming a dipeptide.
  • the first amino acid and the second amino acid are mixed together, but not covalently linked.
  • the protecting groups include, but are not limited to any of the protecting groups described herein.
  • the first amino acid is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and nicotinyl-
  • the second amino acid is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
  • each amino acid bears at least two protecting groups.
  • each amino acid is blocked with a with a first protecting group selected from the group consisting of Boc-, Fmoc-, and nicotinyl-, and a second protecting group selected from the group consisting of tBu, and OtBu.
  • each amino acid is blocked with a Boc and an OtBu.
  • the pair of amino acids form a dipeptide selected from the group consisting of Phe-Arg, Glu-Leu, and Arg-Glu. In certain embodiments, the pair of amino acids form a dipeptide selected from the group consisting of Boc-Arg-OtBu, Boc-Glu-OtBu, Boc-Phe-Arg-OtBu, Boc-Glu-Leu-OtBu, and Boc-Arg-Glu-OtBu.
  • This invention also provides a pharmaceutical formulation comprising one or more of the peptides, and/or amino acid pairs described herein, and a pharmaceutically acceptable excipient.
  • a pharmaceutical formulation comprising one or more of the peptides, and/or amino acid pairs described herein, and a pharmaceutically acceptable excipient.
  • the peptide(s), and/or amino acid pairs are present in an effective dose.
  • the peptide(s), and/or amino acid pairs can also be provided as a time release formulation and/or as a unit dosage formulation.
  • the formulation is formulated for oral administration.
  • the formulation is formulated for administration by a route selected from the group consisting of oral administration, inhalation (e.g., nasal administration, oral inhalation, etc.), rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, inhalation administration, intramuscular injection, and the like.
  • oral administration e.g., oral administration, oral inhalation, etc.
  • rectal administration intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, inhalation administration, intramuscular injection, and the like.
  • kits comprising a container containing one or more of the peptides, and/or amino acid pairs described herein, and instructional materials teaching the use of the peptide(s), and/or amino acid pairs, in the treatment of a pathology characterized by inflammation (e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, asthma, osteoporosis, Altzheimer's disease, a viral illnesses, etc.).
  • a pathology characterized by inflammation e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, asthma, osteoporosis, Altzheimer's disease, a viral illnesses, etc.
  • This invention also provides a method of mitigating (e.g., reducing or eliminating) one or more symptoms of atherosclerosis in a mammal (human or non-human mammal).
  • the method typically involves administering to the mammal an effective amount of one or more of the peptides, and/or amino acid pairs described herein.
  • the peptide, and/or amino acid pair can be administered in a in a pharmaceutically acceptable excipient (e.g., for oral administration) and can, optionally be administered in conjunction (e.g., before, after, or simultaneously) with a lipid.
  • the administering can comprise administering the peptide, and/or amino acid pair, by a route selected from the group consisting of oral administration, inhalation (e.g.
  • the mammal is a mammal diagnosed as having one or more symptoms of atherosclerosis. In certain embodiments, the mammal is a mammal diagnosed as at risk for stroke or atherosclerosis.
  • this invention provides method of mitigating one or more symptoms of an inflammatory pathology (e.g., atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, multiple sclerosis, diabetes, asthma, Altzheimer's disease, a viral illnesses, etc.).
  • the method typically involves administering to the mammal an effective amount of one or more of the peptides, and/or amino acid pairs, described herein.
  • the peptide, and/or amino acid pair can be administered in a in a pharmaceutically acceptable excipient (e.g., for oral administration) and can, optionally be administered in conjunction (e.g., before, after, or simultaneously) with a lipid.
  • the administering can comprise administering the peptide, and/or amino acid pairs, by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection.
  • the mammal is a mammal diagnosed as having one or more symptoms of of the inflammatory pathology.
  • the mammal is a mammal diagnosed as at risk for the inflammatory pathology.
  • the peptides, and/or amino acid pairs, of this invention also act synergistically with statins and/or with a selective cholesterol uptake inhibitor (e.g., Ezetimibe).
  • the method typically involves coadministering with the statin and/or cholesterol uptake inhibitor an effective amount of one or more of the peptides described herein.
  • the statin is selected from the group consisting of cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, and pitavastatin.
  • the peptide can be administered before, after, or simultaneously with the statin and/or the cholesterol uptake inhibitor.
  • the peptide and/or said statin and/or cholesterol uptake inhibitor can be administered as a unit dosage formulation.
  • the administering comprises administering said peptide and/or said statin by a route selected from the group consisting of oral administration, nasal administration, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection.
  • the mammal includes, but is not limited to a mammal diagnosed as having one or more symptoms of atherosclerosis or diagnosed as at risk for stroke or atherosclerosis.
  • This invention also provides a method of mitigating one or more symptoms associated with atherosclerosis in a mammal.
  • the method typically involves administering a statin and/or a selective cholesterol uptake inhibitor; and an effective amount of one or more peptides, and/or amino acid pairs, described herein, where the effective amount of the statin and/or cholesterol uptake inhibitor is lower than the effective amount of a statin or a cholesterol uptake inhibitor administered without the peptide(s), and/or amino acid pairs.
  • the effective amount of the peptide(s), and/or amino acid pairs is lower than the effective amount of the peptide, and/or amino acid pairs, administered without the statin and/or cholesterol uptake inhibitor.
  • the statin is selected from the group consisting of cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, and pitavastatin.
  • the peptide can be administered before, after, or simultaneously with the statin and/or the cholesterol uptake inhibitor.
  • the peptide, and/or amino acid pair, and/or the statin and/or cholesterol uptake inhibitor can be administered as a unit dosage formulation.
  • the administering comprises administering the peptide, and/or amino acid pair, and/or said statin by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection.
  • the mammal includes, but is not limited to a mammal diagnosed as having one or more symptoms of atherosclerosis or diagnosed as at risk for stroke or atherosclerosis.
  • the mammal includes, but is not limited to a mammal diagnosed as having one or more symptoms of atherosclerosis or diagnosed as at risk for stroke or atherosclerosis.
  • this invention provides a method of reducing or inhibiting one or more symptoms of osteoporosis in a mammal.
  • the method typically involves administering to the mammal one or more peptide(s), and/or amino acid pairs, described herein, where peptide, and/or amino acid pair, is administered in a concentration sufficient to reduce or eliminate one or more symptoms of osteoporosis.
  • the peptide(s), and/or amino acid pair(s) are administered in a concentration sufficient to reduce or eliminate decalcification of a bone.
  • the peptide(s), and/or amino acid pair(s) are administered in a concentration sufficient to induce recalcification of a bone.
  • the peptide(s), and/or amino acid pairs can be combined with a pharmacologically acceptable excipient (e.g., an excipient suitable for oral administration to a mammal).
  • the methods and/or peptides of this invention exclude any one or more peptides disclosed in WO 97/36927, and/or U.S. Pat. Nos. 6,037,323, and/or 6,376,464, and/or 6753,313, and/or in Garber et al. (1992) Arteriosclerosis and Thrombosis, 12: 886-894.
  • this invention excludes any one or more peptides disclosed in U.S. Pat. No. 4,643,988 and/or in Garber et al (1992) that were synthesized with all enantiomeric amino acids being L amino acids or synthesized with D amino acids where the peptides are blocking groups.
  • this invention excludes peptides having the formula A 1 -B 1 —B 2 —C 1 -D-B 3 —B 4 -A 2 -C 2 —B 5 —B 6 -A 3 -C 3 —B 7 —C 4 -A 4 -B 8 —B 9 (SEQ ID NO:(SEQ ID NO:1) wherein A 1 , A 2 , A 3 and A 4 are independently aspartic acid or glutamic acid, or homologues or analogues thereof; B 1 , B 2 , B 3 , B 4 , B 5 , B 6 , B 7 , B 8 and B 9 are independently tryptophan, phenylalanine, alanine, leucine, tyrosine, isoleucine, valine or ⁇ -naphthylalanine, or homologues or analogues thereof; C 1 , C 2 , C 3 and C 4 are independently lysine or arginine,
  • this invention excludes any one or more peptides in WO 97/36927 and/or D variants thereof. Particular embodiments exclude one or more of the following: apoprotein A, apoprotein A-1, apoprotein A-2, apoprotein A4, apoprotein B, apoprotein B-48, apoprotein B-100, apoprotein C, apoprotein C-1, apoprotein C-2, apoprotein C-3, apoprotein D, apoprotein E as described in WO 97/36927.
  • apo A-I agonist compounds comprising (i) an 18 to 22-residue peptide or peptide analogue that forms an amphipathic .alpha.-helix in the presence of lipids and that comprises the formula: Z 1 —X 1 —X 2 —X 3 —X 4 —X 5 —X 6 —X 7 —X 8 —X 9 —X 10 —X 11 —X 12 —X 13 —X 14 —X 15 —X 16 —X 17 —X 18 —Z 2 , (SEQ ID NO:2), where X 1 is Pro (P), Ala (A), Gly (G), Asn (N), Gln (Q) or D-Pro (p); X 2 is an aliphatic amino acid; X 3 is Leu (L); X 4 is
  • this invention excludes peptides having the sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) and in certain embodiments, this invention excludes peptides having the sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys-Arg-Asp and Ser are all L amino acids.
  • the peptides of this invention show less than 38%, preferably less than about 35%, more preferably less than about 30% or less than about 25% LCAT activation activity as measured by the assays provided in U.S. Pat. No. 6,376,464.
  • polypeptide “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues.
  • the terms apply to amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.
  • class A amphipathic helix refers to a protein structure that forms an ⁇ -helix producing a segregation of a polar and nonpolar faces with the positively charged residues residing at the polar-nonpolar interface and the negatively charged residues residing at the center of the polar face (see, e.g., “Segrest et al. (1990) Proteins: Structure, Function, and Genetics 8: 103-117).
  • ameliorating when used with respect to “ameliorating one or more symptoms of atherosclerosis” refers to a reduction, prevention, or elimination of one or more symptoms characteristic of atherosclerosis and/or associated pathologies. Such a reduction includes, but is not limited to a reduction or elimination of oxidized phospholipids, a reduction in atherosclerotic plaque formation and rupture, a reduction in clinical events such as heart attack, angina, or stroke, a decrease in hypertension, a decrease in inflammatory protein biosynthesis, reduction in plasma cholesterol, and the like. “Ameliorating one or more symptoms of atherosclerosis” can also refer to improving blood flow to vascular beds affected by atherosclerosis.
  • enantiomeric amino acids refers to amino acids that can exist in at least two forms that are nonsuperimposable mirror images of each other. Most amino acids (except glycine) are enantiomeric and exist in a so-called L-form (L amino acid) or D-form (D amino acid). Most naturally occurring amino acids are “L” amino acids.
  • L amino acid L amino acid
  • D amino acid D amino acid
  • D amino acid D amino acid
  • D amino acid and L amino acid are used to refer to absolute configuration of the amino acid, rather than a particular direction of rotation of plane-polarized light. The usage herein is consistent with standard usage by those of skill in the art.
  • protecting group refers to a chemical group that, when attached to a functional group in an amino acid (e.g., a side chain, an alpha amino group, an alpha carboxyl group, etc.) blocks or masks the properties of that functional group.
  • Preferred amino-terminal protecting groups include, but are not limited to acetyl, or amino groups.
  • Other amino-terminal protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl and others.
  • Preferred carboxyl terminal protecting groups include, but are not limited to groups that form amides or esters.
  • side chain protection groups refers to protecting groups that protect/block a side-chain (i.e. an R group) of an amino acid.
  • Side-chain protecting groups include, but are not limited to amino protecting groups, carboxyl protecting groups and hydroxyl protecting groups such as aryl ethers and guanidine protecting groups such as nitro, tosyl etc.
  • the phrase “protect a phospholipid from oxidation by an oxidizing agent” refers to the ability of a compound to reduce the rate of oxidation of a phospholipid (or the amount of oxidized phospholipid produced) when that phospholipid is contacted with an oxidizing agent (e.g., hydrogen peroxide, 13-(S)—HPODE, 15-(S)—HPETE, HPODE, HPETE, HODE, HETE, etc.).
  • an oxidizing agent e.g., hydrogen peroxide, 13-(S)—HPODE, 15-(S)—HPETE, HPODE, HPETE, HODE, HETE, etc.
  • LDL low density lipoprotein
  • HDL high density lipoprotein
  • Group I HDL refers to a high density lipoprotein or components thereof (e.g., apo A-I, paraoxonase, platelet activating factor acetylhydrolase, etc.) that reduce oxidized lipids (e.g., in low density lipoproteins) or that protect oxidized lipids from oxidation by oxidizing agents.
  • Group II HDL refers to an HDL that offers reduced activity or no activity in protecting lipids from oxidation or in repairing (e.g., reducing) oxidized lipids.
  • HDL component refers to a component (e.g., molecules) that comprises a high density lipoprotein (HDL).
  • Assays for HDL that protect lipids from oxidation or that repair (e.g., reduce oxidized lipids) also include assays for components of HDL (e.g., apo A-I, paraoxonase, platelet activating factor acetylhydrolase, etc.) that display such activity.
  • human apo A-I peptide refers to a full-length human apo A-I peptide or to a fragment or domain thereof comprising a class A amphipathic helix.
  • a “monocytic reaction” as used herein refers to monocyte activity characteristic of the “inflammatory response” associated with atherosclerotic plaque formation.
  • the monocytic reaction is characterized by monocyte adhesion to cells of the vascular wall (e.g., cells of the vascular endothelium), and/or chemotaxis into the subendothelial space, and/or differentiation of monocytes into macrophages, and/or monocyte chemotaxis as measured in vitro (e.g., utilizing a neuroprobe chamber).
  • the term “absence of change” when referring to the amount of oxidized phospholipid refers to the lack of a detectable change, more preferably the lack of a statistically significant change (e.g., at least at the 85%, preferably at least at the 90%, more preferably at least at the 95%, and most preferably at least at the 98% or 99% confidence level).
  • the absence of a detectable change can also refer to assays in which oxidized phospholipid level changes, but not as much as in the absence of the protein(s) described herein or with reference to other positive or negative controls.
  • PAPC L- ⁇ -1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
  • POVPC 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine
  • PGPC 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine
  • PEIPC 1-palmitoyl-2-(5,6-epoxyisoprostane E 2 )-sn-glycero-3-phsophocholine
  • ChC18:2 cholesteryl linoleate
  • ChC18:2-OOH cholesteryl linoleate hydroperoxide
  • DMPC 1,2-ditetradecanoyl-rac-glycerol-3-phosphocholine
  • PON paraoxonase
  • HPF Standardized high power field
  • PON paraoxonase
  • BL/6 Standardized high power field
  • PON para
  • conservative amino acid substitution is used in reference to proteins or peptides to reflect amino acid substitutions that do not substantially alter the activity (specificity (e.g., for lipoproteins))or binding affinity (e.g., for lipids or lipoproteins)) of the molecule.
  • conservative amino acid substitutions involve substitution one amino acid for another amino acid with similar chemical properties (e.g., charge or hydrophobicity).
  • the following six groups each contain amino acids that are typical conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
  • nucleic acids or polypeptide sequences refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection.
  • sequence identity is determined over the full length of the peptide.
  • sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
  • test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated.
  • sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
  • Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al., supra).
  • PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a tree or dendogram showing the clustering relationships used to create the alignment.
  • PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle (1987) J. Mol. Evol. 35:351-360. The method used is similar to the method described by Higgins & Sharp (1989) CABIOS 5: 151-153.
  • the program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids.
  • the multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences.
  • This cluster is then aligned to the next most related sequence or cluster of aligned sequences.
  • Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences.
  • the final alignment is achieved by a series of progressive, pairwise alignments.
  • the program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters. For example, a reference sequence can be compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps.
  • HSPs high scoring sequence pairs
  • initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them.
  • the word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always>0) and N (penalty score for mismatching residues; always ⁇ 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
  • the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).
  • the BLAST algorithm In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA, 90: 5873-5787).
  • One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance.
  • P(N) the smallest sum probability
  • a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.
  • D-18A peptide refers to a peptide having the sequence: D-W-L-K-A-F—Y-D-K—V-A-E-K-L-K-E-A-F (SEQ ID NO:3) where all of the enantiomeric amino acids are D form amino acids.
  • coadministering refers to administration of the peptide and the active agent such that both can simultaneously achieve a physiological effect.
  • the two agents need not be administered together.
  • administration of one agent can precede administration of the other, however, such coadministering typically results in both agents being simultaneously present in the body (e.g., in the plasma) at a significant fraction (e.g., 20% or greater, preferably 30% or 40% or greater, more preferably 50% or 60% or greater, most preferably 70% or 80% or 90% or greater) of their maximum serum concentration for any given dose.
  • detoxify when used with respect to lipids, LDL, or HDL refers the removal of some or all oxidizing lipids and/or oxidized lipids.
  • HPODE and/or HPETE both hydroperoxides on fatty acids
  • pre-beta high density lipoprotein-like particles typically refers to cholesterol containing particles that also contain apoA-I and which are smaller and relatively lipid-poor compared to the lipid: protein ratio in the majority of HDL particles.
  • these “pre-beta high density lipoprotein-like particles” are found in the FPLC fractions containing particles smaller than those in the main HDL peak and are located to the right of HDL in an FPLC chromatogram as shown in related application U.S. Ser. No. 10/423,830.
  • reverse lipid transport and detoxification refers to the removal of lipids including cholesterol, other sterols including oxidized sterols, phospholipids, oxidizing agents, and oxidized phospholipids from tissues such as arteries and transport out of these peripheral tissues to organs where they can be detoxified and excreted such as excretion by the liver into bile and excretion by the kidneys into urine.
  • Detoxification also refers to preventing the formation and/or destroying oxidized phospholipids as explained herein.
  • biological sample refers to any sample obtained from a living organism or from an organism that has died.
  • biological samples include body fluids, tissue specimens, cells and cell lines taken from an organism (e.g., a human or non-human mammal).
  • amide when referring to a hydrophobic protecting group or a hydrophobic blocking group includes a simple amide to methylamide or ethylamide.
  • the term also includes alkyl amides such as CO—NH—R where R is methyl, ethyl, etc. (e.g., up to 7, preferably 9, more preferably 11 or 13 carbons).
  • D-peptide refers to a peptide in which one or more of the enantiiomeric amino acids comprising the peptide are D form amino acids. In certain embodiments, a plurality of the enantiomeric amino acids are D form amino acids. In certain embodiments, at least half of the enantiomeric amino acids are D form amino acids. In certain embodiments, the peptide comprises alternating D- and L-form amino acids. In certain embodiments, all of the enantiomeric amino acids are D form amino acids.
  • L-peptide refers to a peptide in which all of the amino acids (enantiomeric amino acids) are L-form amino acids.
  • a peptide that “converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory” refers to a peptide that when administered to a mammal (e.g., a human, a rat, a mouse, etc.), or that when used in an appropriate ex vivo assay (e.g., as described herein), converts HDL to an HDL that reduces or blocks lipid oxidation by an oxidizing agent (e.g., as described in U.S. Ser. No.
  • a control assay e.g., HDL from a control animal or assay administered a lower dose of the peptide or a negative control animal or assay lacking the peptide.
  • the alteration of HDL is preferably a detectable change.
  • the change is a statistically significant change, e.g., as determined using any statistical test suited for the data set provided (e.g., t-test, analysis of variance (ANOVA), semiparametric techniques, non-parametric techniques (e.g., Wilcoxon Mann-Whitney Test, Wilcoxon Signed Ranks Test, Sign Test, Kruskal-Wallis Test, etc.).
  • the statistically significant change is significant at least at the 85%, more preferably at least at the 90%, still more preferably at least at the 95%, and most preferably at least at the 98% or 99% confidence level.
  • the change is at least a 10% change, preferably at least a 20% change, more preferably at least a 50% change and most preferably at least a 90% change.
  • FIG. 1 illustrates a synthesis scheme for the solution phase synthesis of peptides according to this invention.
  • FIG. 2 illustrates the process for synthesizing a tetrapeptide using the process outlined in FIG. 1 .
  • FIG. 3 shows that pre-incubation (pre-treatment) but not co-incubation (Co-inc) of Boc-Lys(Boc)-Arg-Asp-Ser(tBu)-OtBu (synthesized from all D-amino acids) (SEQ ID NO:238 in Table 4) inhibited LDL-induced monocyte chemotactic activity produced by human artery wall cells (HAEC).
  • the cells were either pre-incubated with 125 ⁇ g/ml, 250 ⁇ g/ml, or 500 ⁇ g/ml of the peptide, the peptide was then removed and LDL at 100 ⁇ g/ml cholesterol with fresh medium was added or the same concentrations of peptide were added together with the LDL and monocyte chemotactic activity determined.
  • FIG. 4 shows that the addition of the tetrapeptide described in FIG. 3 to the drinking water of apoE null mice converted HDL and the post-HDL FPLC fractions from pro-inflammatory to anti-inflammatory similar to D-4F.
  • a control human LDL at 100 ⁇ g/ml of Cholesterol was added (LDL) or not added (No Addition) to human artery wall cocultures or was added together with HDL at 50 ⁇ g/ml from a normal human control subject (+Control HDL) or HDL at 50 ⁇ g/ml from apoE null mice that received drinking water without peptide (+Water Control HDL) or received the tetrapeptide (+D-Tetra HDL) or D-4F (+D4F HDL) or the post-HDL FPLC fractions from apoE null mice that did not receive the peptide (+Water Control post HDL) or from mice that did receive the tetrapeptide (+D-Tetra post HDL) or received D-4F (+D4F post HDL)were added at 20 ⁇ g/ml together with the control human LDL at 100 ⁇ g/ml of Cholesterol. After 8 hours the supernatants were assayed for monocyte chemotactic activity.
  • FIG. 5 shows that apoE null mice receiving D-tetrapeptide or D-4F in their drinking water have LDL that induces less monocyte chemotactic activity.
  • the LDL from the FPLC fractions of the mice described in FIG. 4 was added to the cocultures at 100 ⁇ g/ml. After 8 hours the supernatants were assayed for monocyte chemotactic activity.
  • FIG. 6 shows that SEQ ID NO:258 from Table 4 (designated D-11 in the figure) when synthesized from all D-amino acids or D-4F given orally renders HDL anti-inflammatory in apoE null mice but a peptide containing the same D-amino acids as in D-4F but arranged in a scrambled sequence that prevents lipid binding did not.
  • FIG. 7 shows that apoE null mice receiving D-4F or SEQ ID NO:258 from Table 4 synthesized from D-amino acids (designated D-11) (but not from mice that received scrambled D-4F) have LDL that induces less monocyte chemotactic activity.
  • the LDL from the FPLC fractions of the mice described in FIG. 6 was added to the cultures at 100 ⁇ g/ml. After 8 hours the supernatants were assayed for monocyte chemotactic activity. *indicates p ⁇ 0.001, **indicates p ⁇ 0.01.
  • FIG. 8 shows that HDL was converted from pro-inflammatory to anti-inflammatory after addition of SEQ ID NO:238 in Table 4 synthesized from D amino faceds (designated D-1)_to the chow of apoE null mice (200 ⁇ g/gm chow for 18 hours).
  • Assay Controls No Addition, no addition to the cocultures; LDL , a standard control human LDL was added to the cocultures; +Control HDL, a control normal human HDL was added to the cocultures.
  • Chow LDL LDL from mice that received chow alone; +Chow Autolog.
  • HDL HDL from the mice that received Chow alone was added together with the LDL from these mice; +D-1 Autolog.
  • HDL HDL from the mice receiving the peptide was added together with the LDL from these mice to the cocultures and monocyte chemotactic activity was determined.
  • FIG. 9 shows that the tetrapeptide (SEQ ID NO:258 in Table 4) was ten times more potent than SEQ ID NO:238 in vitro.
  • the tetrapeptide was added or not added in a pre-incubation to human artery wall cell cocultures at 100, 50, 25 or 12.5 ⁇ m/mL and incubated for 2 hrs. The cultures were then washed. Some wells then received medium alone (No Addition). The other wells either received standard normal human LDL at 100 ⁇ gm/mL cholesterol (LDL) or received this LDL together with a standard control human HDL (LDL+Control HDL) at 50 ⁇ gm/mL cholesterol and were incubated for 8 hrs.
  • LDL standard normal human LDL
  • LDL+Control HDL standard control human HDL
  • FIG. 10 shows that SEQ ID NOs:243, 242, and 256 from Table 4 (designated Seq No.5, Seq No.6, and Seq No. 9, respectively in the figure) convert pro-inflammatory HDL from apoE null mice to anti-inflammatory HDL.
  • Two month old female apo E null mice (n 4 per treatment) fasted for 18 hrs, were injected intraperitoneally with L-tetrapeptides at 20 ⁇ gm peptide/mouse or were injected with the saline vehicle (Saline Vehicle). Two hours later, blood was collected from the retroorbital sinus under mild anesthesia with Isofluorine. Plasma was separated and HDL was isolated by FPLC. HDL inflammatory/anti-inflammatory properties were then determined.
  • FIG. 11 shows that SEQ ID NO:258 from Table 4 (designated S-11 in the Figure) converts pro-inflammatory HDL from apoE null mice to anti-inflammatory HDL better than SEQ ID NO:254 and SEQ ID NO:282 (designated S-7 and S-35, respectively in the Figure).
  • Cultures of human aortic endothelial cells received medium alone (No Addition/Assay Controls), standard normal human LDL at 100 ⁇ gm/mL cholesterol without (LDL/Assay Controls) or together with standard control human HDL (+Control HDL/Assay Controls) at 50 ⁇ gm/mL cholesterol, or mouse LDL at 100 ⁇ gm/mL cholesterol with mouse HDL at 50 ⁇ gm/mL cholesterol obtained from mice that received S-7, or S-11 or S-35 (LDL+S-7 HDL.
  • FIG. 12 The LDL from the FPLC fractions of the mice described in Figure 11 was added to the cells at 100 ⁇ g/ml. After 8 hours the supernatants were assayed for monocyte chemotactic activity. Assay Controls are as described in FIG. 11 .
  • Saline LDL LDL from mice injected with the saline vehicle
  • S-7 LDL LDL from mice injected with SEQ ID NO:254 from Table 4 as described in FIG. 11
  • S-11 LDL LDL from mice injected with SEQ ID NO:258 from Table 4 as described in FIG. 11
  • S-35 LDL from mice injected with SEQ ID NO:282 as described in FIG. 9 .
  • FIG. 13 shows serum Amyloid A (SAA) plasma levels after injection of peptides. SAA levels in plasma were measured 24 hours after injection of the peptides described in FIGS. 11 and 12 . *p ⁇ 0.001.
  • FIG. 14 shows that SEQ ID NO:258 from Table 4 when synthesized from all L-amino acids and given orally converts pro-inflammatory HDL from apoE null mice to anti-inflammatory HDL.
  • Female, 3 month old apoE null mice, (n 4), were given 200 micrograms in water of the peptide described as SEQ ID NO:258 from Table 4, which was synthesized from all L-amino acids (designated S-11 in the figure). The peptide or water without peptide was administered by stomach tube and the mice were bled 4 hours later.
  • mice were given access to standard mouse chow in powdered form and containing 200 micrograms of the S-11, which was synthesized from all L-amino acids and added per1.0 gram of powdered mouse chow in a total of 4 grams of powdered mouse chow containing a total of 800 micrograms of the peptide for the cage of four mice or they were given the same powdered mouse chow without peptide.
  • the chow was available to the mice overnight and by morning the chow was consumed and the mice were bled. Plasma was separated and HDL was isolated by FPLC. HDL inflammatory/anti-inflammatory properties were then determined.
  • FIG. 15 shows that L-S-11, when synthesized from all L-amino acids and given orally increased plasma paraoxonase activity.
  • the plasma from the mice described in FIG. 14 was assayed for paraoxonase activity (PON Activity, which is shown in the figure as Units per 500 ⁇ l of plasma).
  • PON Activity which is shown in the figure as Units per 500 ⁇ l of plasma.
  • No peptide mice that received water or food alone without peptide.
  • L-S-11 mice given 200 micrograms in water or food of the peptide described as SEQ ID NO:256 from Table 4 as described in FIG. 14 . P ⁇ 0.001.
  • FIG. 16 shows that SEQ ID NO:238 (designated D-1) and SEQ ID NO:258 (designated D-11) from Table 4 when synthesized from all D-amino acids and given orally renders HDL anti-inflammatory in apoE null mice but SEQ ID NO:238, when synthesized from all L-amino acids (L-1) and given orally did not.
  • FIG. 17 shows that SEQ ID NO:238 (D-1) and SEQ ID NO:258 (D-11) from Table 4 when synthesized from all D-amino acids and given orally renders HDL anti-inflammatory and reduces LDL-induced monocyte chemotactic activity in apoE null mice but SEQ ID NO:238, when synthesized from all L-amino acids and given orally, did not.
  • Plasma from the mice described in FIG. 16 was separated and HDL and LDL were isolated by FPLC.
  • FIG. 18 shows that SEQ ID NO:258 from Table 4 synthesized from all D-amino acids (D-11), when given orally to mice, raised HDL cholesterol concentrations while giving SEQ ID NO:238 synthesized from either L- or D-amino acids (L-1 or D-1, respectively) orally did not. Plasma HDL-cholesterol concentrations from the mice that are described in FIGS. 16 and 17 were determined.
  • FIG. 19 shows that SEQ ID NO:258 from Table 4 synthesized from all D-amino acids (D-11) when given orally to mice raised HDL paraoxonase (PON) activity while giving SEQ ID NO:238 synthesized from either L- or D-amino acids (L-1, D-1, respectively) orally did not.
  • Paraoxonase activity in the HDL described in FIG. 18 was determined. The values are activity per 500 microliters of plasma. *indicates p ⁇ 0.001.
  • FIG. 20 shows that pravastatin and D-4F act synergistically to reduce aortic lesions as determine in en face preparations in apoE null mice.
  • Five week old female apoE null mice were given in their drinking water either no additions (water control), pravastatin 50 ⁇ g/ml, pravastatin 20 ⁇ g/ml or D-4F 2 ⁇ g/ml, or D-4F 5 ⁇ g/ml, or pravastatin (PRAVA.) 20 ⁇ g/ml together with D-4F 2 ⁇ g/ml, or pravastatin(PRAVA.) 50 ⁇ g/ml together with D-4F 5 ⁇ g/ml. After 11 weeks the mice were sacrificed and lesions determined in en face aortic preparations.
  • FIG. 21 shows that pravastatin and D-4F act synergistically to reduce aortic sinus lesions in apoE null mice.
  • Five week old female apoE null mice were given in their drinking water either no additions (water control), pravastatin 50 ⁇ g/ml, pravastatin 20 ⁇ g/ml or D-4F 2 ⁇ g/ml, or D-4F 5 ⁇ g/ml, or pravastatin(P) 50 ⁇ g/ml together with D-4F 5 ⁇ g/ml, or pravastatin(P) 20 ⁇ g/ml together with D-4F 2 ⁇ g/ml. After 11 weeks the mice were sacrificed and aortic sinus lesions were determined.
  • FIG. 22 shows that D-4F and SEQ ID NO:242 and SEQ ID NO:258 from Table 4 dramatically reduce lipoprotein lipid hydroperoxides in apoE null mice.
  • Fifty ⁇ g/gm of SEQ ID NO:242 (D-198 in the drawing) or SEQ ID NO:258 (D-203 in the drawing) or D-4F (the peptides were synthesized from all D-amino acids) were added to the chow of apoE null mice or the mice were continued on chow without additions (None).
  • mice Eighteen hours later the mice were bled, their plasma fractionated by FPLC and the lipid hydroperoxide (LOOH) content of their low density lipoproteins (LDL) and high density lipoproteins (HDL) were determined. *indicates p ⁇ 0.01.
  • LDL low density lipoproteins
  • HDL high density lipoproteins
  • FIG. 23 shows the solubility of peptides in ethyl acetate.
  • SEQ ID NO 254 Boc-Lys( ⁇ Boc)-Glu-Arg-Ser(tBu)-OtBu; and SEQ ID NO 258: Boc-Lys( ⁇ Boc)-Arg-Glu-Ser(tBu)-OtBu. Also shown is the solubility in ethyl acetate of SEO ID NO: 250.
  • FIG. 24 SEQ ID NO:258 forms 7.5 nm particles when mixed with DMPC in an aqueous environment.
  • PBS phosphate buffered saline
  • SEQ ID NO:258 or SEQ ID NO:254 were added (DMPC: peptide; 1:10; wt:wt) and the reaction mixture dialyzed. After dialysis the solution remained clear with SEQ ID NO:258 but was turbid after the deoxycholate was removed by dialysis in the case of SEQ ID NO:254.
  • the figure is an electron micrograph prepared with negative staining and at 147,420 ⁇ magnification.
  • the arrows indicate SEQ ID NO:258 particles measuring 7.5 nm (they appear as small white particles).
  • FIG. 25 SEQ ID NO:258 added to DMPC in an aqueous environment forms particles with a diameter of approximately 7.5 nm (large open), and stacked lipid-peptide bilayers (large striped arrow) (small arrows pointing to the white lines in the cylindrical stack of disks) with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers (black lines between white lines in the stack of disks) of approximately 2 nm.
  • the conditions and magnifications are the same as described in FIG. 24 .
  • FIG. 26 shows that the peptide of SEQ ID NO:258added to DMPC in an aqueous environment forms stacked lipid-peptide bilayers (striped arrow) and vesicular structures of approximately 38 nm white arrows).
  • FIG. 27 shows that DMPC in an aqueous environment without SEQ ID NO:258 does not form particles with a diameter of approximately 7.5 nm, or stacked lipid-peptide bilayers, nor vesicular structures of approximately 38 nm.
  • the DMPC vesicles shown are 12.5-14 nm. The conditions and magnifications are the same as described in FIG. 24 .
  • FIG. 28 shows a molecular model of the peptide of SEQ ID NO:254 compared to the peptide of SEQ ID NO:258. Red represents oxygen, blue represents nitrogen, gray represents carbon, and white represents hydrogen molecules.
  • FIG. 29 shows a space-filling molecule model of SEQ ID NO:254 compared to SEQ ID NO:258.
  • the arrows in this space filling molecular model identify the polar and non-polar portions of the molecules.
  • the color code is the same as in FIG. 28 .
  • FIG. 30 illustrates peptide backbones (in the bottom panels) for the orientations given in the top panels.
  • FIG. 31 shows molecular models of SEQ ID NO:254 compared to SEQ ID NO:258 identifying the Ser(tBu)-OtBu groups.
  • the color code is as in FIG. 28 .
  • FIG. 32 shows molecular models of SEQ ID NO:254 compared to SEQ ID NO 258 identifying various blocking groups.
  • the color code is as in FIG. 28 .
  • FIG. 33 shows that SEQ ID NO:258 (but not SEQ ID NO:254) renders apoE null HDL anti-inflammatory.
  • FIG. 34 shows that SEQ ID NO:258 but not SEQ ID NO:254, significantly decreases aortic root atherosclerosis in apoE null mice.
  • the aortic root (aortic sinus) lesion score was determined in the apoE null mice described in FIG. 33 .
  • FIG. 35 shows that SEQ ID NO:258 but not SEQ ID NO:254 significantly decreases aortic atherosclerosis in en face preparations in apoE null mice.
  • the percent aortic surface containing atherosclerotic lesions was determined in en face preparations in the apoE null mice described in FIG. 33 .
  • SEQ ID NO:258 is shown in the right panel.
  • FIG. 36 shows that SEQ ID NO:250 synthesized from all L-amino acids significantly decreases atherosclerosis.
  • This invention pertains to the discovery that synthetic peptides designed to mimic the class A amphipathic helical motif (Segrest et al. (1990) Proteins: Structure, Function, and Genetics 8: 103-117) are able to associate with phospholipids and exhibit many biological properties similar to human apo-A-I.
  • synthetic peptides designed to mimic the class A amphipathic helical motif (Segrest et al. (1990) Proteins: Structure, Function, and Genetics 8: 103-117) are able to associate with phospholipids and exhibit many biological properties similar to human apo-A-I.
  • D amino acids when such peptides are formulated using D amino acids, the peptides show dramatically elevated serum half-lives and, particularly when the amino and/or carboxy termini are blocked, can even be orally administered.
  • these peptides can stimulate the formation and cycling of pre-beta high density lipoprotein-like particles.
  • the peptides are capable of enhancing/synergizing the effect of statins allowing statins to be administered as significantly lower dosages or to be significantly more anti-inflammatory at any given dose.
  • the peptides described herein can inhibit and/or prevent and/or treat one or more symptoms of osteoporosis.
  • the peptides can also increase pre-beta HDL; and/or increase HDL paroxynase activity.
  • D-form peptides retain the biological activity of the corresponding L-form peptide.
  • In vivo animal studies using such D-form peptides showed effective oral delivery, elevated serum half-life, and the ability to mitigate or prevent/inhibit one or more symptoms of atherosclerosis.
  • oxidized lipids Since many inflammatory conditions are mediated at least in part by oxidized lipids, we believe that the peptides, or pairs of amino acids, of this invention are effective in ameliorating conditions that are known or suspected to be due to the formation of biologically active oxidized lipids. These include, but are not limited to atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, multiple sclerosis, asthma, diabetes, Alzheimer's disease, and osteoporosis.
  • the “small peptides” typically range in length from 2 or 3 amino acids to about 15 amino acids, more preferably from about 4 amino acids to about 10 or 11 amino acids, and most preferably from about 4 to about 8 or 10 amino acids.
  • the peptides are typically characterized by having hydrophobic terminal amino acids or terminal amino acids rendered hydrophobic by the attachment of one or more hydrophobic “protecting” groups. The internal structures of the peptides are described in more detail herein.
  • a number of physical properties predict the ability of the small peptides (e.g., less than 10 amino acids, perferably less than 8 amino acids, more preferably from about 2 or 3 to about 5 or 6 amino acids), or pairs of amino acids, of this invention to render HDL more anti-inflammatory and to mitigate atherosclerosis and/or other pathologies characterized by an inflammatory response in a mammal.
  • the physical properties include high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), and solubility in aqueous buffer at pH 7.0.
  • the particularly effective small peptides Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, the particularly effective small peptides form particles with a diameter of approximately 7.5 nm ( ⁇ 0.1 nm), and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also form vesicular structures of approximately 38 nm).
  • the small peptides, or pairs of amino acids have a molecular weight of less than about 900 Da.
  • Reverse cholesterol transport is considered to be important in preventing the build up of lipids that predisposes to atherosclerosis (Shah et al. (2001) Circulation, 103: 3047-3050.) Many have believed the lipid of consequence is cholesterol.
  • Our laboratory has shown that the key lipids are oxidized phospholipids that initiate the inflammatory response in atherosclerosis (Navab et al. (2001) Arterioscler Thromb Vasc Biol., 21(4): 481-488; Van Lenten et al. (001) Trends Cardiovasc Med, 11: 155-161; Navab M et al. (2001) Circulation, 104: 2386-2387).
  • HDL-cholesterol levels are inversely correlated with risk for heart attack and stroke (Downs et al. (1998) JAMA 279: 1615-1622; Gordon et al. (1977) Am J Med., 62: 707-714; Castelli et al. (1986) JAMA, 256: 2835-2838).
  • Pre-beta HDL is generally considered to be the most active HDL fraction in promoting reverse cholesterol transport (e.g., picking up cholesterol from peripheral tissues such as arteries and carrying it to the liver for excretion into the bile; see, Fielding and Fielding (2001) Biochim Biophys Acta, 1533(3): 175-189).
  • levels of pre-beta HDL can be increased because of a failure of the pre-beta HDL to be cycled into mature alpha-migrating HDL e.g., LCAT deficiency or inhibition (O'Connor et al. (1998) J Lipid Res, 39: 670-678).
  • High levels of pre-beta HDL have been reported in coronary artery disease patients (Miida et al. (1996) Clin Chem., 42: 1992-1995).
  • pre-beta HDL pre-beta HDL
  • women have been found to have higher levels of pre-beta HDL than women but the risk of men for coronary heart disease is greater than for women (O'Connor et al. (1998) J Lipid Res., 39: 670-678).
  • static measurements of pre-beta HDL levels themselves are not necessarily predictive of risk for coronary artery disease.
  • the cycling, however, of cholesterol through pre-beta HDL into mature HDL is universally considered to be protective against atherosclerosis (Fielding and Fielding (2001) Biochim Biophys Acta, 1533(3): 175-189).
  • the peptides of this invention e.g., D-4F
  • D-4F did not affect the peptides of this invention.
  • D-4F forms small pre-beta HDL-like particles that contain relatively high amounts of apoA-I and paraoxonase. Indeed, estimating the amount of apoA-I in these pre-beta HDL-like particles from Western blots and comparing the amount of apoA-I to the amount of D-4F in these particles (determined by radioactivity or LC-MRM) suggests that as D-4F is absorbed from the intestine, it acts as a catalyst causing the formation of these pre-beta HDL-like particles.
  • This small amount of intestinally derived D-4F appears to recruit amounts of apoA-I, paraoxonase, and cholesterol into these particles that are orders of magnitude more than the amount of D-4F (see, e.g., Navab et al. (2004) Circulation, 109: r120-r125).
  • this invention provides methods of stimulating the formation and cycling of pre-beta high density lipoprotein-like particles by administration of one or more peptides, or pairs of amino acids, as described herein.
  • the peptides, or pairs of amino acids can thereby promote lipid transport and detoxification.
  • FIGS. 1-5 in WO 02/15923 see, e.g., FIGS. 1-5 in WO 02/15923.
  • FIG. 1 panels A, B, C, and D in WO 02/15923 show the association of 14 C-D-5F with blood components in an ApoE null mouse.
  • HDL from mice that were fed an atherogenic diet and injected with PBS failed to inhibit the oxidation of human LDL and failed to inhibit LDL-induced monocyte chemotactic activity in human artery wall coculures.
  • HDL from mice fed an atherogenic diet and injected daily with peptides described herein was as effective in inhibiting human LDL oxidation and preventing LDL-induced monocyte chemotactic activity in the cocultures as was normal human HDL ( FIGS. 2A and 2B in WO 02/15923).
  • LDL taken from mice fed the atherogenic diet and injected daily with PBS was more readily oxidized and more readily induced monocyte chemotactic activity than LDL taken from mice fed the same diet but injected with 20 ⁇ g daily of peptide 5F.
  • the D peptide did not appear to be immunogenic ( FIG. 4 in WO 02/15923).
  • this invention provides methods for ameliorating and/or preventing one or more symptoms of atherosclerosis and/or other conditions characterized by an inflammatory response.
  • the peptides, or pairs of amino acids, of this invention are also useful in a number of contexts.
  • cardiovascular complications e.g., atherosclerosis, stroke, etc.
  • cardiovascular complications e.g., atherosclerosis, stroke, etc.
  • Such an acute phase inflammatory response is often associated with a recurrent inflammatory disease (e.g., leprosy, tuberculosis, systemic lupus erythematosus, and rheumatoid arthritis), a viral infection (e.g., influenza), a bacterial infection, a fungal infection, an organ transplant, a wound or other trauma, an implanted prosthesis, a biofilm, and the like.
  • a recurrent inflammatory disease e.g., leprosy, tuberculosis, systemic lupus erythematosus, and rheumatoid arthritis
  • a viral infection e.g., influenza
  • bacterial infection e.g.
  • D-4F and/or other peptides of this invention
  • D-4F can be administered (e.g., orally or by injection) to patients with known coronary artery disease during influenza infection or other events that can generate an acute phase inflammatory response (e.g., due to viral infection, bacterial infection, trauma, transplant, various autoimmune conditions, etc.) and thus we can prevent by this short term treatment the increased incidence of heart attack and stroke associated with pathologies that generate such inflammatory states.
  • this invention contemplates administering one or more of the peptides, or pairs of amino acids, of this invention to a subject at risk for, or incurring, an acute inflammatory response and/or at risk for or incurring a symptom of atherosclerosis.
  • a person having or at risk for coronary disease may prophylactically be administered a polypeptide, or pair of amino acids, of this invention during flu season.
  • a person (or animal) subject to a recurrent inflammatory condition e.g., rheumatoid arthritis, various autoimmune diseases, etc.
  • a polypeptide of this invention can be treated with a polypeptide of this invention to mitigate or prevent the development of atherosclerosis or stroke.
  • a person (or animal) subject to trauma e.g., acute injury, tissue transplant, etc. can be treated with a polypeptide of this invention to mitigate the development of atherosclerosis or stroke.
  • Such methods will entail a diagnosis of the occurrence or risk of an acute inflammatory response.
  • the acute inflammatory response typically involves alterations in metabolism and gene regulation in the liver. It is a dynamic homeostatic process that involves all of the major systems of the body, in addition to the immune, cardiovascular and central nervous system. Normally, the acute phase response lasts only a few days; however, in cases of chronic or recurring inflammation, an aberrant continuation of some aspects of the acute phase response may contribute to the underlying tissue damage that accompanies the disease, and may also lead to further complications, for example cardiovascular diseases or protein deposition diseases such as amyloidosis.
  • APRs acute phase reactants
  • APPs acute phase proteins
  • This group includes serum amyloid A (SAA) and either C-reactive protein (CRP) in humans or its homologue in mice, serum amyloid P component (SAP). So-called negative APRs are decreased in plasma concentration during the acute phase response to allow an increase in the capacity of the liver to synthesize the induced APRs.
  • SAA serum amyloid A
  • CRP C-reactive protein
  • SAP serum amyloid P component
  • the acute phase response, or risk therefore is evaluated by measuring one or more APPs. Measuring such markers is well known to those of skill in the art, and commercial companies exist that provide such measurement (e.g., AGP measured by Cardiotech Services, Louisville, Ky.).
  • the osteon resembles the artery wall in that the osteon is centered on an endothelial cell-lined lumen surrounded by a subendothelial space containing matrix and fibroblast-like cells, which is in turn surrounded by preosteoblasts and osteoblasts occupying a position analogous to smooth muscle cells in the artery wall (Id.).
  • Trabecular bone osteoblasts also interface with bone marrow subendothelial spaces (Id.). Parhami et al. postulated that lipoproteins could cross the endothelium of bone arteries and be deposited in the subendothelial space where they could undergo oxidation as in coronary arteries (Id.).
  • osteoporosis can be regarded as an “atherosclerosis of bone”. It appears to be a result of the action of oxidized lipids. HDL destroys these oxidized lipids and promotes osteoblastic differentiation.
  • administering peptide(s) of this invention to a mammal e.g., in the drinking water of apoE null mice
  • the peptides, or pairs of amino acids, described herein are useful for mitigation one or more symptoms of osteoporosis (e.g., for inhibiting decalcification) or for inducing recalcification of osteoporotic bone.
  • the peptides are also useful as prophylactics to prevent the onset of symptom(s) of osteoporosis in a mammal (e.g., a patient at risk for osteoporosis).
  • this invention contemplates the use of the peptides, or pairs of amino acids, described herein to inhibit or prevent a symptom of a disease such as coronary calcification, calcific aortic stenosis, osteoporosis, and the like.
  • the peptides, or pairs of amino acids, described herein are useful, prophylactically or therapeutically, to mitigate the onset and/or more or more symptoms of a variety of other conditions including, but not limited to polymyalgia rheumatica, polyarteritis nodosa, scleroderma, lupus erythematosus, multiple sclerosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease (e.g., asthma), Alzheimers Disease, AIDS, and diabetes.
  • the peptides will be useful in mitigation a symptom caused by or associated with an inflammatory response in these conditions.
  • the methods of this invention typically involve administering to an organism, preferably a mammal, more preferably a human one or more of the peptides, or pairs of amino acids, of this invention (or mimetics of such peptides, or pairs of amino acids).
  • the peptide(s), or pairs of amino acids can be administered, as described herein, according to any of a number of standard methods including, but not limited to injection, suppository, inhalation (e.g., nasal spray, oral inhalation, etc.), time-release implant, transdermal patch, and the like.
  • the peptide(s) are administered orally (e.g., as a syrup, capsule, powder, gelcap, or tablet).
  • the methods can involve the administration of a single peptide or pair of amino acids of this invention or the administration of two or more different peptides or or pairs of amino acids.
  • the peptides, or pairs of amino acids can be provided as monomers or in dimeric, oligomeric or polymeric forms.
  • the multimeric forms may comprise associated monomers (e.g., ionically or hydrophobically linked) while certain other multimeric forms comprise covalently linked monomers (directly linked or through a linker).
  • preferred organisms include, but are not limited to humans, non-human primates, canines, equines, felines, porcines, ungulates, largomorphs, and the like.
  • the methods of this invention are not limited to humans or non-human animals showing one or more symptom(s) of atherosclerosis (e.g., hypertension, plaque formation and rupture, reduction in clinical events such as heart attack, angina, or stroke, high levels of plasma cholesterol, high levels of low density lipoprotein, high levels of very low density lipoprotein, or inflammatory proteins such as CRP, etc.), but are useful in a prophylactic context.
  • atherosclerosis e.g., hypertension, plaque formation and rupture, reduction in clinical events such as heart attack, angina, or stroke, high levels of plasma cholesterol, high levels of low density lipoprotein, high levels of very low density lipoprotein, or inflammatory proteins such as CRP, etc.
  • the peptides of this invention, or pairs of amino acids, (or mimetics thereof) can be administered to organisms to prevent the onset/development of one or more symptoms of atherosclerosis and/or one of the other indications described herein.
  • Particularly preferred subjects in this context are subjects showing one or more risk factors for atherosclerosis (e.g., family history, hypertension, obesity, high alcohol consumption, smoking, high blood cholesterol, high blood triglycerides, elevated blood LDL, VLDL, EDL, or low HDL, diabetes, or a family history of diabetes, high blood lipids, heart attack, angina or stroke, etc.) and/or one of the other conditions described herein.
  • risk factors for atherosclerosis e.g., family history, hypertension, obesity, high alcohol consumption, smoking, high blood cholesterol, high blood triglycerides, elevated blood LDL, VLDL, EDL, or low HDL
  • diabetes or a family history of diabetes, high blood lipids, heart attack, angina or stroke, etc.
  • the peptides, or pairs of amino acids, of this invention can also be administered to stimulate the formation and cycling of pre-beta high density lipoprotein-like particles and/or to promote reverse lipid transport and detoxification.
  • the peptides, or pairs of amino acids are also useful for administration in conjunction with statins where they enhance (e.g., synergize) the activity of the statin at typically administered dosages and/or permit the statin(s) to be administered at lower dosages.
  • the peptides, or pairs of amino acids can be administered to reduce or eliminate one or more symptoms of osteoporosis and/or diabetes, and/or any of the other conditions described herein, and/or to prevent/inhibit the onset of one or more symptoms of osteoporosis and/or any of the other indications described herein.
  • class A peptides comprising a class A amphipathic helix
  • Class A peptides are capable of mitigating one or more symptoms of atherosclerosis.
  • Class A peptides are characterized by formation of an ⁇ -helix that produces a segregation of polar and non-polar residues thereby forming a polar and a nonpolar face with the positively charged residues residing at the polar-nonpolar interface and the negatively charged residues residing at the center of the polar face (see, e.g., Anantharamaiah (1986) Meth. Enzymol, 128: 626-668). It is noted that the fourth exon of apo A-I, when folded into 3.667 residues/turn produces a class A amphipathic helical structure.
  • One particularly preferred class A peptide designated 18A (see, e.g., Anantharamaiah (1986) Meth. Enzymol, 128: 626-668) was modified as described herein to produce peptides orally administratable and highly effective at inhibiting or preventing one or more symptoms of atherosclerosis. Without being bound by a particular theory, it is believed that the peptides of this invention may act in vivo may by picking up seeding molecule(s) that mitigate oxidation of LDL.
  • the new class A peptide analog, 5F inhibited lesion development in atherosclerosis-susceptible mice.
  • the new peptide analog, 5F was compared with mouse apo A-I (MoA-I) for efficacy in inhibiting diet-induced atherosclerosis in these mice using peptide dosages based on the study by Levine et al. (Levine et al. (1993) Proc. Natl. Acad. Sci . USA 90:12040-12044).
  • the peptides include variations of 4F (SEQ ID NO:8 in Table 1) or D-4F where one or both aspartic acids (D) are replaced by glutamic acid (E). Also contemplated are peptides (e.g., 4F or D-4F) where 1, 2, 3, or 4 amino acids are deleted from the carboxyl terminus and/or 1, 2, 3, or 4 amino acids are deleted from the carboxyl terminus and/or one or both aspartic acids (D) are replaced by glutamic acid (E).
  • the N-terminus can be blocked and labeled using a mantyl moiety (e.g., N-methylanthranilyl).
  • peptides of Table 1 are illustrated with an acetyl group or an N-methylanthranilyl group protecting the amino terminus and an amide group protecting the carboxyl terminus, any of these protecting groups may be eliminated and/or substituted with another protecting group as described herein.
  • the peptides comprise one or more D-form amino acids as described herein.
  • every amino acid (e.g., every enantiomeric amino acid) of the peptides of Table 1 is a D-form amino acid.
  • Table Table 1 is not fully inclusive.
  • other suitable class A amphipathic helical peptides can routinely be produced (e.g., by conservative or semi-conservative substitutions (e.g., D replaced by E), extensions, deletions, and the like).
  • one embodiment utilizes truncations of any one or more of peptides shown hwerein (e.g., peptides identified by SEQ ID Nos:5-23 and 42—in Table 1).
  • SEQ ID NO:24 illustrates a peptide comprising 14 amino acids from the C-terminus of 18A comprising one or more D amino acids
  • SEQ ID NOS:25-41 illustrate other truncations.
  • peptides are also suitable. Such longer peptides may entirely form a class A amphipathic helix, or the class A amphipathic helix (helices) can form one or more domains of the peptide.
  • this invention contemplates multimeric versions of the peptides.
  • the peptides illustrated heren can be coupled together (directly or through a linker (e.g., a carbon linker, or one or more amino acids) with one or more intervening amino acids).
  • Illustrative polymeric peptides include 18A-Pro-18A and the peptides of SEQ ID NOs:81-88, in certain embodiments comprising one or more D amino acids, more preferably with every amino acid a D amino acid as described herein and/or having one or both termini protected.
  • this invention also provides modified class A amphiphathic helix peptides.
  • Certain preferred peptides incorporate one or more aromatic residues at the center of the nonpolar face, e.g., 3F C ⁇ , (as present in 4F), or with one or more aliphatic residues at the center of the nonpolar face, e.g., 3F I ⁇ .
  • Preferred peptides will convert pro-inflammatory HDL to anti-inflammatory HDL or make anti-inflammatory HDL more anti-inflammatory, and/or decrease LDL-induced monocyte chemotactic activity generated by artery wall cells equal to or greater than D4F or other peptides shown in Table 1.
  • Peptides showing this activity are useful in ameliorating atherosclerosis and other inflammatory conditions such as rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Alzheimer's disease, congestive heart failure, endothelial dysfunction, and viral illnesses such as influenza A and diseases such as multiple sclerosis.
  • TABLE 2 Examples of certain preferred peptides Name Sequence SEQ ID NO (3F C ⁇ ) Ac-DKWKAVYDKFAEAFKEFL-NH 2 107 (3F I ⁇ ) Ac-DKLKAFYDKVFEWAKEAF-NH 2 108
  • oxidized lipids Since many inflammatory conditions are mediated at least in part by oxidized lipids, we believe that the peptides of this invention are effective in ameliorating conditions that are known or suspected to be due to the formation of biologically active oxidized lipids. These include, but are not limited to atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, pulmonary disease, asthma, multiple sclerosis, Alzheime's disease, diabetes, and osteoporosis.
  • the “small peptides” typically range in length from 3 amino acids to about 15 amino acids, more preferably from about 4 amino acids to about 10 or 11 amino acids, and most preferably from about 4 to about 8 or 10 amino acids.
  • the peptides are typically characterized by having hydrophobic terminal amino acids or terminal amino acids rendered hydrophobic by the attachment of one or more hydrophobic “protecting” groups.
  • the peptides can be characterized by Formula I, below: X 1 -X 2 -X 3 n -X 4 I where, n is 0 or 1, X 1 is a hydrophobic amino acid and/or bears a hydrophobic protecting group, X 4 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; and when n is 0 X 2 is an acidic or a basic amino acid; when n is 1: X 2 and X 3 are independently an acidic amino acid, a basic amino acid, an aliphatic amino acid, or an aromatic amino acid such that when X 2 is an acidic amino acid; X 3 is a basic amino acid, an aliphatic amino acid, or an aromatic amino acid; when X 2 is a basic amino acid; X 3 is an acidic amino acid, an aliphatic amino acid, or an aromatic amino acid; and when X 2 is an aliphatic or aromatic amino acid, X 3 is an acidic amino acid, or an acid, or
  • peptides e.g., up to 10, 11, or 15 amino acids
  • shorter peptides e.g., peptides according to formula I
  • longer peptides are characterized by acidic, basic, aliphatic, or aromatic domains comprising two or more amino acids of that type.
  • the particularly effective small peptides Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, the particularly effective small peptides induce or participate in the formation of particles with a diameter of approximately 7.5 nm ( ⁇ 0.1 nm), and/or induce or participate in the formation of stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also induce or participate in the formation of vesicular structures of approximately 38 nm).
  • the small peptides have a molecular weight of less than about 900 Da.
  • this invention contemplates small peptides that ameliorate one or more symptoms of an inflammatory condition, where said peptide(s): ranges in length from about 3 to about 8 amino acids, preferably from about 3 to about 6, or 7 amino acids, and more preferably from about 3 to about 5 amino acids; are soluble in ethyl acetate at a concentration greater than about 4 mg/mL; are soluble in aqueous buffer at pH 7.0; when contacted with a phospholipid in an aqueous environment, form particles with a diameter of approximately 7.5 nm and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm; have a molecular weight less than about 900 daltons; convert pro-inflammatory HDL to anti-inflammatory HDL or make anti-inflammatory HDL more anti-inflammatory; and do not have the amino acid sequence Lys-Arg-Asp-Ser (SEQ ID
  • these small peptides need not be so limited, in certain embodiments, these small peptides can include the small peptides described below.
  • tripeptides (3 amino acid peptides) can be synthesized that show desirable properties as described herein (e.g., the ability to convert pro-inflammatory HDL to anti-inflammatory HDL, the ability to decrease LDL-induced monocyte chemotactic activity generated by artery wall cells, the ability to increase pre-beta HDL, etc.).
  • the peptides are characterized by formula I, wherein N is zero, shown below as Formula II: X 1 -X 2 -X 4 II where the end amino acids (X 1 and X 4 ) are hydrophobic either because of a hydrophobic side chain or because the side chain or the C and/or N terminus is blocked with one or more hydrophobic protecting group(s) (e.g., the N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, etc., and the C-terminus blocked with (tBu)-OtBu, etc.).
  • the X 2 amino acid is either acidic (e.g., aspartic acid, glutamic acid, etc.) or basic (e.g., histidine, arginine, lysine, etc.).
  • the peptide can be all L-amino acids or include one or more or all D-amino acids.
  • Certain preferred tripeptides of this invention include, but are not limited to the peptides shown in Table 3. TABLE 3 Examples of certain preferred tripeptides bearing hydrophobic blocking groups and acidic, basic, or histidine central amino acids.
  • the peptides of this invention range from four amino acids to about ten amino acids.
  • the terminal amino acids are typically hydrophobic either because of a hydrophobic side chain or because the terminal amino acids bear one or more hydrophobic protecting groups
  • end amino acids (X 1 and X 4 ) are hydrophobic either because of a hydrophobic side chain or because the side chain or the C and/or N terminus is blocked with one or more hydrophobic protecting group(s) (e.g., the N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, etc., and the C-terminus blocked with (tBu)-OtBu, etc.).
  • the central portion of the peptide comprises a basic amino acid and an acidic amino acid (e.g., in a 4 mer) or a basic domain and/or an acidic domain in a longer molecule.
  • X 1 and X 4 are hydrophobic and/or bear hydrophobic protecting group(s) as described herein and X 2 is acidic while X 3 is basic or X 2 is basic while X 3 is acidic.
  • the peptide can be all L-amino acids or include one or more or all D-amino acids.
  • the peptides of this invention range from four amino acids to about ten amino acids.
  • the terminal amino acids are typically hydrophobic either because of a hydrophobic side chain or because the terminal amino acids bear one or more hydrophobic protecting groups.
  • End amino acids (X 1 and X 4 ) are hydrophobic either because of a hydrophobic side chain or because the side chain or the C and/or N terminus is blocked with one or more hydrophobic protecting group(s) (e.g., the N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, etc., and the C-terminus blocked with (tBu)-OtBu, etc.).
  • the central portion of the peptide comprises a basic or acidic amino acid and an aliphatic amino acid (e.g., in a 4 mer) or a basic domain or an acidic domain and an aliphatic domain in a longer molecule.
  • X 1 and X 4 are hydrophobic and/or bear hydrophobic protecting group(s) as described herein and X 2 is acidic or basic while X 3 is aliphatic or X 2 is aliphatic while X 3 is acidic or basic.
  • the peptide can be all L-amino acids or include one, or more, or all D-amino acids.
  • Certain preferred of this invention include, but are not limited to the peptides shown in Table 5. TABLE 5 Examples of certain preferred peptides having either an acidic or basic amino acid in the center together with a central aliphatic amino acid.
  • SEQ ID X 1 X 2 X 3 X 4 NO Fmoc-Lys( ⁇ Boc) Leu Arg Ser(tBu)-OtBu 383 Fmoc-Lys( ⁇ Boc) Arg Leu Ser(tBu)-OtBu 384 Fmoc-Lys( ⁇ Boc) Leu Arg Thr(tBu)-OtBu 385 Fmoc-Lys( ⁇ Boc) Arg Leu Thr(tBu)-OtBu 386 Fmoc-Lys( ⁇ Boc) Glu Leu Ser(tBu)-OtBu 387 Fmoc-Lys( ⁇ Boc) Leu Glu Ser(tBu)-OtBu 388 Fmoc
  • the peptides of this invention range from four amino acids to about ten amino acids.
  • the terminal amino acids are typically hydrophobic either because of a hydrophobic side chain or because the terminal amino acids bear one or more hydrophobic protecting groups
  • end amino acids (X 1 and X 4 ) are hydrophobic either because of a hydrophobic side chain or because the side chain or the C and/or N terminus is blocked with one or more hydrophobic protecting group(s) (e.g., the N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, etc., and the C-terminus blocked with (tBu)-OtBu, etc.).
  • the central portion of the peptide comprises a basic or acidic amino acid and an aromatic amino acid (e.g., in a 4 mer) or a basic domain or an acidic domain and an aromatic domain in a longer molecule.
  • These four-mers can be represented by Formula I in which X 1 and X 4 are hydrophobic and/or bear hydrophobic protecting group(s) as described herein and X 2 is acidic or basic while X 3 is aromatic or X 2 is aromatic while X 3 is acidic or basic.
  • the peptide can be all L-amino acids or include one, or more, or all D-amino acids.
  • Five-mers can be represented by a minor modification of Formula I in which X 5 is inserted as shown in Table 6 and in which X 5 is typically an aromatic amino acid.
  • Certain preferred of this invention include, but are not limited to the peptides shown in Table 6. TABLE 6 Examples of certain preferred peptides having either an acidic or basic amino acid in the center together with a central aromatic amino acid.
  • SEQ ID X 1 X 2 X 3 X 5 X 4 NO Fmoc-Lys( ⁇ Boc) Arg Trp Tyr(tBu)-OtBu 409 Fmoc-Lys( ⁇ Boc) Trp Arg Tyr(tBu)-OtBu 410 Fmoc-Lys( ⁇ Boc) Arg Tyr Trp-OtBu 411 Fmoc-Lys( ⁇ Boc) Tyr Arg Trp-OtBu 412 Fmoc-Lys( ⁇ Boc) Arg Tyr Trp Thr(tBu)-OtBu 413 Fmoc-Lys( ⁇ Boc) Arg Tyr Thr(tBu)-OtBu 414 Fmoc-Lys( ⁇ Bo
  • the peptides of this invention are characterized by ⁇ electrons that are exposed in the center of the molecule which allow hydration of the particle and that allow the peptide particles to trap pro-inflammatory oxidized lipids such as fatty acid hydroperoxides and phospholipids that contain an oxidation product of arachidonic acid at the sn-2 position.
  • these peptides consist of a minimum of 4 amino acids and a maximum of about 10 amino acids, preferentially (but not necessarily) with one or more of the amino acids being the D-sterioisomer of the amino acid, with the end amino acids being hydrophobic either because of a hydrophobic side chain or because the terminal amino acid(s) bear one or more hydrophobic blocking group(s), (e.g., an N-terminus blocked with Boc-, Fmoc-, Nicotinyl-, and the like, and a C-terminus blocked with (tBu)-OtBu groups and the like).
  • these peptides instead of having an acidic or basic amino acid in the center, these peptides generally have an aromatic amino acid at the center or have aromatic amino acids separated by histidine in the center of the peptide.
  • Certain preferred of this invention include, but are not limited to the peptides shown in Table 7. TABLE 7 Examples of peptides having aromatic amino acids in the center or aromatic amino acids or aromatic domains separated by one or more histidines.
  • X 2 and X 3 can represent domains (e.g., regions of two or more amino acids of the specified type) rather than individual amino acids.
  • Table 8. is intended to be illustrative and not limiting. Using the teaching provided herein, other suitable peptides can readily be identified.
  • this invention pertains to the discovery that certain pairs of amino acids, administered in conjunction with each other or linked to form a dipeptide have one or more of the properties described herein.
  • the pairs of amino acids are administered in conjunction with each other, as described herein, they are capable participating in or inducing the formation of micelles in vivo.
  • pairs of peptides will associate in vivo, and demonstrate physical properties including high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), solubility in aqueous buffer at pH 7.0.
  • phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC)
  • DMPC 1,2-Dimyristoyl-sn-glycero-3-phosphocholine
  • pairs of amino acids can display one or more of the following physiologically relevant properties:
  • the pairs of amino acids can be administered as separate amino acids (administered sequentially or simulataneously, e.g. in a combined formulation) or they can be covalently coupled directly or through a linker (e.g. a PEG linker, a carbon linker, a branched linker, a straight chain linker, a heterocyclic linker, a linker formed of derivatized lipid, etc.).
  • the pairs of amino acids are covalently linked through a peptide bond to form a dipeptide.
  • the dipeptides will typically comprise two amino acids each bearing an attached protecting group, this invention also contemplates dipeptides wheren only one of the amino acids bears one or more protecting groups.
  • the pairs of amino acids typically comprise amino acids where each amino acid is attached to at least one protecting group (e.g., a hydrophobic protecting group as described herein).
  • the amino acids can be in the D or the L form.
  • each amino acid bears two protecting groups (e.g., such as molecules 1 and 2 in Table 9).
  • TABLE 9 Illustrative amino acid pairs of this invention.
  • Amino Acid Pair/dipeptide 1. Boc-Arg-OtBu* 2. Boc-Glu-OtBu* 3. Boc-Phe-Arg-OtBu** 4. Boc-Glu-Leu-OtBu** 5.
  • Suitable pairs of amino acids can readily be identified by providing the pair of protected amino acids and/or a dipeptide and then screening the pair of amino acids/dipeptide for one or more of the physical and/or physiological properties described above.
  • this invention excludes pairs of amino acids and/or dipeptides comprising aspartic acid and phenylalanine.
  • this invention excludes pairs of amino acids and/or dipeptides in which one amino acid is ( ⁇ )-N-[(trans-4-isopropylcyclohexane)carbonyl]-D-phenylalanine(nateglinide).
  • the amino acids comprising the pair are independently selected from the group consisting of an acidic amino acid (e.g., aspartic acid, glutamic acid, etc.), a basic amino acid (e.g., lysine, arginine, histidine, etc.), and a non-polar amino acid (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan, methionine, etc.).
  • the first amino acid is acidic or basic
  • the second amino acid is non-polar and where the second amino acid is acidic or basic
  • the first amino acid is non-polar.
  • the first amino acid is acidic
  • the second amino acid is basic, and vice versa. (see, e.g., Table 10).
  • amino acid pairs/dipeptides are intended to be illustrative and not limiting. Using the teaching provided herein other suitable amino acid pairs/dipeptides can readily be determined.
  • routinely modify the illustrated peptides to produce other similar peptides of this invention can routinely modify the illustrated peptides to produce other similar peptides of this invention.
  • routine conservative or semi-conservative substitutions e.g., E for D
  • the effect of various substitutions on lipid affinity of the resulting peptide can be predicted using the computational method described by Palgunachari et al. (1996) Arteriosclerosis, Thrombosis, & Vascular Biology 16: 328-338.
  • the peptides can be lengthened or shortened as long as the class A ⁇ -helix structure is preserved.
  • substitutions can be made to render the resulting peptide more similar to peptide(s) endogenously produced by the subject species.
  • the peptides of this invention comprise “D” forms of the peptides described in U.S. Pat. No. 4,643,988, more preferably “D” forms having one or both termini coupled to protecting groups.
  • at least 50% of the enantiomeric amino acids are “D” form, more preferably at least 80% of the enantiomeric amino acids are “D” form, and most preferably at least 90% or even all of the enantiomeric amino acids are “D” form amino acids.
  • the peptides of this invention utilize naturally-occurring amino acids or D forms of naturally occurring amino acids, substitutions with non-naturally occurring amino acids (e.g., methionine sulfoxide, methionine methylsulfonium, norleucine, episilon-aminocaproic acid, 4-aminobutanoic acid, tetrahydroisoquinoline-3-carboxylic acid, 8-aminocaprylic acid, 4-aminobutyric acid, Lys(N(epsilon)-trifluoroacetyl), ⁇ -aminoisobutyric acid, and the like) are also contemplated.
  • non-naturally occurring amino acids e.g., methionine sulfoxide, methionine methylsulfonium, norleucine, episilon-aminocaproic acid, 4-aminobutanoic acid, tetrahydroisoquinoline-3-carboxylic acid, 8-
  • peptidomimetics are also contemplated herein.
  • Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed “peptide mimetics” or “peptidomimetics” (Fauchere (1986) Adv. Drug Res. 15: 29; Veber and Freidinger (1985) TINS p.392; and Evans et al. (1987) J. Med. Chem. 30: 1229) and are usually developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect.
  • peptidomimetics are structurally similar to a paradigm polypeptide (e.g, 4F, SEQ ID NO: 258 described herein), but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: —CH 2 NH—, —CH 2 S—, —CH 2 —CH 2 —, —CH ⁇ CH— (cis and trans), —COCH 2 —, —CH(OH)CH 2 —, —CH 2 SO—, etc. by methods known in the art and further described in the following references: Spatola (1983) p. 267 in Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins , B.
  • a paradigm polypeptide e.g, 4F, SEQ ID NO: 258 described herein
  • a particularly preferred non-peptide linkage is —CH 2 NH—.
  • Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), reduced antigenicity, and others.
  • circular permutations of the peptides described herein or constrained peptides (including cyclized peptides) comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch (1992) Ann. Rev. Biochem. 61: 387); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
  • Certain peptides of this invention are desctribed herein by various formulas (e.g., Formula I, above) and/or by particular sequences. In certain embodiments, however, preferred peptides of this invention are characterized by one or more of the following functional properties:
  • MCA monocyte chemotactic activity
  • the cell-free assay was a modification of a previously published method 9 using PEIPC as the fluorescence-inducing agent. Briefly, HDL was isolated by dextran sulfate method. Sigma “HDL cholesterol reagent” (Catalog No. 352-3) containing dextran sulfate and magnesium ions was dissolved in distilled water (10.0 mg/ml). Fifty microliters of dextran sulfate solution was mixed with 500 ⁇ l of the test plasma and incubated at room temperature for 5 min and subsequently centrifuged at 8,000 g for 10 min. The supernatant containing HDL was used in the experiments after cholesterol determination using a cholesterol assay kit (Cat. No.
  • the assay was adapted for analyzing a large number of samples with a plate reader.
  • Flat-bottom, black, polystyrene microtiter plates (Microfluor2, Cat. No. 14-245-176, Fisher) were utilized for this purpose.
  • Plasma levels of interleukin-6 (IL-6) and tumor necrosis factor- ⁇ (TNF- ⁇ ) were determined by previously published methods (Scheidt-Nave et al. (2001) J Clin Endocrinol Metab., 86:2032-2042; Piguet et al. (1987) J Experiment Med., 166, 1280-1289).
  • Plasma total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol and glucose were determined as previously described (Navab et al. (1997) J Clin Invest, 99:2005-2019) using kits (Sigma), and hs-CRP levels (Rifai et al.
  • the small peptides e.g., less than 10 amino acids, preferably less than 8 amino acids, more preferably from about 3 to about 5 or 6 amino acids
  • the physical properties include high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), and solubility in aqueous buffer at pH 7.0.
  • the particularly effective small peptides Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, the particularly effective small peptides form particles with a diameter of approximately 7.5 nm ( ⁇ 0.1 nm), and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also form vesicular structures of approximately 38 nm).
  • the small peptides have a molecular weight of less than about 900 Da.
  • any small peptide can readily be screened for one or more of these properties, e.g., as described herein in Example 3. Indeed combinatorial libraries of small peptides containing greater than about 10 4 , or 10 5 , more preferably greater than about 10 6 or 10 7 , and most preferably greater than about 10 8 or 10 9 small peptides can readily be produced using methods well known to those of skill the art.
  • the peptide libraries can be random libraries, or, alternatively, in certain embodiments, the libraries will comprise small peptides made in accordance with one or more of the formulas provided herein.
  • peptide libraries can then readily be screened, e.g., using high throughput screening methods for one more of the physical properties described above. Peptides that test positive in these assays are likely to have the ability to render HDL more anti-inflammatory and to mitigate atherosclerosis and/or other pathologies characterized by an inflammatory response in a mammal.
  • the peptides used in this invention can be chemically synthesized using standard chemical peptide synthesis techniques or, particularly where the peptide does not comprise “D” amino acid residues, the peptide can readily be recombinantly expressed.
  • a host organism e.g., bacteria, plant, fungal cells, etc.
  • a host organism can be cultured in an environment where one or more of the amino acids is provided to the organism exclusively in a D form. Recombinantly expressed peptides in such a system then incorporate those D amino acids.
  • D amino acids can be incorporated in recombinantly expressed peptides using modified amino acyl-tRNA synthetases that recognize D-amino acids.
  • the peptides are chemically synthesized by any of a number of fluid or solid phase peptide synthesis techniques known to those of skill in the art.
  • Solid phase synthesis in which the C-terminal amino acid of the sequence is attached to an insoluble support followed by sequential addition of the remaining amino acids in the sequence is a preferred method for the chemical synthesis of the polypeptides of this invention.
  • Techniques for solid phase synthesis are well known to those of skill in the art and are described, for example, by Barany and Merrifield (1963) Solid - Phase Peptide Synthesis ; pp. 3-284 in The Peptides: Analysis, Synthesis, Biology. Vol. 2: Special Methods in Peptide Synthesis, Part A .; Merrifield et al. (1963) J. Am. Chem. Soc., 85: 2149-2156, and Stewart et al. (1984) Solid Phase Peptide Synthesis, 2nd ed. Pierce Chem. Co., Rockford, Ill.
  • the peptides are synthesized by the solid phase peptide synthesis procedure using a benzhyderylamine resin (Beckman Bioproducts, 0.59 mmol of NH 2 /g of resin) as the solid support.
  • the COOH terminal amino acid e.g., t-butylcarbonyl-Phe
  • D-amino acids can be incorporated at one or more positions in the peptide simply by using a D-form derivatized amino acid residue in the chemical synthesis.
  • D-form residues for solid phase peptide synthesis are commercially available from a number of suppliers (see, e.g., Advanced Chem Tech, Louisville; Nova Biochem, San Diego; Sigma, St Louis; Bachem California Inc., Torrance, etc.).
  • the D-form amino acids can be completely omitted or incorporated at any position in the peptide as desired.
  • the peptide can comprise a single D-amino acid, while in other embodiments, the peptide comprises at least two, generally at least three, more generally at least four, most generally at least five, preferably at least six, more preferably at least seven and most preferably at least eight D amino acids.
  • essentially every other (enantiomeric) amino acid is a D-form amino acid.
  • at least 90%, preferably at least 90%, more preferably at least 95% of the enantiomeric amino acids are D-form amino acids.
  • essentially every enantiomeric amino acid is a D-form amino acid.
  • the peptides of this inventioin can readily be synthesized using solution phase methods.
  • One such synthesis scheme is illustrated in FIGS. 1 and 2 .
  • A,B, C and D represent amino acids in the desired peptide.
  • Letters m and n represent side chain protecting groups if the N- and C-terminal amino acids possess side chain functional groups.
  • Side chain protecting groups o and p are protecting groups that can be removed by a treatment such as catalytic transfer hydrogenation using ammonium formate as the hydrogen donor (Anantharamaiah and Sivanandaiah (1977) Chem Soc. Perkin Trans. 490: 1-5; and Babiker et al. (1978) J. Org. Chem.
  • HOBT-HBTU represents condensing reagents under which minimum reacimization is observed.
  • the reaction mixture is acidified using aqueous citric acid (10%) and extracted with ethyl acetate. In this process the free amino acid remains in citric acid. After washing ethyl acetate with water, the N-terminal protected dipeptide free acid is extracted with 5% sodium bicarbonate solution and acidified. The dipeptide free acid was extracted with ethyl acetate, the organic layer is dried (Na 2 SO 4 ) and solvent evaporated to obtain the dipeptide free acid.
  • the tripeptide is also obtained in a similar manner by reacting the dipeptide free acid with the suitably protected amino acid in which the ⁇ -amino is free and the carboxyl is temporarily protected as a DIEA salt.
  • the suitably carboxyl protected amino acid was condensed using HOBT-HBTU. Since the final tetrapeptide is a protected peptide, the reaction mixture after the condensation was taken in ethyl acetate and washed extensively with both aqueous bicarbonate (5%) and citric acid (5%) and then with water. These washings will remove excess of free acid and free base and the condensing reagents.
  • the protected peptide is then reprecipitated using ethyl acetate (or ether) and petroleum ether.
  • the protected free peptide is then subjected to catalytic transfer hydrogenation in presence of freshly prepared palladium black (Pd black) using ammonium formate as the hydrogen donor. This reaction can be carried out in almost neutral condition thus not affecting the acid sensitive side chain protecting groups. This process will remove the protecting groups on amino acids B and C.
  • An example of this procedure is given below using the synthesis of SEQ ID NO:256.
  • reaction scheme is intended to be illustrative and not limiting. Using the teachings provided herein, other suitable reactions schemes will be known to those of skill in the art.
  • the one or more R-groups on the constituent amino acids and/or the terminal amino acids are blocked with a protecting group, most preferably a hydrophobic protecting group.
  • protecting groups are suitable for this purpose.
  • groups include, but are not limited to acetyl, amide, and alkyl groups with acetyl and alkyl groups being particularly preferred for N-terminal protection and amide groups being preferred for carboxyl terminal protection.
  • the blocking groups can additionally act as a detectable label (e.g., N-methyl anthranilyl).
  • the protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl, and others.
  • Particularly preferred carboxyl protecting groups include amides, esters, and ether-forming protecting groups.
  • an acetyl group is used to protect the amino terminus and an amide group is used to protect the carboxyl terminus.
  • Certain particularly preferred blocking groups include alkyl groups of various lengths, e.g., groups having the formula: CH 3 —(CH 2 ) n —CO— where n ranges from about 3 to about 20, preferably from about 3 to about 16, more preferably from about 3 to about 13, and most preferably from about 3 to about 10.
  • protecting groups include, but are not limited to N-methyl anthranilyl, Fmoc, t-butoxycarbonyl (t-BOC), 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-florenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl, Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benz
  • Protecting/blocking groups are well known to those of skill as are methods of coupling such groups to the appropriate residue(s) comprising the peptides of this invention (see, e.g., Greene et al., (1991) Protective Groups in Organic Synthesis, 2 nd ed ., John Wiley & Sons, Inc. Somerset, N.J.).
  • acetylation is accomplished during the synthesis when the peptide is on the resin using acetic anhydride.
  • Amide protection can be achieved by the selection of a proper resin for the synthesis.
  • rink amide resin was used.
  • the semipermanent protecting groups on acidic bifunctional amino acids such as Asp and Glu and basic amino acid Lys, hydroxyl of Tyr are all simultaneously removed.
  • the peptides released from such a resin using acidic treatment comes out with the n-terminal protected as acetyl and the carboxyl protected as NH 2 and with the simultaneous removal of all of the other protecting groups.
  • this invention contemplates the use of combinations of D-form and L-form peptides in the methods of this invention.
  • the D-form peptide and the L-form peptide can have different amino acid sequences, however, in preferred embodiments, they both have amino acid sequences of peptides described herein, and in still more preferred embodiments, they have the same amino acid sequence.
  • concatamers of the class A amphipathic helix peptides of this invention are also effective in mitigating one or more symptoms of atherosclerosis.
  • the monomers comprising the concatamers can be coupled directly together or joined by a linker.
  • the linker is an amino acid linker (e.g., a proline), or a peptide linker (e.g., Gly 4 Ser 3 ) (SEQ ID NO:448).
  • the concatamer is a 2 mer, more preferably a 3 mer, still more preferably a 4 mer, and most preferably 5 mer, 8 mer, 10 mer, or 15 mer.
  • the peptides described herein can be synthesized to comprise from 4 amino acids to 10-15 amino acids, preferentially (but not necessarily) with the center (non-terminal) amino acids being alternating D and L sterioisomers of the amino acids.
  • the terminal amino acids can be hydrophobic either because of a hydrophobic side chain or because the amino acids bear hydrophobic blocking groups as described herein (e.g., an N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, and the like and the C-terminus blocked with (tBu)-OtBu and the like.
  • any of the peptides described herein can be attached (covalently coupled directly or indirectly through a linker) to one or more biotins.
  • the biotin interacts with the intestinal sodium-dependent multivitamin transporter and thereby facilitates uptake and bioavailability of orally administered peptides.
  • the biotin can be directly coupled or coupled through a linker or through a side chain of an amino acid by any of a number of convenient means known to those of skill in the art.
  • the biotin is attached to the amino groups of lysine.
  • biotin-coupled peptides are illustrated in Table 12. TABLE 12 Examples of certain preferred peptides: SEQ ID Sequence NO Ac-Asp-Trp-Phe-Lys( ⁇ -biotin)-Ala-Phe-Tyr- 451 Asp-Lys( ⁇ -biotin)-Val-Ala-Glu-Lys( ⁇ -biotin)- Phe-Lys( ⁇ -biotin)-Glu-Ala-Phe-NH 2 Ac-Asp-Trp-Phe-Lys( ⁇ -biotin)-Ala-Phe-Tyr- 452 Asp-Lys( ⁇ -biotin)-Val-Ala-Glu-Lys( ⁇ -biotin)- Phe-Lys-Glu-Ala-Phe-NH 2 Ac-Asp-Trp-Phe-Lys-Ala-Phe-Asp-Lys( ⁇ - 453 biotin
  • one or more peptides, or pairs of amino acids, or peptide mimetics of this invention are administered, e.g., to an individual diagnosed as having one or more symptoms of atherosclerosis, or as being at risk for atherosclerosis.
  • the peptides, or pairs of amino acids, or peptide mimetics can be administered in the “native” form or, if desired, in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitable pharmacologically, i.e., effective in the present method.
  • Salts, esters, amides, prodrugs and other derivatives of the active agents may be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by March (1992) Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 4th Ed. N.Y. Wiley-Interscience.
  • acid addition salts are prepared from the free base using conventional methods, that typically involve reaction with a suitable acid.
  • a suitable acid for example, the base form of the drug is dissolved in a polar organic solvent such as methanol or ethanol and the acid is added thereto.
  • the resulting salt either precipitates or may be brought out of solution by addition of a less polar solvent.
  • Suitable acids for preparing acid addition salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • organic acids e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic
  • An acid addition salt may be reconverted to the free base by treatment with a suitable base.
  • Particularly preferred acid addition salts of the active agents herein are halide salts, such as may be prepared using hydrochloric or hydrobromic acids.
  • preparation of basic salts of the peptides or mimetics are prepared in a similar manner using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like.
  • Particularly preferred basic salts include alkali metal salts, e.g., the sodium salt, and copper salts.
  • esters typically involves functionalization of hydroxyl and/or carboxyl groups, that can be present within the molecular structure of the drug.
  • the esters are typically acyl-substituted derivatives of free alcohol groups, i.e., moieties that are derived from carboxylic acids of the formula RCOOH where R is alky, and preferably is lower alkyl.
  • Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • Amides and prodrugs may also be prepared using techniques known to those skilled in the art or described in the pertinent literature.
  • amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.
  • Prodrugs are typically prepared by covalent attachment of a moiety that results in a compound that is therapeutically inactive until modified by an individual's metabolic system.
  • the peptides, or pairs of amino acids, or mimetics identified herein are useful for parenteral, topical, oral, nasal (or otherwise inhaled), rectal, or local administration, such as by aerosol or transdermally, for prophylactic and/or therapeutic treatment of atherosclerosis and/or symptoms thereof and/or for one or more of the other indications identified herein.
  • the pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. Suitable unit dosage forms, include, but are not limited to powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectibles, implantable sustained-release formulations, lipid complexes, etc.
  • peptides, and/or pairs of amino acids, and/or peptide mimetics of this invention are typically combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition.
  • Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, for example, to stabilize the composition or to increase or decrease the absorption of the active agent(s).
  • Physiologically acceptable compounds can include, for example, carbohydrates, such as glucose, sucrose, or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins, protection and uptake enhancers such as lipids, compositions that reduce the clearance or hydrolysis of the active agents, or excipients or other stabilizers and/or buffers.
  • physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms.
  • Various preservatives are well known and include, for example, phenol and ascorbic acid.
  • pharmaceutically acceptable carrier(s) including a physiologically acceptable compound depends, for example, on the route of administration of the active agent(s) and on the particular physio-chemical characteristics of the active agent(s).
  • the excipients are preferably sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well-known sterilization techniques.
  • compositions of this invention are administered to a patient suffering from one or more symptoms of atherosclerosis or at risk for atherosclerosis in an amount sufficient to cure or at least partially prevent or arrest the disease and/or its complications.
  • An amount adequate to accomplish this is defined as a “therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the active agents of the formulations of this invention to effectively treat (ameliorate one or more symptoms) the patient.
  • the concentration of peptide, or pair of amino acids, or mimetic can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs. Concentrations, however, will typically be selected to provide dosages ranging from about 0.1 or 1 mg/kg/day to about 50 mg/kg/day and sometimes higher. Typical dosages range from about 3 mg/kg/day to about 3.5 mg/kg/day, preferably from about 3.5 mg/kg/day to about 7.2 mg/kg/day, more preferably from about 7.2 mg/kg/day to about 11.0 mg/kg/day, and most preferably from about 11.0 mg/kg/day to about 15.0 mg/kg/day. In certain preferred embodiments, dosages range from about 10 mg/kg/day to about 50 mg/kg/day. It will be appreciated that such dosages may be varied to optimize a therapeutic regimen in a particular subject or group of subjects.
  • the peptides, and/or pairs of amino acids, and/or peptide mimetics of this invention are administered orally (e.g., via a tablet) or as an injectable in accordance with standard methods well known to those of skill in the art.
  • the peptides, or pairs of amino acids can also be delivered through the skin using conventional transdermal drug delivery systems, i.e., transdermal “patches” wherein the active agent(s) are typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin.
  • the drug composition is typically contained in a layer, or “reservoir,” underlying an upper backing layer.
  • the term “reservoir” in this context refers to a quantity of “active ingredient(s)” that is ultimately available for delivery to the surface of the skin.
  • the “reservoir” may include the active ingredient(s) in an adhesive on a backing layer of the patch, or in any of a variety of different matrix formulations known to those of skill in the art.
  • the patch may contain a single reservoir, or it may contain multiple reservoirs.
  • the reservoir comprises a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery.
  • suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, polyurethanes, and the like.
  • the drug-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, or it may be a liquid or hydrogel reservoir, or may take some other form.
  • the backing layer in these laminates, which serves as the upper surface of the device, preferably functions as a primary structural element of the “patch” and provides the device with much of its flexibility.
  • the material selected for the backing layer is preferably substantially impermeable to the active agent(s) and any other materials that are present.
  • Ointments are semisolid preparations, that are typically based on petrolatum or other petroleum derivatives.
  • Creams containing the selected active agent are typically viscous liquid or semisolid emulsions, often either oil-in-water or water-in-oil.
  • Cream bases are typically water-washable, and contain an oil phase, an emulsifier and an aqueous phase.
  • the oil phase also sometimes called the “internal” phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant.
  • the emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant.
  • the specific ointment or cream base to be used is one that will provide for optimum drug delivery.
  • an ointment base should be inert, stable, nonirritating and nonsensitizing.
  • the peptides, or pairs of amino acids, of this invention comprising D-form amino acids can be administered, even orally, without protection against proteolysis by stomach acid, etc.
  • peptide delivery can be enhanced by the use of protective excipients. This is typically accomplished either by complexing the polypeptide with a composition to render it resistant to acidic and enzymatic hydrolysis or by packaging the polypeptide in an appropriately resistant carrier such as a liposome.
  • protective excipients This is typically accomplished either by complexing the polypeptide with a composition to render it resistant to acidic and enzymatic hydrolysis or by packaging the polypeptide in an appropriately resistant carrier such as a liposome.
  • Means of protecting polypeptides for oral delivery are well known in the art (see, e.g., U.S. Pat. No. 5,391,377 describing lipid compositions for oral delivery of therapeutic agents).
  • Elevated serum half-life can be maintained by the use of sustained-release protein “packaging” systems.
  • sustained release systems are well known to those of skill in the art.
  • the ProLease biodegradable microsphere delivery system for proteins and peptides (Tracy (1998) Biotechnol. Prog. 14: 108; Johnson et al. (1996), Nature Med. 2: 795; Herbert et al. (1998), Phannaceut. Res. 15, 357) a dry powder composed of biodegradable polymeric microspheres containing the protein in a polymer matrix that can be compounded as a dry formulation with or without other agents.
  • the ProLease microsphere fabrication process was specifically designed to achieve a high protein encapsulation efficiency while maintaining protein integrity.
  • the process consists of (i) preparation of freeze-dried protein particles from bulk protein by spray freeze-drying the drug solution with stabilizing excipients, (ii) preparation of a drug-polymer suspension followed by sonication or homogenization to reduce the drug particle size, (iii) production of frozen drug-polymer microspheres by atomization into liquid nitrogen, (iv) extraction of the polymer solvent with ethanol, and (v) filtration and vacuum drying to produce the final dry-powder product.
  • the resulting powder contains the solid form of the protein, which is homogeneously and rigidly dispersed within porous polymer particles.
  • the polymer most commonly used in the process poly(lactide-co-glycolide) (PLG), is both biocompatible and biodegradable.
  • Encapsulation can be achieved at low temperatures (e.g., ⁇ 40° C).
  • the protein is maintained in the solid state in the absence of water, thus minimizing water-induced conformational mobility of the protein, preventing protein degradation reactions that include water as a reactant, and avoiding organic-aqueous interfaces where proteins may undergo denaturation.
  • a preferred process uses solvents in which most proteins are insoluble, thus yielding high encapsulation efficiencies (e.g., greater than 95%).
  • one or more components of the solution can be provided as a “concentrate”, e.g., in a storage container (e.g., in a premeasured volume) ready for dilution, or in a soluble capsule ready for addition to a volume of water.
  • one or more peptides, and/or pairs of amino acids, of this invention are administered in conjunction with one or more active agents (e.g., statins, beta blockers, ACE inhibitors, lipids, etc.).
  • active agents e.g., statins, beta blockers, ACE inhibitors, lipids, etc.
  • the two agents e.g., peptide and statin
  • the two agents can be administered simultaneously or sequentially.
  • the two agents are administered so that both achieve a physiologically relevant concentration over a similar time period (e.g., so that both agents are active at some common time).
  • both agents are administered simultaneously.
  • the tablet can comprise two layers one layer comprising, e.g., the statin(s), and the other layer comprising e.g., the peptide(s).
  • the capsule can comprise two time release bead sets, one for the peptide(s) and one containing the statin(s).
  • Additional pharmacologically active agents may be delivered along with the primary active agents, e.g., the peptides, or pairs of amino acids, of this invention.
  • agents include, but are not limited to agents that reduce the risk of atherosclerotic events and/or complications thereof.
  • agents include, but are not limited to beta blockers, beta blockers and thiazide diuretic combinations, statins, aspirin, ace inhibitors, ace receptor inhibitors (ARBs), and the like.
  • statins can achieve a similar efficacy at lower dosage thereby obviating potential adverse side effects (e.g., muscle wasting) associated with these drugs and/or cause the statins to be significantly more anti-inflammatory at any given dose.
  • statins The major effect of the statins is to lower LDL-cholesterol levels, and they lower LDL-cholesterol more than many other types of drugs.
  • Statins generally inhibit an enzyme, HMG-CoA reductase, which controls the rate of cholesterol production in the body. These drugs typically lower cholesterol by slowing down the production of cholesterol and by increasing the liver's ability to remove the LDL-cholesterol already in the blood.
  • statins have become the drugs most often prescribed when a person needs a cholesterol-lowering medicine. Studies using statins have reported 20 to 60 percent lower LDL-cholesterol levels in patients on these drugs. Statins also reduce elevated triglyceride levels and produce a modest increase in HDL-cholesterol. Recently it has been appreciated that statins have anti-inflammatory properties that may not be directly related to the degree of lipid lowering achieved. For example it has been found that statins decrease the plasma levels of the inflammatory marker CRP relatively independent of changes in plasma lipid levels. This anti-inflammatory activity of statins has been found to be as or more important in predicting the reduction in clinical events induced by statins than is the degree of LDL lowering.
  • statins are usually given in a single dose at the evening meal or at bedtime. These medications are often given in the evening to take advantage of the fact that the body makes more cholesterol at night than during the day.
  • the combined peptide/statin treatment regimen will also typically be given in the evening.
  • statins are well known to those of skill in the art.
  • Such statins include, but are not limited to atorvastatin (Lipitor®, Pfizer), simvastatin (Zocor®, Merck0, pravastatin (Pravachol®, Bristol-Myers Squibb®, fluvastatin (Lescol®, Novartis), lovastatin (Mevacor®, Merck), rosuvastatin (Crestor®, Astra Zeneca), and Pitavastatin (Sankyo), and the like.
  • statin/peptide dosage can be routinely optimized for each patient. Typically statins show results after several weeks, with a maximum effect in 4 to 6 weeks. Prior to combined treatment with a statin and one of the peptides described herein, the physician would obtain routine tests for starting a statin including LDL-cholesterol and HDL-cholesterol levels. Additionally, the physician would also measure the anti-inflammatory properties of the patient's HDL and determine CRP levels with a high sensitivity assay. After about 4 to 6 weeks of combined treatment, the physician would typically repeat these tests and adjust the dosage of the medications to achieve maximum lipid lowering and maximum anti-inflammatory activity.
  • one or more peptides, and/or pairs of amino acids, of this invention are administered to a subject in conjunction with one or more cholesterol absorption inhibitors.
  • the peptide(s) can be administered before, after, or simultaneously with the cholesterol absorption inhibitor.
  • the cholesterol absorption inhibitor can be provided as a separate formulation or as a combined formulation with one or more of the peptide(s).
  • Ezetimibe also known as 1-(4-fluorophenyl)-3(R)-[3-(4-fluorophenyl)-3(S)-hydroxypropyl]-4(S)-(4-hydroxyphenyl)-2-azetidinone (available from Merck). Ezetimibe reduces blood cholesterol by inhibiting the absorption of cholesterol by the small intestine.
  • Suitable beta blockers include, but are not limited to cardioselective (selective beta 1 blockers), e.g., acebutolol (SectralTM), atenolol (TenorminTM), betaxolol (KerloneTM), bisoprolol (ZebetaTM), metoprolol (LopressorTM), and the like.
  • cardioselective beta 1 blockers e.g., acebutolol (SectralTM), atenolol (TenorminTM), betaxolol (KerloneTM), bisoprolol (ZebetaTM), metoprolol (LopressorTM), and the like.
  • Suitable non-selective blockers include, but are not limited to carteolol (CartrolTM), nadolol (CorgardTM), penbutolol (LevatolTM), pindolol (ViskenTM), carvedilol, (CoregTM), propranolol (InderalTM), timolol (BlockadrenTM), labetalol (NormodyneTM, TrandateTM), and the like.
  • Suitable beta blocker thiazide diuretic combinations include, but are not limited to Lopressor HCT, ZIAC, Tenoretic, Corzide, Timolide, Inderal LA 40/25, Inderide, Normozide, and the like.
  • Suitable ace inhibitors include, but are not limited to captopril (e.g., CapotenTM by Squibb), benazepril (e.g., LotensinTM by Novartis), enalapril (e.g., VasotecTM by Merck), fosinopril (e.g., MonoprilTM by Bristol-Myers), lisinopril (e.g., PrinivilTM by Merck or ZestrilTM by Astra-Zeneca), quinapril (e.g., AccuprilTM by Parke-Davis), ramipril (e.g., AltaceTM by Hoechst Marion Roussel, King Pharmaceuticals), imidapril, perindopril erbumine (e.g., AceonTM by Rhone-Polenc Rorer), trandolapril (e.g., MavikTM by Knoll Pharmaceutical), and the like.
  • captopril e.g.
  • Suitable ARBS include but are not limited to losartan (e.g., CozaarTM by Merck), irbesartan (e.g., AvaproTM by Sanofi), candesartan (e.g., AtacandTM by Astra Merck), valsartan (e.g., DiovanTM by Novartis), and the like.
  • losartan e.g., CozaarTM by Merck
  • irbesartan e.g., AvaproTM by Sanofi
  • candesartan e.g., AtacandTM by Astra Merck
  • valsartan e.g., DiovanTM by Novartis
  • the peptides, and/or pairs of amino acids, of this invention are administered in conjunction with one or more lipids.
  • the lipids can be formulated as an active agent, and/or as an excipient to protect and/or enhance transport/uptake of the peptides, or they can be administered separately.
  • the lipids can be formed into liposomes that encapsulate the polypeptides of this invention and/or they can be simply complexed/admixed with the polypeptides.
  • Methods of making liposomes and encapsulating reagents are well known to those of skill in the art (see, e.g., Martin and Papahadjopoulos (1982) J. Biol. Chem., 257: 286-288; Papahadjopoulos et al. (1991) Proc. Natl. Acad. Sci. USA, 88: 11460-11464; Huang et al. (1992) Cancer Res., 52:6774-6781; Lasic et al. (1992) FEBS Lett., 312: 255-258., and the like).
  • Preferred phospholipids for use in these methods have fatty acids ranging from about 4 carbons to about 24 carbons in the sn-1 and sn-2 positions. In certain preferred embodiments, the fatty acids are saturated. In other preferred embodiments, the fatty acids can be unsaturated. Various preferred fatty acids are illustrated in Table 13. TABLE 13 Preferred fatty acids in the sn-1 and/or sn-2 position of the preferred phospholipids for administration of D polypeptides. Carbon No.
  • kits for amelioration of one or more symptoms of atherosclerosis and/or for the prophylactic treatment of a subject (human or animal) at risk for atherosclerosis and/or for stimulating the formation and cycling of pre-beta high density lipoprotein-like particles and/or for inhibiting one or more symptoms of osteoporosis preferably comprise a container containing one or more of the peptides, and/or pairs of amino acids, and/or peptide mimetics of this invention.
  • the peptide, and/or pairs of amino acids, and/or peptide mimetic can be provided in a unit dosage formulation (e.g., suppository, tablet, caplet, patch, etc.) and/or may be optionally combined with one or more pharmaceutically acceptable excipients.
  • a unit dosage formulation e.g., suppository, tablet, caplet, patch, etc.
  • the kit can, optionally, further comprise one or more other agents used in the treatment of heart disease and/or atherosclerosis.
  • agents include, but are not limited to, beta blockers, vasodilators, aspirin, statins, ace inhibitors or ace receptor inhibitors (ARBs) and the like, e.g., as described above.
  • kits additionally include a statin (e.g., cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, pitavastatin, etc.) either formulated separately or in a combined formulation with the peptide(s).
  • a statin e.g., cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, pitavastatin, etc.
  • a statin e.g., cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, pitavastatin, etc.
  • the dosage of a statin in such a formulation can be lower than the dosage of a statin typically presecribed without the synergistic peptide.
  • kits optionally include labeling and/or instructional materials providing directions (i.e., protocols) for the practice of the methods or use of the “therapeutics” or “prophylactics” of this invention.
  • Preferred instructional materials describe the use of one or more polypeptides, and/or pairs of amino acids, of this invention to mitigate one or more symptoms of atherosclerosis and/or to prevent the onset or increase of one or more of such symptoms in an individual at risk for atherosclerosis and/or to stimulate the formation and cycling of pre-beta high density lipoprotein-like particles and/or to inhibit one or more symptoms of osteoporosis and/or to mitigate one or more symptoms of a pathology characterized by an inflammatory response.
  • the instructional materials may also, optionally, teach preferred dosages/therapeutic regiment, counter indications and the like.
  • instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.
  • electronic storage media e.g., magnetic discs, tapes, cartridges, chips
  • optical media e.g., CD ROM
  • Such media may include addresses to internet sites that provide such instructional materials.
  • the apo A-I mimetic peptides described herein exhibit antiatherogenic properties similar to apo A-I in that they remove the “seeding molecules” (e.g., oxidized phospholipids such as Ox-PAPC, POVPC, PGPC, and PEIPC, etc.) necessary for artery wall cells to oxidized IDL and are similar to apo A-I in that they ameliorated atherosclerosis in mouse models.
  • seeding molecules e.g., oxidized phospholipids such as Ox-PAPC, POVPC, PGPC, and PEIPC, etc.
  • the apo A-I mimetic peptides differ from apo A-I in that they are also active in a co-incubation similar to apo J (see, e.g., U.S. Ser. No. 10/120,508 and PCT/US03/09988). These peptides generally do not have substantial sequence homology to apo A-I, but have homology in their helical structure and in their ability to bind lipids.
  • the smaller peptides described herein are similar to native apoA-I in that they prevent LDL oxidation and LDL-induced monocyte chemotactic activity in a pre-incubation with artery wall cells but not in a co-incubation (see, e.g., FIG. 3 ).
  • the peptide described in FIG. 3 was also active in vivo ( FIG. 4 ).
  • the tetrapeptide or D-4F (SEQ ID NO:8) were added at 5 ⁇ g/ml to the drinking water or not added to the drinking water of apoE null mice (a mouse model of human atherosclerosis). After 18 hours the mice were bled and their lipoproteins isolated by FPLC.
  • LDL taken from the mice that received the tetrapeptide or D-4F induced significantly less monocyte chemotactic activity than did LDL from mice that did not receive the peptides confirming the biologic activity of the orally administered D-tetrapeptide.
  • FIG. 6 demonstrates that HDL taken 20 min or 6 hours after SEQ ID NO:258 from Table 4 synthesized from D-amino acids was instilled into the stomachs of apoE null mice by stomach tube, was converted from pro-inflammatory to anti-inflammatory and was similar to that from mice that received D-4F and quite different from mice that received a peptide with the same D-amino acids as in D-4F but arranged in such a way as to prevent the formation of a class A amphipathic helix and hence rendering the peptide unable to bind lipids (scrambled D-4F).
  • FIG. 7 demonstrates that at both 20 min and 6 hours after oral administration of D-4F or SEQ ID NO:258 synthesized from D-amino acids the mouse LDL was significantly less able to induce monocyte chemotactic activity compared to LDL taken from mice that received the scrambled D-4F peptide.
  • FIG. 8 demonstrates that adding SEQ ID NO:238 in Table 4 (synthesized from all D-amino acids) to the food of apoE null mice for 18 hours converted the pro-inflammatory HDL of apoE null mice to anti-inflammatory HDL.
  • FIG. 9 demonstrates that in vitro SEQ ID NO:258 in Table 4 was ten times more potent than SEQ ID NO:238.
  • SEQ ID NO:238 at 125 ⁇ g/ml was only mildly effective while as shown in FIG. 9 , SEQ ID NO:258 was highly active at 12.5 ⁇ g/ml in a pre-incubation in vitro.
  • SEQ ID NO:254 is identical with SEQ ID NO:258 except that the positions of the arginine and glutamic acid amino acids are reversed in the sequence (i.e. SEQ ID NO:254 is Boc-Lys(eBoc)-Glu-Arg-Ser(tBu)-OtBu, while SEQ ID NO:258 is Boc-Lys(FBoc)-Arg-Glu-Ser(tBu)-OtBu). As a result of this seemingly minor change, SEQ ID NO: 254 is substantially less effective in these assays than SEQ ID NO:258.
  • Serum Amyloid A is a positive acute phase reactant in mice that is similar to C-Reactive Protein (CRP) in humans.
  • CRP C-Reactive Protein
  • FIG. 14 demonstrates that the peptide described in Table 4 as SEQ ID NO:258, when synthesized from all L-amino acids and given to apoE null mice orally converted pro-inflammatory HDL to anti-inflammatory and increased plasma paraoxonase activity ( FIG. 15 ).
  • FIGS. 16, 17 , 18 , and 19 demonstrate that the peptide described in Table 4 as SEQ ID NO:258 when synthesized from all D-amino acids and given orally to apoE null mice rendered HDL anti-inflammatory ( FIGS. 16 and 17 ), reducing LDL-induced monocyte chemotactic activity ( FIG. 17 ) and increasing plasma HDL-cholesterol ( FIG. 18 ) and increasing HDL paraoxonase activity ( FIG. 19 ).
  • SEQ ID NO:2308 when synthesized from all L-amino acids and given orally to apoE null mice, did not significantly alter HDL inflammatory properties ( FIGS.
  • SEQ ID NO:238 from Table 4 when synthesized from all D-amino acids did not raise plasma HDL-cholesterol concentrations ( FIG. 18 ) and did not increase HDL paraoxonase activity ( FIG. 19 ).
  • SEQ ID NO:238 from Table 4 when synthesized from L-amino acids is not effective when given orally but is effective when synthesized from D-amino acids, but is substantially less effective than SEQ ID NO:258.
  • FIGS. 20 and 21 show the very dramatic synergy between a statin (pravastatin) and D-4F in ameliorating atherosclerosis in apoE null mice.
  • Mice are known to be resistant to statins.
  • the mice that received pravastatin in their drinking water at 20 ⁇ g/ml consumed a dose of pravastatin equal to 175 mg per day for a 70 Kg human and the mice that received pravastatin in their drinking water at 50 ⁇ g/ml consumed a dose of pravastatin equal to 437.5 mg per day for a 70 Kg human.
  • these very high doses of pravastatin were not effective in ameliorating atherosclerotic lesions in apoE null mice.
  • FIG. 22 shows that SEQ ID NO.198 and SEQ ID NO. 203 from Table 4 were equally effective or even more effective than D-4F in reducing the lipid hydroperoxide content of both LDL and HDL in apoE null mice.
  • the physical properties include high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), and solubility in aqueous buffer at pH 7.0.
  • the particularly effective small peptides Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, the particularly effective small peptides form particles with a diameter of approximately 7.5 nm ( ⁇ 0.1 nm), and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also form vesicular structures of approximately 38 nm).
  • the small peptides have a molecular weight of less than about 900 Da.
  • SEQ ID NO 254 Boc-Lys( ⁇ Boc)-Glu-Arg-Ser(tBu)-OtBu
  • SEQ ID NO 258 Boc-Lys( ⁇ Boc)-Arg-Glu-Ser(tBu)-OtBu
  • each peptide was weighed and added to a centrifuge tube and ethyl acetate (HPLC grade; residue after evaporation ⁇ 0.0001%) was added to give a concentration of 10 mg/mL.
  • the tubes were sealed, vortexed and kept at room temperature for 30 minutes with vortexing every 10 minutes.
  • the tubes were then centrifuged for 5 minutes at 10,000 rpm and the supernatant was removed to a previously weighed tube.
  • the ethyl acetate was evaporated under argon and the tubes weighed to determine the amount of peptide that had been contained in the supernatant.
  • the percent of the originally added peptide that was dissolved in the supernatant is shown on the Y-axis.
  • the data are mean ⁇ S.D.
  • Control represents sham treated tubes; SEQ ID NO 254 and SEQ ID NO 258 were both synthesized from all D-amino acids; SEQ ID NO 250 was synthesized from all L-amino acids.
  • SEQ ID NO 258 is very soluble in ethyl acetate while SEQ ID NO 254 is not (both synthesized from all D-amino acids). Additionally the data in FIG. 23 demonstrate that SEQ ID NO 250 [Boc-Phe-Arg-Glu-Leu-OtBu] (synthesized from all L-amino acids) is also very soluble in ethyl acetate.
  • FIGS. 24 - 26 demonstrate that when SEQ ID NO 258 was added to DMPC in an aqueous environment particles with a diameter of approximately 7.5 nm formed, stacked lipid bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm formed, and vesicular structures of approximately 38 nm also formed.
  • FIG. 24 shows an electron micrograph prepared with negative staining and at 147,420 ⁇ magnification.
  • the arrows indicate SEQ ID NO 258 particles measuring 7.5 nm (they appear as small white particles).
  • a peptide comprising SEQ ID NO 258 added to DMPC in an aqueous environment forms particles with a diameter of approximately 7.5 nm (white arrows), and stacked lipid-peptide bilayers (striped arrows pointing to the white lines in the cylindrical stack of disks) with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers (black lines between white lines in the stack of disks) of approximately 2 nm.
  • FIG. 26 shows that the peptide of SEQ ID NO 258 added to DMPC in an aqueous environment forms stacked lipid-peptide bilayers (striped arrow) and vesicular structures of approximately 38 nm white arrows).
  • FIG. 27 shows that DMPC in an aqueous environment without SEQ ID NO 258 does not form particles with a diameter of approximately 7.5 nm, or stacked lipid-petide bilayers, nor vesicular structures of approximately 38 nm.
  • the peptide of SEQ ID NO 254 (which differs from the peptide of SEQ ID NO 258 only in the order of arginine and glutamic acid in regard to the amino and carboxy termini of the peptide) did not form particles with a diameter of approximately 7.5 nm, or stacked lipid-peptide bilayers, nor vesicular structures of approximately 38 nm under the conditions as described in FIG. 24 (data not shown).
  • the order of arginine and glutamic acid in the peptide dramatically altered its ability to interact with DMPC and this was predicted by the solubility in ethyl acetate (i.e., the peptide of SEQ ID NO 258 was highly soluble in ethyl acetate and formed particles with a diameter of approximately 7.5 nm, and stacked lipid-peptide bilayers, as well as vesicular structures of approximately 38 nm, while the peptide of SEQ ID NO 254 was poorly soluble in ethyl acetate and did not form these structures under the conditions described in FIG. 24 ).
  • the physical properties of the peptide of SEQ ID NO 258 indicate that this peptide has amphipathic properties (i.e., it is highly soluble in ethyl acetate, it is also soluble in aqueous buffer at pH 7.0 [data not shown], and it interacts with DMPC as described above).
  • Table 13 compares the interaction of lipid-free human apoA-I with CHO—C19 cells in vitro with the interaction of SEQ ID NO 258 with DMPC as indicated in FIGS. 4-7 above. TABLE 13 Comparison of the interaction of the peptide of SEQ ID NO 258 with DMPC as indicated in FIGS. 24-27 above with the interaction of lipid-free human apoA-I interacting with CHO-C-19 cells as described in Forteet al. (1993) J. Lipid Res. 34: 317-324.
  • SEQ ID NO Property ApoA-I/Cells 258/DMPC Prominent Feature Discoidal particles Stacked bilayers in stacked in rouleaux cylindrical form formation Bilayer dimension 4.6 nm 3.4-4.1 nm Spacing between discoidal 1.9 nm 2.0 nm particles/bilayers Size “Nascent HDL Particles” 7.3 nm 7.5 nm Vesicular structures 34.7 nm 38 nm
  • DMPC lipids
  • FIGS. 28-32 demonstrate the spatial characteristics of SEQ ID NO 254 compared to SEQ ID NO 258.
  • FIGS. 28-32 indicate that both the peptide of SEQ ID NO 254 and the peptide of SEQ ID NO 258 contain polar and non-polar portions in each molecule but there are spatial differences in the arrangement of the polar and non-polar components of the two molecules. As a result of the differences in the spatial arrangement of the molecules there are differences in the solubility of the two molecules in ethyl acetate ( FIG. 23 ) and in their interaction with DMPC ( FIGS. 24-27 ).
  • FIGS. 33-35 demonstrate that the physical properties of the peptide of SEQ ID NO 254 versus the peptide of SEQ ID NO 258 predict the ability of these molecules to render HDL anti-inflammatory and mitigate atherosclerosis when given orally to a mammal.
  • mice at age 8 weeks were given no additions to their diet (Chow) or received 200 ⁇ g/gm chow of SEQ ID NO 254 (+254) or 200 ⁇ g/gm chow of SEQ ID NO 258 (+258), both synthesized from all D-amino acids. After 15 weeks the mice were bled and their plasma fractionated by FPLC and their HDL (MHDL) tested in a human artery wall cell coculture.
  • MHDL HDL
  • FIG. 33 shows that the HDL from apoE null mice was rendered anti-inflammatory after the mice were fed SEQ ID NO 258 but not after SEQ ID NO 254.
  • FIG. 34 the peptide of SEQ ID NO 258 but not the peptide of SEQ ID NO 254 significantly reduced atherosclerosis in the aortic root (aortic sinus) of the apoE null mice described above.
  • FIG. 35 demonstrates that SEQ ID NO 258 but not SEQ ID NO 254 also significantly decreased atherosclerosis in en face preparations of the aortas.
  • FIG. 23 demonstrates that the solubility in ethyl acetate of SEQ ID NO 250 synthesized from all L-amino acids (see FIG. 23 above) accurately predicts the ability of this molecule to ameliorate atherosclerosis in apoE null mice.
  • small peptides typically with molecular weights of less than about 900 Daltons that are highly soluble in ethyl acetate (greater than about 4 mg/mL), and also are soluble in aqueous buffer at pH 7.0, and that when contacted with phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, form particles with a diameter of approximately 7.5 nm, and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or they also form vesicular structures of approximately 38 nm, when administered to a mammal render HDL more anti-inflammatory and mitigate one or more symptoms of atherosclerosis and other pathologies characterized by an inflammatory response.
  • DMPC 1,2-Dimyristoyl-sn-glycero-3-phosphocholine

Abstract

This invention provides novel peptides that ameliorate one or more symptoms of atherosclerosis. The peptides are highly stable and readily administered via an oral route. The peptides are effective to stimulate the formation and cycling of pre-beta high density lipoprotein-like particles and/or to promote lipid transport and detoxification. This invention also provides a method of tracking a peptide in a mammal. In addition, the peptides inhibit osteoporosis. When administered with a statin, the peptides enhance the activity of the statin permitting the statin to be used at significantly lower dosages and/or cause the statins to be significantly more anti-inflammatory at any given dose.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. Ser. No. 10/649,378, filed on Aug. 26, 2003, which claims benefit of and priority to U.S. Ser. No. 60/494,449, filed on Aug. 11, 2003, all of which are incorporated herein by reference in their entirety for all purposes.
  • STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
  • This work was supported by United States Public Health Service and National Heart, Lung, and Blood Institute Grants HL30568 and HL34343. The Government of the United States of America may have certain rights in this invention.
  • FIELD OF THE INVENTION
  • This invention relates to the field of atherosclerosis. In particular, this invention pertains to the identification of a class of peptides that are orally administrable and that ameliorate one or more symptoms of atherosclerosis.
  • BACKGROUND OF THE INVENTION
  • Cardiovascular disease is a leading cause of morbidity and mortality, particularly in the United States and in Western European countries. Several causative factors are implicated in the development of cardiovascular disease including hereditary predisposition to the disease, gender, lifestyle factors such as smoking and diet, age, hypertension, and hyperlipidemia, including hypercholesterolemia. Several of these factors, particularly hyperlipidemia and hypercholesteremia (high blood cholesterol concentrations) provide a significant risk factor associated with atherosclerosis.
  • Cholesterol is present in the blood as free and esterified cholesterol within lipoprotein particles, commonly known as chylomicrons, very low density lipoproteins (VLDLs), low density lipoproteins (LDLs), and high density lipoproteins (HDLs). Concentration of total cholesterol in the blood is influenced by (1) absorption of cholesterol from the digestive tract, (2) synthesis of cholesterol from dietary constituents such as carbohydrates, proteins, fats and ethanol, and (3) removal of cholesterol from blood by tissues, especially the liver, and subsequent conversion of the cholesterol to bile acids, steroid hormones, and biliary cholesterol.
  • Maintenance of blood cholesterol concentrations is influenced by both genetic and environmental factors. Genetic factors include concentration of rate-limiting enzymes in cholesterol biosynthesis, concentration of receptors for low density lipoproteins in the liver, concentration of rate-limiting enzymes for conversion of cholesterols bile acids, rates of synthesis and secretion of lipoproteins and gender of person. Environmental factors influencing the hemostasis of blood cholesterol concentration in humans include dietary composition, incidence of smoking, physical activity, and use of a variety of pharmaceutical agents. Dietary variables include amount and type of fat (saturated and polyunsaturated fatty acids), amount of cholesterol, amount and type of fiber, and perhaps amounts of vitamins such as vitamin C and D and minerals such as calcium.
  • Epidemiological studies show an inverse correlation of high density lipoprotein (HDL) and apolipoprotein (apo) A-I levels with the occurrence of atherosclerotic events (Wilson et al. (1988) Arteriosclerosis 8: 737-741). Injection of HDL into rabbits fed an atherogenic diet has been shown to inhibit atherosclerotic lesion formation (Badimon et al. (1990) J. Clin. Invest. 85: 1234-1241).
  • Human apo A-I has been a subject of intense study because of its anti-atherogenic properties. Exchangeable apolipoproteins, including apo A-I, possess lipid-associating domains (Brouillette and Anantharamaiah (1995) Biochim. Biophys. Acta 1256:103-129; Segrest et al. (1974) FEBS Lett. 38: :247-253). Apo A-I has been postulated to possess eight tandem repeating 22mer sequences, most of which have the potential to form class A amphipathic helical structures (Segrest et al. (1974) FEBS Lett. 38: :247-253). Characteristics of the class A amphipathic helix include the presence of positively charged residues at the polar-nonpolar interface and negatively charged residues at the center of the polar face (Segrest et al. (1974) FEBS Lett. 38: 247-253; Segrest et al. (1990) Proteins: Structure, Function, and Genetics 8: 103-117). Apo A-I has been shown to strongly associate with phospholipids to form complexes and to promote cholesterol efflux from cholesterol-enriched cells. The delivery and maintenance of serum levels of apo A-I to effectively mitigate one or more symptoms of atherosclerosis has heretofore proven elusive.
  • SUMMARY OF THE INVENTION
  • This invention provides novel peptides and amino acid pairs, administration of which mitigates one or more symptoms of atherosclerosis and other inflammatory conditions such as rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Alzheimer's disease, congestive heart failure, endothelial dysfunction, viral illnesses such as influenza A, and diseases such as multiple sclerosis. In certain embodiments, it was a discovery of this invention that peptides comprising a class A amphipathic helix when formulated with “D” amino acid residue(s) and/or having protected amino and carboxyl termini can be orally administered to an organism, are readily taken up and delivered to the serum, and are effective to mitigate one or more symptoms of atherosclerosis. In certain embodiments, the peptides can be formulated with all “L” amino acid residues and are still effective, particular when administered by routes other than oral administration.
  • It was also a discovery that “small” peptides (e.g., ranging in length from about three amino acides to about 11 amino acids) having hydrophobic terminal amino acids or terminal amino acids rendered hydrophobic by one or more hydrophobic blocking goups and having internal acidic and/or basic, and/or aliphatic, and/or aromatic amino acids as described herin are also capable of mitigating one or more symptoms of atherosclerosis or other pathologies characterized by an inflammatory response.
  • The peptides, and/or amino acid pairs, of this invention are typically effective to stimulate the formation and cycling of pre-beta high density lipoprotein-like particles and/or to promote lipid transport and detoxification.
  • The peptides, and/or amino acid pairs, described herein are also effective for preventing the onset or inhibiting or eliminating one or more symptoms of osteoporosis.
  • It was also a surprising discovery that the peptides, and/or amino acid pairs, can be used to enhance (e.g., synergically enhance) the activity of statins and/or Ezetimibe or other cholesterol uptake inhibitors, thereby permitting the effective use of statins or cholesterol uptake inhibitors at lower dosages and/or cause the statins or cholesterol uptake inhibitors to be significantly more anti-inflammatory at any given dose.
  • In certain embodiments, this invention provides peptides or a combination of peptides, and/or amino acid pairs, that ameliorates one or more symptoms of an inflammatory condition (e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Altzheimer's disease, a viral illnesses, asthma, diabetes, etc.). Certain preferred peptides range in length from 3 to about 5 amino acids; are soluble in ethyl acetate at a concentration greater than about 4 mg/mL; are soluble in aqueous buffer at pH 7.0; when contacted with a phospholipid in an aqueous environment, forms particles with a diameter of approximately 7.5 nm and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm; have a molecular weight less than about 900 daltons; convert pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory; and do not have the amino acid sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys-Arg-Asp and Ser are all L amino acids. In certain embodiments, these peptides protects a phospholipid (e.g., 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (SAPC)), and 1-stearoyl-2-arachidonyl-sn-glycero-3-phosphorylethanolamine (SAPE). In certain embodiments, these peptides can include, but need not be limited to any of the small peptides described herein.
  • In certain embodiments, this invention provides peptides or a combination of peptides, and/or amino acid pairs, that ameliorates one or more symptoms of an inflammatory condition (e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Altzheimer's disease, a viral illnesses, asthma, diabetes, etc.). Certain preferred peptides are characterized by the formula: X1—X2—X3 n4 where n is 0 or 1; X1 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; X4 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; and, when n is 0, X2 is an amino acid selected from the group consisting of an acidic amino acid, a basic amino acid, and a histidine; and, when when n is 1: X2 and X3 are independently an acidic amino acid, a basic amino acid, an aliphatic amino acid, or an aromatic amino acid such that when X2 is an acidic amino acid; X3 is a basic amino acid, an aliphatic amino acid, or an aromatic amino acid; when X2 is a basic amino acid; X3 is an acidic amino acid, an aliphatic amino acid, or an aromatic amino acid; and when X2 is an aliphatic or aromatic amino acid, X3 is an acidic amino acid, or a basic amino acid. Certain preferred peptides convert pro-inflammatory HDL to anti-inflammatory HDL or make anti-inflammatory HDL more anti-inflammatory. In certain embodiments, the peptide does not have the amino acid sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys, Arg, Asp, and Ser are all L amino acids. Peptides of this invention include peptides according to the formula above, and/or peptides comprising a peptide of the formula above and/or concatamers of such peptides.
  • In certain embodiments, X1 and X4 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, ornithine (Orn) bearing a hydrophobic protecting group, aspartic acid (Asp) bearing a hydrophobic protecting group, cysteine (Cys) bearing a hydrophobic protecting group, and glutamic acid (Glu) bearing a hydrophobic protecting group.
  • In certain embodiments, the peptide is a tri-mer (i.e., n is 0). In certain trimers, X1 is Glu, Leu, Lys, Orn, Phe, Trp, or norLeu; X2 is acidic (e.g., aspartic acid, glutamic acid, etc.), or basic (e.g., lysine, arginine, histidine, etc.) and X4 is Ser, Thr, Ile, Leu, Trp, Tyr, Phe, or norleu. In certain embodiments, the peptide comprises the amino acid sequence of a peptide listed in Table 3. In certain embodiments, the peptide is a protected trimer as shown in Table 3.
  • In certain embodiments, n is 1 and the peptide is or comprises a tetramer in which X2 and X3 are independently an acidic amino acid or a basic amino acid such that when X2 is an acidic amino acid, X3 is a basic amino acid and when X2 is a basic amino acid, X3 is an acidic amino acid. X1 and X4 can include independently selected amino acids, e.g., as indicated above. In certain embodiments, X2 and X3 are independently selected from Asp, Glu, Lys, Arg, and His. In certain embodiments, the peptide comprises the amino acid sequence of a peptide listed in Table 4. In certain embodiments, the peptide is a protected tetramer as show in Table 4.
  • In still another embodiment, n is 1 and the peptide is or comprises a tetramer in which X2 and X3 are independently an acidic, a basic, or a aliphatic amino acid with one of X2 or X3 being an acidic or a basic amino acid such that when X2 is an acidic or a basic amino acid, X3 is an aliphatic amino acid; and when X3 is an acid or a basic amino acid, X2 is an aliphatic amino acid. X1 and X4 can include independently selected amino acids, e.g., as indicated above. In certain embodiments, X2 and X3 are independently selected from the group consisting of Asp, Glu, Lys, Arg, His, and Ile, more preferably from the group consisting of Asp, Arg, Leu, and Glu. In certain embodiments, the peptide comprises the amino acid sequence of a peptide listed in Table 5. In certain embodiments, the peptide is a protected tetramer as show in Table 5.
  • In another embodiment, n is 1 and the peptide is or comprises a tetramer in which X2, X3 are independently an acidic, a basic, or an aromatic amino acid with one of X2 or X3 being an acidic or a basic amino acid such that when X2 is an acidic or a basic amino acid, X3 is an aromatic amino acid; and when X3 is an acid or a basic amino acid, X2 is an aromatic amino acid. X1 and X4 can include independently selected amino acids, e.g., as indicated above. In certain embodiments, X2 and X3 are independently selected from the group consisting of Asp, Arg, Glu, Trp, Tyr, Phe, and Lys. In certain embodiments, the peptide comprises the amino acid sequence of a peptide listed in Table 6. In certain embodiments, the peptide is a protected tetramer as show in Table 6.
  • This invention also provides for peptides that are or comprise a pentamer (5-mer) characterized by the formula: X1—X2—X3—X4—X5, where X1 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; X5 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; and X2, X3, and X4 are independently selected aromatic amino acids or histidine; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory. In certain embodiments, X1 and X5 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met), phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, ornithine (Orn) bearing a hydrophobic protecting group, aspartic acid (Asp) bearing a hydrophobic protecting group, cysteine (Cys) bearing a hydrophobic protecting group, and glutamic acid (Glu) bearing a hydrophobic protecting group. In certain embodiments X2, X3, and X4 are independently is selected from the group consisting of Phe, Val, Trp, Tyr, and His. In certain embodiments, the peptide comprises the amino acid sequence of a peptide listed in Table 7. In certain embodiments, the peptide is a protected tetramer as show in Table 7.
  • This invention also provides for larger peptides that ameliorate one or more symptoms of an inflammatory condition. In certain embodiments, the peptide ranges in length from 5 to 11 amino acids; the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups; the non-terminal amino acids form at least one acidic domain and at least one basic domain; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • In certain embodiments, the peptide ranges in length from 5 to 11 amino acids; the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups; the non-terminal amino acids form at least one acidic domain or one basic domain and at least one aliphatic domain; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • In other embodiments, the peptide ranges in length from 5 to 11 amino acids; the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups; the non-terminal amino acids form at least one acidic domain or one basic domain and at least one aromatic domain; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • In still other embodiments, the peptide ranges in length from 6 to 11 amino acids; the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups; the non-terminal amino acids form at least one aromatic domain or two or more aromatic domains separated by one or more histidines; and the peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
  • This invention also provides for peptides that ameliorate one or more symptoms of an inflammatory condition and that comprise one or more amphipathic helices. Thus, this invention includes a peptide or a concatamer of a peptide that ranges in length from about 10 to about 30 amino acids, preferably from about 18 to about 30 amino acids; that comprises at least one class A amphipathic helix; that comprises one or more aliphatic or aromatic amino acids at the center of the non-polar face of said amphipathic helix; that protects a phospholipid against oxidation by an oxidizing agent; and that is not the D-18A peptide. In certain embodiments, the peptide comprises the amino acid sequence of a peptide listed in Table 2 or Table 12. In certain embodiments, the peptide is a protected tetramer as show in Table 2 or Table 12.
  • In certain embodiments, the peptides of this invention protect a phospholipid (e.g., 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (SAPC)), 1-stearoyl-2-arachidonyl-sn-glycero-3-phosphorylethanolamine (SAPE)) against oxidation by an oxidizing agent (e.g., 13(S)—HPODE, 15(S)—HPETE, HPODE, HPETE, HODE, HETE, etc.).
  • Any of the peptides described herein can bear one or more hydrophobic protecting groups on the amino terminal amino acid (e.g., X1) and/or the carboxyl terminal amino acid (e.g., X4, X5, etc.). The protecting group(s) can be attached to the amino or carboxyl terminus and/or to a side chain (R group) of the amino acid. The protecting group(s) can be directly coupled (e.g., through a covalent bond) or indirectly coupled (e.g., through a linker). Preferred hydrophobic protecting groups include, but are not limited to t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde), and the like. In certain embodiments, the said hydrophobic protecting group is selected from the group consisting of Boc, Fmoc, nicotinyl, and OtBu. In certain embodiments, the N-terminus of the peptide is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and Nicotinyl- and/or the C-terminus of the peptide is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
  • The peptides can also, optionally, include at least one D amino acid. In certain embodiments, the peptides include a plurality of D- amino acids or can even compirse all D-amino acids. In certain embodiments, the peptide comprise alternating D- and L-amino aicds. The peptides can also be all L-form amino acids. The peptides can be isolated (e.g., substanitaly pure), dry or in solution, and/or combined with a pharmacologically acceptable excipient. In certain embodiments, the peptide is mixed with a pharmacologically acceptable excipient suitable for oral administration to a mammal (e.g., a human or a non-human mammal). The peptide can be provided as a unit formulation in a pharmaceutically acceptable excipient and/or as a time release formulation.
  • The peptides can also be coupled to one or more biotins (e.g., directly, through a linker, and/or through the amino acid side chain). In certain embodiments, the biotin is coupled to a lysine (Lys).
  • In certain embodiments, this invention also provides pairs of amino acids that ameliorate one or more symptoms of an inflammatory condition. The amino acid pair typically comprises a first amino acid bearing at least one protecting group; and a second amino acid bearing at least one protecting group; where the first amino acid and the second amino acid are different species of amino acid, and where the pair of amino acids converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory. In various embodiments the pair of amino acids, when contacted with a phospholipid in an aqueous environment, forms particles with a diameter of approximately 7.5 nm and forms stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm. In certain embodiments, the first and second amino acids are independently selected from the group consisting of an acidic amino acid, a basic amino acid, and a non-polar amino acid. In certain embodiments, the first amino aicd is acidic or basic and the second amino acid is non-polar, or the first amino acid is non-polar and said second amino acid is acidic or basic. In certain embodiments, both amino acids are acidic or basic. The first and second amino acid can, optionaly, be covalently coupled together, e.g., directly or through a linker. In certain embodiments, the amino acids are joined through a peptide linkage thereby forming a dipeptide. In certain embodiments, the first amino acid and the second amino acid are mixed together, but not covalently linked. The protecting groups include, but are not limited to any of the protecting groups described herein. In certain embodiments, the first amino acid is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and nicotinyl-, and the second amino acid is blocked with a protecting group selected from the group consisting of tBu, and OtBu. In certain embodiments, each amino acid bears at least two protecting groups. In certain embodiments, each amino acid is blocked with a with a first protecting group selected from the group consisting of Boc-, Fmoc-, and nicotinyl-, and a second protecting group selected from the group consisting of tBu, and OtBu. In certain embodiments, each amino acid is blocked with a Boc and an OtBu. In various embodiments the pair of amino acids form a dipeptide selected from the group consisting of Phe-Arg, Glu-Leu, and Arg-Glu. In certain embodiments, the pair of amino acids form a dipeptide selected from the group consisting of Boc-Arg-OtBu, Boc-Glu-OtBu, Boc-Phe-Arg-OtBu, Boc-Glu-Leu-OtBu, and Boc-Arg-Glu-OtBu.
  • This invention also provides a pharmaceutical formulation comprising one or more of the peptides, and/or amino acid pairs described herein, and a pharmaceutically acceptable excipient. Typically the peptide(s), and/or amino acid pairs, are present in an effective dose. The peptide(s), and/or amino acid pairs, can also be provided as a time release formulation and/or as a unit dosage formulation. In certain embodiments, the formulation is formulated for oral administration. In certain embodiments, the formulation is formulated for administration by a route selected from the group consisting of oral administration, inhalation (e.g., nasal administration, oral inhalation, etc.), rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, inhalation administration, intramuscular injection, and the like.
  • Also provided is a kit comprising a container containing one or more of the peptides, and/or amino acid pairs described herein, and instructional materials teaching the use of the peptide(s), and/or amino acid pairs, in the treatment of a pathology characterized by inflammation (e.g., atherosclerosis atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, asthma, osteoporosis, Altzheimer's disease, a viral illnesses, etc.).
  • This invention also provides a method of mitigating (e.g., reducing or eliminating) one or more symptoms of atherosclerosis in a mammal (human or non-human mammal). The method typically involves administering to the mammal an effective amount of one or more of the peptides, and/or amino acid pairs described herein. The peptide, and/or amino acid pair, can be administered in a in a pharmaceutically acceptable excipient (e.g., for oral administration) and can, optionally be administered in conjunction (e.g., before, after, or simultaneously) with a lipid. The administering can comprise administering the peptide, and/or amino acid pair, by a route selected from the group consisting of oral administration, inhalation (e.g. nasal administration, oral inhalation, etc.), rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection. In certain embodiments, the mammal is a mammal diagnosed as having one or more symptoms of atherosclerosis. In certain embodiments, the mammal is a mammal diagnosed as at risk for stroke or atherosclerosis.
  • In another embodiment, this invention provides method of mitigating one or more symptoms of an inflammatory pathology (e.g., atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, multiple sclerosis, diabetes, asthma, Altzheimer's disease, a viral illnesses, etc.). The method typically involves administering to the mammal an effective amount of one or more of the peptides, and/or amino acid pairs, described herein. The peptide, and/or amino acid pair, can be administered in a in a pharmaceutically acceptable excipient (e.g., for oral administration) and can, optionally be administered in conjunction (e.g., before, after, or simultaneously) with a lipid. The administering can comprise administering the peptide, and/or amino acid pairs, by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection. In certain embodiments, the mammal is a mammal diagnosed as having one or more symptoms of of the inflammatory pathology. In certain embodiments, the mammal is a mammal diagnosed as at risk for the inflammatory pathology.
  • The peptides, and/or amino acid pairs, of this invention also act synergistically with statins and/or with a selective cholesterol uptake inhibitor (e.g., Ezetimibe). The method typically involves coadministering with the statin and/or cholesterol uptake inhibitor an effective amount of one or more of the peptides described herein. In certain embodiments, the statin is selected from the group consisting of cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, and pitavastatin. The peptide can be administered before, after, or simultaneously with the statin and/or the cholesterol uptake inhibitor. The peptide and/or said statin and/or cholesterol uptake inhibitor can be administered as a unit dosage formulation. In certain embodiments, the administering comprises administering said peptide and/or said statin by a route selected from the group consisting of oral administration, nasal administration, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection. The mammal includes, but is not limited to a mammal diagnosed as having one or more symptoms of atherosclerosis or diagnosed as at risk for stroke or atherosclerosis.
  • This invention also provides a method of mitigating one or more symptoms associated with atherosclerosis in a mammal. The method typically involves administering a statin and/or a selective cholesterol uptake inhibitor; and an effective amount of one or more peptides, and/or amino acid pairs, described herein, where the the effective amount of the statin and/or cholesterol uptake inhibitor is lower than the effective amount of a statin or a cholesterol uptake inhibitor administered without the peptide(s), and/or amino acid pairs. In certain embodiments, the effective amount of the peptide(s), and/or amino acid pairs, is lower than the effective amount of the peptide, and/or amino acid pairs, administered without the statin and/or cholesterol uptake inhibitor. In certain embodiments, the statin is selected from the group consisting of cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, and pitavastatin. The peptide can be administered before, after, or simultaneously with the statin and/or the cholesterol uptake inhibitor. The peptide, and/or amino acid pair, and/or the statin and/or cholesterol uptake inhibitor can be administered as a unit dosage formulation. In certain embodiments, the administering comprises administering the peptide, and/or amino acid pair, and/or said statin by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection. The mammal includes, but is not limited to a mammal diagnosed as having one or more symptoms of atherosclerosis or diagnosed as at risk for stroke or atherosclerosis. The mammal includes, but is not limited to a mammal diagnosed as having one or more symptoms of atherosclerosis or diagnosed as at risk for stroke or atherosclerosis.
  • In still another embodiment, this invention provides a method of reducing or inhibiting one or more symptoms of osteoporosis in a mammal. The method typically involves administering to the mammal one or more peptide(s), and/or amino acid pairs, described herein, where peptide, and/or amino acid pair, is administered in a concentration sufficient to reduce or eliminate one or more symptoms of osteoporosis. In certain embodiments, the peptide(s), and/or amino acid pair(s), are administered in a concentration sufficient to reduce or eliminate decalcification of a bone. In certain embodiments, the peptide(s), and/or amino acid pair(s), are administered in a concentration sufficient to induce recalcification of a bone. The peptide(s), and/or amino acid pairs, can be combined with a pharmacologically acceptable excipient (e.g., an excipient suitable for oral administration to a mammal).
  • In certain embodiments, the methods and/or peptides of this invention exclude any one or more peptides disclosed in WO 97/36927, and/or U.S. Pat. Nos. 6,037,323, and/or 6,376,464, and/or 6753,313, and/or in Garber et al. (1992) Arteriosclerosis and Thrombosis, 12: 886-894. In certain embodiments this invention excludes any one or more peptides disclosed in U.S. Pat. No. 4,643,988 and/or in Garber et al (1992) that were synthesized with all enantiomeric amino acids being L amino acids or synthesized with D amino acids where the peptides are blocking groups. In certain embodiments, this invention excludes peptides having the formula A1-B1—B2—C1-D-B3—B4-A2-C2—B5—B6-A3-C3—B7—C4-A4-B8—B9 (SEQ ID NO:(SEQ ID NO:1) wherein A1, A2, A3 and A4 are independently aspartic acid or glutamic acid, or homologues or analogues thereof; B1, B2, B3, B4, B5, B6, B7, B8 and B9 are independently tryptophan, phenylalanine, alanine, leucine, tyrosine, isoleucine, valine or α-naphthylalanine, or homologues or analogues thereof; C1, C2, C3 and C4 are independently lysine or arginine, and D is serine, threonine, alanine, glycine, histidine, or homologues or analogues thereof; provided that, when A1 and A2 are aspartic acid, A3 and A4 are glutamic acid, B2 and B9 are leucine, B3 and B7 are phenylalanine, B4 is tyrosine, B5 is valine, B6, B8, and D are alanine, and C1, C2, C3 and C4 are lysine, B1 is not tryptophan. In certain embodiments, while this invention may exclude one or more of the peptides described above, the peptide of SEQ ID NO:8 (4F or D4F) will be expressly included.
  • In certain embodiments, this invention excludes any one or more peptides in WO 97/36927 and/or D variants thereof. Particular embodiments exclude one or more of the following: apoprotein A, apoprotein A-1, apoprotein A-2, apoprotein A4, apoprotein B, apoprotein B-48, apoprotein B-100, apoprotein C, apoprotein C-1, apoprotein C-2, apoprotein C-3, apoprotein D, apoprotein E as described in WO 97/36927.
  • In certain embodiments, also excluded are any one or more peptides disclosed in U.S. Pat. No. 6,037,323 and/or D variants thereof. Particular embodiments exclude apo A-I agonist compounds comprising (i) an 18 to 22-residue peptide or peptide analogue that forms an amphipathic .alpha.-helix in the presence of lipids and that comprises the formula: Z1—X1—X2—X3—X4—X5—X6—X7—X8—X9—X10—X11—X12—X13—X14—X15—X16—X17—X18—Z2, (SEQ ID NO:2), where X1 is Pro (P), Ala (A), Gly (G), Asn (N), Gln (Q) or D-Pro (p); X2 is an aliphatic amino acid; X3 is Leu (L); X4 is an acidic amino acid; X5 is Leu (L) or Phe (F); X6 is Leu (L) or Phe (F); X7 is a basic amino acid; X8 is an acidic amino acid; X9 is Leu (L) or Trp (W); X10 is Leu (L) or Trp (W); X11 is an acidic amino acid or Asn (N); X12 is an acidic amino acid; X13 is Leu (L), Trp (W) or Phe (F); X14 is a basic amino acid or Leu (L); X15 is Gln (Q) or Asn (N); X16 is a basic amino acid; X17 is Leu (L); X18 is a basic amino acid; Z1 is H2 N— or RC(O)NH—; Z2 is —C(O)NRR, —C(O)OR or —C(O)OH or a salt thereof; each R is independently —H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, (C6-C26) alkaryl, 5-20 membered heteroaryl or 6-26 membered alkheteroaryl or a 1 to 4-residue peptide or peptide analogue in which one or more bonds between residues 1-7 are independently a substituted amide, an isostere of an amide or an amide mimetic; and each “-” between residues X1 through X18 independently designates an amide linkage, a substituted amide linkage, an isostere of an amide or an amide mimetic; or (ii) an altered form of formula (I) in which at least one of residues X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17 or X18 is conservatively substituted with another residue, and/or D variants thereof.
  • In certain embodiments, this invention excludes peptides having the sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) and in certain embodiments, this invention excludes peptides having the sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys-Arg-Asp and Ser are all L amino acids.
  • In certain embodiments the peptides of this invention show less than 38%, preferably less than about 35%, more preferably less than about 30% or less than about 25% LCAT activation activity as measured by the assays provided in U.S. Pat. No. 6,376,464.
  • Definitions.
  • The terms “polypeptide”, “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.
  • The term “class A amphipathic helix” refers to a protein structure that forms an α-helix producing a segregation of a polar and nonpolar faces with the positively charged residues residing at the polar-nonpolar interface and the negatively charged residues residing at the center of the polar face (see, e.g., “Segrest et al. (1990) Proteins: Structure, Function, and Genetics 8: 103-117).
  • The term “ameliorating” when used with respect to “ameliorating one or more symptoms of atherosclerosis” refers to a reduction, prevention, or elimination of one or more symptoms characteristic of atherosclerosis and/or associated pathologies. Such a reduction includes, but is not limited to a reduction or elimination of oxidized phospholipids, a reduction in atherosclerotic plaque formation and rupture, a reduction in clinical events such as heart attack, angina, or stroke, a decrease in hypertension, a decrease in inflammatory protein biosynthesis, reduction in plasma cholesterol, and the like. “Ameliorating one or more symptoms of atherosclerosis” can also refer to improving blood flow to vascular beds affected by atherosclerosis.
  • The term “enantiomeric amino acids” refers to amino acids that can exist in at least two forms that are nonsuperimposable mirror images of each other. Most amino acids (except glycine) are enantiomeric and exist in a so-called L-form (L amino acid) or D-form (D amino acid). Most naturally occurring amino acids are “L” amino acids. The terms “D amino acid” and “L amino acid” are used to refer to absolute configuration of the amino acid, rather than a particular direction of rotation of plane-polarized light. The usage herein is consistent with standard usage by those of skill in the art.
  • The term “protecting group” refers to a chemical group that, when attached to a functional group in an amino acid (e.g., a side chain, an alpha amino group, an alpha carboxyl group, etc.) blocks or masks the properties of that functional group. Preferred amino-terminal protecting groups include, but are not limited to acetyl, or amino groups. Other amino-terminal protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl and others. Preferred carboxyl terminal protecting groups include, but are not limited to groups that form amides or esters. The term “side chain protection groups” refers to protecting groups that protect/block a side-chain (i.e. an R group) of an amino acid. Side-chain protecting groups include, but are not limited to amino protecting groups, carboxyl protecting groups and hydroxyl protecting groups such as aryl ethers and guanidine protecting groups such as nitro, tosyl etc.
  • The phrase “protect a phospholipid from oxidation by an oxidizing agent” refers to the ability of a compound to reduce the rate of oxidation of a phospholipid (or the amount of oxidized phospholipid produced) when that phospholipid is contacted with an oxidizing agent (e.g., hydrogen peroxide, 13-(S)—HPODE, 15-(S)—HPETE, HPODE, HPETE, HODE, HETE, etc.).
  • The terms “low density lipoprotein” or “LDL” is defined in accordance with common usage of those of skill in the art. Generally, LDL refers to the lipid-protein complex which when isolated by ultracentrifugation is found in the density range d=1.019 to d=1.063.
  • The terms “high density lipoprotein” or “HDL” is defined in accordance with common usage of those of skill in the art. Generally “HDL” refers to a lipid-protein complex which when isolated by ultracentrifugation is found in the density range of d=1.063 to d=1.21.
  • The term “Group I HDL” refers to a high density lipoprotein or components thereof (e.g., apo A-I, paraoxonase, platelet activating factor acetylhydrolase, etc.) that reduce oxidized lipids (e.g., in low density lipoproteins) or that protect oxidized lipids from oxidation by oxidizing agents.
  • The term “Group II HDL” refers to an HDL that offers reduced activity or no activity in protecting lipids from oxidation or in repairing (e.g., reducing) oxidized lipids.
  • The term “HDL component” refers to a component (e.g., molecules) that comprises a high density lipoprotein (HDL). Assays for HDL that protect lipids from oxidation or that repair (e.g., reduce oxidized lipids) also include assays for components of HDL (e.g., apo A-I, paraoxonase, platelet activating factor acetylhydrolase, etc.) that display such activity.
  • The term “human apo A-I peptide” refers to a full-length human apo A-I peptide or to a fragment or domain thereof comprising a class A amphipathic helix.
  • A “monocytic reaction” as used herein refers to monocyte activity characteristic of the “inflammatory response” associated with atherosclerotic plaque formation. The monocytic reaction is characterized by monocyte adhesion to cells of the vascular wall (e.g., cells of the vascular endothelium), and/or chemotaxis into the subendothelial space, and/or differentiation of monocytes into macrophages, and/or monocyte chemotaxis as measured in vitro (e.g., utilizing a neuroprobe chamber).
  • The term “absence of change” when referring to the amount of oxidized phospholipid refers to the lack of a detectable change, more preferably the lack of a statistically significant change (e.g., at least at the 85%, preferably at least at the 90%, more preferably at least at the 95%, and most preferably at least at the 98% or 99% confidence level). The absence of a detectable change can also refer to assays in which oxidized phospholipid level changes, but not as much as in the absence of the protein(s) described herein or with reference to other positive or negative controls.
  • The following abbreviations are used herein: PAPC: L-α-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; POVPC: 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine; PGPC: 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine; PEIPC: 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phsophocholine; ChC18:2: cholesteryl linoleate; ChC18:2-OOH: cholesteryl linoleate hydroperoxide; DMPC: 1,2-ditetradecanoyl-rac-glycerol-3-phosphocholine; PON: paraoxonase; HPF: Standardized high power field; PON: paraoxonase; BL/6: C57BL/6J; C3H:C3H/HeJ.
  • The term “conservative substitution” is used in reference to proteins or peptides to reflect amino acid substitutions that do not substantially alter the activity (specificity (e.g., for lipoproteins))or binding affinity (e.g., for lipids or lipoproteins)) of the molecule. Typically conservative amino acid substitutions involve substitution one amino acid for another amino acid with similar chemical properties (e.g., charge or hydrophobicity). The following six groups each contain amino acids that are typical conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
  • The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. With respect to the peptides of this invention sequence identity is determined over the full length of the peptide.
  • For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
  • Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al., supra).
  • One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a tree or dendogram showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle (1987) J. Mol. Evol. 35:351-360. The method used is similar to the method described by Higgins & Sharp (1989) CABIOS 5: 151-153. The program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids. The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences. The final alignment is achieved by a series of progressive, pairwise alignments. The program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters. For example, a reference sequence can be compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps.
  • Another example of algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. (1990) J. Mol. Biol. 215: 403-410. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always>0) and N (penalty score for mismatching residues; always<0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=−4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).
  • In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA, 90: 5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.
  • The term “D-18A peptide” refers to a peptide having the sequence: D-W-L-K-A-F—Y-D-K—V-A-E-K-L-K-E-A-F (SEQ ID NO:3) where all of the enantiomeric amino acids are D form amino acids.
  • The term “coadministering” or “concurrent administration”, when used, for example with respect to a peptide of this invention and another active agent (e.g., a statin), refers to administration of the peptide and the active agent such that both can simultaneously achieve a physiological effect. The two agents, however, need not be administered together. In certain embodiments, administration of one agent can precede administration of the other, however, such coadministering typically results in both agents being simultaneously present in the body (e.g., in the plasma) at a significant fraction (e.g., 20% or greater, preferably 30% or 40% or greater, more preferably 50% or 60% or greater, most preferably 70% or 80% or 90% or greater) of their maximum serum concentration for any given dose.
  • The term “detoxify” when used with respect to lipids, LDL, or HDL refers the removal of some or all oxidizing lipids and/or oxidized lipids. Thus, for example, the uptake of all or some HPODE and/or HPETE (both hydroperoxides on fatty acids) will prevent or reduce entrance of these peroxides into LDLs and thus prevent or reduce LDL oxidation.
  • The term “pre-beta high density lipoprotein-like particles” typically refers to cholesterol containing particles that also contain apoA-I and which are smaller and relatively lipid-poor compared to the lipid: protein ratio in the majority of HDL particles. When plasma is separated by FPLC, these “pre-beta high density lipoprotein-like particles” are found in the FPLC fractions containing particles smaller than those in the main HDL peak and are located to the right of HDL in an FPLC chromatogram as shown in related application U.S. Ser. No. 10/423,830.
  • The phrase “reverse lipid transport and detoxification” refers to the removal of lipids including cholesterol, other sterols including oxidized sterols, phospholipids, oxidizing agents, and oxidized phospholipids from tissues such as arteries and transport out of these peripheral tissues to organs where they can be detoxified and excreted such as excretion by the liver into bile and excretion by the kidneys into urine. Detoxification also refers to preventing the formation and/or destroying oxidized phospholipids as explained herein.
  • The term “biological sample” as used herein refers to any sample obtained from a living organism or from an organism that has died. Examples of biological samples include body fluids, tissue specimens, cells and cell lines taken from an organism (e.g., a human or non-human mammal).
  • The term “amide” when referring to a hydrophobic protecting group or a hydrophobic blocking group includes a simple amide to methylamide or ethylamide. The term also includes alkyl amides such as CO—NH—R where R is methyl, ethyl, etc. (e.g., up to 7, preferably 9, more preferably 11 or 13 carbons).
  • The term “D-peptide” refers to a peptide in which one or more of the enantiiomeric amino acids comprising the peptide are D form amino acids. In certain embodiments, a plurality of the enantiomeric amino acids are D form amino acids. In certain embodiments, at least half of the enantiomeric amino acids are D form amino acids. In certain embodiments, the peptide comprises alternating D- and L-form amino acids. In certain embodiments, all of the enantiomeric amino acids are D form amino acids.
  • The term “L-peptide” refers to a peptide in which all of the amino acids (enantiomeric amino acids) are L-form amino acids.
  • A peptide that “converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory” refers to a peptide that when administered to a mammal (e.g., a human, a rat, a mouse, etc.), or that when used in an appropriate ex vivo assay (e.g., as described herein), converts HDL to an HDL that reduces or blocks lipid oxidation by an oxidizing agent (e.g., as described in U.S. Ser. No. 6,596,544), and/or that has increased paraoxonase activity, and/or that decreases LDL-induced monocyte chemotactic activity generated by artery wall cells as compared to HDL in a control assay (e.g., HDL from a control animal or assay administered a lower dose of the peptide or a negative control animal or assay lacking the peptide). The alteration of HDL (conversion from non-protective to protective or increase in protective activity) is preferably a detectable change. In preferred embodiments, the change is a statistically significant change, e.g., as determined using any statistical test suited for the data set provided (e.g., t-test, analysis of variance (ANOVA), semiparametric techniques, non-parametric techniques (e.g., Wilcoxon Mann-Whitney Test, Wilcoxon Signed Ranks Test, Sign Test, Kruskal-Wallis Test, etc.). Preferably the statistically significant change is significant at least at the 85%, more preferably at least at the 90%, still more preferably at least at the 95%, and most preferably at least at the 98% or 99% confidence level. In certain embodiments, the change is at least a 10% change, preferably at least a 20% change, more preferably at least a 50% change and most preferably at least a 90% change.
  • The phrase “in conjunction with” when used herein, e.g. in reference to the administration of two amino acids comprising an amino acid pair, in reference to the use of combinations of peptides of this invention, in reference to the use of peptides/amino acid pairs of this invention with other pharmacologically active agent(s) (e.g., one or more statins), and the like, indicates that the two (or more) agents are administered so that there is at least some chronological overlap in their physiological activity on the organism. Thus the two or more agents can be administered simultaneously and/or sequentially. In sequential administration there may even be some substantial delay (e.g., minutes or even hours or days) before administration of the second agent as long as the first administered agent has exerted some physiological alteration on the organism when the second administered agent is administered or becomes active in the organism.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a synthesis scheme for the solution phase synthesis of peptides according to this invention.
  • FIG. 2 illustrates the process for synthesizing a tetrapeptide using the process outlined in FIG. 1.
  • FIG. 3 shows that pre-incubation (pre-treatment) but not co-incubation (Co-inc) of Boc-Lys(Boc)-Arg-Asp-Ser(tBu)-OtBu (synthesized from all D-amino acids) (SEQ ID NO:238 in Table 4) inhibited LDL-induced monocyte chemotactic activity produced by human artery wall cells (HAEC). The cells were either pre-incubated with 125 μg/ml, 250 μg/ml, or 500 μg/ml of the peptide, the peptide was then removed and LDL at 100 μg/ml cholesterol with fresh medium was added or the same concentrations of peptide were added together with the LDL and monocyte chemotactic activity determined.
  • FIG. 4 shows that the addition of the tetrapeptide described in FIG. 3 to the drinking water of apoE null mice converted HDL and the post-HDL FPLC fractions from pro-inflammatory to anti-inflammatory similar to D-4F. The tetrapeptide or D-4F were added to the drinking water of the mice (n=4 for each condition) at a concentration of 5 μg/ml for 18 hours. The mice were bled and their lipoproteins were separated by FPLC. A control human LDL at 100 μg/ml of Cholesterol was added (LDL) or not added (No Addition) to human artery wall cocultures or was added together with HDL at 50 μg/ml from a normal human control subject (+Control HDL) or HDL at 50 μg/ml from apoE null mice that received drinking water without peptide (+Water Control HDL) or received the tetrapeptide (+D-Tetra HDL) or D-4F (+D4F HDL) or the post-HDL FPLC fractions from apoE null mice that did not receive the peptide (+Water Control post HDL) or from mice that did receive the tetrapeptide (+D-Tetra post HDL) or received D-4F (+D4F post HDL)were added at 20 μg/ml together with the control human LDL at 100 μg/ml of Cholesterol. After 8 hours the supernatants were assayed for monocyte chemotactic activity.
  • FIG. 5 shows that apoE null mice receiving D-tetrapeptide or D-4F in their drinking water have LDL that induces less monocyte chemotactic activity. The LDL from the FPLC fractions of the mice described in FIG. 4 was added to the cocultures at 100 μg/ml. After 8 hours the supernatants were assayed for monocyte chemotactic activity.
  • FIG. 6 shows that SEQ ID NO:258 from Table 4 (designated D-11 in the figure) when synthesized from all D-amino acids or D-4F given orally renders HDL anti-inflammatory in apoE null mice but a peptide containing the same D-amino acids as in D-4F but arranged in a scrambled sequence that prevents lipid binding did not. Five hundred micrograms of SEQ ID NO:258 synthesized from D-amino acids (D-11) or 500 μg of D-4F (D-4F) or 500 μg of scrambled D-4F (Scramb. Pept.) were instilled via a tube into the stomachs of female, 3 month old apoE null mice, (n=4) and the mice were bled 20 min (20 min after gavage) or 6 hours later (6 hr after gavage). Plasma was separated and HDL was isolated by FPLC. Cultures of human aortic endothelial cells received medium alone (No Addition/Assay Controls), standard normal human LDL at 100 μm/mL cholesterol without (LDL/Assay Controls) or together with standard control human HDL (LDL+Control HDL/Assay Controls) at 50 μm/mL cholesterol, or control human LDL at 100 μgm/mL cholesterol was added with mouse HDL at 50 μgm/mL cholesterol obtained from mice that received the scrambled D-4F peptide (LDL+Scramb.Pept. HDL), or D-4F (LDL+D-4F HDL) or SEQ ID NO:258 made from all D-amino acids (LDL+D-11 HDL). The cultures were incubated for 8 hrs. The supernatants were then assayed for monocyte chemotactic activity. The values are mean±SD of the number of migrated monocytes in 9 high power fields. *indicates p<0.001.
  • FIG. 7 shows that apoE null mice receiving D-4F or SEQ ID NO:258 from Table 4 synthesized from D-amino acids (designated D-11) (but not from mice that received scrambled D-4F) have LDL that induces less monocyte chemotactic activity. The LDL from the FPLC fractions of the mice described in FIG. 6 was added to the cultures at 100 μg/ml. After 8 hours the supernatants were assayed for monocyte chemotactic activity. *indicates p<0.001, **indicates p<0.01.
  • FIG. 8 shows that HDL was converted from pro-inflammatory to anti-inflammatory after addition of SEQ ID NO:238 in Table 4 synthesized from D amino aicids (designated D-1)_to the chow of apoE null mice (200 μg/gm chow for 18 hours). Assay Controls: No Addition, no addition to the cocultures; LDL ,a standard control human LDL was added to the cocultures; +Control HDL, a control normal human HDL was added to the cocultures. Chow LDL, LDL from mice that received chow alone; +Chow Autolog. HDL, HDL from the mice that received Chow alone was added together with the LDL from these mice; +D-1 Autolog. HDL, HDL from the mice receiving the peptide was added together with the LDL from these mice to the cocultures and monocyte chemotactic activity was determined.
  • FIG. 9 shows that the tetrapeptide (SEQ ID NO:258 in Table 4) was ten times more potent than SEQ ID NO:238 in vitro. The tetrapeptide was added or not added in a pre-incubation to human artery wall cell cocultures at 100, 50, 25 or 12.5 μm/mL and incubated for 2 hrs. The cultures were then washed. Some wells then received medium alone (No Addition). The other wells either received standard normal human LDL at 100 μgm/mL cholesterol (LDL) or received this LDL together with a standard control human HDL (LDL+Control HDL) at 50 μgm/mL cholesterol and were incubated for 8 hrs. Culture supernatants were then assayed for monocyte chemotactic activity. The values are mean±SD of the number of migrated monocytes in 9 high power fields. The wells that received the tetrapeptide in the 2 hr pre-incubation at the concentrations noted above followed by the addition of LDL at 100 μgm/mL cholesterol are indicated in the figure (LDL+tetrapeptide, in μgm/ml).
  • FIG. 10 shows that SEQ ID NOs:243, 242, and 256 from Table 4 (designated Seq No.5, Seq No.6, and Seq No. 9, respectively in the figure) convert pro-inflammatory HDL from apoE null mice to anti-inflammatory HDL. Two month old female apo E null mice (n=4 per treatment) fasted for 18 hrs, were injected intraperitoneally with L-tetrapeptides at 20 μgm peptide/mouse or were injected with the saline vehicle (Saline Vehicle). Two hours later, blood was collected from the retroorbital sinus under mild anesthesia with Isofluorine. Plasma was separated and HDL was isolated by FPLC. HDL inflammatory/anti-inflammatory properties were then determined. Cultures of human aortic endothelial cells received medium alone (No Addition), standard normal human LDL at 100 μgm/mL cholesterol without (LDL) or together with standard control human HDL (LDL+Control HDL) at 50 μgm/mL cholesterol, or standard control human LDL at 100 μgm/mL cholesterol with mouse HDL at 50 μgm/mL cholesterol obtained from mice that received the tetrapeptides or the saline vehicle (LDL+HDL from mice injected intraperitoneally). The cultures were incubated for 8 hrs. The supernatants were then assayed for monocyte chemotactic activity. The values are mean±SD of the number of migrated monocytes in 9 high power fields.
  • FIG. 11 shows that SEQ ID NO:258 from Table 4 (designated S-11 in the Figure) converts pro-inflammatory HDL from apoE null mice to anti-inflammatory HDL better than SEQ ID NO:254 and SEQ ID NO:282 (designated S-7 and S-35, respectively in the Figure). Two-month-old female apo E null mice (n=4 per treatment) fasted for 18 hrs, were injected intraperitoneally with S-7 or S-11 or S-35, at 20 μgm peptide/mouse or were injected with the saline vehicle (Saline Vehicle). Two hours later, blood was collected from the retroorbital sinus under mild anesthesia with Isofluorine. Plasma was separated and LDL and HDL were isolated by FPLC. HDL inflammatory/anti-inflammatory properties were then determined. Cultures of human aortic endothelial cells received medium alone (No Addition/Assay Controls), standard normal human LDL at 100 μgm/mL cholesterol without (LDL/Assay Controls) or together with standard control human HDL (+Control HDL/Assay Controls) at 50 μgm/mL cholesterol, or mouse LDL at 100 μgm/mL cholesterol with mouse HDL at 50 μgm/mL cholesterol obtained from mice that received S-7, or S-11 or S-35 (LDL+S-7 HDL. LDL+S-11 HDL, LDL+S-35 HDL, respectively) or the saline vehicle (LDL+Saline HDL)). The cultures were incubated for 8 hrs. The supernatants were then assayed for monocyte chemotactic activity. The values are mean±SD of the number of migrated monocytes in 9 high power fields. *p<0.001.
  • FIG. 12. The LDL from the FPLC fractions of the mice described in Figure 11 was added to the cells at 100 μg/ml. After 8 hours the supernatants were assayed for monocyte chemotactic activity. Assay Controls are as described in FIG. 11. Saline LDL, LDL from mice injected with the saline vehicle; S-7 LDL, LDL from mice injected with SEQ ID NO:254 from Table 4 as described in FIG. 11; S-11 LDL, LDL from mice injected with SEQ ID NO:258 from Table 4 as described in FIG. 11; S-35, LDL from mice injected with SEQ ID NO:282 as described in FIG. 9. # p<0.001.
  • FIG. 13 shows serum Amyloid A (SAA) plasma levels after injection of peptides. SAA levels in plasma were measured 24 hours after injection of the peptides described in FIGS. 11 and 12. *p<0.001.
  • FIG. 14 shows that SEQ ID NO:258 from Table 4 when synthesized from all L-amino acids and given orally converts pro-inflammatory HDL from apoE null mice to anti-inflammatory HDL. Female, 3 month old apoE null mice, (n=4), were given 200 micrograms in water of the peptide described as SEQ ID NO:258 from Table 4, which was synthesized from all L-amino acids (designated S-11 in the figure). The peptide or water without peptide was administered by stomach tube and the mice were bled 4 hours later. A second group of four mice were given access to standard mouse chow in powdered form and containing 200 micrograms of the S-11, which was synthesized from all L-amino acids and added per1.0 gram of powdered mouse chow in a total of 4 grams of powdered mouse chow containing a total of 800 micrograms of the peptide for the cage of four mice or they were given the same powdered mouse chow without peptide. The chow was available to the mice overnight and by morning the chow was consumed and the mice were bled. Plasma was separated and HDL was isolated by FPLC. HDL inflammatory/anti-inflammatory properties were then determined. Cultures of human aortic endothelial cells received medium alone (No Addition/Assay Controls), standard normal human LDL at 100 μgm/mL cholesterol without (LDL/Assay Controls) or together with standard control human HDL (LDL+Cont.HDUAssay Controls) at 50 μgm/mL cholesterol, or control human LDL at 100 μgm/mL cholesterol with mouse HDL at 50 μgm/mL cholesterol obtained from mice that received no peptide (LDL+No Peptide HDL) or L-S-11 (LDL+L-S-11 HDL) by stomach tube (By gastric gavage) or in the mouse chow (Powdered diet). The cultures were incubated for 8 hrs. The supernatants were then assayed for monocyte chemotactic activity. The values are mean±SD of the number of migrated monocytes in 9 high power fields. p<0.001.
  • FIG. 15 shows that L-S-11, when synthesized from all L-amino acids and given orally increased plasma paraoxonase activity. The plasma from the mice described in FIG. 14 was assayed for paraoxonase activity (PON Activity, which is shown in the figure as Units per 500 μl of plasma). No peptide, mice that received water or food alone without peptide. L-S-11, mice given 200 micrograms in water or food of the peptide described as SEQ ID NO:256 from Table 4 as described in FIG. 14. P<0.001.
  • FIG. 16 shows that SEQ ID NO:238 (designated D-1) and SEQ ID NO:258 (designated D-11) from Table 4 when synthesized from all D-amino acids and given orally renders HDL anti-inflammatory in apoE null mice but SEQ ID NO:238, when synthesized from all L-amino acids (L-1) and given orally did not. Female, 3 month old apoE null mice, (n=4), were given access to standard mouse chow in powdered form and containing 0.5 milligram of each peptide added per 1.0 gram of powdered mouse chow in a total of 4 grams of powdered mouse chow containing a total of 2.0 milligrams of the peptide for the cage of four mice or they were given the same powdered mouse chow without peptide. The chow was available to the mice for 24 hrs at which time the chow was consumed and the mice were bled. Plasma was separated and HDL was isolated by FPLC. Cultures of human aortic endothelial cells received medium alone (No Addition/Assay Controls), standard normal human LDL at 100 μgm/mL cholesterol without (LDL/Assay Controls) or together with standard control human HDL (LDL+Control HDL/Assay Controls) at 50 μgm/mL cholesterol, or control human LDL at 100 μgm/mL cholesterol was added with mouse HDL at 50 μgm/mL cholesterol obtained from mice that received no peptide (LDL+No Pep. HDL), or SEQ ID NO:238 made from all L-amino acids (LDL+L-1 HDL), or SEQ ID NO:238 made from all D-amino acids (LDL+D-1 HDL) or SEQ ID NO:258 made from all D-amino acids (LDL+D-11 HDL). The cultures were incubated for 8 hrs. The supernatants were then assayed for monocyte chemotactic activity. The values are mean±SD of the number of migrated monocytes in 9 high power fields. *indicates p<0.01 and **indicates p<0.001.
  • FIG. 17 shows that SEQ ID NO:238 (D-1) and SEQ ID NO:258 (D-11) from Table 4 when synthesized from all D-amino acids and given orally renders HDL anti-inflammatory and reduces LDL-induced monocyte chemotactic activity in apoE null mice but SEQ ID NO:238, when synthesized from all L-amino acids and given orally, did not. Plasma from the mice described in FIG. 16 was separated and HDL and LDL were isolated by FPLC. Cultures of human aortic endothelial cells received medium alone (No Addition/Assay Controls), standard normal human LDL at 100 μgm/mL cholesterol without (LDL/Assay Controls) or together with standard control human HDL (LDL+Control HDL/Assay Controls) at 50 μgm/mL cholesterol, or autologous mouse LDL at 100 μgm/mL cholesterol alone (mLDL) or with mouse HDL at 50 μgm/mL cholesterol obtained from mice that received no peptide (mLDL+No Pep. HDL), or SEQ ID NO:238 made from all L-amino acids (mLDL+L-1 HDL), or SEQ ID NO:238 made from all D-amino acids (mLDL+D-1 HDL) or SEQ ID NO:258 made from all D-amino acids (mLDL+D-11 HDL). The cultures were incubated for 8 hrs. The supernatants were then assayed for monocyte chemotactic activity. The values are mean±SD of the number of migrated monocytes in 9 high power fields. *indicates p<0.05, **indicates p<0.01 and ***indicates p<0.001.
  • FIG. 18 shows that SEQ ID NO:258 from Table 4 synthesized from all D-amino acids (D-11), when given orally to mice, raised HDL cholesterol concentrations while giving SEQ ID NO:238 synthesized from either L- or D-amino acids (L-1 or D-1, respectively) orally did not. Plasma HDL-cholesterol concentrations from the mice that are described in FIGS. 16 and 17 were determined. No Peptide HDL, plasma HDL-cholesterol in mice that received no peptide; L-1 HDL, plasma HDL-cholesterol in mice that received SEQ ID NO:238 synthesized from L-amino acids; D-1 HDL, plasma HDL-cholesterol in mice that received SEQ ID NO:238 synthesized from D-amino acids; D-11 HDL, plasma HDL-cholesterol in mice that received SEQ ID NO:258 synthesized from D-amino acids. *indicates p<0.001.
  • FIG. 19 shows that SEQ ID NO:258 from Table 4 synthesized from all D-amino acids (D-11) when given orally to mice raised HDL paraoxonase (PON) activity while giving SEQ ID NO:238 synthesized from either L- or D-amino acids (L-1, D-1, respectively) orally did not. Paraoxonase activity in the HDL described in FIG. 18 was determined. The values are activity per 500 microliters of plasma. *indicates p<0.001.
  • FIG. 20 shows that pravastatin and D-4F act synergistically to reduce aortic lesions as determine in en face preparations in apoE null mice. Five week old female apoE null mice were given in their drinking water either no additions (water control), pravastatin 50 μg/ml, pravastatin 20 μg/ml or D-4F 2 μg/ml, or D-4F 5 μg/ml, or pravastatin (PRAVA.) 20 μg/ml together with D-4F 2 μg/ml, or pravastatin(PRAVA.) 50 μg/ml together with D-4F 5 μg/ml. After 11 weeks the mice were sacrificed and lesions determined in en face aortic preparations.
  • FIG. 21 shows that pravastatin and D-4F act synergistically to reduce aortic sinus lesions in apoE null mice. Five week old female apoE null mice were given in their drinking water either no additions (water control), pravastatin 50 μg/ml, pravastatin 20 μg/ml or D-4F 2 μg/ml, or D-4F 5 μg/ml, or pravastatin(P) 50 μg/ml together with D-4F 5 μg/ml, or pravastatin(P) 20 μg/ml together with D-4F 2 μg/ml. After 11 weeks the mice were sacrificed and aortic sinus lesions were determined.
  • FIG. 22 shows that D-4F and SEQ ID NO:242 and SEQ ID NO:258 from Table 4 dramatically reduce lipoprotein lipid hydroperoxides in apoE null mice. Fifty μg/gm of SEQ ID NO:242 (D-198 in the drawing) or SEQ ID NO:258 (D-203 in the drawing) or D-4F (the peptides were synthesized from all D-amino acids) were added to the chow of apoE null mice or the mice were continued on chow without additions (None). Eighteen hours later the mice were bled, their plasma fractionated by FPLC and the lipid hydroperoxide (LOOH) content of their low density lipoproteins (LDL) and high density lipoproteins (HDL) were determined. *indicates p<0.01.
  • FIG. 23 shows the solubility of peptides in ethyl acetate. SEQ ID NO 254: Boc-Lys(εBoc)-Glu-Arg-Ser(tBu)-OtBu; and SEQ ID NO 258: Boc-Lys(εBoc)-Arg-Glu-Ser(tBu)-OtBu. Also shown is the solubility in ethyl acetate of SEO ID NO: 250.
  • FIG. 24 SEQ ID NO:258 forms 7.5 nm particles when mixed with DMPC in an aqueous environment. To 1 mg/ml of DMPC suspension in phosphate buffered saline (PBS) was added 10% deoxycholate until the DMPC was dissolved. SEQ ID NO:258 or SEQ ID NO:254 were added (DMPC: peptide; 1:10; wt:wt) and the reaction mixture dialyzed. After dialysis the solution remained clear with SEQ ID NO:258 but was turbid after the deoxycholate was removed by dialysis in the case of SEQ ID NO:254. The figure is an electron micrograph prepared with negative staining and at 147,420× magnification. The arrows indicate SEQ ID NO:258 particles measuring 7.5 nm (they appear as small white particles).
  • FIG. 25 SEQ ID NO:258 added to DMPC in an aqueous environment forms particles with a diameter of approximately 7.5 nm (large open), and stacked lipid-peptide bilayers (large striped arrow) (small arrows pointing to the white lines in the cylindrical stack of disks) with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers (black lines between white lines in the stack of disks) of approximately 2 nm. The conditions and magnifications are the same as described in FIG. 24.
  • FIG. 26 shows that the peptide of SEQ ID NO:258added to DMPC in an aqueous environment forms stacked lipid-peptide bilayers (striped arrow) and vesicular structures of approximately 38 nm white arrows).
  • FIG. 27 shows that DMPC in an aqueous environment without SEQ ID NO:258 does not form particles with a diameter of approximately 7.5 nm, or stacked lipid-peptide bilayers, nor vesicular structures of approximately 38 nm. The DMPC vesicles shown are 12.5-14 nm. The conditions and magnifications are the same as described in FIG. 24.
  • FIG. 28 shows a molecular model of the peptide of SEQ ID NO:254 compared to the peptide of SEQ ID NO:258. Red represents oxygen, blue represents nitrogen, gray represents carbon, and white represents hydrogen molecules.
  • FIG. 29 shows a space-filling molecule model of SEQ ID NO:254 compared to SEQ ID NO:258. The arrows in this space filling molecular model identify the polar and non-polar portions of the molecules. The color code is the same as in FIG. 28.
  • FIG. 30 illustrates peptide backbones (in the bottom panels) for the orientations given in the top panels.
  • FIG. 31 shows molecular models of SEQ ID NO:254 compared to SEQ ID NO:258 identifying the Ser(tBu)-OtBu groups. The color code is as in FIG. 28.
  • FIG. 32 shows molecular models of SEQ ID NO:254 compared to SEQ ID NO 258 identifying various blocking groups. The color code is as in FIG. 28.
  • FIG. 33 shows that SEQ ID NO:258 (but not SEQ ID NO:254) renders apoE null HDL anti-inflammatory.
  • FIG. 34 shows that SEQ ID NO:258 but not SEQ ID NO:254, significantly decreases aortic root atherosclerosis in apoE null mice. The aortic root (aortic sinus) lesion score was determined in the apoE null mice described in FIG. 33. The number of mice in each group is shown (n=) at the bottom of the figure and a representative section for each group is shown at the top of the figure.
  • FIG. 35 shows that SEQ ID NO:258 but not SEQ ID NO:254 significantly decreases aortic atherosclerosis in en face preparations in apoE null mice. The percent aortic surface containing atherosclerotic lesions was determined in en face preparations in the apoE null mice described in FIG. 33. The number of mice in each group is shown (n=) at the bottom of the left panel and a representative aorta for mice fed chow alone or chow supplemented with. SEQ ID NO:258 is shown in the right panel.
  • FIG. 36 shows that SEQ ID NO:250 synthesized from all L-amino acids significantly decreases atherosclerosis. ApoE null mice (20 per group) were maintained on a chow diet (Chow) or on chow supplemented with 200 μg/gm chow of SEQ ID NO:250 (250) synthesized from all L-amino acids. After 12 weeks the mice were sacrificed and the % Aortic Surface Area with Lesions was determined in en face preparations. *p=0.012
  • DETAILED DESCRIPTION
  • This invention pertains to the discovery that synthetic peptides designed to mimic the class A amphipathic helical motif (Segrest et al. (1990) Proteins: Structure, Function, and Genetics 8: 103-117) are able to associate with phospholipids and exhibit many biological properties similar to human apo-A-I. In particular, it was a discovery of this invention that when such peptides are formulated using D amino acids, the peptides show dramatically elevated serum half-lives and, particularly when the amino and/or carboxy termini are blocked, can even be orally administered.
  • It was also a surprising discovery that these peptides can stimulate the formation and cycling of pre-beta high density lipoprotein-like particles. In addition, the peptides are capable of enhancing/synergizing the effect of statins allowing statins to be administered as significantly lower dosages or to be significantly more anti-inflammatory at any given dose. It was also discovered that the peptides described herein can inhibit and/or prevent and/or treat one or more symptoms of osteoporosis. The peptides can also increase pre-beta HDL; and/or increase HDL paroxynase activity.
  • Moreover, it was a surprising discovery of this invention that such D-form peptides retain the biological activity of the corresponding L-form peptide. In vivo animal studies using such D-form peptides showed effective oral delivery, elevated serum half-life, and the ability to mitigate or prevent/inhibit one or more symptoms of atherosclerosis.
  • It was also a surprising discovery that certain small peptides consisting of a minimum of two amino acids, or pairs of single amino acids, preferentially (but not necessarily) with one or more of the amino acids being the D-sterioisomer of the amino acid, and possessing hydrophobic domains to permit lipid protein interactions, and hydrophilic domains to permit a degree of water solubility also possess significant anti-inflammatory properties. Without being bound to a particular theory, it is believed that the peptides, or pairs of amino acids, described herein bind the “seeding molecules” required for the formation of pro-inflammatory oxidized phospholipids such as Ox-PAPC, POVPC, PGPC, and PEIPC. Since many inflammatory conditions are mediated at least in part by oxidized lipids, we believe that the peptides, or pairs of amino acids, of this invention are effective in ameliorating conditions that are known or suspected to be due to the formation of biologically active oxidized lipids. These include, but are not limited to atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, multiple sclerosis, asthma, diabetes, Alzheimer's disease, and osteoporosis. The “small peptides” typically range in length from 2 or 3 amino acids to about 15 amino acids, more preferably from about 4 amino acids to about 10 or 11 amino acids, and most preferably from about 4 to about 8 or 10 amino acids. The peptides are typically characterized by having hydrophobic terminal amino acids or terminal amino acids rendered hydrophobic by the attachment of one or more hydrophobic “protecting” groups. The internal structures of the peptides are described in more detail herein.
  • In addition, it was a surprising finding of this invention that a number of physical properties predict the ability of the small peptides (e.g., less than 10 amino acids, perferably less than 8 amino acids, more preferably from about 2 or 3 to about 5 or 6 amino acids), or pairs of amino acids, of this invention to render HDL more anti-inflammatory and to mitigate atherosclerosis and/or other pathologies characterized by an inflammatory response in a mammal. The physical properties include high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), and solubility in aqueous buffer at pH 7.0. Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, the particularly effective small peptides form particles with a diameter of approximately 7.5 nm (±0.1 nm), and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also form vesicular structures of approximately 38 nm). In certain preferred embodiments, the small peptides, or pairs of amino acids, have a molecular weight of less than about 900 Da.
  • I. Stimulating the Formation and Cycling of Pre-Beta High Density Lipoprotein-Like Particles.
  • Reverse cholesterol transport is considered to be important in preventing the build up of lipids that predisposes to atherosclerosis (Shah et al. (2001) Circulation, 103: 3047-3050.) Many have believed the lipid of consequence is cholesterol. Our laboratory has shown that the key lipids are oxidized phospholipids that initiate the inflammatory response in atherosclerosis (Navab et al. (2001) Arterioscler Thromb Vasc Biol., 21(4): 481-488; Van Lenten et al. (001) Trends Cardiovasc Med, 11: 155-161; Navab M et al. (2001) Circulation, 104: 2386-2387).
  • This inflammatory response is also likely responsible for plaque erosion or rupture that leads to heart attack and stroke. HDL-cholesterol levels are inversely correlated with risk for heart attack and stroke (Downs et al. (1998) JAMA 279: 1615-1622; Gordon et al. (1977) Am J Med., 62: 707-714; Castelli et al. (1986) JAMA, 256: 2835-2838).
  • Pre-beta HDL is generally considered to be the most active HDL fraction in promoting reverse cholesterol transport (e.g., picking up cholesterol from peripheral tissues such as arteries and carrying it to the liver for excretion into the bile; see, Fielding and Fielding (2001) Biochim Biophys Acta, 1533(3): 175-189). However, levels of pre-beta HDL can be increased because of a failure of the pre-beta HDL to be cycled into mature alpha-migrating HDL e.g., LCAT deficiency or inhibition (O'Connor et al. (1998) J Lipid Res, 39: 670-678). High levels of pre-beta HDL have been reported in coronary artery disease patients (Miida et al. (1996) Clin Chem., 42: 1992-1995).
  • Moreover, men have been found to have higher levels of pre-beta HDL than women but the risk of men for coronary heart disease is greater than for women (O'Connor et al. (1998) J Lipid Res., 39: 670-678). Thus, static measurements of pre-beta HDL levels themselves are not necessarily predictive of risk for coronary artery disease. The cycling, however, of cholesterol through pre-beta HDL into mature HDL is universally considered to be protective against atherosclerosis (Fielding and Fielding (2001) Biochim Biophys Acta, 1533(3): 175-189). Moreover, we have demonstrated that the removal of oxidized lipids from artery wall cells through this pathway protects against LDL oxidation.
  • Despite relatively low absorption rates when orally administered, the peptides of this invention (e.g., D-4F) were highly active.
  • In studies of Apo-E null mice orally administered D-4F, we determined that 20 min after absorption from the intestine, D-4F forms small pre-beta HDL-like particles that contain relatively high amounts of apoA-I and paraoxonase. Indeed, estimating the amount of apoA-I in these pre-beta HDL-like particles from Western blots and comparing the amount of apoA-I to the amount of D-4F in these particles (determined by radioactivity or LC-MRM) suggests that as D-4F is absorbed from the intestine, it acts as a catalyst causing the formation of these pre-beta HDL-like particles. This small amount of intestinally derived D-4F appears to recruit amounts of apoA-I, paraoxonase, and cholesterol into these particles that are orders of magnitude more than the amount of D-4F (see, e.g., Navab et al. (2004) Circulation, 109: r120-r125).
  • Thus, following absorption, D-4F, and other peptides, or pairs of amino acids, of this invention, rapidly recruit relatively large amounts of apoA-I and paraoxonase to form pre-beta HDL-like particles which are very likely the most potent particles for both promoting reverse cholesterol transport and for destroying biologically active oxidized lipids. We believe that the formation of these particles and their subsequent rapid incorporation into mature HDL likely explains the dramatic reduction in atherosclerosis that we observed in LDL receptor null mice on a Western diet and in apoE-null mice on a chow diet independent of changes in plasma cholesterol or HDL-cholesterol (Id.).
  • Thus, in one embodiment, this invention provides methods of stimulating the formation and cycling of pre-beta high density lipoprotein-like particles by administration of one or more peptides, or pairs of amino acids, as described herein. The peptides, or pairs of amino acids, can thereby promote lipid transport and detoxification.
  • II. Mitigation of a Symptom of Atherosclerosis.
  • We discovered that normal HDL inhibits three steps in the formation of mildly oxidized LDL. In those studies (see, copending application U.S. Ser. No. 09/541,468, filed on Mar. 31, 2000) we demonstrated that treating human LDL in vitro with apo A-I or an apo A-I mimetic peptide (37 pA) removed seeding molecules from the LDL that included HPODE and HPETE. These seeding molecules were required for cocultures of human artery wall cells to be able to oxidize LDL and for the LDL to induce the artery wall cells to produce monocyte chemotactic activity. We also demonstrated that after injection of apo A-I into mice or infusion into humans, the LDL isolated from the mice or human volunteers after injection/infusion of apo A-I was resistant to oxidation by human artery wall cells and did not induce monocyte chemotactic activity in the artery wall cell cocultures.
  • The protective function of certain peptides of this invention is illustrated in the parent applications (Ser. No. 09/645,454, filed Aug. 24, 2000, Ser. No. 09/896,841, filed Jun. 29, 2001, and WO 02/15923 (PCT/US01/26497), filed Jun. 29, 2001, see, e.g., FIGS. 1-5 in WO 02/15923. FIG. 1, panels A, B, C, and D in WO 02/15923 show the association of 14C-D-5F with blood components in an ApoE null mouse. It is also demonstrated that HDL from mice that were fed an atherogenic diet and injected with PBS failed to inhibit the oxidation of human LDL and failed to inhibit LDL-induced monocyte chemotactic activity in human artery wall coculures. In contrast, HDL from mice fed an atherogenic diet and injected daily with peptides described herein was as effective in inhibiting human LDL oxidation and preventing LDL-induced monocyte chemotactic activity in the cocultures as was normal human HDL (FIGS. 2A and 2B in WO 02/15923). In addition, LDL taken from mice fed the atherogenic diet and injected daily with PBS was more readily oxidized and more readily induced monocyte chemotactic activity than LDL taken from mice fed the same diet but injected with 20 μg daily of peptide 5F. The D peptide did not appear to be immunogenic (FIG. 4 in WO 02/15923).
  • The in vitro responses of human artery wall cells to HDL and LDL from mice fed the atherogenic diet and injected with a peptide according to this invention are consistent with the protective action shown by such peptides in vivo. Despite, similar levels of total cholesterol, LDL-cholesterol, IDL+VLDL-cholesterol, and lower HDL-cholesterol as a percent of total cholesterol, the animals fed the atherogenic diet and injected with the peptide had significantly lower lesion scores (FIG. 5 in WO 02/15923). The peptides thus prevented progression of atherosclerotic lesions in mice fed an atherogenic diet.
  • Thus, in one embodiment, this invention provides methods for ameliorating and/or preventing one or more symptoms of atherosclerosis and/or other conditions characterized by an inflammatory response.
  • III. Mitigation of a Symptom of Atheroscloerosis Associated with an Acute Inflammatory Response.
  • The peptides, or pairs of amino acids, of this invention are also useful in a number of contexts. For example, we have observed that cardiovascular complications (e.g., atherosclerosis, stroke, etc.) frequently accompany or follow the onset of an acute phase inflammatory response. Such an acute phase inflammatory response is often associated with a recurrent inflammatory disease (e.g., leprosy, tuberculosis, systemic lupus erythematosus, and rheumatoid arthritis), a viral infection (e.g., influenza), a bacterial infection, a fungal infection, an organ transplant, a wound or other trauma, an implanted prosthesis, a biofilm, and the like.
  • It was a surprising discovery of this invention that administration of one or more of the peptides described herein, can reduce or prevent the formation of oxidized phospholipids during or following an acute phase response and thereby mitigate or eliminate cardiovascular complications associated with such a condition.
  • Thus, for example, we have demonstrated that a consequence of influenza infection is the diminution in paraoxonase and platelet activating acetylhydrolase activity in the HDL. Without being bound by a particular theory, we believe that, as a result of the loss of these HDL enzymatic activities and also as a result of the association of pro-oxidant proteins with HDL during the acute phase response, HDL is no longer able to prevent LDL oxidation and was no longer able to prevent the LDL-induced production of monocyte chemotactic activity by endothelial cells.
  • We observed that in a subject injected with very low dosages of the polypeptides of this invention (e.g., 20 micrograms for mice) daily after infection with the influenza A virus paraoxonase levels did not fall and the biologically active oxidized phospholipids were not generated beyond background. This indicates that D-4F (and/or other peptides of this invention) can be administered (e.g., orally or by injection) to patients with known coronary artery disease during influenza infection or other events that can generate an acute phase inflammatory response (e.g., due to viral infection, bacterial infection, trauma, transplant, various autoimmune conditions, etc.) and thus we can prevent by this short term treatment the increased incidence of heart attack and stroke associated with pathologies that generate such inflammatory states.
  • Thus, in certain embodiments, this invention contemplates administering one or more of the peptides, or pairs of amino acids, of this invention to a subject at risk for, or incurring, an acute inflammatory response and/or at risk for or incurring a symptom of atherosclerosis.
  • Thus, for example, a person having or at risk for coronary disease may prophylactically be administered a polypeptide, or pair of amino acids, of this invention during flu season. A person (or animal) subject to a recurrent inflammatory condition, e.g., rheumatoid arthritis, various autoimmune diseases, etc., can be treated with a polypeptide of this invention to mitigate or prevent the development of atherosclerosis or stroke. A person (or animal) subject to trauma, e.g., acute injury, tissue transplant, etc. can be treated with a polypeptide of this invention to mitigate the development of atherosclerosis or stroke.
  • In certain instances such methods will entail a diagnosis of the occurrence or risk of an acute inflammatory response. The acute inflammatory response typically involves alterations in metabolism and gene regulation in the liver. It is a dynamic homeostatic process that involves all of the major systems of the body, in addition to the immune, cardiovascular and central nervous system. Normally, the acute phase response lasts only a few days; however, in cases of chronic or recurring inflammation, an aberrant continuation of some aspects of the acute phase response may contribute to the underlying tissue damage that accompanies the disease, and may also lead to further complications, for example cardiovascular diseases or protein deposition diseases such as amyloidosis.
  • An important aspect of the acute phase response is the radically altered biosynthetic profile of the liver. Under normal circumstances, the liver synthesizes a characteristic range of plasma proteins at steady state concentrations. Many of these proteins have important functions and higher plasma levels of these acute phase reactants (APRs) or acute phase proteins (APPs) are required during the acute phase response following an inflammatory stimulus. Although most APRs are synthesized by hepatocytes, some are produced by other cell types, including monocytes, endothelial cells, fibroblasts and adipocytes. Most APRs are induced between 50% and several-fold over normal levels. In contrast, the major APRs can increase to 1000-fold over normal levels. This group includes serum amyloid A (SAA) and either C-reactive protein (CRP) in humans or its homologue in mice, serum amyloid P component (SAP). So-called negative APRs are decreased in plasma concentration during the acute phase response to allow an increase in the capacity of the liver to synthesize the induced APRs.
  • In certain embodiments, the acute phase response, or risk therefore is evaluated by measuring one or more APPs. Measuring such markers is well known to those of skill in the art, and commercial companies exist that provide such measurement (e.g., AGP measured by Cardiotech Services, Louisville, Ky.).
  • IV. Synergizing the Activity of Statins.
  • It was also discovered that, adding a low dosage of D-4F (1 μg/ml) to the drinking water of apoE null mice for 24 hours did not significantly improve HDL function (see, e.g., related application U.S. Ser. No. 10/423,830). In addition, adding 0.05 mg/ml of atorvastatin or pravastatin alone to the drinking water of the apoE null mice for 24 hours did not improve HDL function. However, when D-4F 1 μg/ml was added to the drinking water together with 0.05 mg/ml of atorvastatin or pravastatin there was a significant improvement in HDL function). Indeed the pro-inflammatory apoE null HDL became as anti-inflammatory as 350 μg/ml of normal human HDL (h, HDL see, e.g., related application U.S. Ser. No. 10/423,830).
  • Thus, doses of D-4F alone, or statins alone, which by themselves had no effect on HDL function when given together acted synergistically. When D-4F and a statin were given together to apo E null mice, their pro-inflammatory HDL at 50 μg/ml of HDL-cholesterol became as effective as normal human HDL at 350 μg/ml of HDL-cholesterol in preventing the inflammatory response induced by the action of HPODE oxidizing PAPC in cocultures of human artery wall cells.
  • Thus, in certain embodiments this invention provides methods for enhancing the activity of statins. The methods generally involve administering one or more peptides, or pairs of amino acids, as described herein concurrently with one or more statins. The D-4F or other similar peptides as described herein achieve synergistic action between the statin and the orally peptide(s) to ameliorate atherosclerosis. In this context statins can be administered at significantly lower dosages thereby avoiding various harmful side effects (e.g., muscle wasting) associated with high dosage statin use and/or the anti-inflammatory properties of statins at any given dose are significantly enhanced.
  • V. Inhibiting/Treating Osteoporosis.7
  • Vascular calcification and osteoporosis often co-exist in the same subjects (Ouchi et al. (1993) Ann NY Acad Sci., 676: 297-307; Boukhris and Becker ('1972) JAMA, 219: 1307-1311; Banks et al. (1994) Eur J Clin Invest., 24: 813-817; Laroche et al. (1994) Clin Rheumatol., 13: 611-614; Broulik and Kapitola (1993) Endocr Regul., 27: 57-60; Frye et al. (1992) Bone Mine., 19: 185-194; Barengolts et al. (1998) Calcif Tissue Int., 62: 209-213; Burnett and Vasikaran (2002) Ann Clin Biochem., 39: 203-210. Parhami et al. (1997) Arterioscl Thromb Vasc Biol., 17: 680-687, demonstrated that mildly oxidized LDL (MM-LDL) and the biologically active lipids in MM-LDL [i.e. oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine) (Ox-PAPC)], as well as the isoprostane, 8-iso prostaglandin E2, but not the unoxidized phospholipid(PAPC) or isoprostane 8-iso progstaglandin F induced alkaline phosphatase activity and osteoblastic differentiation of calcifying vascular cells (CVCs) in vitro, but inhibited the differentiation of MC3T3-E1 bone cells.
  • The osteon resembles the artery wall in that the osteon is centered on an endothelial cell-lined lumen surrounded by a subendothelial space containing matrix and fibroblast-like cells, which is in turn surrounded by preosteoblasts and osteoblasts occupying a position analogous to smooth muscle cells in the artery wall (Id.). Trabecular bone osteoblasts also interface with bone marrow subendothelial spaces (Id.). Parhami et al. postulated that lipoproteins could cross the endothelium of bone arteries and be deposited in the subendothelial space where they could undergo oxidation as in coronary arteries (Id.). Based on their in vitro data they predicted that LDL oxidation in the subendothelial space of bone arteries and in bone marrow would lead to reduced osteoblastic differentiation and mineralization which would contribute to osteoporosis (Id.). Their hypothesis further predicted that LDL levels would be positively correlated with osteoporosis as they are with coronary calcification (Pohle et al. (2001) Circulation, 104: 1927-1932), but HDL levels would be negatively correlated with osteoporosis (Parhami et al. (1997) Arterioscl Thromb Vasc Biol., 17: 680-687).
  • In vitro, the osteoblastic differentiation of the marrow stromal cell line M2-10B4 was inhibited by MM-LDL but not native LDL (Parhami et al. (1999) J Bone Miner Res., 14: 2067-2078). When marrow stromal cells from atherosclerosis susceptible C57BL/6 (BL6) mice fed a low fat chow diet were cultured there was robust osteogenic differentiation (Id.). In contrast, when the marrow stromal cells taken from the mice after a high fat, atherogenic diet were cultured they did not undergo osteogenic differentiation (Id.). This observation is particularly important since it provides a possible explanation for the decreased osteogenic potential of marrow stromal cells in the development of osteoporosis (Nuttall and Gimble (2000) Bone, 27: 177-184). In vivo the decrease in osteogenic potential is accompanied by an increase in adipogenesis in osteoporotic bone (Id.).
  • It was found that adding D-4F to the drinking water of apoE null mice for 6 weeks dramatically increased trabecular bone mineral density and it is believed that the other peptides of this invention will act similarly.
  • Our data indicate that osteoporosis can be regarded as an “atherosclerosis of bone”. It appears to be a result of the action of oxidized lipids. HDL destroys these oxidized lipids and promotes osteoblastic differentiation. Our datat indicate that administering peptide(s) of this invention to a mammal (e.g., in the drinking water of apoE null mice) dramatically increases trabecular bone in just a matter of weeks.
  • This indicates that the peptides, or pairs of amino acids, described herein are useful for mitigation one or more symptoms of osteoporosis (e.g., for inhibiting decalcification) or for inducing recalcification of osteoporotic bone. The peptides are also useful as prophylactics to prevent the onset of symptom(s) of osteoporosis in a mammal (e.g., a patient at risk for osteoporosis).
  • We believe similar mechanisms are a cause of coronary calcification, e.g., calcific aortic stenosis. Thus, in certain embodiments, this invention contemplates the use of the peptides, or pairs of amino acids, described herein to inhibit or prevent a symptom of a disease such as coronary calcification, calcific aortic stenosis, osteoporosis, and the like.
  • VI. Other Indications.
  • Without being bound to a particular theory, we also belive the peptides, or pairs of amino acids, described herein are useful, prophylactically or therapeutically, to mitigate the onset and/or more or more symptoms of a variety of other conditions including, but not limited to polymyalgia rheumatica, polyarteritis nodosa, scleroderma, lupus erythematosus, multiple sclerosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease (e.g., asthma), Alzheimers Disease, AIDS, and diabetes. Typically, the peptides will be useful in mitigation a symptom caused by or associated with an inflammatory response in these conditions.
  • VII. Peptide/Amino Acid Pair Administration.
  • The methods of this invention typically involve administering to an organism, preferably a mammal, more preferably a human one or more of the peptides, or pairs of amino acids, of this invention (or mimetics of such peptides, or pairs of amino acids). The peptide(s), or pairs of amino acids, can be administered, as described herein, according to any of a number of standard methods including, but not limited to injection, suppository, inhalation (e.g., nasal spray, oral inhalation, etc.), time-release implant, transdermal patch, and the like. In one particularly preferred embodiment, the peptide(s) are administered orally (e.g., as a syrup, capsule, powder, gelcap, or tablet).
  • The methods can involve the administration of a single peptide or pair of amino acids of this invention or the administration of two or more different peptides or or pairs of amino acids. The peptides, or pairs of amino acids, can be provided as monomers or in dimeric, oligomeric or polymeric forms. In certain embodiments, the multimeric forms may comprise associated monomers (e.g., ionically or hydrophobically linked) while certain other multimeric forms comprise covalently linked monomers (directly linked or through a linker).
  • While the invention is described with respect to use in humans, it is also suitable for animal, e.g., veterinary use. Thus preferred organisms include, but are not limited to humans, non-human primates, canines, equines, felines, porcines, ungulates, largomorphs, and the like.
  • The methods of this invention are not limited to humans or non-human animals showing one or more symptom(s) of atherosclerosis (e.g., hypertension, plaque formation and rupture, reduction in clinical events such as heart attack, angina, or stroke, high levels of plasma cholesterol, high levels of low density lipoprotein, high levels of very low density lipoprotein, or inflammatory proteins such as CRP, etc.), but are useful in a prophylactic context. Thus, the peptides of this invention, or pairs of amino acids, (or mimetics thereof) can be administered to organisms to prevent the onset/development of one or more symptoms of atherosclerosis and/or one of the other indications described herein. Particularly preferred subjects in this context are subjects showing one or more risk factors for atherosclerosis (e.g., family history, hypertension, obesity, high alcohol consumption, smoking, high blood cholesterol, high blood triglycerides, elevated blood LDL, VLDL, EDL, or low HDL, diabetes, or a family history of diabetes, high blood lipids, heart attack, angina or stroke, etc.) and/or one of the other conditions described herein.
  • In certain embodiments, the peptides, or pairs of amino acids, of this invention can also be administered to stimulate the formation and cycling of pre-beta high density lipoprotein-like particles and/or to promote reverse lipid transport and detoxification.
  • The peptides, or pairs of amino acids, are also useful for administration in conjunction with statins where they enhance (e.g., synergize) the activity of the statin at typically administered dosages and/or permit the statin(s) to be administered at lower dosages.
  • In addition, the peptides, or pairs of amino acids, can be administered to reduce or eliminate one or more symptoms of osteoporosis and/or diabetes, and/or any of the other conditions described herein, and/or to prevent/inhibit the onset of one or more symptoms of osteoporosis and/or any of the other indications described herein.
  • VIII. Certain Preferred Peptides and Their Preparation.
  • A) Class A Amphipathic Helical Peptides.
  • It was a discovery of this invention that peptides comprising a class A amphipathic helix (“class A peptides”), are capable of mitigating one or more symptoms of atherosclerosis. Class A peptides are characterized by formation of an α-helix that produces a segregation of polar and non-polar residues thereby forming a polar and a nonpolar face with the positively charged residues residing at the polar-nonpolar interface and the negatively charged residues residing at the center of the polar face (see, e.g., Anantharamaiah (1986) Meth. Enzymol, 128: 626-668). It is noted that the fourth exon of apo A-I, when folded into 3.667 residues/turn produces a class A amphipathic helical structure.
  • One particularly preferred class A peptide, designated 18A (see, e.g., Anantharamaiah (1986) Meth. Enzymol, 128: 626-668) was modified as described herein to produce peptides orally administratable and highly effective at inhibiting or preventing one or more symptoms of atherosclerosis. Without being bound by a particular theory, it is believed that the peptides of this invention may act in vivo may by picking up seeding molecule(s) that mitigate oxidation of LDL.
  • We determined that increasing the number of Phe residues on the hydrophobic face of 18A would theoretically increase lipid affinity as determined by the computation described by Palgunachari et al. (1996) Arteriosclerosis, Thrombosis, & Vascular Biology 16: 328-338. Theoretically, a systematic substitution of residues in the nonpolar face of 18A with Phe could yield six peptides. Peptides with an additional 2, 3 and 4 Phe would have theoretical lipid affinity (λ) values of 13, 14 and 15 units, respectively. However, the λ values jumped four units if the additional Phe were increased from 4 to 5 (to 19 λ units). Increasing to 6 or 7 Phe would produce a less dramatic increase (to 20 and 21 λ units, respectively). Therefore, we chose 5 additional Phe (and hence the peptides designation as 5F). In one particularly preferred embodiment, the 5F peptide was blocked in that the amino terminal residue was acetylated and the carboxyl terminal residue was amidated.
  • The new class A peptide analog, 5F, inhibited lesion development in atherosclerosis-susceptible mice. The new peptide analog, 5F, was compared with mouse apo A-I (MoA-I) for efficacy in inhibiting diet-induced atherosclerosis in these mice using peptide dosages based on the study by Levine et al. (Levine et al. (1993) Proc. Natl. Acad. Sci. USA 90:12040-12044).
  • A number of other class A peptides were also produced and showed varying, but significant degrees of efficacy in mitigating one or more symptoms of atherosclerosis. A number of such peptides are illustrated in Table 1.
    TABLE 1
    Illustrative mimetics of the amphipathic helix of
    Apo A-I for use in this invention.
    Peptide SEQ ID
    Name Amino Acid Sequence NO.
    18A    D-W-L-K-A-F-Y-D-K-V-A-E-K-L-K-E-A-F 4
    2F Ac-D-W-L-K-A-F-Y-D-K-V-A-E-K-L-K-E-A-F-NH2 5
    3F Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-L-K-E-A-F-NH2 6
    3F14 Ac-D-W-L-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 7
    4F Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 8
    5F Ac-D-W-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2 9
    6F Ac-D-W-L-K-A-F-Y-D-K-F-F-E-K-F-K-E-F-F-NH2 10
    7F Ac-D-W-F-K-A-F-Y-D-K-F-F-E-K-F-K-E-F-F-NH2 11
    Ac-D-W-L-K-A-F-Y-D-K-V-A-E-K-L-K-E-F-F-NH2 12
    Ac-D-W-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-A-F-NH2 13
    Ac-D-W-L-K-A-F-Y-D-K-V-F-E-K-L-K-E-F-F-NH2 14
    Ac-D-W-L-K-A-F-Y-D-K-V-A-E-K-F-K-E-F-F-NH2 15
    Ac-D-W-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2 16
    Ac-E-W-L-K-L-F-Y-E-K-V-L-E-K-F-K-E-A-F-NH2 17
    Ac-E-W-L-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 18
    Ac-E-W-L-K-A-F-Y-D-K-V-A-E-K-L-K-E-F-F-NH2 19
    Ac-E-W-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-A-F-NH2 20
    Ac-E-W-L-K-A-F-Y-D-K-V-F-E-K-L-K-E-F-F-NH2 21
    Ac-E-W-L-K-A-F-Y-D-K-V-A-E-K-F-K-E-F-F-NH2 22
    Ac-E-W-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2 23
            AC-A-F-Y-D-K-V-A-E-K-L-K-E-A-F-NH2 24
            Ac-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 25
            Ac-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 26
            Ac-A-F-Y-D-K-F-F-E-K-F-K-E-F-F-NH2 27
            Ac-A-F-Y-D-K-F-F-E-K-F-K-E-F-F-NH2 28
            Ac-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 29
            Ac-A-F-Y-D-K-V-A-E-K-L-K-E-F-F-NH2 30
            Ac-A-F-Y-D-K-V-F-E-K-F-K-E-A-F-NH2 31
            Ac-A-F-Y-D-K-V-F-E-K-L-K-E-F-F-NH2 32
            Ac-A-F-Y-D-K-V-A-E-K-F-K-E-F-F-NH2 33
            Ac-K-A-F-Y-D-K-V-F-E-K-F-K-E-F-NH2 34
            Ac-L-F-Y-E-K-V-L-E-K-F-K-E-A-F-NH2 35
            Ac-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 36
            Ac-A-F-Y-D-K-V-A-E-K-L-K-E-F-F-NH2 37
            Ac-A-F-Y-D-K-V-F-E-K-F-K-E-A-F-NH2 38
            Ac-A-F-Y-D-K-V-F-E-K-L-K-E-F-F-NH2 39
            Ac-A-F-Y-D-K-V-A-E-K-F-K-E-F-F-NH2 40
            Ac-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2 41
    Ac-D-W-L-K-A-L-Y-D-K-V-A-E-K-L-K-E-A-L-NH2 42
    Ac-D-W-F-K-A-F-Y-E-K-V-A-E-K-L-K-E-F-F-NH2 43
    Ac-D-W-F-K-A-F-Y-E-K-F-F-E-K-F-K-E-F-F-NH2 44
    Ac-E-W-L-K-A-L-Y-E-K-V-A-E-K-L-K-E-A-L-NH2 45
    Ac-E-W-L-K-A-F-Y-E-K-V-A-E-K-L-K-E-A-F-NH2 46
    Ac-E-W-F-K-A-F-Y-E-K-V-A-E-K-L-K-E-F-F-NH2 47
    Ac-E-W-L-K-A-F-Y-E-K-V-F-E-K-F-K-E-F-F-NH2 48
    Ac-E-W-L-K-A-F-Y-E-K-F-F-E-K-F-K-E-F-F-NH2 49
    Ac-E-W-F-K-A-F-Y-E-K-F-F-E-K-F-K-E-F-F-NH2 50
    Ac-D-F-L-K-A-W-Y-D-K-V-A-E-K-L-K-E-A-W-NH2 51
    Ac-E-F-L-K-A-W-Y-E-K-V-A-E-K-L-K-E-A-W-NH2 52
    Ac-D-F-W-K-A-W-Y-D-K-V-A-E-K-L-K-E-W-W-NH2 53
    Ac-E-F-W-K-A-W-Y-E-K-V-A-E-K-L-K-E-W-W-NH2 54
    Ac-D-K-L-K-A-F-Y-D-K-V-F-E-W-A-K-E-A-F-NH2 55
    Ac-D-K-W-K-A-V-Y-D-K-F-A-E-A-F-K-E-F-L-NH2 56
    Ac-E-K-L-K-A-F-Y-E-K-V-F-E-W-A-K-E-A-F-NH2 57
    Ac-E-K-W-K-A-V-Y-E-K-F-A-E-A-F-K-E-F-L-NH2 58
    Ac-D-W-L-K-A-F-V-D-K-F-A-E-K-F-K-E-A-Y-NH2 59
    Ac-E-K-W-K-A-V-Y-E-K-F-A-E-A-F-K-E-F-L-NH2 60
    Ac-D-W-L-K-A-F-V-Y-D-K-V-F-K-L-K-E-F-F-NH2 61
    Ac-E-W-L-K-A-F-V-Y-E-K-V-F-K-L-K-E-F-F-NH2 62
    Ac-D-W-L-R-A-F-Y-D-K-V-A-E-K-L-K-E-A-F-NH2 63
    Ac-E-W-L-R-A-F-Y-E-K-V-A-E-K-L-K-E-A-F-NH2 64
    Ac-D-W-L-K-A-F-Y-D-R-V-A-E-K-L-K-E-A-F-NH2 65
    Ac-E-W-L-K-A-F-Y-E-R-V-A-E-K-L-K-E-A-F-NH2 66
    Ac-D-W-L-K-A-F-Y-D-K-V-A-E-R-L-K-E-A-F-NH2 67
    Ac-E-W-L-K-A-F-Y-E-K-V-A-E-R-L-K-E-A-F-NH2 68
    Ac-D-W-L-K-A-F-Y-D-K-V-A-E-K-L-R-E-A-F-NH2 69
    Ac-E-W-L-K-A-F-Y-E-K-V-A-E-K-L-R-E-A-F-NH2 70
    Ac-D-W-L-K-A-F-Y-D-R-V-A-E-R-L-K-E-A-F-NH2 71
    Ac-E-W-L-K-A-F-Y-E-R-V-A-E-R-L-K-E-A-F-NH2 72
    Ac-D-W-L-R-A-F-Y-D-K-V-A-E-K-L-R-E-A-F-NH2 73
    Ac-E-W-L-R-A-F-Y-E-K-V-A-E-K-L-R-E-A-F-NH2 74
    Ac-D-W-L-R-A-F-Y-D-R-V-A-E-K-L-K-E-A-F-NH2 75
    Ac-E-W-L-R-A-F-Y-E-R-V-A-E-K-L-K-E-A-F-NH2 76
    Ac-D-W-L-K-A-F-Y-D-K-V-A-E-R-L-R-E-A-F-NH2 77
    Ac-E-W-L-K-A-F-Y-E-K-V-A-E-R-L-R-E-A-F-NH2 78
    Ac-D-W-L-R-A-F-Y-D-K-V-A-E-R-L-K-E-A-F-NH2 79
    Ac-E-W-L-R-A-F-Y-E-K-V-A-E-R-L-K-E-A-F-NH2 80
    D-W-L-K-A-F-Y-D-K-V-A-E-K-L-K-E-A-F -P- D-W- 81
    L-K-A-F-Y-D-K-V-A-E-K-L-K-E-A-F
    D-W-L-K-A-F-Y-D-K-V-A-E-K-L-K-E-F-F -P- D-W- 82
    L-K-A-F-Y-D-K-V-A-E-K-L-K-E-F-F
    D-W-F-K-A-F-Y-D-K-V-A-E-K-L-K-E-A-F -P- D-W- 83
    F-K-A-F-Y-D-K-V-A-E-K-L-K-E-A-F
    D-K-L-K-A-F-Y-D-K-V-F-E-W-A-K-E-A-F -P- D-K- 84
    L-K-A-F-Y-D-K-V-F-E-W-L-K-E-A-F
    D-K-W-K-A-V-Y-D-K-F-A-E-A-F-K-E-F-L -P- D-K- 85
    W-K-A-V-Y-D-K-F-A-E-A-F-K-E-F-L
    D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F -P- D-W- 86
    F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F
    D-W-L-K-A-F-V-Y-D-K-V-F-K-L-K-E-F-F -P- D-W- 87
    L-K-A-F-V-Y-D-K-V-F-K-L-K-E-F-F
    D-W-L-K-A-F-Y-D-K-F-A-E-K-F-K-E-F-F -P- D-W- 88
    L-K-A-F-Y-D-K-F-A-E-K-F-K-E-F-F
    Ac-E-W-F-K-A-F-Y-E-K-V-A-E-K-F-K-E-A-F-NH2 89
    Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-NH2 90
    Ac-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-NH2 91
    Ac-F-K-A-F-Y-E-K-V-A-E-K-F-K-E-NH2 92
    NMA-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-NH2 93
    NMA-F-K-A-F-Y-E-K-V-A-E-K-F-K-E-NH2 94
    NMA-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 95
    NMA-E-W-F-K-A-F-Y-E-K-V-A-E-K-F-K-E-A-F-NH2 96
    NMA-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 97
    NMA-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-NH2 98
    Ac-D-W-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2 99
    NMA-D-W-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2
     Ac-E-W-L-K-A-F-Y-E-K-V-F-E-K-F-K-E-F-F-NH2 100
    NMA-E-W-L-K-A-F-Y-E-K-V-F-E-K-F-K-E-F-F-NH2
     Ac-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2 101
    NMA-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2
     Ac-A-F-Y-E-K-V-F-E-K-F-K-E-F-F-NH2 102
    NMA-A-F-Y-E-K-V-F-E-K-F-K-E-F-F-NH2
     Ac-D-W-L-K-A-F-Y-D-K-V-F-E-K-F-NH2 103
    NMA-D-W-L-K-A-F-Y-D-K-V-F-E-K-F-NH2
    Ac-E-W-L-K-A-F-Y-E-K-V-F-E-K-F-NH2 104
    NMA-E-W-L-K-A-F-Y-E-K-V-F-E-K-F-NH2
    Ac-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-NH2 105
    NMA-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-NH2
    Ac-L-K-A-F-Y-E-K-V-F-E-K-F-K-E-NH2 106
    NMA-L-K-A-F-Y-E-K-V-F-E-K-F-K-E-NH2

    1Linkers are underlined.

    NMA is N-Methyl Anthranilyl.
  • In certain preferred embodiments, the peptides include variations of 4F (SEQ ID NO:8 in Table 1) or D-4F where one or both aspartic acids (D) are replaced by glutamic acid (E). Also contemplated are peptides (e.g., 4F or D-4F) where 1, 2, 3, or 4 amino acids are deleted from the carboxyl terminus and/or 1, 2, 3, or 4 amino acids are deleted from the carboxyl terminus and/or one or both aspartic acids (D) are replaced by glutamic acid (E). In any of the peptides described herein, the N-terminus can be blocked and labeled using a mantyl moiety (e.g., N-methylanthranilyl).
  • While various peptides of Table 1, are illustrated with an acetyl group or an N-methylanthranilyl group protecting the amino terminus and an amide group protecting the carboxyl terminus, any of these protecting groups may be eliminated and/or substituted with another protecting group as described herein. In particularly preferred embodiments, the peptides comprise one or more D-form amino acids as described herein. In certain embodiments, every amino acid (e.g., every enantiomeric amino acid) of the peptides of Table 1 is a D-form amino acid.
  • It is also noted that Table Table 1 is not fully inclusive. Using the teaching provided herein, other suitable class A amphipathic helical peptides can routinely be produced (e.g., by conservative or semi-conservative substitutions (e.g., D replaced by E), extensions, deletions, and the like). Thus, for example, one embodiment utilizes truncations of any one or more of peptides shown hwerein (e.g., peptides identified by SEQ ID Nos:5-23 and 42—in Table 1). Thus, for example, SEQ ID NO:24 illustrates a peptide comprising 14 amino acids from the C-terminus of 18A comprising one or more D amino acids, while SEQ ID NOS:25-41 illustrate other truncations.
  • Longer peptides are also suitable. Such longer peptides may entirely form a class A amphipathic helix, or the class A amphipathic helix (helices) can form one or more domains of the peptide. In addition, this invention contemplates multimeric versions of the peptides. Thus, for example, the peptides illustrated heren can be coupled together (directly or through a linker (e.g., a carbon linker, or one or more amino acids) with one or more intervening amino acids). Illustrative polymeric peptides include 18A-Pro-18A and the peptides of SEQ ID NOs:81-88, in certain embodiments comprising one or more D amino acids, more preferably with every amino acid a D amino acid as described herein and/or having one or both termini protected.
  • B) Other Class A Amphipathic Helical Peptide Mimetics of apoA-I Having Aromatic or Aliphatic Residues in the Non-Polar Face.
  • In certain embodiments, this invention also provides modified class A amphiphathic helix peptides. Certain preferred peptides incorporate one or more aromatic residues at the center of the nonpolar face, e.g., 3F, (as present in 4F), or with one or more aliphatic residues at the center of the nonpolar face, e.g., 3F. Without being bound to a particular theory, we believe the central aromatic residues on the nonpolar face of the peptide 3F, due to the presence of π electrons at the center of the nonpolar face, allow water molecules to penetrate near the hydrophobic lipid alkyl chains of the peptide-lipid complex, which in turn would enable the entry of reactive oxygen species (such as lipid hydroperoxides) shielding them from the cell surface. Similarly, we also believe the peptides with aliphatic residues at the center of the nonpolar face, e.g., 3F, will act similarly but not quite as effectively as 3F.
  • Preferred peptides will convert pro-inflammatory HDL to anti-inflammatory HDL or make anti-inflammatory HDL more anti-inflammatory, and/or decrease LDL-induced monocyte chemotactic activity generated by artery wall cells equal to or greater than D4F or other peptides shown in Table 1. Peptides showing this activity are useful in ameliorating atherosclerosis and other inflammatory conditions such as rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Alzheimer's disease, congestive heart failure, endothelial dysfunction, and viral illnesses such as influenza A and diseases such as multiple sclerosis.
    TABLE 2
    Examples of certain preferred peptides.
    Name Sequence SEQ ID NO
    (3F) Ac-DKWKAVYDKFAEAFKEFL-NH2 107
    (3F) Ac-DKLKAFYDKVFEWAKEAF-NH2 108
  • C) Smaller Peptides.
  • It was also a surprising discovery that certain small peptides consisting of a minimum of three amino acids preferentially (but not necessarily) with one or more of the amino acids being the D-sterioisomer of the amino acid, and possessing hydrophobic domains to permit lipid protein interactions, and hydrophilic domains to permit a degree of water solubility also possess significant anti-inflammatory properties. Without being bound to a particular theory, it is believed that the peptides bind the “seeding molecules” required for the formation of pro-inflammatory oxidized phospholipids such as Ox-PAPC, POVPC, PGPC, and PEIPC. Since many inflammatory conditions are mediated at least in part by oxidized lipids, we believe that the peptides of this invention are effective in ameliorating conditions that are known or suspected to be due to the formation of biologically active oxidized lipids. These include, but are not limited to atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, pulmonary disease, asthma, multiple sclerosis, Alzheime's disease, diabetes, and osteoporosis. The “small peptides” typically range in length from 3 amino acids to about 15 amino acids, more preferably from about 4 amino acids to about 10 or 11 amino acids, and most preferably from about 4 to about 8 or 10 amino acids. The peptides are typically characterized by having hydrophobic terminal amino acids or terminal amino acids rendered hydrophobic by the attachment of one or more hydrophobic “protecting” groups.
  • In certain embodiments, the peptides can be characterized by Formula I, below:
    X1-X2-X3 n-X4 I

    where, n is 0 or 1, X1 is a hydrophobic amino acid and/or bears a hydrophobic protecting group, X4 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; and when n is 0 X2 is an acidic or a basic amino acid; when n is 1: X2 and X3 are independently an acidic amino acid, a basic amino acid, an aliphatic amino acid, or an aromatic amino acid such that when X2 is an acidic amino acid; X3 is a basic amino acid, an aliphatic amino acid, or an aromatic amino acid; when X2 is a basic amino acid; X3 is an acidic amino acid, an aliphatic amino acid, or an aromatic amino acid; and when X2 is an aliphatic or aromatic amino acid, X3 is an acidic amino acid, or a basic amino acid.
  • Longer peptides (e.g., up to 10, 11, or 15 amino acids)are also contemplated within the scope of this invention. Typcially where the shorter peptides (e.g., peptides according to formula I) are characterized by an acidic, basic, aliphatic, or aromatic amino acid, the longer peptides are characterized by acidic, basic, aliphatic, or aromatic domains comprising two or more amino acids of that type.
  • 1) Functional Properties of Active Small Peptides.
  • It was a surprising finding of this invention that a number of physical properties predict the ability of small peptides (e.g., less than 10 amino acids, preferably less than 8 amino acids, more preferably from about 3 to about 5 or 6 amino acids) of this invention to render HDL more anti-inflammatory and to mitigate atherosclerosis and/or other pathologies characterized by an inflammatory response in a mammal. The physical properties include high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), and solubility in aqueous buffer at pH 7.0. Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, the particularly effective small peptides induce or participate in the formation of particles with a diameter of approximately 7.5 nm (±0.1 nm), and/or induce or participate in the formation of stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also induce or participate in the formation of vesicular structures of approximately 38 nm). In certain preferred embodiments, the small peptides have a molecular weight of less than about 900 Da.
  • Thus, in certain embodimements, this invention contemplates small peptides that ameliorate one or more symptoms of an inflammatory condition, where said peptide(s): ranges in length from about 3 to about 8 amino acids, preferably from about 3 to about 6, or 7 amino acids, and more preferably from about 3 to about 5 amino acids; are soluble in ethyl acetate at a concentration greater than about 4 mg/mL; are soluble in aqueous buffer at pH 7.0; when contacted with a phospholipid in an aqueous environment, form particles with a diameter of approximately 7.5 nm and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm; have a molecular weight less than about 900 daltons; convert pro-inflammatory HDL to anti-inflammatory HDL or make anti-inflammatory HDL more anti-inflammatory; and do not have the amino acid sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys-Arg-Asp and Ser are all L amino acids. In certain embodiments, these small peptides protect a phospholipid against oxidation by an oxidizing agent.
  • While these small peptides need not be so limited, in certain embodiments, these small peptides can include the small peptides described below.
  • 2) Tripeptides.
  • It was discovered that certain tripeptides (3 amino acid peptides) can be synthesized that show desirable properties as described herein (e.g., the ability to convert pro-inflammatory HDL to anti-inflammatory HDL, the ability to decrease LDL-induced monocyte chemotactic activity generated by artery wall cells, the ability to increase pre-beta HDL, etc.). In certain embodiments, the peptides are characterized by formula I, wherein N is zero, shown below as Formula II:
    X1-X2-X4 II

    where the end amino acids (X1 and X4) are hydrophobic either because of a hydrophobic side chain or because the side chain or the C and/or N terminus is blocked with one or more hydrophobic protecting group(s) (e.g., the N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, etc., and the C-terminus blocked with (tBu)-OtBu, etc.). In certain embodiments, the X2 amino acid is either acidic (e.g., aspartic acid, glutamic acid, etc.) or basic (e.g., histidine, arginine, lysine, etc.). The peptide can be all L-amino acids or include one or more or all D-amino acids.
  • Certain preferred tripeptides of this invention include, but are not limited to the peptides shown in Table 3.
    TABLE 3
    Examples of certain preferred tripeptides
    bearing hydrophobic blocking groups and acidic,
    basic, or histidine central amino acids.
    SEQ ID
    X1 X2 X3 X4 NO
    Boc-Lys(εBoc) Arg Ser(tBu)-OtBu 109
    Boc-Lys(εBoc) Arg Thr(tBu)-OtBu 110
    Boc-Trp Arg Ile-OtBu 111
    Boc-Trp Arg Leu-OtBu 112
    Boc-Phe Arg Ile-OtBu 113
    Boc-Phe Arg Leu-OtBu 114
    Boc-Lys(εBoc) Glu Ser(tBu)-OtBu 115
    Boc-Lys(εBoc) Glu Thr(tBu)-OtBu 116
    Boc-Lys(εBoc) Asp Ser(tBu)-OtBu 117
    Boc-Lys(εBoc) Asp Thr(tBu)-OtBu 118
    Boc-Lys(εBoc) Arg Ser(tBu)-OtBu 119
    Boc-Lys(εBoc) Arg Thr(tBu)-OtBu 120
    Boc-Leu Glu Ser(tBu)-OtBu 121
    Boc-Leu Glu Thr(tBu)-OtBu 122
    Fmoc-Trp Arg Ser(tBu)-OtBu 123
    Fmoc-Trp Asp Ser(tBu)-OtBu 124
    Fmoc-Trp Glu Ser(tBu)-OtBu 125
    Fmoc-Trp Arg Ser(tBu)-OtBu 126
    Boc-Lys(εBoc) Glu Leu-OtBu 127
    Fmoc-Leu Arg Ser(tBu)-OtBu 128
    Fmoc-Leu Asp Ser(tBu)-OtBu 129
    Fmoc-Leu Glu Ser(tBu)-OtBu 130
    Fmoc-Leu Arg Ser(tBu)-OtBu 131
    Fmoc-Leu Arg Thr(tBu)-OtBu 132
    Boc-Glu Asp Tyr(tBu)-OtBu 133
    Fmoc-Lys(εFmoc) Arg Ser(tBu)-OtBu 134
    Fmoc-Trp Arg Ile-OtBu 135
    Fmoc-Trp Arg Leu-OtBu 136
    Fmoc-Phe Arg Ile-OtBu 137
    Fmoc-Phe Arg Leu-OtBu 138
    Boc-Trp Arg Phe-OtBu 139
    Boc-Trp Arg Tyr-OtBu 140
    Fmoc-Trp Arg Phe-OtBu 141
    Fmoc-Trp Arg Tyr-OtBu 142
    Boc-Orn(δBoc) Arg Ser(tBu)-OtBu 143
    Nicotinyl Lys(εBoc) Arg Ser(tBu)-OtBu 144
    Nicotinyl Lys(εBoc) Arg Thr(tBu)-OtBu 145
    Fmoc-Leu Asp Thr(tBu)-OtBu 146
    Fmoc-Leu Glu Thr(tBu)-OtBu 147
    Fmoc-Leu Arg Thr(tBu)-OtBu 148
    Fmoc-norLeu Arg Ser(tBu)-OtBu 149
    Fmoc-norLeu Asp Ser(tBu)-OtBu 150
    Fmoc-norLeu Glu Ser(tBu)-OtBu 151
    Fmoc-Lys(εBoc) Arg Ser(tBu)-OtBu 152
    Fmoc-Lys(εBoc) Arg Thr(tBu)-OtBu 153
    Fmoc-Lys(εBoc) Glu Ser(tBu)-OtBu 154
    Fmoc-Lys(εBoc) Glu Thr(tBu)-OtBu 155
    Fmoc-Lys(εBoc) Asp Ser(tBu)-OtBu 156
    Fmoc-Lys(εBoc) Asp Thr(tBu)-OtBu 157
    Fmoc-Lys(εBoc) Glu Leu-OtBu 158
    Fmoc-Lys(εBoc) Arg Leu-OtBu 159
    Fmoc-Lys(εFmoc) Arg Thr(tBu)-OtBu 160
    Fmoc-Lys(εFmoc) Glu Ser(tBu)-OtBu 161
    Fmoc-Lys(εFmoc) Glu Thr(tBu)-OtBu 162
    Fmoc-Lys(εFmoc) Asp Ser(tBu)-OtBu 163
    Fmoc-Lys(εFmoc) Asp Thr(tBu)-OtBu 164
    Fmoc-Lys(εFmoc) Arg Ser(tBu)-OtBu 165
    Fmoc-Lys(εFmoc)) Glu Leu-OtBu 166
    Boc-Lys(εFmoc) Asp Ser(tBu)-OtBu 167
    Boc-Lys(εFmoc) Asp Thr(tBu)-OtBu 168
    Boc-Lys(εFmoc) Arg Thr(tBu)-OtBu 169
    Boc-Lys(εFmoc) Glu Leu-OtBu 170
    Boc-Orn(δFmoc) Glu Ser(tBu)-OtBu 171
    Boc-Orn(δFmoc) Asp Ser(tBu)-OtBu 172
    Boc-Orn(δFmoc) Asp Thr(tBu)-OtBu 173
    Boc-Orn(δFmoc) Arg Thr(tBu)-OtBu 174
    Boc-Orn(δFmoc) Glu Thr(tBu)-OtBu 175
    Fmoc-Trp Asp Ile-OtBu 176
    Fmoc-Trp Arg Ile-OtBu 177
    Fmoc-Trp Glu Ile-OtBu 178
    Fmoc-Trp Asp Leu-OtBu 179
    Fmoc-Trp Glu Leu-OtBu 180
    Fmoc-Phe Asp Ile-OtBu 181
    Fmoc-Phe Asp Leu-OtBu 182
    Fmoc-Phe Glu Leu-OtBu 183
    Fmoc-Trp Arg Phe-OtBu 184
    Fmoc-Trp Glu Phe-OtBu 185
    Fmoc-Trp Asp Phe-OtBu 186
    Fmoc-Trp Asp Tyr-OtBu 187
    Fmoc-Trp Arg Tyr-OtBu 188
    Fmoc-Trp Glu Tyr-OtBu 189
    Fmoc-Trp Arg Thr(tBu)-OtBu 190
    Fmoc-Trp Asp Thr(tBu)-OtBu 191
    Fmoc-Trp Glu Thr(tBu)-OtBu 192
    Boc-Phe Arg norLeu-OtBu 193
    Boc-Phe Glu norLeu-OtBu 194
    Fmoc-Phe Asp norLeu-OtBu 195
    Boc-Glu His Tyr(tBu)-OtBu 196
    Boc-Leu His Ser(tBu)-OtBu 197
    Boc-Leu His Thr(tBu)-OtBu 198
    Boc-Lys(εBoc) His Ser(tBu)-OtBu 199
    Boc-Lys(εBoc) His Thr(tBu)-OtBu 200
    Boc-Lys(εBoc) His Leu-OtBu 201
    Boc-Lys(εFmoc) His Ser(tBu)-OtBu 202
    Boc-Lys(εFmoc) His Thr(tBu)-OtBu 203
    Boc-Lys(εFmoc) His Leu-OtBu 204
    Boc-Orn(δBoc) His Ser(tBu)-OtBu 205
    Boc-Orn(δFmoc) His Thr(tBu)-OtBu 206
    Boc-Phe His Ile-OtBu 207
    Boc-Phe His Leu-OtBu 208
    Boc-Phe His norLeu-OtBu 209
    Boc-Phe Lys Leu-OtBu 210
    Boc-Trp His Ile-OtBu 211
    Boc-Trp His Leu-OtBu 212
    Boc-Trp His Phe-OtBu 213
    Boc-Trp His Tyr-OtBu 214
    Boc-Phe Lys Leu-OtBu 215
    Fmoc-Lys(εFmoc) His Ser(tBu)-OtBu 216
    Fmoc-Lys(εFmoc) His Thr(tBu)-OtBu 217
    Fmoc-Lys(εFmoc)) His Leu-OtBu 218
    Fmoc-Leu His Ser(tBu)-OtBu 219
    Fmoc-Leu His Thr(tBu)-OtBu 220
    Fmoc-Lys(εBoc) His Ser(tBu)-OtBu 221
    Fmoc-Lys(εBoc) His Thr(tBu)-OtBu 222
    Fmoc-Lys(εBoc) His Leu-OtBu 223
    Fmoc-Lys(εFmoc) His Ser(tBu)-OtBu 224
    Fmoc-Lys(εFmoc) His Thr(tBu)-OtBu 225
    Fmoc-norLeu His Ser(tBu)-OtBu 226
    Fmoc-Phe His Ile-OtBu 227
    Fmoc-Phe His Leu-OtBu 228
    Fmoc-Phe His norLeu-OtBu 229
    Fmoc-Trp His Ser(tBu)-OtBu 230
    Fmoc-Trp His Ile-OtBu 231
    Fmoc-Trp His Leu-OtBu 232
    Fmoc-Trp His Phe-OtBu 233
    Fmoc-Trp His Tyr-OtBu 234
    Fmoc-Trp His Thr(tBu)-OtBu 235
    Nicotinyl Lys(εBoc) His Ser(tBu)-OtBu 236
    Nicotinyl Lys(εBoc) His Thr(tBu)-OtBu 237
  • While the pepides of Table 3 are illustrated with particular protecting groups, it is noted that these groups may be substituted with other protecting groups as described herein and/or one or more of the shown protecting group can be eliminated.
  • 3) Small Peptides with Central Acidic and Basic Amino Acids.
  • In certain embodiments, the peptides of this invention range from four amino acids to about ten amino acids. The terminal amino acids are typically hydrophobic either because of a hydrophobic side chain or because the terminal amino acids bear one or more hydrophobic protecting groups end amino acids (X1 and X4) are hydrophobic either because of a hydrophobic side chain or because the side chain or the C and/or N terminus is blocked with one or more hydrophobic protecting group(s) (e.g., the N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, etc., and the C-terminus blocked with (tBu)-OtBu, etc.). Typically, the central portion of the peptide comprises a basic amino acid and an acidic amino acid (e.g., in a 4 mer) or a basic domain and/or an acidic domain in a longer molecule.
  • These four-mers can be represented by Formula I in which X1 and X4 are hydrophobic and/or bear hydrophobic protecting group(s) as described herein and X2 is acidic while X3 is basic or X2 is basic while X3 is acidic. The peptide can be all L-amino acids or include one or more or all D-amino acids.
  • Certain preferred of this invention include, but are not limited to the peptides shown in Table 4.
    TABLE 4
    Illustrative examples of small peptides with
    central acidic and basic amino acids.
    SEQ ID
    X1 X2 X3 X4 NO
    Boc-Lys(εBoc) Arg Asp Ser(tBu)-OtBu 238
    Boc-Lys(εBoc) Arg Asp Thr(tBu)-OtBu 239
    Boc-Trp Arg Asp Ile-OtBu 240
    Boc-Trp Arg Asp Leu-OtBu 241
    Boc-Phe Arg Asp Leu-OtBu 242
    Boc-Phe Arg Asp Ile-OtBu 243
    Boc-Phe Arg Asp norLeu-OtBu 244
    Boc-Phe Arg Glu norLeu-OtBu 245
    Boc-Phe Arg Glu Ile-OtBu 246
    Boc-Phe Asp Arg Ile-OtBu 247
    Boc-Phe Glu Arg Ile-OtBu 248
    Boc-Phe Asp Arg Leu-OtBu 249
    Boc-Phe Arg Glu Leu-OtBu 250
    Boc-Phe Glu Arg Leu-OtBu 251
    Boc-Phe Asp Arg norLeu-OtBu 252
    Boc-Phe Glu Arg norLeu-OtBu 253
    Boc-Lys(εBoc) Glu Arg Ser(tBu)-OtBu 254
    Boc-Lys(εBoc) Glu Arg Thr(tBu)-OtBu 255
    Boc-Lys(εBoc) Asp Arg Ser(tBu)-OtBu 256
    Boc-Lys(εBoc) Asp Arg Thr(tBu)-OtBu 257
    Boc-Lys(εBoc) Arg Glu Ser(tBu)-OtBu 258
    Boc-Lys(εBoc) Arg Glu Thr(tBu)-OtBu 259
    Boc-Leu Glu Arg Ser(tBu)-OtBu 260
    Boc-Leu Glu Arg Thr(tBu)-OtBu 261
    Fmoc-Trp Arg Asp Ser(tBu)-OtBu 262
    Fmoc-Trp Asp Arg Ser(tBu)-OtBu 263
    Fmoc-Trp Glu Arg Ser(tBu)-OtBu 264
    Fmoc-Trp Arg Glu Ser(tBu)-OtBu 265
    Boc-Lys(εBoc) Glu Arg Leu-OtBu 266
    Fmoc-Leu Arg Asp Ser(tBu)-OtBu 267
    Fmoc-Leu Asp Arg Ser(tBu)-OtBu 268
    Fmoc-Leu Glu Arg Ser(tBu)-OtBu 269
    Fmoc-Leu Arg Glu Ser(tBu)-OtBu 270
    Fmoc-Leu Arg Asp Thr(tBu)-OtBu 271
    Boc-Glu Asp Arg Tyr(tBu)-OtBu 272
    Fmoc-Lys(εFmoc) Arg Asp Ser(tBu)-OtBu 273
    Fmoc-Trp Arg Asp Ile-OtBu 274
    Fmoc-Trp Arg Asp Leu-OtBu 275
    Fmoc-Phe Arg Asp Ile-OtBu 276
    Fmoc-Phe Arg Asp Leu-OtBu 277
    Boc-Trp Arg Asp Phe-OtBu 278
    Boc-Trp Arg Asp Tyr-OtBu 279
    Fmoc-Trp Arg Asp Phe-OtBu 280
    Fmoc-Trp Arg Asp Tyr-OtBu 281
    Boc-Orn(δBoc) Arg Glu Ser(tBu)-OtBu 282
    Nicotinyl Lys(εBoc) Arg Asp Ser(tBu)-OtBu 283
    Nicotinyl Lys(εBoc) Arg Asp Thr(tBu)-OtBu 284
    Fmoc-Leu Asp Arg Thr(tBu)-OtBu 285
    Fmoc-Leu Glu Arg Thr(tBu)-OtBu 286
    Fmoc-Leu Arg Glu Thr(tBu)-OtBu 287
    Fmoc-norLeu Arg Asp Ser(tBu)-OtBu 288
    Fmoc-norLeu Asp Arg Ser(tBu)-OtBu 289
    Fmoc-norLeu Glu Arg Ser(tBu)-OtBu 290
    Fmoc-norLeu Arg Glu Ser(tBu)-OtBu 291
    Fmoc-Lys(εBoc) Arg Asp Ser(tBu)-OtBu 292
    Fmoc-Lys(εBoc) Arg Asp Thr(tBu)-OtBu 293
    Fmoc-Lys(εBoc) Glu Arg Ser(tBu)-OtBu 294
    Fmoc-Lys(εBoc) Glu Arg Thr(tBu)-OtBu 295
    Fmoc-Lys(εBoc) Asp Arg Ser(tBu)-OtBu 296
    Fmoc-Lys(εBoc) Asp Arg Thr(tBu)-OtBu 297
    Fmoc-Lys(εBoc) Arg Glu Ser(tBu)-OtBu 298
    Fmoc-Lys(εBoc) Arg Glu Thr(tBu)-OtBu 299
    Fmoc-Lys(εBoc) Glu Arg Leu-OtBu 300
    Fmoc-Lys(εBoc) Arg Glu Leu-OtBu 301
    Fmoc-Lys(εFmoc) Arg Asp Thr(tBu)-OtBu 302
    Fmoc-Lys(εFmoc) Glu Arg Ser(tBu)-OtBu 303
    Fmoc-Lys(εFmoc) Glu Arg Thr(tBu)-OtBu 304
    Fmoc-Lys(εFmoc) Asp Arg Ser(tBu)-OtBu 305
    Fmoc-Lys(εFmoc) Asp Arg Thr(tBu)-OtBu 306
    Fmoc-Lys(εFmoc) Arg Glu Ser(tBu)-OtBu 307
    Fmoc-Lys(εFmoc) Arg Glu Thr(tBu)-OtBu 308
    Fmoc-Lys(εFmoc)) Glu Arg Leu-OtBu 309
    Boc-Lys(εFmoc) Arg Asp Ser(tBu)-OtBu 310
    Boc-Lys(εFmoc) Arg Asp Thr(tBu)-OtBu 311
    Boc-Lys(εFmoc) Glu Arg Ser(tBu)-OtBu 312
    Boc-Lys(εFmoc) Glu Arg Thr(tBu)-OtBu 313
    Boc-Lys(εFmoc) Asp Arg Ser(tBu)-OtBu 314
    Boc-Lys(εFmoc) Asp Arg Thr(tBu)-OtBu 315
    Boc-Lys(εFmoc) Arg Glu Ser(tBu)-OtBu 316
    Boc-Lys(εFmoc) Arg Glu Thr(tBu)-OtBu 317
    Boc-Lys(εFmoc) Glu Arg Leu-OtBu 318
    Boc-Orn(δFmoc) Arg Glu Ser(tBu)-OtBu 319
    Boc-Orn(δFmoc) Glu Arg Ser(tBu)-OtBu 320
    Boc-Orn(δFmoc) Arg Asp Ser(tBu)-OtBu 321
    Boc-Orn(δFmoc) Asp Arg Ser(tBu)-OtBu 322
    Boc-Orn(δFmoc) Asp Arg Thr(tBu)-OtBu 323
    Boc-Orn(δFmoc) Arg Asp Thr(tBu)-OtBu 324
    Boc-Orn(δFmoc) Glu Arg Thr(tBu)-OtBu 325
    Boc-Orn(δFmoc) Arg Glu Thr(tBu)-OtBu 326
    Fmoc-Trp Asp Arg Ile-OtBu 327
    Fmoc-Trp Arg Glu Ile-OtBu 328
    Fmoc-Trp Glu Arg Ile-OtBu 329
    Fmoc-Trp Asp Arg Leu-OtBu 330
    Fmoc-Trp Arg Glu Leu-OtBu 331
    Fmoc-Trp Glu Arg Leu-OtBu 332
    Fmoc-Phe Asp Arg Ile-OtBu 333
    Fmoc-Phe Arg Glu Ile-OtBu 334
    Fmoc-Phe Glu Arg Ile-OtBu 335
    Fmoc-Phe Asp Arg Leu-OtBu 336
    Fmoc-Phe Arg Glu Leu-OtBu 337
    Fmoc-Phe Glu Arg Leu-OtBu 338
    Fmoc-Trp Arg Asp Phe-OtBu 339
    Fmoc-Trp Arg Glu Phe-OtBu 340
    Fmoc-Trp Glu Arg Phe-OtBu 341
    Fmoc-Trp Asp Arg Tyr-OtBu 342
    Fmoc-Trp Arg Glu Tyr-OtBu 343
    Fmoc-Trp Glu Arg Tyr-OtBu 344
    Fmoc-Trp Arg Asp Thr(tBu)-OtBu 345
    Fmoc-Trp Asp Arg Thr(tBu)-OtBu 346
    Fmoc-Trp Arg Glu Thr(tBu)-OtBu 347
    Fmoc-Trp Glu Arg Thr(tBu)-OtBu 348
    Fmoc-Phe Arg Asp norLeu-OtBu 349
    Fmoc-Phe Arg Glu norLeu-OtBu 350
    Boc-Phe Lys Asp Leu-OtBu 351
    Boc-Phe Asp Lys Leu-OtBu 352
    Boc-Phe Lys Glu Leu-OtBu 353
    Boc-Phe Glu Lys Leu-OtBu 354
    Boc-Phe Lys Asp Ile-OtBu 355
    Boc-Phe Asp Lys Ile-OtBu 356
    Boc-Phe Lys Glu Ile-OtBu 357
    Boc-Phe Glu Lys Ile-OtBu 358
    Boc-Phe Lys Asp norLeu-OtBu 359
    Boc-Phe Asp Lys norLeu-OtBu 360
    Boc-Phe Lys Glu norLeu-OtBu 361
    Boc-Phe Glu Lys norLeu-OtBu 362
    Boc-Phe His Asp Leu-OtBu 363
    Boc-Phe Asp His Leu-OtBu 364
    Boc-Phe His Glu Leu-OtBu 365
    Boc-Phe Glu His Leu-OtBu 366
    Boc-Phe His Asp Ile-OtBu 367
    Boc-Phe Asp His Ile-OtBu 368
    Boc-Phe His Glu Ile-OtBu 369
    Boc-Phe Glu His Ile-OtBu 370
    Boc-Phe His Asp norLeu-OtBu 371
    Boc-Phe Asp His norLeu-OtBu 372
    Boc-Phe His Glu norLeu-OtBu 373
    Boc-Phe Glu His norLeu-OtBu 374
    Boc-Lys(εBoc) Lys Asp Ser(tBu)-OtBu 375
    Boc-Lys(εBoc) Asp Lys Ser(tBu)-OtBu 376
    Boc-Lys(εBoc) Lys Glu Ser(tBu)-OtBu 377
    Boc-Lys(εBoc) Glu Lys Ser(tBu)-OtBu 378
    Boc-Lys(εBoc) His Asp Ser(tBu)-OtBu 379
    Boc-Lys(εBoc) Asp His Ser(tBu)-OtBu 380
    Boc-Lys(εBoc) His Glu Ser(tBu)-OtBu 381
    Boc-Lys(εBoc) Glu His Ser(tBu)-OtBu 382
  • While the pepides of Table 4 are illustrated with particular protecting groups, it is noted that these groups may be substituted with other protecting groups as described herein and/or one or more of the shown protecting group can be eliminated.
  • 4) Small Peptides Having Either an Acidic or Basic Amino Acid in the Center Together with a Central Aliphatic Amino Acid.
  • In certain embodiments, the peptides of this invention range from four amino acids to about ten amino acids. The terminal amino acids are typically hydrophobic either because of a hydrophobic side chain or because the terminal amino acids bear one or more hydrophobic protecting groups. End amino acids (X1 and X4) are hydrophobic either because of a hydrophobic side chain or because the side chain or the C and/or N terminus is blocked with one or more hydrophobic protecting group(s) (e.g., the N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, etc., and the C-terminus blocked with (tBu)-OtBu, etc.). Typically, the central portion of the peptide comprises a basic or acidic amino acid and an aliphatic amino acid (e.g., in a 4 mer) or a basic domain or an acidic domain and an aliphatic domain in a longer molecule.
  • These four-mers can be represented by Formula I in which X1 and X4 are hydrophobic and/or bear hydrophobic protecting group(s) as described herein and X2 is acidic or basic while X3 is aliphatic or X2 is aliphatic while X3 is acidic or basic. The peptide can be all L-amino acids or include one, or more, or all D-amino acids.
  • Certain preferred of this invention include, but are not limited to the peptides shown in Table 5.
    TABLE 5
    Examples of certain preferred peptides having
    either an acidic or basic amino acid in the
    center together with a central aliphatic amino
    acid.
    SEQ ID
    X1 X2 X3 X4 NO
    Fmoc-Lys(εBoc) Leu Arg Ser(tBu)-OtBu 383
    Fmoc-Lys(εBoc) Arg Leu Ser(tBu)-OtBu 384
    Fmoc-Lys(εBoc) Leu Arg Thr(tBu)-OtBu 385
    Fmoc-Lys(εBoc) Arg Leu Thr(tBu)-OtBu 386
    Fmoc-Lys(εBoc) Glu Leu Ser(tBu)-OtBu 387
    Fmoc-Lys(εBoc) Leu Glu Ser(tBu)-OtBu 388
    Fmoc-Lys(εBoc) Glu Leu Thr(tBu)-OtBu 389
    Fmoc-Lys(εBoc) Leu Glu Thr(tBu)-OtBu 390
    Fmoc-Lys(εFmoc) Leu Arg Ser(tBu)-OtBu 391
    Fmoc-Lys(εFmoc) Leu Arg Thr(tBu)-OtBu 392
    Fmoc-Lys(εFmoc) Glu Leu Ser(tBu)-OtBu 393
    Fmoc-Lys(εFmoc) Glu Leu Thr(tBu)-OtBu 394
    Boc-Lys(Fmoc) Glu Ile Thr(tBu)-OtBu 395
    Boc-Lys(εFmoc) Leu Arg Ser(tBu)-OtBu 396
    Boc-Lys(εFmoc) Leu Arg Thr(tBu)-OtBu 397
    Boc-Lys(εFmoc) Glu Leu Ser(tBu)-OtBu 398
    Boc-Lys(εFmoc) Glu Leu Thr(tBu)-OtBu 399
    Boc-Lys(εBoc) Leu Arg Ser(tBu)-OtBu 400
    Boc-Lys(εBoc) Arg Phe Thr(tBu)-OtBu 401
    Boc-Lys(εBoc) Leu Arg Thr(tBu)-OtBu 402
    Boc-Lys(εBoc) Glu Ile Thr(tBu) 403
    Boc-Lys(εBoc) Glu Val Thr(tBu) 404
    Boc-Lys(εBoc) Glu Ala Thr(tBu) 405
    Boc-Lys(εBoc) Glu Gly Thr(tBu) 406
    Boc--Lys(εBoc) Glu Leu Ser(tBu)-OtBu 407
    Boc-Lys(εBoc) Glu Leu Thr(tBu)-OtBu 408
  • While the pepides of Table 5 are illustrated with particular protecting groups, it is noted that these groups may be substituted with other protecting groups as described herein and/or one or more of the shown protecting group can be eliminated.
  • 5) Small Peptides Having Either an Acidic or Basic Amino Acid in the Center Together with a Central Aromatic Amino Acid.
  • In certain embodiments, the peptides of this invention range from four amino acids to about ten amino acids. The terminal amino acids are typically hydrophobic either because of a hydrophobic side chain or because the terminal amino acids bear one or more hydrophobic protecting groups end amino acids (X1 and X4) are hydrophobic either because of a hydrophobic side chain or because the side chain or the C and/or N terminus is blocked with one or more hydrophobic protecting group(s) (e.g., the N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, etc., and the C-terminus blocked with (tBu)-OtBu, etc.). Typically, the central portion of the peptide comprises a basic or acidic amino acid and an aromatic amino acid (e.g., in a 4 mer) or a basic domain or an acidic domain and an aromatic domain in a longer molecule.
  • These four-mers can be represented by Formula I in which X1 and X4 are hydrophobic and/or bear hydrophobic protecting group(s) as described herein and X2 is acidic or basic while X3 is aromatic or X2 is aromatic while X3 is acidic or basic. The peptide can be all L-amino acids or include one, or more, or all D-amino acids. Five-mers can be represented by a minor modification of Formula I in which X5 is inserted as shown in Table 6 and in which X5 is typically an aromatic amino acid.
  • Certain preferred of this invention include, but are not limited to the peptides shown in Table 6.
    TABLE 6
    Examples of certain preferred peptides having
    either an acidic or basic amino acid in the
    center together with a central aromatic amino
    acid.
    SEQ
    ID
    X1 X2 X3 X5 X4 NO
    Fmoc-Lys(εBoc) Arg Trp Tyr(tBu)-OtBu 409
    Fmoc-Lys(εBoc) Trp Arg Tyr(tBu)-OtBu 410
    Fmoc-Lys(εBoc) Arg Tyr Trp-OtBu 411
    Fmoc-Lys(εBoc) Tyr Arg Trp-OtBu 412
    Fmoc-Lys(εBoc) Arg Tyr Trp Thr(tBu)-OtBu 413
    Fmoc-Lys(εBoc) Arg Tyr Thr(tBu)-OtBu 414
    Fmoc-Lys(εBoc) Arg Trp Thr(tBu)-OtBu 415
    Fmoc-Lys(εFmoc) Arg Trp Tyr(tBu)-OtBu 416
    Fmoc-Lys(εFmoc) Arg Tyr Trp-OtBu 417
    Fmoc-Lys(εFmoc) Arg Tyr Trp Thr(tBu)-OtBu 418
    Fmoc-Lys(εFmoc) Arg Tyr Thr(tBu)-OtBu 419
    Fmoc-Lys(εFmoc) Arg Trp Thr(tBu)-OtBu 420
    Boc-Lys(εFmoc) Arg Trp Tyr(tBu)-OtBu 421
    Boc-Lys(εFmoc) Arg Tyr Trp-OtBu 422
    Boc-Lys(εFmoc) Arg Tyr Trp Thr(tBu)-OtBu 423
    Boc-Lys(εFmoc) Arg Tyr Thr(tBu)-OtBu 424
    Boc-Lys(εFmoc) Arg Trp Thr(tBu)-OtBu 425
    Boc-Glu Lys(εFmoc) Arg Tyr(tBu)-OtBu 426
    Boc-Lys(εBoc) Arg Trp Tyr(tBu)-OtBu 427
    Boc-Lys(εBoc) Arg Tyr Trp-OtBu 428
    Boc-Lys(εBoc) Arg Tyr Trp Thr(tBu)-OtBu 429
    Boc-Lys(εBoc) Arg Tyr Thr(tBu)-OtBu 430
    Boc-Lys(εBoc) Arg Phe Thr(tBu)-OtBu 431
    Boc-Lys(εBoc) Arg Trp Thr(tBu)-OtBu 432
  • While the pepides of Table 6 are illustrated with particular protecting groups, it is noted that these groups may be substituted with other protecting groups as described herein and/or one or more of the shown protecting group can be eliminated.
  • 6) Small Peptides Having Aromatic Amino Acids or Aromatic Amino Acids Separated by Histidine(s) at the Center.
  • In certain embodiments, the peptides of this invention are characterized by π electrons that are exposed in the center of the molecule which allow hydration of the particle and that allow the peptide particles to trap pro-inflammatory oxidized lipids such as fatty acid hydroperoxides and phospholipids that contain an oxidation product of arachidonic acid at the sn-2 position.
  • In certain embodiments, these peptides consist of a minimum of 4 amino acids and a maximum of about 10 amino acids, preferentially (but not necessarily) with one or more of the amino acids being the D-sterioisomer of the amino acid, with the end amino acids being hydrophobic either because of a hydrophobic side chain or because the terminal amino acid(s) bear one or more hydrophobic blocking group(s), (e.g., an N-terminus blocked with Boc-, Fmoc-, Nicotinyl-, and the like, and a C-terminus blocked with (tBu)-OtBu groups and the like). Instead of having an acidic or basic amino acid in the center, these peptides generally have an aromatic amino acid at the center or have aromatic amino acids separated by histidine in the center of the peptide.
  • Certain preferred of this invention include, but are not limited to the peptides shown in Table 7.
    TABLE 7
    Examples of peptides having aromatic amino
    acids in the center or aromatic amino acids or
    aromatic domains separated by one or more
    histidines.
    SEQ
    ID
    X1 X2 X3 X4 X5 NO
    Boc-Lys(εBoc) Phe Trp Phe Ser(tBu)-OtBu 433
    Boc-Lys(εBoc) Phe Trp Phe Thr(tBu)-OtBu 434
    Boc-Lys(εBoc) Phe Tyr Phe Ser(tBu)-OtBu 435
    Boc-Lys(εBoc) Phe Tyr Phe Thr(tBu)-OtBu 436
    Boc-Lys(εBoc) Phe His Phe Ser(tBu)-OtBu 437
    Boc-Lys(εBoc) Phe His Phe Thr(tBu)-OtBu 438
    Boc-Lys(εBoc) Val Phe Phe-Tyr Ser(tBu)-OtBu 439
    Nicotinyl-Lys(εBoc) Phe Trp Phe Ser(tBu)-OtBu 440
    Nicotinyl-Lys(εBoc) Phe Trp Phe Thr(tBu)-OtBu 441
    Nicotinyl-Lys(εBoc) Phe Tyr Phe Ser(tBu)-OtBu 442
    Nicotinyl-Lys(εBoc) Phe Tyr Phe Thr(tBu)-OtBu 443
    Nicotinyl-Lys(εBoc) Phe His Phe Ser(tBu)-OtBu 444
    Nicotinyl-Lys(εBoc) Phe His Phe Thr(tBu)-OtBu 445
    Boc-Leu Phe Trp Phe Thr(tBu)-OtBu 446
    Boc-Leu Phe Trp Phe Ser(tBu)-OtBu 447
  • While the pepides of Table 7 are illustrated with particular protecting groups, it is noted that these groups may be substituted with other protecting groups as described herein and/or one or more of the shown protecting group can be eliminated.
  • 7) Summary of Tripeptides and Tetrapeptides.
  • For the sake of clarity, a number of tripeptides and tetrapeptides of this invention are generally summarized below in Table 8.
    TABLE 8
    General structure of certain peptides of this invention.
    X1 X2 X3 X4
    hydrophobic side chain Acidic or hydrophobic side
    or hydrophobic Basic chain or
    protecting group(s) hydrophobic
    protecting group(s)
    hydrophobic side chain Basic Acidic hydrophobic side
    or hydrophobic chain or
    protecting group(s) hydrophobic
    protecting group(s)
    hydrophobic side chain Acidic Basic hydrophobic side
    or hydrophobic chain or
    protecting group(s) hydrophobic
    protecting group(s)
    hydrophobic side chain Acidic Aliphatic hydrophobic side
    or hydrophobic or Basic chain or
    protecting group(s) hydrophobic
    protecting group(s)
    hydrophobic side chain Aliphatic Acidic or Basic hydrophobic side
    or hydrophobic chain or
    protecting group(s) hydrophobic
    protecting group(s)
    hydrophobic side chain Acidic Aromatic hydrophobic side
    or hydrophobic or Basic chain or
    protecting group(s) hydrophobic
    protecting group(s)
    hydrophobic side chain Aromatic Acidic or Basic hydrophobic side
    or hydrophobic chain or
    protecting group(s) hydrophobic
    protecting group(s)
    hydrophobic side chain Aromatic His Aromatic hydrophobic side
    or hydrophobic chain or
    protecting group(s) hydrophobic
    protecting group(s)
  • Where longer peptides are desired, X2 and X3 can represent domains (e.g., regions of two or more amino acids of the specified type) rather than individual amino acids. Table 8. is intended to be illustrative and not limiting. Using the teaching provided herein, other suitable peptides can readily be identified.
  • 8) Paired Amino Acids and Dipeptides.
  • In certain embodiments, this invention pertains to the discovery that certain pairs of amino acids, administered in conjunction with each other or linked to form a dipeptide have one or more of the properties described herein. Thus, without being bound to a particular theory, it is believed that when the pairs of amino acids are administered in conjunction with each other, as described herein, they are capable participating in or inducing the formation of micelles in vivo.
  • Similar to the other small peptides described herein, it is belived that the pairs of peptides will associate in vivo, and demonstrate physical properties including high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), solubility in aqueous buffer at pH 7.0. Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, it is believed the pairs of amino acids induce or participate in the formation of particles with a diameter of approximately 7.5 nm (±0.1 nm), and/or induce or participate in the formation of stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also induce or participate in the formation of vesicular structures of approximately 38 nm).
  • Moreover, it is further believed that the pairs of amino acids can display one or more of the following physiologically relevant properties:
      • 1. They convert pro-inflammatory HDL to anti-inflammatory HDL or make anti-inflammatory HDL more anti-inflammatory;
      • 2. They decrease LDL-induced monocyte chemotactic activity generated by artery wall cells;
      • 3. They stimulate the formation and cycling of pre-62 HDL;
      • 4. They raise HDL cholesterol; and/or
      • 5. They increase HDL paraoxonase activity.
  • The pairs of amino acids can be administered as separate amino acids (administered sequentially or simulataneously, e.g. in a combined formulation) or they can be covalently coupled directly or through a linker (e.g. a PEG linker, a carbon linker, a branched linker, a straight chain linker, a heterocyclic linker, a linker formed of derivatized lipid, etc.). In certain embodiments, the pairs of amino acids are covalently linked through a peptide bond to form a dipeptide. In various embodiments while the dipeptides will typically comprise two amino acids each bearing an attached protecting group, this invention also contemplates dipeptides wheren only one of the amino acids bears one or more protecting groups.
  • The pairs of amino acids typically comprise amino acids where each amino acid is attached to at least one protecting group (e.g., a hydrophobic protecting group as described herein). The amino acids can be in the D or the L form. In certain embodiments, where the amino acids comprising the pairs are not attached to each other, each amino acid bears two protecting groups (e.g., such as molecules 1 and 2 in Table 9).
    TABLE 9
    Illustrative amino acid pairs of this invention.
    Amino Acid Pair/dipeptide
    1. Boc-Arg-OtBu*
    2. Boc-Glu-OtBu*
    3. Boc-Phe-Arg-OtBu**
    4. Boc-Glu-Leu-OtBu**
    5. Boc-Arg-Glu-OtBu***

    *This would typically be administered in conjunciton with a second amino acid.

    **In certain embodiments, these dipeptides would be administered in conjunction with each other.

    ***In certain embodiments, this peptide would be administered either alone or in combination with one of the other peptides described herein . . .
  • Suitable pairs of amino acids can readily be identified by providing the pair of protected amino acids and/or a dipeptide and then screening the pair of amino acids/dipeptide for one or more of the physical and/or physiological properties described above. In certain embodiments, this invention excludes pairs of amino acids and/or dipeptides comprising aspartic acid and phenylalanine. In certain embodiments, this invention excludes pairs of amino acids and/or dipeptides in which one amino acid is (−)-N-[(trans-4-isopropylcyclohexane)carbonyl]-D-phenylalanine(nateglinide).
  • In certain embodiments, the amino acids comprising the pair are independently selected from the group consisting of an acidic amino acid (e.g., aspartic acid, glutamic acid, etc.), a basic amino acid (e.g., lysine, arginine, histidine, etc.), and a non-polar amino acid (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan, methionine, etc.). In certain embodiments, where the first amino acid is acidic or basic, the second amino acid is non-polar and where the second amino acid is acidic or basic, the first amino acid is non-polar. In certain embodiments, where the first amino acid is acidic, the second amino acid is basic, and vice versa. (see, e.g., Table 10).
  • Similar combinations can be obtained by administering pairs of dipeptides. Thus, for example in certain embodiments, molecules 3 and 4 in Table 9 would be administered in conjunction with each other.
    TABLE 10
    Certain generalized pepide pairs.
    First Amino acid Second Amino acid
    1. Acidic Basic
    2. Basic Acidic
    3. Acidic Non-polar
    4. Non-polar Acidic
    5. Basic Non-polar
    6. Non-polar Basic
  • It is noted that these amino acid pairs/dipeptides are intended to be illustrative and not limiting. Using the teaching provided herein other suitable amino acid pairs/dipeptides can readily be determined.
  • D) Other Peptide Modifications.
  • It was a surprising discovery that the peptides described herein, particular when they incorporated one or more D-amino acids, they retained their activity and could also be administered orally. Moreover this oral administration resulted in relatively efficient uptake and significant serum half-life thereby providing an efficacious method of mitigating one or more symptoms of atherosclerosis or other pathologies characterized by an inflammatory process.
  • Using the teaching provided herein, one of skill can routinely modify the illustrated peptides to produce other similar peptides of this invention. For example, routine conservative or semi-conservative substitutions (e.g., E for D) can be made of the existing amino acids. The effect of various substitutions on lipid affinity of the resulting peptide can be predicted using the computational method described by Palgunachari et al. (1996) Arteriosclerosis, Thrombosis, & Vascular Biology 16: 328-338. The peptides can be lengthened or shortened as long as the class A α-helix structure is preserved. In addition, substitutions can be made to render the resulting peptide more similar to peptide(s) endogenously produced by the subject species.
  • In certain embodiments, the peptides of this invention comprise “D” forms of the peptides described in U.S. Pat. No. 4,643,988, more preferably “D” forms having one or both termini coupled to protecting groups. In certain embodiments, at least 50% of the enantiomeric amino acids are “D” form, more preferably at least 80% of the enantiomeric amino acids are “D” form, and most preferably at least 90% or even all of the enantiomeric amino acids are “D” form amino acids.
  • While, in certain embodiments, the peptides of this invention utilize naturally-occurring amino acids or D forms of naturally occurring amino acids, substitutions with non-naturally occurring amino acids (e.g., methionine sulfoxide, methionine methylsulfonium, norleucine, episilon-aminocaproic acid, 4-aminobutanoic acid, tetrahydroisoquinoline-3-carboxylic acid, 8-aminocaprylic acid, 4-aminobutyric acid, Lys(N(epsilon)-trifluoroacetyl), α-aminoisobutyric acid, and the like) are also contemplated.
  • In addition to the peptides described herein, peptidomimetics are also contemplated herein. Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed “peptide mimetics” or “peptidomimetics” (Fauchere (1986) Adv. Drug Res. 15: 29; Veber and Freidinger (1985) TINS p.392; and Evans et al. (1987) J. Med. Chem. 30: 1229) and are usually developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect.
  • Generally, peptidomimetics are structurally similar to a paradigm polypeptide (e.g, 4F, SEQ ID NO: 258 described herein), but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: —CH2NH—, —CH2S—, —CH2—CH2—, —CH═CH— (cis and trans), —COCH2—, —CH(OH)CH2—, —CH2SO—, etc. by methods known in the art and further described in the following references: Spatola (1983) p. 267 in Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, B. Weinstein, eds., Marcel Dekker, New York; Spatola (1983) Vega Data 1(3) Peptide Backbone Modifications. (general review); Morley (1980) Trends Pharm Sci pp. 463-468 (general review); Hudson et al. (1979) Int J Pept Prot Res 14:177-185 (—CH2NH—, CH2CH2—); Spatola et al. (1986) Life Sci 38:1243-1249 (—CH2—S); Hann, (1982) J Chem Soc Perkin Trans I 307-314 (—CH—CH—, cis and trans); Almquist et al. (1980) J Med Chem. 23:1392-1398 (—COCH2—); Jennings-White et al. (1982) Tetrahedron Lett. 23:2533 (—COCH2—); Szelke, M. et al., European Appln. EP 45665 (1982) CA: 97:39405 (1982) (—CH(OH)CH2—); Holladay et al. (1983) Tetrahedron Lett 24:4401-4404 (—C(OH)CH2—); and Hruby (1982) Life Sci., 31:189-199 (—CH2—S—)).
  • A particularly preferred non-peptide linkage is —CH2NH—. Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), reduced antigenicity, and others.
  • In addition, circular permutations of the peptides described herein or constrained peptides (including cyclized peptides) comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch (1992) Ann. Rev. Biochem. 61: 387); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
  • IX. Functional Assays of Peptides.
  • Certain peptides of this invention are desctribed herein by various formulas (e.g., Formula I, above) and/or by particular sequences. In certain embodiments, however, preferred peptides of this invention are characterized by one or more of the following functional properties:
      • 1. They convert pro-inflammatory HDL to anti-inflammatory HDL or make anti-inflammatory HDL more anti-inflammatory;
      • 2. They decrease LDL-induced monocyte chemotactic activity generated by artery wall cells;
      • 3. They stimulate the formation and cycling of pre-β HDL;
      • 4. They raise HDL cholesterol; and/or
      • 5. They increase HDL paraoxonase activity.
  • The specific peptides disclosed herein, and/or peptides corresponding to the various formulas described herein can readily be tested for one or more of these activities as desired.
  • Methods of screening for each of these functional properties are well known to those of skill in the art. In addition, such screens are illustrated herein in the Examples. In particular, it is noted that assays for monocyte chemotactic activity, HDL cholesterol, and HDL HDL paraoxonase activity are illustrated in PCT/US01/26497 (WO 02/15923). Assays for determining HDL inflammatory and/or anti-inflammatory properties were performed as described below.
  • A) Determination of HDL Inflammatorv/Anti-Inflammatory Properties
  • 1) Monocyte Chemotactic Activity (MCA) Assay
  • Lipoproteins, human artery wall cocultures, and monocytes were prepared and monocyte chemotactic activity (MCA) was determined as previously described (Van Lenten et al. (2002) Circulation, 106: 1127-1132). Induction of MCA by a standard control LDL was determined in the absence or presence of the subject's HDL. Values in the absence of HDL were normalized to 1.0. Values greater than 1.0 after the addition of HDL indicated pro-inflammatory HDL; values less than 1.0 indicated anti-inflammatory HDL.
  • 2) Cell-Free Assay
  • The cell-free assay was a modification of a previously published method9 using PEIPC as the fluorescence-inducing agent. Briefly, HDL was isolated by dextran sulfate method. Sigma “HDL cholesterol reagent” (Catalog No. 352-3) containing dextran sulfate and magnesium ions was dissolved in distilled water (10.0 mg/ml). Fifty microliters of dextran sulfate solution was mixed with 500 μl of the test plasma and incubated at room temperature for 5 min and subsequently centrifuged at 8,000 g for 10 min. The supernatant containing HDL was used in the experiments after cholesterol determination using a cholesterol assay kit (Cat. No. 2340-200, Thermo DMA Company, Arlington, Tex.). We have previously reported (Navab et al. (2001) J Lipid Res, 1308-1317) that HDL isolated by this method inactivates bioactive phospholipids to a similar extent as compared with HDL that has been isolated by conventional ultracentrifuge methods. To determine the inflammatory/anti-inflammatory properties of HDL samples from patients and controls, the change in fluorescence intensity as a result of the oxidation of DCFH by PEIPC in the absence or presence of the test HDL was used. DCFH-DA was dissolved in fresh methanol at 2.0 mg/ml and was incubated at room temperature and protected from light for 30 min. resulting in the release of DCFH. The assay was adapted for analyzing a large number of samples with a plate reader. Flat-bottom, black, polystyrene microtiter plates (Microfluor2, Cat. No. 14-245-176, Fisher) were utilized for this purpose. Ten μl of PEIPC solution (final concentration of 50 μg/ml), and 90 μl of HDL-containing dextran sulfate supernatant (final concentration of 10 μg/ml cholesterol), were aliquoted into microtiter plates and mixed. The plates were then incubated at 37° C. on a rotator for 1.0 hr. Ten μl of DCFH solution (0.2 mg/ml) was then added to each well, mixed and incubated for an additional 2 hrs at 37° C. with rotation. The fluorescence was subsequently determined with a plate reader (Spectra Max, Gemini XS; Molecular Devices) at an excitation wavelength of 485 nm and emission wavelength of 530 nm and cutoff of 515 nm with the photomultiplier sensitivity set at “medium”. Values for intra- and interassay variability were 5.3±1.7% and 7.1±3.2%, respectively. Values in the absence of HDL were normalized to 1.0. Values greater than 1.0 after the addition of the test HDL indicated pro-inflammatory HDL; values less than 1.0 indicated anti-inflammatory HDL.
  • 3) Other Procedures
  • Plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined by previously published methods (Scheidt-Nave et al. (2001) J Clin Endocrinol Metab., 86:2032-2042; Piguet et al. (1987) J Experiment Med., 166, 1280-1289). Plasma total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol and glucose were determined as previously described (Navab et al. (1997) J Clin Invest, 99:2005-2019) using kits (Sigma), and hs-CRP levels (Rifai et al. (1999) Clin Chem., 45:2136-2141) were determined using a sandwich enzyme immunoassay from Immunodiagnostik (ALPCO Diagnostics, Windham, N.H.). Statistical significance was determined with model I ANOVA, and significance was defined as a value of p<0.05.
  • 4) Screening Physical Properties of Small Peptides.
  • It was a surprising finding of this invention that a number of physical properties predict the ability of the small peptides (e.g., less than 10 amino acids, preferably less than 8 amino acids, more preferably from about 3 to about 5 or 6 amino acids) of this invention to render HDL more anti-inflammatory and to mitigate atherosclerosis and/or other pathologies characterized by an inflammatory response in a mammal. As explained herein, the physical properties include high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), and solubility in aqueous buffer at pH 7.0. Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, the particularly effective small peptides form particles with a diameter of approximately 7.5 nm (±0.1 nm), and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also form vesicular structures of approximately 38 nm). In certain preferred embodiments, the small peptides have a molecular weight of less than about 900 Da.
  • Virtually any small peptide can readily be screened for one or more of these properties, e.g., as described herein in Example 3. Indeed combinatorial libraries of small peptides containing greater than about 104, or 105, more preferably greater than about 106 or 107, and most preferably greater than about 108 or 109 small peptides can readily be produced using methods well known to those of skill the art. The peptide libraries can be random libraries, or, alternatively, in certain embodiments, the libraries will comprise small peptides made in accordance with one or more of the formulas provided herein.
  • The peptide libraries can then readily be screened, e.g., using high throughput screening methods for one more of the physical properties described above. Peptides that test positive in these assays are likely to have the ability to render HDL more anti-inflammatory and to mitigate atherosclerosis and/or other pathologies characterized by an inflammatory response in a mammal.
  • It is noted that the foregoing screening methods are merely illustrative and not intended to be limiting. Using the teachings provided herein, other assays for the desired functional properties of the peptides can readily be provided.
  • X. Peptide Preparation.
  • A) General Synthesis Methods.
  • The peptides used in this invention can be chemically synthesized using standard chemical peptide synthesis techniques or, particularly where the peptide does not comprise “D” amino acid residues, the peptide can readily be recombinantly expressed. Where the “D” polypeptides are recombinantly expressed, a host organism (e.g., bacteria, plant, fungal cells, etc.) can be cultured in an environment where one or more of the amino acids is provided to the organism exclusively in a D form. Recombinantly expressed peptides in such a system then incorporate those D amino acids.
  • In certain embodiments, D amino acids can be incorporated in recombinantly expressed peptides using modified amino acyl-tRNA synthetases that recognize D-amino acids.
  • In certain preferred embodiments the peptides are chemically synthesized by any of a number of fluid or solid phase peptide synthesis techniques known to those of skill in the art. Solid phase synthesis in which the C-terminal amino acid of the sequence is attached to an insoluble support followed by sequential addition of the remaining amino acids in the sequence is a preferred method for the chemical synthesis of the polypeptides of this invention. Techniques for solid phase synthesis are well known to those of skill in the art and are described, for example, by Barany and Merrifield (1963) Solid-Phase Peptide Synthesis; pp. 3-284 in The Peptides: Analysis, Synthesis, Biology. Vol. 2: Special Methods in Peptide Synthesis, Part A.; Merrifield et al. (1963) J. Am. Chem. Soc., 85: 2149-2156, and Stewart et al. (1984) Solid Phase Peptide Synthesis, 2nd ed. Pierce Chem. Co., Rockford, Ill.
  • In one embodiment, the peptides are synthesized by the solid phase peptide synthesis procedure using a benzhyderylamine resin (Beckman Bioproducts, 0.59 mmol of NH2/g of resin) as the solid support. The COOH terminal amino acid (e.g., t-butylcarbonyl-Phe) is attached to the solid support through a 4-(oxymethyl)phenacetyl group. This is a more stable linkage than the conventional benzyl ester linkage, yet the finished peptide can still be cleaved by hydrogenation. Transfer hydrogenation using formic acid as the hydrogen donor is used for this purpose. Detailed protocols used for peptide synthesis and analysis of synthesized peptides are describe in a miniprint supplement accompanying Anantharamaiah et al. (1985) J. Biol. Chem., 260(16): 10248-10255.
  • It is noted that in the chemical synthesis of peptides, particularly peptides comprising D amino acids, the synthesis usually produces a number of truncated peptides in addition to the desired full-length product. The purification process (e.g., HPLC) typically results in the loss of a significant amount of the full-length product.
  • It was a discovery of this invention that, particularly in the synthesis of a D peptide (e.g., D-4), in order to prevent loss in purifying the longest form one can dialyze and use the mixture and thereby eliminate the last HPLC purification. Such a mixture loses about 50% of the potency of the highly purified product (e.g., per wt of protein product), but the mixture contains about 6 times more peptide and thus greater total activity.
  • B) Incorporating D-Form Amino Acids.
  • D-amino acids can be incorporated at one or more positions in the peptide simply by using a D-form derivatized amino acid residue in the chemical synthesis. D-form residues for solid phase peptide synthesis are commercially available from a number of suppliers (see, e.g., Advanced Chem Tech, Louisville; Nova Biochem, San Diego; Sigma, St Louis; Bachem California Inc., Torrance, etc.). The D-form amino acids can be completely omitted or incorporated at any position in the peptide as desired. Thus, for example, in certain embodiments, the peptide can comprise a single D-amino acid, while in other embodiments, the peptide comprises at least two, generally at least three, more generally at least four, most generally at least five, preferably at least six, more preferably at least seven and most preferably at least eight D amino acids. In particularly preferred embodiments, essentially every other (enantiomeric) amino acid is a D-form amino acid. In certain embodiments at least 90%, preferably at least 90%, more preferably at least 95% of the enantiomeric amino acids are D-form amino acids. In one particularly preferred embodiment, essentially every enantiomeric amino acid is a D-form amino acid.
  • C) Solution Phase Synthesis Methods.
  • In certain embodiments, the peptides of this inventioin can readily be synthesized using solution phase methods. One such synthesis scheme is illustrated in FIGS. 1 and 2.
  • In this scheme, A,B, C and D represent amino acids in the desired peptide. X-represents a permanent α-amino protecting group. Y-represents a permanent α-carboxyl protecting group. Letters m and n represent side chain protecting groups if the N- and C-terminal amino acids possess side chain functional groups. Side chain protecting groups o and p are protecting groups that can be removed by a treatment such as catalytic transfer hydrogenation using ammonium formate as the hydrogen donor (Anantharamaiah and Sivanandaiah (1977) Chem Soc. Perkin Trans. 490: 1-5; and Babiker et al. (1978) J. Org. Chem. 44: 3442-3444) under the (neutral) conditions in which side chain protecting groups m and p and α-amino and α-carboxyl protecting groups are stable. HOBT-HBTU represents condensing reagents under which minimum reacimization is observed.
  • To the activated amino acid X-A(m) in presence of 1-hydroxybenzotriazole-2 (H-Benzotriazole-1-yl)-1,1,3,3-tetramethylammonium hexafluorophosphate (HOBT-HBTU) and a small amount of tertiary amine such diisopropylethylamine (DIEA) in DMF is added 2 equivalents of DIEA salt of H2N—B(n)—COO and stirred overnight at room temperature. The reaction is allowed to go to completion with respect to activated carboxylic acid using excess of amino acid in which α-amino is free and carboxyl is temporarily protected as DIEA salt. The reaction mixture is acidified using aqueous citric acid (10%) and extracted with ethyl acetate. In this process the free amino acid remains in citric acid. After washing ethyl acetate with water, the N-terminal protected dipeptide free acid is extracted with 5% sodium bicarbonate solution and acidified. The dipeptide free acid was extracted with ethyl acetate, the organic layer is dried (Na2SO4) and solvent evaporated to obtain the dipeptide free acid. The tripeptide is also obtained in a similar manner by reacting the dipeptide free acid with the suitably protected amino acid in which the α-amino is free and the carboxyl is temporarily protected as a DIEA salt. To obtain the tetrapeptide, the suitably carboxyl protected amino acid was condensed using HOBT-HBTU. Since the final tetrapeptide is a protected peptide, the reaction mixture after the condensation was taken in ethyl acetate and washed extensively with both aqueous bicarbonate (5%) and citric acid (5%) and then with water. These washings will remove excess of free acid and free base and the condensing reagents. The protected peptide is then reprecipitated using ethyl acetate (or ether) and petroleum ether. The protected free peptide is then subjected to catalytic transfer hydrogenation in presence of freshly prepared palladium black (Pd black) using ammonium formate as the hydrogen donor. This reaction can be carried out in almost neutral condition thus not affecting the acid sensitive side chain protecting groups. This process will remove the protecting groups on amino acids B and C. An example of this procedure is given below using the synthesis of SEQ ID NO:256.
  • It is noted that this reaction scheme is intended to be illustrative and not limiting. Using the teachings provided herein, other suitable reactions schemes will be known to those of skill in the art.
  • D) Protecting Groups.
  • In certain embodiments, the one or more R-groups on the constituent amino acids and/or the terminal amino acids are blocked with a protecting group, most preferably a hydrophobic protecting group. Without being bound by a particular theory, it was a discovery of this invention that blockage, particularly of the amino and/or carboxyl termini of the subject peptides of this invention greatly improves oral delivery and significantly increases serum half-life.
  • A wide number of protecting groups are suitable for this purpose. Such groups include, but are not limited to acetyl, amide, and alkyl groups with acetyl and alkyl groups being particularly preferred for N-terminal protection and amide groups being preferred for carboxyl terminal protection. In certain embodiments, the blocking groups can additionally act as a detectable label (e.g., N-methyl anthranilyl).
  • In certain particularly preferred embodiments, the protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl, and others. Particularly preferred carboxyl protecting groups include amides, esters, and ether-forming protecting groups. In one preferred embodiment, an acetyl group is used to protect the amino terminus and an amide group is used to protect the carboxyl terminus. These blocking groups enhance the helix-forming tendencies of the peptides. Certain particularly preferred blocking groups include alkyl groups of various lengths, e.g., groups having the formula: CH3—(CH2)n—CO— where n ranges from about 3 to about 20, preferably from about 3 to about 16, more preferably from about 3 to about 13, and most preferably from about 3 to about 10.
  • Other protecting groups include, but are not limited to N-methyl anthranilyl, Fmoc, t-butoxycarbonyl (t-BOC), 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-florenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl, Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimentyl-2,6-diaxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-clorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), Benzyloxymethyl (Bom), cyclohexyloxy (cHxO),t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), Acetyl (Ac), and Trifluoroacetyl (TFA).
  • Protecting/blocking groups are well known to those of skill as are methods of coupling such groups to the appropriate residue(s) comprising the peptides of this invention (see, e.g., Greene et al., (1991) Protective Groups in Organic Synthesis, 2nd ed., John Wiley & Sons, Inc. Somerset, N.J.). In one preferred embodiment, for example, acetylation is accomplished during the synthesis when the peptide is on the resin using acetic anhydride. Amide protection can be achieved by the selection of a proper resin for the synthesis. During the synthesis of the peptides described herein in the examples, rink amide resin was used. After the completion of the synthesis, the semipermanent protecting groups on acidic bifunctional amino acids such as Asp and Glu and basic amino acid Lys, hydroxyl of Tyr are all simultaneously removed. The peptides released from such a resin using acidic treatment comes out with the n-terminal protected as acetyl and the carboxyl protected as NH2 and with the simultaneous removal of all of the other protecting groups.
  • XI. Enhancing Peptide Uptake/Oral Availability.
  • A) Use of D-Amino Acids.
  • It was also a surprising discovery of this invention that when an all L amino acid peptide (e.g., otherwise having the sequence of the peptides of this invention) is administered in conjunction with the D-form (i.e. a peptide of this invention) the uptake of the D-form peptide is increased. Thus, in certain embodiments, this invention contemplates the use of combinations of D-form and L-form peptides in the methods of this invention. The D-form peptide and the L-form peptide can have different amino acid sequences, however, in preferred embodiments, they both have amino acid sequences of peptides described herein, and in still more preferred embodiments, they have the same amino acid sequence.
  • It was also a discovery of this invention that concatamers of the class A amphipathic helix peptides of this invention are also effective in mitigating one or more symptoms of atherosclerosis. The monomers comprising the concatamers can be coupled directly together or joined by a linker. In certain embodiments, the linker is an amino acid linker (e.g., a proline), or a peptide linker (e.g., Gly4Ser3) (SEQ ID NO:448). In certain embodiments, the concatamer is a 2 mer, more preferably a 3 mer, still more preferably a 4 mer, and most preferably 5 mer, 8 mer, 10 mer, or 15 mer.
  • B) Alternating D- and L-Amino Acids.
  • It was discovered that alternating the sterioisoforms of the amino acids at the center of the peptide will allow hydration of the particle and will better allow the peptide particles to trap pro-inflammatory oxidized lipids such as fatty acid hydroperoxides and phospholipids that contain an oxidation product of arachidonic acid at the sn-2 position.
  • Thus, in certain embodiments, the peptides described herein can be synthesized to comprise from 4 amino acids to 10-15 amino acids, preferentially (but not necessarily) with the center (non-terminal) amino acids being alternating D and L sterioisomers of the amino acids. The terminal amino acids can be hydrophobic either because of a hydrophobic side chain or because the amino acids bear hydrophobic blocking groups as described herein (e.g., an N-terminus is blocked with Boc-, Fmoc-, Nicotinyl-, and the like and the C-terminus blocked with (tBu)-OtBu and the like.
  • Examples of such peptides are illustrated in Table 11.
    TABLE 11
    Certain examples of peptides containing alter-
    nating D- and L- residues in the central
    region.
    Sequence SEQ ID NO
    Boc-Lys(εBoc)-D-Arg-L-Asp-Ser(tBu)-OtBu 449
    Boc-Lys(εBoc)-L-Arg-D-Asp-Ser(tBu)-OtBu/ 450
  • It is noted that while specific amino acid sequences are illustrated in Table 11, alternating D- and L-amino acids can be used in any of the peptides described herein.
  • C) Biotin-Derivatized Peptides.
  • In certain embodiments, any of the peptides described herein can be attached (covalently coupled directly or indirectly through a linker) to one or more biotins. The biotin interacts with the intestinal sodium-dependent multivitamin transporter and thereby facilitates uptake and bioavailability of orally administered peptides.
  • The biotin can be directly coupled or coupled through a linker or through a side chain of an amino acid by any of a number of convenient means known to those of skill in the art. In certain embodiments, the biotin is attached to the amino groups of lysine.
  • A number of biotin-coupled peptides are illustrated in Table 12.
    TABLE 12
    Examples of certain preferred peptides:
    SEQ ID
    Sequence NO
    Ac-Asp-Trp-Phe-Lys(ε-biotin)-Ala-Phe-Tyr- 451
    Asp-Lys(ε-biotin)-Val-Ala-Glu-Lys(ε-biotin)-
    Phe-Lys(ε-biotin)-Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys(ε-biotin)-Ala-Phe-Tyr- 452
    Asp-Lys(ε-biotin)-Val-Ala-Glu-Lys(ε-biotin)-
    Phe-Lys-Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys-Ala-Phe-Tyr-Asp-Lys(ε- 453
    biotin)-Val-Ala-Glu-Lys(ε-biotin)-Phe-Lys(ε-
    biotin)-Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys(ε-biotin)-Ala-Phe-Tyr- 454
    Asp-Lys-Val-Ala-Glu-Lys(ε-biotin)-Phe-Lys(ε-
    biotin)-Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys(ε-biotin)-Ala-Phe-Tyr- 455
    Asp-Lys(ε-biotin)-Val-Ala-Glu-Lys-Phe-Lys(ε-
    biotin)-Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys(ε-biotin)-Ala-Phe-Tyr- 456
    Asp-Lys-Val-Ala-Glu-Lys-Phe-Lys(ε-biotin)-
    Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys(ε-biotin)-Ala-Phe-Tyr- 457
    Asp-Lys(ε-biotin)-Val-Ala-Glu-Lys-Phe-Lys-
    Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys-Ala-Phe-Tyr-Asp-Lys-Val- 458
    Ala-Glu-Lys(ε-biotin)-Phe-Lys(ε-biotin)-Glu-
    Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys-Ala-Phe-Tyr-Asp-Lys(ε- 459
    biotin)-Val-Ala-Glu-Lys-Phe-Lys(ε-biotin)-
    Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys-Ala-Phe-Tyr-Asp-Lys(ε- 460
    biotin)-Val-Ala-Glu-Lys(ε-biotin)-Phe-Lys-
    Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys(ε-biotin)-Ala-Phe-Tyr- 461
    Asp-Lys-Val-Ala-Glu-Lys(ε-biotin)-Phe-Lys-
    Glu-Ala-Phe-NH2
    Ac-Asp-Trp-Phe-Lys(ε-biotin)-Ala-Phe-Tyr- 462
    Asp-Lys-Val-Ala-Glu-Lys-Phe-Lys-Glu-Ala-Phe-
    NH2
    Ac-Asp-Trp-Phe-Lys-Ala-Phe-Tyr-Asp-Lys(ε- 463
    biotin)-Val-Ala-Glu-Lys-Phe-Lys-Glu-Ala-Phe-
    NH2
    Ac-Asp-Trp-Phe-Lys-Ala-Phe-Tyr-Asp-Lys-Val- 464
    Ala-Glu-Lys(ε-biotin)-Phe-Lys-Glu-Ala-Phe-
    NH2
    Ac-Asp-Trp-Phe-Lys-Ala-Phe-Tyr-Asp-Lys-Val- 465
    Ala-Glu-Lys-Phe-Lys(ε-
    biotin)-Glu-Ala-Phe-NH2

    XII. Pharmaceutical Formulations.
  • In order to carry out the methods of the invention, one or more peptides, or pairs of amino acids, or peptide mimetics of this invention are administered, e.g., to an individual diagnosed as having one or more symptoms of atherosclerosis, or as being at risk for atherosclerosis. The peptides, or pairs of amino acids, or peptide mimetics can be administered in the “native” form or, if desired, in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitable pharmacologically, i.e., effective in the present method. Salts, esters, amides, prodrugs and other derivatives of the active agents may be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by March (1992) Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 4th Ed. N.Y. Wiley-Interscience.
  • For example, acid addition salts are prepared from the free base using conventional methods, that typically involve reaction with a suitable acid. Generally, the base form of the drug is dissolved in a polar organic solvent such as methanol or ethanol and the acid is added thereto. The resulting salt either precipitates or may be brought out of solution by addition of a less polar solvent. Suitable acids for preparing acid addition salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. An acid addition salt may be reconverted to the free base by treatment with a suitable base. Particularly preferred acid addition salts of the active agents herein are halide salts, such as may be prepared using hydrochloric or hydrobromic acids. Conversely, preparation of basic salts of the peptides or mimetics are prepared in a similar manner using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like. Particularly preferred basic salts include alkali metal salts, e.g., the sodium salt, and copper salts.
  • Preparation of esters typically involves functionalization of hydroxyl and/or carboxyl groups, that can be present within the molecular structure of the drug. The esters are typically acyl-substituted derivatives of free alcohol groups, i.e., moieties that are derived from carboxylic acids of the formula RCOOH where R is alky, and preferably is lower alkyl. Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • Amides and prodrugs may also be prepared using techniques known to those skilled in the art or described in the pertinent literature. For example, amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine. Prodrugs are typically prepared by covalent attachment of a moiety that results in a compound that is therapeutically inactive until modified by an individual's metabolic system.
  • The peptides, or pairs of amino acids, or mimetics identified herein are useful for parenteral, topical, oral, nasal (or otherwise inhaled), rectal, or local administration, such as by aerosol or transdermally, for prophylactic and/or therapeutic treatment of atherosclerosis and/or symptoms thereof and/or for one or more of the other indications identified herein. The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. Suitable unit dosage forms, include, but are not limited to powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectibles, implantable sustained-release formulations, lipid complexes, etc.
  • The peptides, and/or pairs of amino acids, and/or peptide mimetics of this invention are typically combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition. Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, for example, to stabilize the composition or to increase or decrease the absorption of the active agent(s). Physiologically acceptable compounds can include, for example, carbohydrates, such as glucose, sucrose, or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins, protection and uptake enhancers such as lipids, compositions that reduce the clearance or hydrolysis of the active agents, or excipients or other stabilizers and/or buffers.
  • Other physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid. One skilled in the art would appreciate that the choice of pharmaceutically acceptable carrier(s), including a physiologically acceptable compound depends, for example, on the route of administration of the active agent(s) and on the particular physio-chemical characteristics of the active agent(s).
  • The excipients are preferably sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well-known sterilization techniques.
  • In therapeutic applications, the compositions of this invention are administered to a patient suffering from one or more symptoms of atherosclerosis or at risk for atherosclerosis in an amount sufficient to cure or at least partially prevent or arrest the disease and/or its complications. An amount adequate to accomplish this is defined as a “therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the active agents of the formulations of this invention to effectively treat (ameliorate one or more symptoms) the patient.
  • The concentration of peptide, or pair of amino acids, or mimetic can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs. Concentrations, however, will typically be selected to provide dosages ranging from about 0.1 or 1 mg/kg/day to about 50 mg/kg/day and sometimes higher. Typical dosages range from about 3 mg/kg/day to about 3.5 mg/kg/day, preferably from about 3.5 mg/kg/day to about 7.2 mg/kg/day, more preferably from about 7.2 mg/kg/day to about 11.0 mg/kg/day, and most preferably from about 11.0 mg/kg/day to about 15.0 mg/kg/day. In certain preferred embodiments, dosages range from about 10 mg/kg/day to about 50 mg/kg/day. It will be appreciated that such dosages may be varied to optimize a therapeutic regimen in a particular subject or group of subjects.
  • In certain preferred embodiments, the peptides, and/or pairs of amino acids, and/or peptide mimetics of this invention are administered orally (e.g., via a tablet) or as an injectable in accordance with standard methods well known to those of skill in the art. In other preferred embodiments, the peptides, or pairs of amino acids, can also be delivered through the skin using conventional transdermal drug delivery systems, i.e., transdermal “patches” wherein the active agent(s) are typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin. In such a structure, the drug composition is typically contained in a layer, or “reservoir,” underlying an upper backing layer. It will be appreciated that the term “reservoir” in this context refers to a quantity of “active ingredient(s)” that is ultimately available for delivery to the surface of the skin. Thus, for example, the “reservoir” may include the active ingredient(s) in an adhesive on a backing layer of the patch, or in any of a variety of different matrix formulations known to those of skill in the art. The patch may contain a single reservoir, or it may contain multiple reservoirs.
  • In one embodiment, the reservoir comprises a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery. Examples of suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, polyurethanes, and the like. Alternatively, the drug-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, or it may be a liquid or hydrogel reservoir, or may take some other form. The backing layer in these laminates, which serves as the upper surface of the device, preferably functions as a primary structural element of the “patch” and provides the device with much of its flexibility. The material selected for the backing layer is preferably substantially impermeable to the active agent(s) and any other materials that are present.
  • Other preferred formulations for topical drug delivery include, but are not limited to, ointments and creams. Ointments are semisolid preparations, that are typically based on petrolatum or other petroleum derivatives. Creams containing the selected active agent are typically viscous liquid or semisolid emulsions, often either oil-in-water or water-in-oil. Cream bases are typically water-washable, and contain an oil phase, an emulsifier and an aqueous phase. The oil phase, also sometimes called the “internal” phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant. The specific ointment or cream base to be used, as will be appreciated by those skilled in the art, is one that will provide for optimum drug delivery. As with other carriers or vehicles, an ointment base should be inert, stable, nonirritating and nonsensitizing.
  • Unlike typical peptide formulations, the peptides, or pairs of amino acids, of this invention comprising D-form amino acids can be administered, even orally, without protection against proteolysis by stomach acid, etc. Nevertheless, in certain embodiments, peptide delivery can be enhanced by the use of protective excipients. This is typically accomplished either by complexing the polypeptide with a composition to render it resistant to acidic and enzymatic hydrolysis or by packaging the polypeptide in an appropriately resistant carrier such as a liposome. Means of protecting polypeptides for oral delivery are well known in the art (see, e.g., U.S. Pat. No. 5,391,377 describing lipid compositions for oral delivery of therapeutic agents).
  • A) Sustained Release Formulations.
  • Elevated serum half-life can be maintained by the use of sustained-release protein “packaging” systems. Such sustained release systems are well known to those of skill in the art. In one preferred embodiment, the ProLease biodegradable microsphere delivery system for proteins and peptides (Tracy (1998) Biotechnol. Prog. 14: 108; Johnson et al. (1996), Nature Med. 2: 795; Herbert et al. (1998), Phannaceut. Res. 15, 357) a dry powder composed of biodegradable polymeric microspheres containing the protein in a polymer matrix that can be compounded as a dry formulation with or without other agents.
  • The ProLease microsphere fabrication process was specifically designed to achieve a high protein encapsulation efficiency while maintaining protein integrity. The process consists of (i) preparation of freeze-dried protein particles from bulk protein by spray freeze-drying the drug solution with stabilizing excipients, (ii) preparation of a drug-polymer suspension followed by sonication or homogenization to reduce the drug particle size, (iii) production of frozen drug-polymer microspheres by atomization into liquid nitrogen, (iv) extraction of the polymer solvent with ethanol, and (v) filtration and vacuum drying to produce the final dry-powder product. The resulting powder contains the solid form of the protein, which is homogeneously and rigidly dispersed within porous polymer particles. The polymer most commonly used in the process, poly(lactide-co-glycolide) (PLG), is both biocompatible and biodegradable.
  • Encapsulation can be achieved at low temperatures (e.g., −40° C). During encapsulation, the protein is maintained in the solid state in the absence of water, thus minimizing water-induced conformational mobility of the protein, preventing protein degradation reactions that include water as a reactant, and avoiding organic-aqueous interfaces where proteins may undergo denaturation. A preferred process uses solvents in which most proteins are insoluble, thus yielding high encapsulation efficiencies (e.g., greater than 95%).
  • In another embodiment, one or more components of the solution can be provided as a “concentrate”, e.g., in a storage container (e.g., in a premeasured volume) ready for dilution, or in a soluble capsule ready for addition to a volume of water.
  • B) Combined Formulations.
  • In certain instances, one or more peptides, and/or pairs of amino acids, of this invention are administered in conjunction with one or more active agents (e.g., statins, beta blockers, ACE inhibitors, lipids, etc.). The two agents (e.g., peptide and statin) can be administered simultaneously or sequentially. When administered sequentially the two agents are administered so that both achieve a physiologically relevant concentration over a similar time period (e.g., so that both agents are active at some common time).
  • In certain embodiments, both agents are administered simultaneously. In such instances it can be convenient to provide both agents in a single combined formulation. This can be achieved by a variety of methods well known to those of skill in the art. For example, in a tablet formulation the tablet can comprise two layers one layer comprising, e.g., the statin(s), and the other layer comprising e.g., the peptide(s). In a time release capsule, the capsule can comprise two time release bead sets, one for the peptide(s) and one containing the statin(s).
  • The foregoing formulations and administration methods are intended to be illustrative and not limiting. It will be appreciated that, using the teaching provided herein, other suitable formulations and modes of administration can be readily devised.
  • XIII. Additional Pharmacologically Active Agents.
  • Additional pharmacologically active agents may be delivered along with the primary active agents, e.g., the peptides, or pairs of amino acids, of this invention. In one embodiment, such agents include, but are not limited to agents that reduce the risk of atherosclerotic events and/or complications thereof. Such agents include, but are not limited to beta blockers, beta blockers and thiazide diuretic combinations, statins, aspirin, ace inhibitors, ace receptor inhibitors (ARBs), and the like.
  • A) Statins.
  • It was a surprising discovery that administration of one or more peptides of this invention “concurrently” with one or more statins synergistically enhances the effect of the statin(s). That is, the statins can achieve a similar efficacy at lower dosage thereby obviating potential adverse side effects (e.g., muscle wasting) associated with these drugs and/or cause the statins to be significantly more anti-inflammatory at any given dose.
  • The major effect of the statins is to lower LDL-cholesterol levels, and they lower LDL-cholesterol more than many other types of drugs. Statins generally inhibit an enzyme, HMG-CoA reductase, which controls the rate of cholesterol production in the body. These drugs typically lower cholesterol by slowing down the production of cholesterol and by increasing the liver's ability to remove the LDL-cholesterol already in the blood.
  • The large reductions in total and LDL-cholesterol produced by these drugs appears to result in large reductions in heart attacks and heart disease deaths. Thanks to their track record in these studies and their ability to lower LDL-cholesterol, statins have become the drugs most often prescribed when a person needs a cholesterol-lowering medicine. Studies using statins have reported 20 to 60 percent lower LDL-cholesterol levels in patients on these drugs. Statins also reduce elevated triglyceride levels and produce a modest increase in HDL-cholesterol. Recently it has been appreciated that statins have anti-inflammatory properties that may not be directly related to the degree of lipid lowering achieved. For example it has been found that statins decrease the plasma levels of the inflammatory marker CRP relatively independent of changes in plasma lipid levels. This anti-inflammatory activity of statins has been found to be as or more important in predicting the reduction in clinical events induced by statins than is the degree of LDL lowering.
  • The statins are usually given in a single dose at the evening meal or at bedtime. These medications are often given in the evening to take advantage of the fact that the body makes more cholesterol at night than during the day. When combined with the peptides described herein, the combined peptide/statin treatment regimen will also typically be given in the evening.
  • Suitable statins are well known to those of skill in the art. Such statins include, but are not limited to atorvastatin (Lipitor®, Pfizer), simvastatin (Zocor®, Merck0, pravastatin (Pravachol®, Bristol-Myers Squibb®, fluvastatin (Lescol®, Novartis), lovastatin (Mevacor®, Merck), rosuvastatin (Crestor®, Astra Zeneca), and Pitavastatin (Sankyo), and the like.
  • The combined statin/peptide dosage can be routinely optimized for each patient. Typically statins show results after several weeks, with a maximum effect in 4 to 6 weeks. Prior to combined treatment with a statin and one of the peptides described herein, the physician would obtain routine tests for starting a statin including LDL-cholesterol and HDL-cholesterol levels. Additionally, the physician would also measure the anti-inflammatory properties of the patient's HDL and determine CRP levels with a high sensitivity assay. After about 4 to 6 weeks of combined treatment, the physician would typically repeat these tests and adjust the dosage of the medications to achieve maximum lipid lowering and maximum anti-inflammatory activity.
  • B) Cholesterol Absorption Inhibitors.
  • In certain embodiments, one or more peptides, and/or pairs of amino acids, of this invention are administered to a subject in conjunction with one or more cholesterol absorption inhibitors. The peptide(s) can be administered before, after, or simultaneously with the cholesterol absorption inhibitor. In the latter case, the cholesterol absorption inhibitor can be provided as a separate formulation or as a combined formulation with one or more of the peptide(s).
  • Cholesterol absorption inhibitors are well known to those of skill in the art. One important cholesterol absorption inhibitor is Ezetimibe, also known as 1-(4-fluorophenyl)-3(R)-[3-(4-fluorophenyl)-3(S)-hydroxypropyl]-4(S)-(4-hydroxyphenyl)-2-azetidinone (available from Merck). Ezetimibe reduces blood cholesterol by inhibiting the absorption of cholesterol by the small intestine.
  • C) Beta Blocers.
  • Suitable beta blockers include, but are not limited to cardioselective (selective beta 1 blockers), e.g., acebutolol (Sectral™), atenolol (Tenormin™), betaxolol (Kerlone™), bisoprolol (Zebeta™), metoprolol (Lopressor™), and the like. Suitable non-selective blockers (block beta 1 and beta 2 equally) include, but are not limited to carteolol (Cartrol™), nadolol (Corgard™), penbutolol (Levatol™), pindolol (Visken™), carvedilol, (Coreg™), propranolol (Inderal™), timolol (Blockadren™), labetalol (Normodyne™, Trandate™), and the like.
  • Suitable beta blocker thiazide diuretic combinations include, but are not limited to Lopressor HCT, ZIAC, Tenoretic, Corzide, Timolide, Inderal LA 40/25, Inderide, Normozide, and the like.
  • D) ACE Inhibitors.
  • Suitable ace inhibitors include, but are not limited to captopril (e.g., Capoten™ by Squibb), benazepril (e.g., Lotensin™ by Novartis), enalapril (e.g., Vasotec™ by Merck), fosinopril (e.g., Monopril™ by Bristol-Myers), lisinopril (e.g., Prinivil™ by Merck or Zestril™ by Astra-Zeneca), quinapril (e.g., Accupril™ by Parke-Davis), ramipril (e.g., Altace™ by Hoechst Marion Roussel, King Pharmaceuticals), imidapril, perindopril erbumine (e.g., Aceon™ by Rhone-Polenc Rorer), trandolapril (e.g., Mavik™ by Knoll Pharmaceutical), and the like. Suitable ARBS (Ace Receptor Blockers) include but are not limited to losartan (e.g., Cozaar™ by Merck), irbesartan (e.g., Avapro™ by Sanofi), candesartan (e.g., Atacand™ by Astra Merck), valsartan (e.g., Diovan™ by Novartis), and the like.
  • E) Lipid-Based Formulations.
  • In certain embodiments, the peptides, and/or pairs of amino acids, of this invention are administered in conjunction with one or more lipids. The lipids can be formulated as an active agent, and/or as an excipient to protect and/or enhance transport/uptake of the peptides, or they can be administered separately.
  • Without being bound by a particular theory, it was discovered of this invention that administration (e.g., oral administration) of certain phospholipids can significantly increase HDL/LDL ratios. In addition, it is believed that certain medium-length phospholipids are transported by a process different than that involved in general lipid transport. Thus, co-administration of certain medium-length phospholipids with the peptides of this invention confer a number of advantages: They protect the phospholipids from digestion or hydrolysis, they improve peptide uptake, and they improve HDL/LDL ratios.
  • The lipids can be formed into liposomes that encapsulate the polypeptides of this invention and/or they can be simply complexed/admixed with the polypeptides. Methods of making liposomes and encapsulating reagents are well known to those of skill in the art (see, e.g., Martin and Papahadjopoulos (1982) J. Biol. Chem., 257: 286-288; Papahadjopoulos et al. (1991) Proc. Natl. Acad. Sci. USA, 88: 11460-11464; Huang et al. (1992) Cancer Res., 52:6774-6781; Lasic et al. (1992) FEBS Lett., 312: 255-258., and the like).
  • Preferred phospholipids for use in these methods have fatty acids ranging from about 4 carbons to about 24 carbons in the sn-1 and sn-2 positions. In certain preferred embodiments, the fatty acids are saturated. In other preferred embodiments, the fatty acids can be unsaturated. Various preferred fatty acids are illustrated in Table 13.
    TABLE 13
    Preferred fatty acids in the sn-1 and/or sn-2 position of the
    preferred phospholipids for administration of D polypeptides.
    Carbon No. Common Name IUPAC Name
     3:0 Propionoyl Trianoic
     4:0 Butanoyl Tetranoic
     5:0 Pentanoyl Pentanoic
     6:0 Caproyl Hexanoic
     7:0 Heptanoyl Heptanoic
     8:0 Capryloyl Octanoic
     9:0 Nonanoyl Nonanoic
    10:0 Capryl Decanoic
    11:0 Undcanoyl Undecanoic
    12:0 Lauroyl Dodecanoic
    13:0 Tridecanoyl Tridecanoic
    14:0 Myristoyl Tetradecanoic
    15:0 Pentadecanoyl Pentadecanoic
    16:0 Palmitoyl Hexadecanoic
    17:0 Heptadecanoyl Heptadecanoic
    18:0 Stearoyl Octadecanoic
    19:0 Nonadecanoyl Nonadecanoic
    20:0 Arachidoyl Eicosanoic
    21:0 Heniecosanoyl Heniecosanoic
    22:0 Behenoyl Docosanoic
    23:0 Trucisanoyl Trocosanoic
    24:0 Lignoceroyl Tetracosanoic
    14:1 Myristoleoyl (9-cis)
    14:1 Myristelaidoyl (9-trans)
    16:1 Palmitoleoyl (9-cis)
    16:1 Palmitelaidoyl (9-trans)

    The fatty acids in these positions can be the same or different. Particularly preferred phospholipids have phosphorylcholine at the sn-3 position.
    XIV. Kits.
  • In another embodiment this invention provides kits for amelioration of one or more symptoms of atherosclerosis and/or for the prophylactic treatment of a subject (human or animal) at risk for atherosclerosis and/or for stimulating the formation and cycling of pre-beta high density lipoprotein-like particles and/or for inhibiting one or more symptoms of osteoporosis. The kits preferably comprise a container containing one or more of the peptides, and/or pairs of amino acids, and/or peptide mimetics of this invention. The peptide, and/or pairs of amino acids, and/or peptide mimetic can be provided in a unit dosage formulation (e.g., suppository, tablet, caplet, patch, etc.) and/or may be optionally combined with one or more pharmaceutically acceptable excipients.
  • The kit can, optionally, further comprise one or more other agents used in the treatment of heart disease and/or atherosclerosis. Such agents include, but are not limited to, beta blockers, vasodilators, aspirin, statins, ace inhibitors or ace receptor inhibitors (ARBs) and the like, e.g., as described above.
  • In certain preferred embodiments, the kits additionally include a statin (e.g., cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, pitavastatin, etc.) either formulated separately or in a combined formulation with the peptide(s). Typically the dosage of a statin in such a formulation can be lower than the dosage of a statin typically presecribed without the synergistic peptide.
  • In addition, the kits optionally include labeling and/or instructional materials providing directions (i.e., protocols) for the practice of the methods or use of the “therapeutics” or “prophylactics” of this invention. Preferred instructional materials describe the use of one or more polypeptides, and/or pairs of amino acids, of this invention to mitigate one or more symptoms of atherosclerosis and/or to prevent the onset or increase of one or more of such symptoms in an individual at risk for atherosclerosis and/or to stimulate the formation and cycling of pre-beta high density lipoprotein-like particles and/or to inhibit one or more symptoms of osteoporosis and/or to mitigate one or more symptoms of a pathology characterized by an inflammatory response. The instructional materials may also, optionally, teach preferred dosages/therapeutic regiment, counter indications and the like.
  • While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.
  • EXAMPLES
  • The following examples are offered to illustrate, but not to limit the claimed invention.
  • Example 1 Evaluation of Small Peptides to Mediate Symptoms of Atherosclerosis and Other Inflammatory Pathologies.
  • The apo A-I mimetic peptides described herein (see, e.g., Table 1) exhibit antiatherogenic properties similar to apo A-I in that they remove the “seeding molecules” (e.g., oxidized phospholipids such as Ox-PAPC, POVPC, PGPC, and PEIPC, etc.) necessary for artery wall cells to oxidized IDL and are similar to apo A-I in that they ameliorated atherosclerosis in mouse models.
  • The apo A-I mimetic peptides (e.g., D-4F, SEQ ID NO:8), differ from apo A-I in that they are also active in a co-incubation similar to apo J (see, e.g., U.S. Ser. No. 10/120,508 and PCT/US03/09988). These peptides generally do not have substantial sequence homology to apo A-I, but have homology in their helical structure and in their ability to bind lipids.
  • The smaller peptides described herein (see, e.g., Tables 4-7 herein) are similar to native apoA-I in that they prevent LDL oxidation and LDL-induced monocyte chemotactic activity in a pre-incubation with artery wall cells but not in a co-incubation (see, e.g., FIG. 3).
  • The peptide described in FIG. 3 was also active in vivo (FIG. 4). The tetrapeptide or D-4F (SEQ ID NO:8) were added at 5 μg/ml to the drinking water or not added to the drinking water of apoE null mice (a mouse model of human atherosclerosis). After 18 hours the mice were bled and their lipoproteins isolated by FPLC. Adding the fractions containing mature HDL or the FPLC fractions after these fractions where pre-beta HDL would be expected (particles that come off the FPLC column just after the main HDL peak; post HDL) from mice that received drinking water without peptide increased the monocyte chemotactic activity induced by a control LDL added to a human artery wall cell coculture (FIG. 4). In contrast, adding HDL or the post HDL FPLC fractions from the mice that received the tetrapeptide or D-4F in their drinking water significantly decreased the LDL-induced monocyte chemotactic activity indicating that the tetrapeptide and D-4F converted these lipoproteins from a pro-inflammatory to an anti-inflammatory state (FIG. 4).
  • As shown in FIG. 5, LDL taken from the mice that received the tetrapeptide or D-4F induced significantly less monocyte chemotactic activity than did LDL from mice that did not receive the peptides confirming the biologic activity of the orally administered D-tetrapeptide.
  • FIG. 6 demonstrates that HDL taken 20 min or 6 hours after SEQ ID NO:258 from Table 4 synthesized from D-amino acids was instilled into the stomachs of apoE null mice by stomach tube, was converted from pro-inflammatory to anti-inflammatory and was similar to that from mice that received D-4F and quite different from mice that received a peptide with the same D-amino acids as in D-4F but arranged in such a way as to prevent the formation of a class A amphipathic helix and hence rendering the peptide unable to bind lipids (scrambled D-4F).
  • FIG. 7 demonstrates that at both 20 min and 6 hours after oral administration of D-4F or SEQ ID NO:258 synthesized from D-amino acids the mouse LDL was significantly less able to induce monocyte chemotactic activity compared to LDL taken from mice that received the scrambled D-4F peptide.
  • FIG. 8 demonstrates that adding SEQ ID NO:238 in Table 4 (synthesized from all D-amino acids) to the food of apoE null mice for 18 hours converted the pro-inflammatory HDL of apoE null mice to anti-inflammatory HDL.
  • FIG. 9 demonstrates that in vitro SEQ ID NO:258 in Table 4 was ten times more potent than SEQ ID NO:238.
  • As shown in FIG. 3 SEQ ID NO:238 at 125 μg/ml was only mildly effective while as shown in FIG. 9, SEQ ID NO:258 was highly active at 12.5 μg/ml in a pre-incubation in vitro.
  • The experiments shown in FIG. 10 demonstrate that SEQ ID NO:243, SEQ ID NO: 242, and SEQ ID NO:256 from Table 4 were also able to convert the pro-inflammatory HDL of apoE null mice to anti-inflammatory HDL.
  • The activity of particular peptides of this invention is dependent on particular amino acid substitutions as shown in FIGS. 11, 12, and 13. SEQ ID NO:254 is identical with SEQ ID NO:258 except that the positions of the arginine and glutamic acid amino acids are reversed in the sequence (i.e. SEQ ID NO:254 is Boc-Lys(eBoc)-Glu-Arg-Ser(tBu)-OtBu, while SEQ ID NO:258 is Boc-Lys(FBoc)-Arg-Glu-Ser(tBu)-OtBu). As a result of this seemingly minor change, SEQ ID NO: 254 is substantially less effective in these assays than SEQ ID NO:258.
  • The experiments described in FIGS. 11 and 12 demonstrate that SEQ ID NO:258 from Table 4 was more effective in converting pro-inflammatory HDL to anti-inflammatory HDL and rendering LDL less able to induce monocyte chemotactic activity than was either SEQ ID NO:254 or SEQ ID NO:282.
  • Serum Amyloid A (SAA) is a positive acute phase reactant in mice that is similar to C-Reactive Protein (CRP) in humans. The data in FIG. 13 indicate that this acute phase reactant was significantly reduced in plasma after injection of SEQ ID NO:258 and to a lesser, non-significant degree after injection of SEQ ID NO:254 and 282.
  • FIG. 14 demonstrates that the peptide described in Table 4 as SEQ ID NO:258, when synthesized from all L-amino acids and given to apoE null mice orally converted pro-inflammatory HDL to anti-inflammatory and increased plasma paraoxonase activity (FIG. 15).
  • FIGS. 16, 17, 18, and 19 demonstrate that the peptide described in Table 4 as SEQ ID NO:258 when synthesized from all D-amino acids and given orally to apoE null mice rendered HDL anti-inflammatory (FIGS. 16 and 17), reducing LDL-induced monocyte chemotactic activity (FIG. 17) and increasing plasma HDL-cholesterol (FIG. 18) and increasing HDL paraoxonase activity (FIG. 19). These data also show that SEQ ID NO:238, when synthesized from all L-amino acids and given orally to apoE null mice, did not significantly alter HDL inflammatory properties (FIGS. 16 and 17) nor did it significantly alter LDL-induced monocyte chemotactic activity (FIG. 17) nor did it significantly alter plasma HDL-cholesterol concentrations (FIG. 18), nor did it significantly alter HDL paraoxonase activity (FIG. 19). Additionally these data show that when SEQ ID NO:238 from Table 4 was synthesized from all D-amino acids and was given orally to apoE null mice, HDL was rendered anti-inflammatory (FIGS. 16 and 17), and reduced LDL-induced monocyte chemotactic activity (FIG. 17), but neither change was as dramatic as with SEQ ID NO:258. Moreover, unlike SEQ ID NO:258, SEQ ID NO:238 from Table 4 when synthesized from all D-amino acids did not raise plasma HDL-cholesterol concentrations (FIG. 18) and did not increase HDL paraoxonase activity (FIG. 19). We conclude that SEQ ID NO:238 from Table 4 when synthesized from L-amino acids is not effective when given orally but is effective when synthesized from D-amino acids, but is substantially less effective than SEQ ID NO:258.
  • The data presented herein demonstrate that SEQ ID NO:238 when synthesized from all L-arnino acids and given orally is generally ineffective, and when synthesized from all D-amino acids, while effective, is substantially less effective than the same dose of SEQ ID NO:258 synthesized from all D-amino acids when administered orally.
  • Example 2 Peptides Synergize Statin Activity
  • FIGS. 20 and 21 show the very dramatic synergy between a statin (pravastatin) and D-4F in ameliorating atherosclerosis in apoE null mice. Mice are known to be resistant to statins. The mice that received pravastatin in their drinking water at 20 μg/ml consumed a dose of pravastatin equal to 175 mg per day for a 70 Kg human and the mice that received pravastatin in their drinking water at 50 μg/ml consumed a dose of pravastatin equal to 437.5 mg per day for a 70 Kg human. As shown in FIGS. 20 and 21, these very high doses of pravastatin were not effective in ameliorating atherosclerotic lesions in apoE null mice. As shown in FIGS. 20 and 21, adding D-4F alone to the drinking water of the apoE null mice at concentrations of 2 μg/ml or 5 μg/ml did not reduce atherosclerotic lesions. These doses of D-4F would be equivalent to doses of 17.5 mg per day, and 43.75 mg per day, respectively, for a 70 Kg human. Remarkably, as shown in FIGS. 20 and 21, adding the same concentrations of pravastatin and D-4F together to the drinking water of the apoE null mice essentially abolished atherosclerosis in these mice. This indicates a very high degree of synergy between a statin (pravastatin) and D-4F.
  • FIG. 22 shows that SEQ ID NO.198 and SEQ ID NO. 203 from Table 4 were equally effective or even more effective than D-4F in reducing the lipid hydroperoxide content of both LDL and HDL in apoE null mice. These data are consistent with D-4F and the peptides described in this application acting in part by sequestering the “seeding molecules” necessary for LDL to induce the inflammatory atherosclerotic reaction. Taken together with the data shown in FIGS. 3 to 19 it is very likely that the peptides described in this application (e.g., SEQ ID NO:250 198 and SEQ ID NO: 258 from Table 4) will be as or more effective than D-4F in ameliorating atherosclerosis.
  • Example 3 Physical Properties of Novel Small Organic Molecules (Molecular Weight<900 Daltons) that Predict Ability to Render HDL More Anti-Inflammatory and Mitigate Atherosclerosis in a Mammal
  • It was a surprising finding of this invention that a number of physical properties predict the ability of the small peptides of this invention to render HDL more anti-inflammatory and to mitigate atherosclerosis and/or other pathologies characterized by an inflammatory response in a mammal. The physical properties include high solubility in ethyl acetate (e.g., greater than about 4 mg/mL), and solubility in aqueous buffer at pH 7.0. Upon contacting phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, the particularly effective small peptides form particles with a diameter of approximately 7.5 nm (±0.1 nm), and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or also form vesicular structures of approximately 38 nm). In certain preferred embodiments, the small peptides have a molecular weight of less than about 900 Da.
  • The predictive effect of these physical properties is illustrated by a comparison of two sequences:
    SEQ ID NO 254: Boc-Lys(εBoc)-Glu-Arg-Ser(tBu)-OtBu;
    and
    SEQ ID NO 258: Boc-Lys(εBoc)-Arg-Glu-Ser(tBu)-OtBu
  • To evaluate solubility in ethyl acetate, each peptide was weighed and added to a centrifuge tube and ethyl acetate (HPLC grade; residue after evaporation <0.0001%) was added to give a concentration of 10 mg/mL. The tubes were sealed, vortexed and kept at room temperature for 30 minutes with vortexing every 10 minutes. The tubes were then centrifuged for 5 minutes at 10,000 rpm and the supernatant was removed to a previously weighed tube. The ethyl acetate was evaporated under argon and the tubes weighed to determine the amount of peptide that had been contained in the supernatant. The percent of the originally added peptide that was dissolved in the supernatant is shown on the Y-axis. The data are mean±S.D. Control represents sham treated tubes; SEQ ID NO 254 and SEQ ID NO 258 were both synthesized from all D-amino acids; SEQ ID NO 250 was synthesized from all L-amino acids.
  • As shown in FIG. 23, SEQ ID NO 258 is very soluble in ethyl acetate while SEQ ID NO 254 is not (both synthesized from all D-amino acids). Additionally the data in FIG. 23 demonstrate that SEQ ID NO 250 [Boc-Phe-Arg-Glu-Leu-OtBu] (synthesized from all L-amino acids) is also very soluble in ethyl acetate.
  • To 1 mg/ml of DMPC suspension in phosphate buffered saline (PBS) was added 10% deoxycholate until the DMPC was dissolved. Peptides, SEQ ID NO 258 or SEQ ID NO 254, were added (DMPC: peptide; 1:10; wt:wt) and the reaction mixture dialyzed. After dialysis the solution remained clear with SEQ ID NO 258 but was turbid after the deoxycholate was removed by dialysis in the case of SEQ ID NO 254.
  • FIGS. 24-26—demonstrate that when SEQ ID NO 258 was added to DMPC in an aqueous environment particles with a diameter of approximately 7.5 nm formed, stacked lipid bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm formed, and vesicular structures of approximately 38 nm also formed.
  • In particular, FIG. 24 shows an electron micrograph prepared with negative staining and at 147,420× magnification. The arrows indicate SEQ ID NO 258 particles measuring 7.5 nm (they appear as small white particles).
  • As illustrated in FIG. 25 a peptide comprising SEQ ID NO 258 added to DMPC in an aqueous environment forms particles with a diameter of approximately 7.5 nm (white arrows), and stacked lipid-peptide bilayers (striped arrows pointing to the white lines in the cylindrical stack of disks) with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers (black lines between white lines in the stack of disks) of approximately 2 nm.
  • FIG. 26 shows that the peptide of SEQ ID NO 258 added to DMPC in an aqueous environment forms stacked lipid-peptide bilayers (striped arrow) and vesicular structures of approximately 38 nm white arrows).
  • FIG. 27 shows that DMPC in an aqueous environment without SEQ ID NO 258 does not form particles with a diameter of approximately 7.5 nm, or stacked lipid-petide bilayers, nor vesicular structures of approximately 38 nm.
  • The peptide of SEQ ID NO 254 (which differs from the peptide of SEQ ID NO 258 only in the order of arginine and glutamic acid in regard to the amino and carboxy termini of the peptide) did not form particles with a diameter of approximately 7.5 nm, or stacked lipid-peptide bilayers, nor vesicular structures of approximately 38 nm under the conditions as described in FIG. 24 (data not shown). Thus, the order of arginine and glutamic acid in the peptide dramatically altered its ability to interact with DMPC and this was predicted by the solubility in ethyl acetate (i.e., the peptide of SEQ ID NO 258 was highly soluble in ethyl acetate and formed particles with a diameter of approximately 7.5 nm, and stacked lipid-peptide bilayers, as well as vesicular structures of approximately 38 nm, while the peptide of SEQ ID NO 254 was poorly soluble in ethyl acetate and did not form these structures under the conditions described in FIG. 24). In addition to the protocol described in FIG. 24, similar results were also obtained if the DMPC suspension in PBS was added to the peptide of SEQ ID NO 258 (DMPC:peptide; 1:10; wt:wt) or to the peptide of SEQ ID NO 254 (DMPC:peptide; 1:10; wt:wt) and the mixture recycled between just above the transition temperature of DMPC (just above 50° C.) and room temperature each hour for several cycles and then left at room temperature for 48 hours (data not shown).
  • The physical properties of the peptide of SEQ ID NO 258 (but not the peptide of SEQ ID NO 254) indicate that this peptide has amphipathic properties (i.e., it is highly soluble in ethyl acetate, it is also soluble in aqueous buffer at pH 7.0 [data not shown], and it interacts with DMPC as described above). It was a surprising finding of this invention that the peptides that are highly soluble in ethyl acetate, and are also soluble in aqueous buffer at pH 7.0, interacted with DMPC to form lipid-peptide complexes that are remarkably similar to the nascent HDL particles formed by the interaction of apoA-I with cells (Forte, et al. (1993) J. Lipid Res. 34: 317-324).
  • Table 13 compares the interaction of lipid-free human apoA-I with CHO—C19 cells in vitro with the interaction of SEQ ID NO 258 with DMPC as indicated in FIGS. 4-7 above.
    TABLE 13
    Comparison of the interaction of the peptide of SEQ ID NO 258
    with DMPC as indicated in FIGS. 24-27 above with
    the interaction of lipid-free human apoA-I interacting
    with CHO-C-19 cells as described in Forteet al. (1993)
    J. Lipid Res. 34: 317-324.
    SEQ ID NO
    Property ApoA-I/Cells 258/DMPC
    Prominent Feature Discoidal particles Stacked bilayers in
    stacked in rouleaux cylindrical form
    formation
    Bilayer dimension  4.6 nm 3.4-4.1 nm
    Spacing between discoidal  1.9 nm    2.0 nm
    particles/bilayers
    Size “Nascent HDL Particles”  7.3 nm    7.5 nm
    Vesicular structures 34.7 nm     38 nm
  • Thus, the small peptides described here that are highly soluble in ethyl acetate and are also soluble in aqueous buffers at pH 7.0 interact with lipids (DMPC) similar to apoA-I, which has a molecular weight of 28,000 Daltons.
  • The molecular models shown in FIGS. 28-32 demonstrate the spatial characteristics of SEQ ID NO 254 compared to SEQ ID NO 258.
  • The molecular models shown in FIGS. 28-32 indicate that both the peptide of SEQ ID NO 254 and the peptide of SEQ ID NO 258 contain polar and non-polar portions in each molecule but there are spatial differences in the arrangement of the polar and non-polar components of the two molecules. As a result of the differences in the spatial arrangement of the molecules there are differences in the solubility of the two molecules in ethyl acetate (FIG. 23) and in their interaction with DMPC (FIGS. 24-27).
  • The data in FIGS. 33-35 demonstrate that the physical properties of the peptide of SEQ ID NO 254 versus the peptide of SEQ ID NO 258 predict the ability of these molecules to render HDL anti-inflammatory and mitigate atherosclerosis when given orally to a mammal.
  • Female apoE null mice at age 8 weeks were given no additions to their diet (Chow) or received 200 μg/gm chow of SEQ ID NO 254 (+254) or 200 μg/gm chow of SEQ ID NO 258 (+258), both synthesized from all D-amino acids. After 15 weeks the mice were bled and their plasma fractionated by FPLC and their HDL (MHDL) tested in a human artery wall cell coculture. A standard human LDL (at 100 μg/mL of LDL-cholesterol) was added alone (LDL) or not added (no addition) or was added with 50 μg/mL of normal human HDL (hHDL) or 50 μg/mL of mouse HDL (MHDL) to human artery wall cocultures and the resulting monocyte chemotactic activity was determined and plotted on the Y-axis. FIG. 33 shows that the HDL from apoE null mice was rendered anti-inflammatory after the mice were fed SEQ ID NO 258 but not after SEQ ID NO 254.
  • As shown in FIG. 34 the peptide of SEQ ID NO 258 but not the peptide of SEQ ID NO 254 significantly reduced atherosclerosis in the aortic root (aortic sinus) of the apoE null mice described above. FIG. 35 demonstrates that SEQ ID NO 258 but not SEQ ID NO 254 also significantly decreased atherosclerosis in en face preparations of the aortas. FIG. 23 demonstrates that the solubility in ethyl acetate of SEQ ID NO 250 synthesized from all L-amino acids (see FIG. 23 above) accurately predicts the ability of this molecule to ameliorate atherosclerosis in apoE null mice.
  • Thus, the physical properties of these small peptides accurately predicted the ability of the peptides to ameliorate atherosclerosis in apoE null mice.
  • We thus teach that small peptides, typically with molecular weights of less than about 900 Daltons that are highly soluble in ethyl acetate (greater than about 4 mg/mL), and also are soluble in aqueous buffer at pH 7.0, and that when contacted with phospholipids such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in an aqueous environment, form particles with a diameter of approximately 7.5 nm, and/or form stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm, and/or they also form vesicular structures of approximately 38 nm, when administered to a mammal render HDL more anti-inflammatory and mitigate one or more symptoms of atherosclerosis and other pathologies characterized by an inflammatory response.
  • It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims (204)

1. A peptide that ameliorates one or more symptoms of an inflammatory condition, wherein said peptide:
ranges in length from 3 to about 5 amino acids;
is soluble in ethyl acetate at a concentration greater than about 4mg/mL;
is soluble in aqueous buffer at pH 7.0;
when contacted with a phospholipid in an aqueous environment, forms particles with a diameter of approximately 7.5 nm and forms stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm;
has a molecular weight less than about 900 daltons;
converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory; and
does not have the amino acid sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys-Arg-Asp and Ser are all L amino acids.
2. The peptide of claim 1, wherein said peptide protects a phospholipid against oxidation by an oxidizing agent
3. The peptide of claim 2, wherein said oxidizing agent is selected from the group consisting of hydrogen peroxide, 13(S)—HPODE, 15(S)—HPETE, HPODE, HPETE, HODE, and HETE.
4. The peptide of claim 2, wherein said phospholipid is selected from the group consisting of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (SAPC)), and 1-stearoyl-2-arachidonyl-sn-glycero-3-phosphorylethanolamine (SAPE).
5. A peptide that ameliorates one or more symptoms of an inflammatory condition, said peptide having the formula:
X1-X2-X3 n-X4
wherein:
n is 0 or 1;
X1 is a hydrophobic amino acid and/or bears a hydrophobic protecting group;
X4 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; and
when n is 0:
X2 is an amino acid selected from the group consisting of an acidic amino acid, a basic amino acid, and a histidine;
when n is 1:
X2 and X3 are independently an acidic amino acid, a basic amino acid, an aliphatic amino acid, or an aromatic amino acid such that
when X2 is an acidic amino acid; X3 is a basic amino acid, an aliphatic amino acid, or an aromatic amino acid;
when X2 is a basic amino acid; X3 is an acidic amino acid, an aliphatic amino acid, or an aromatic amino acid; and
when X2 is an aliphatic or aromatic amino acid, X3 is an acidic amino acid, or a basic amino acid;
said peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory; and
said peptide does not have the amino acid sequence Lys-Arg-Asp-Ser (SEQ ID NO:238) in which Lys-Arg-Asp and Ser are all L amino acids.
6. The peptide of claim 5, wherein n is 0.
7. The peptide of claim 6, wherein wherein X1 and X4 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro) phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, omithine (Om) bearing a hydrophobic protecting group, aspartic acid (Asp) bearing a hydrophobic protecting group, cysteine (Cys) bearing a hydrophobic protecting group, and glutamic acid (Glu) bearing a hydrophobic protecting group.
8. The peptide of claim 7, wherein:
X1 is is selected from the group consisting of Glu, Leu, Lys, Orn, Phe, Trp, and norLeu;
X2 is selected from the group consisting of Asp, Arg, and Glu; and
X4 is selected from the group consisting of Ser, Thr, Ile, Leu, Trp, Tyr, Phe, and norleu.
9. The peptide of claim 7, wherein
X1 is is selected from the group consisting of Glu, Leu, Lys, Orn, Phe, Trp, and norLeu;
X2 is selected from the group consisting of Lys, Arg, and His; and
X4 is selected from the group consisting of Asp, Arg, and Glu.
10. The peptide of claim 6 wherein X1 bears a hydrophobic protecting group.
11. The peptide of claim 10, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO),t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
12. The peptide of claim 11, wherein said hydrophobic protecting group is selected from the group consisting of Boc, Fmoc, nicotinyl, and OtBu.
13. The peptide of claim 10, wherein X4 bears a hydrophobic protecting group.
14. The peptide of claim 13, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
15. The peptide of claim 14, wherein the N-terminus of said peptide is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and Nicotinyl-.
16. The peptide of claim 14, wherein the C-terminus of said peptide is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
17. The peptide of claim 6, wherein said peptide comprises the amino acid sequence of a peptide in Table 3.
18. The peptide of claim 6, wherein said peptide is a peptide from Table 3.
19. The peptide of claim 6, wherein said peptide comprises at least one D-amino acid.
20. The peptide of claim 6, wherein said peptide comprises all D-amino acids.
21. The peptide of claim 6, wherein said peptide comprises alternating D- and L-amino acids.
22. The peptide of claim 6, wherein said peptide comprises all L-amino acids.
23. The peptide of claim 6, wherein said peptide is mixed with a pharmacologically acceptable excipient.
24. The peptide of claim 6, wherein said peptide is mixed with a pharmacologically acceptable excipient suitable for oral administration to a mammal.
25. The peptide of claim 6, wherein said polypeptide is provided as a unit formulation in a pharmaceutically acceptable excipient.
26. The peptide of claim 6, wherein said polypeptide is provided as a time release formulation.
27. The peptide of claim 6, wherein said peptide protects a phospholipid against oxidation by an oxidizing agent
28. The peptide of claim 27, wherein said oxidizing agent is selected from the group consisting of hydrogen peroxide, 13(S)—HPODE, 15(S)—HPETE, HPODE, HPETE, HODE, and HETE.
29. The peptide of claim 27, wherein said phospholipid is selected from the group consisting of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (SAPC)), 1-stearoyl-2-arachidonyl-sn-glycero-3-phosphorylethanolamine (SAPE).
30. The peptide of claim 6, wherein said peptide is coupled to a biotin.
31. The peptide of claim 5, wherein:
n is 1; and
X2 and X3 are independently an acidic amino acid or a basic amino acid such that when X2 is an acidic amino acid, X3 is a basic amino acid and when X2 is a basic amino acid, X3 is an acidic amino acid.
32. The peptide of claim 31, wherein wherein X1 and X4 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, omithine (Orn) bearing a hydrophobic protecting group, aspartic acid (Asp) bearing a hydrophobic protecting group, cysteine (Cys) bearing a hydrophobic protecting group, and glutamic acid (Glu) bearing a hydrophobic protecting group.
33. The peptide of claim 32, wherein
X2 and X3 are independently selected from the group consisting of Asp, Glu, Lys, Arg, and His.
34. The peptide of claim 32, wherein
X2 and X3 are independently selected from the group consisting of Asp, Arg, and Glu.
35. The peptide of claim 33 wherein X1 bears a hydrophobic protecting group.
36. The peptide of claim 35, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
37. The peptide of claim 35, wherein said said hydrophobic protecting group is selected from the group consisting of Boc, Fmoc, nicotinyl, and OtBu.
38. The peptide of claim 35, wherein X4 bears a hydrophobic protecting group.
39. The peptide of claim 38, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
40. The peptide of claim 35, wherein the N-terminus of said peptide is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and Nicotinyl-.
41. The peptide of claim 35, wherein the C-terminus of said peptide is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
42. The peptide of claim 31, wherein said peptide comprises the amino acid sequence of a peptide in Table 4.
43. The peptide of claim 31, wherein said peptide is a peptide from Table 4.
44. The peptide of claim 31, wherein said peptide comprises at least one D-amino acid.
45. The peptide of claim 31, wherein said peptide comprises all D-amino acids.
46. The peptide of claim 31, wherein said peptide comprises alternating D- and L-amino acids.
47. The peptide of claim 31, wherein said peptide comprises all L-amino acids.
48. The peptide of claim 31, wherein said peptide is mixed with a pharmacologically acceptable excipient.
49. The peptide of claim 31, wherein said peptide is mixed with a pharmacologically acceptable excipient suitable for oral administration to a mammal.
50. The peptide of claim 31, wherein said polypeptide is provided as a unit formulation in a pharmaceutically acceptable excipient.
51. The peptide of claim 31, wherein said polypeptide is provided as a time release formulation.
52. The peptide of claim 31, wherein said peptide protects a phospholipid against oxidation by an oxidizing agent
53. The peptide of claim 31, wherein said peptide is coupled to a biotin.
54. The peptide of claim 5, wherein:
n is 1; and
X2, X3 are independently an acidic, a basic, or a aliphatic amino acid with one of X2 or X3 being an acidic or a basic amino acid such that:
when X2 is an acidic or a basic amino acid, X3 is an aliphatic amino acid; and
when X3 is an acid or a basic amino acid, X2 is an aliphatic amino acid.
55. The peptide of claim 54, wherein wherein X1 and X4 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, ornithine (Orn) bearing a hydrophobic protecting group, aspartic acid (Asp) bearing a hydrophobic protecting group, cysteine (Cys) bearing a hydrophobic protecting group, and glutamic acid (Glu) bearing a hydrophobic protecting group.
56. The peptide of claim 55, wherein
X2 and X3 are independently selected from the group consisting of Asp, Arg, Lys, Leu, Ile, and Glu.
57. The peptide of claim 55, wherein Xl bears a hydrophobic protecting group.
58. The peptide of claim 57, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO),t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
59. The peptide of claim 57, wherein said said hydrophobic protecting group is selected from the group consisting of Boc, Fmoc, nicotinyl, and OtBu.
60. The peptide of claim 57, wherein X4 bears a hydrophobic protecting group.
61. The peptide of claim 60, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
62. The peptide of claim 57, wherein the N-terminus of said peptide is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and Nicotinyl-.
63. The peptide of claim 57, wherein the C-terminus of said peptide is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
64. The peptide of claim 54, wherein said peptide comprises the amino acid sequence of a peptide in Table 5.
65. The peptide of claim 54, wherein said peptide is a peptide from Table 5.
66. The peptide of claim 54, wherein said peptide comprises at least one D-amino acid.
67. The peptide of claim 54, wherein said peptide comprises all D-amino acids.
68. The peptide of claim 54, wherein said peptide comprises alternating D- and L-amino acids.
69. The peptide of claim 54, wherein said peptide comprises all L-amino acids.
70. The peptide of claim 54, wherein said peptide is mixed with a pharmacologically acceptable excipient.
71. The peptide of claim 54, wherein said peptide is mixed with a pharmacologically acceptable excipient suitable for oral administration to a mammal.
72. The peptide of claim 54, wherein said polypeptide is provided as a unit formulation in a pharmaceutically acceptable excipient.
73. The peptide of claim 54, wherein said polypeptide is provided as a time release formulation.
74. The peptide of claim 54, wherein said peptide protects a phospholipid against oxidation by an oxidizing agent
75. The peptide of claim 54, wherein said peptide is coupled to a biotin.
76. The peptide of claim 5, wherein:
n is 1; and
X2, X3 are independently an acidic, a basic, or an aromatic amino acid with one of X2 or X3 being an acidic or a basic amino acid such that:
when X2 is an acidic or a basic amino acid, X3 is an aromatic amino acid; and
when X3 is an acid or a basic amino acid, X2 is an aromatic amino acid.
77. The peptide of claim 76, wherein wherein X1 and X4 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, ornithine (Orn) bearing a hydrophobic protecting group, aspartic acid (Asp) bearing a hydrophobic protecting group, cysteine (Cys) bearing a hydrophobic protecting group, and glutamic acid (Glu) bearing a hydrophobic protecting group.
78. The peptide of claim 77, wherein
X2 and X3 are independently is selected from the group consisting of Asp, Arg, Glu, Trp, Tyr, Phe, and Lys.
79. The peptide of claim 76, wherein X1 bears a hydrophobic protecting group.
80. The peptide of claim 79, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO),t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
81. The peptide of claim 79, wherein said said hydrophobic protecting group is selected from the group consisting of Boc, Fmoc, nicotinyl, and OtBu.
82. The peptide of claim 79, wherein X4 bears a hydrophobic protecting group.
83. The peptide of claim 82, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
84. The peptide of claim 79, wherein the N-terminus of said peptide is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and Nicotinyl-.
85. The peptide of claim 79, wherein the C-terminus of said peptide is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
86. The peptide of claim 76, wherein said peptide comprises the amino acid sequence of a peptide in Table 6.
87. The peptide of claim 76, wherein said peptide is a peptide from Table 6.
88. The peptide of claim 76, wherein said peptide comprises at least one D-amino acid.
89. The peptide of claim 76, wherein said peptide comprises all D-amino acids.
90. The peptide of claim 76, wherein said peptide comprises alternating D- and L-amino acids.
91. The peptide of claim 76, wherein said peptide comprises all L-amino acids.
92. The peptide of claim 76, wherein said peptide is mixed with a pharmacologically acceptable excipient.
93. The peptide of claim 76, wherein said peptide is mixed with a pharmacologically acceptable excipient suitable for oral administration to a mammal.
94. The peptide of claim 76, wherein said polypeptide is provided as a unit formulation in a pharmaceutically acceptable excipient.
95. The peptide of claim 76, wherein said polypeptide is provided as a time release formulation.
96. The peptide of claim 76, wherein said peptide protects a phospholipid against oxidation by an oxidizing agent
97. The peptide of claim 76, wherein said peptide is coupled to a biotin.
98. A peptide that ameliorates one or more symptoms of an inflammatory condition, said peptide having the formula:
X1-X2-X3-X4-X5
wherein:
X1 is a hydrophobic amino acid and/or bears a hydrophobic protecting group;
X5 is a hydrophobic amino acid and/or bears a hydrophobic protecting group; and
X2, X3, and X4 are independently selected aromatic amino acids or histidine; and
said peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
99. The peptide of claim 98, wherein wherein X1 and X5 are independently selected from the group consisting of alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met), phenylalanine (Phe), tryptophan (Trp), methionine (Met), serine (Ser) bearing a hydrophobic protecting group, beta-naphthyl alanine, alpha-naphthyl alanine, norleucine, cyclohexylalanine, threonine (Thr) bearing a hydrophobic protecting group, tyrosine (Tyr) bearing a hydrophobic protecting group, lysine (Lys) bearing a hydrophobic protecting group, arginine (Arg) bearing a hydrophobic protecting group, ornithine (Orn) bearing a hydrophobic protecting group, aspartic acid (Asp) bearing a hydrophobic protecting group, cysteine (Cys) bearing a hydrophobic protecting group, and glutamic acid (Glu) bearing a hydrophobic protecting group.
100. The peptide of claim 99, wherein
X2, X3, and X4 are independently is selected from the group consisting of Phe, Val, Trp, Tyr, and His.
101. The peptide of claim 98, wherein Xl bears a hydrophobic protecting group.
102. The peptide of claim 101, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO),t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
103. The peptide of claim 101, wherein said said hydrophobic protecting group is selected from the group consisting of Boc, Fmoc, nicotinyl, and OtBu.
104. The peptide of claim 101, wherein X5 bears a hydrophobic protecting group.
105. The peptide of claim 104, wherein said hydrophobic protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-CI-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
106. The peptide of claim 98, wherein the N-terminus of said peptide is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and Nicotinyl-.
107. The peptide of claim 98, wherein the C-terminus of said peptide is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
108. The peptide of claim 98, wherein said peptide comprises the amino acid sequence of a peptide in Table 7.
109. The peptide of claim 98, wherein said peptide is a peptide from Table 7.
110. The peptide of claim 98, wherein said peptide comprises at least one D-amino acid.
111. The peptide of claim 98, wherein said peptide comprises all D-amino acids.
112. The peptide of claim 98, wherein said peptide comprises alternating D- and L-amino acids.
113. The peptide of claim 98, wherein said peptide comprises all L-amino acids.
114. The peptide of claim 98, wherein said peptide is mixed with a pharmacologically acceptable excipient.
115. The peptide of claim 98, wherein said peptide is coupled to a biotin.
116. A peptide that ameliorates one or more symptoms of an inflammatory condition, wherein said peptide:
ranges in length from 5 to 11 amino acids;
the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups;
the non-terminal amino acids form at least one acidic domain and at least one basic domain; and
said peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
117. A peptide that ameliorates one or more symptoms of an inflammatory condition, wherein said peptide:
ranges in length from 5 to 11 amino acids;
the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups;
the non-terminal amino acids form at least one acidic domain or one basic domain and at least one aliphatic domain; and
said peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
118. A peptide that ameliorates one or more symptoms of an inflammatory condition, wherein said peptide:
ranges in length from 5 to 11 amino acids;
the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups;
the non-terminal amino acids form at least one acidic domain or one basic domain and at least one aromatic domain; and
said peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
119. A peptide that ameliorates one or more symptoms of an inflammatory condition, wherein said peptide:
ranges in length from 6 to 11 amino acids;
the terminal amino acids are hydrophobic amino acids and/or bear hydrophobic protecting groups;
the non-terminal amino acids form at least one aromatic domain or two or more aromatic domains separated by one or more histidines; and
said peptide converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory.
120. A pair of amino acids that ameliorates one or more symptoms of an inflammatory condition, wherein said pair of amino aicds comprise:
a first amino acid bearing at least one protecting group; and
a second amino acid bearing at least one protecting group;
wherein said first amino acid and said second amino acid are different species of amino acid, and wherein said pair of amino acids converts pro-inflammatory HDL to anti-inflammatory HDL or makes anti-inflammatory HDL more anti-inflammatory
121. The pair of amino acids of claim 120, wherein said pair of amino acids, when contacted with a phospholipid in an aqueous environment, forms particles with a diameter of approximately 7.5 nm and forms stacked bilayers with a bilayer dimension on the order of 3.4 to 4.1 nm with spacing between the bilayers in the stack of approximately 2 nm.
122. The pair of amino acids of claim 120, wherein said first and second amino acids are independently selected from the group consisting of an acidic amino acid, a basic amino acid, and a non-polar amino acid.
123. The pair of amino acids of claim 122, wherein said first amino acid is acidic or basic and said second amino acid is non-polar, or said first amino acid is non-polar and said second amino acid is acidic or basic.
124. The pair of amino acids of claim 122, wherein both amino acids are acidic.
125. The pair of amino acids of claim 122, wherein both amino acids are basic.
126. The pair of amino acids of claim 120, wherein said pair of amino acids are covalently coupled together directly or through a linker.
127. The pair of amino acids of claim 126, wherein the amino acids are joined through a peptide linkage thereby forming a dipeptide.
128. The pair of amino acids of claim 120, wherein said pair of amino acids are mixed together, but not covalently linked.
129. The pair of amino acids of claim 120, wherein said protecting group is selected from the group consisting of polyethylene glycol (PEG), t-butoxycarbonyl (Boc), Fmoc, nicotinyl, OtBu, a benzoyl group, an acetyl (Ac), a carbobenzoxy, methyl, ethyl, a propyl, a butyl, a pentyl a hexyl ester, an N-methyl anthranilyl, and a 3 to 20 carbon alkyl, amide, a 3 to 20 carbon alkyl group, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl (is also called carbobenzoxy mentioned above), Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br-Z), benzyloxymethyl (Bom), cyclohexyloxy (cHxO),t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), trifluoroacetyl (TFA), 4[N-{1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methyldibutyl)-amino}benzyl ester (ODmab), α-allyl ester (OAll), 2-phenylisopropyl ester (2-PhiPr), 1-[4,4-dimethyl-2,6-dioxycyclohex-1-yl-idene)ethyl (Dde).
130. The pair of amino acids of claim 120, wherein the first amino acid is blocked with a protecting group selected from the group consisting of Boc-, Fmoc-, and nicotinyl-, and the second amino acid is blocked with a protecting group selected from the group consisting of tBu, and OtBu.
131. The pair of amino acids of claim 128, wherein each amino acid bears at least two protecting groups.
132. The pair of amino acids where each amino acid is blocked with a with a first protecting group selected from the group consisting of Boc-, Fmoc-, and nicotinyl-, and a second protecting group selected from the group consisting of tBu, and OtBu.
133. The pair of amino acids where each amino acid is blocked with a Boc and an OtBu.
134. The pair of amino acids of claim 120, wherein the pair of amino acids form a dipeptide selected from the group consisting of Phe-Arg, Glu-Leu, and Arg-Glu.
135. The pair of amino acids of claim 120, wherein the pair of amino acids form a dipeptide selected from the group consisting of Boc-Arg-OtBu, Boc-Glu-OtBu, Boc-Phe-Arg-OtBu, Boc-Glu-Leu-OtBu, and Boc-Arg-Glu-OtBu.
136. A pharmaceutical formulation comprising:
one or more peptides according to claims 1, 5, 6, 31, 54, 76, 98, 116, 117, and 119, or a pair of amino acids according to claim 120; and
a pharmaceutically acceptable excipient.
137. The pharmaceutical formulation of claim 136, wherein the peptide is present in an effective dose.
138. The pharmaceutical formulation of claim 136, wherein the peptide is in a time release formulation.
139. The pharmaceutical formulation of claim 136, wherein the formulation is formulated as a unit dosage formulation.
140. The pharmaceutical formulation of claim 136, wherein the formulation is formulated for oral administration.
141. The pharmaceutical formulation of claim 136, wherein the formulation is formulated for administration by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, inhalation administration, and intramuscular injection.
142. A kit comprising:
a container containing one or more of the peptides according to claims 1, 5, 6, 31, 54, 76, 98, 116, 117, and 119, or a pair of amino acids according to claim 120; and
instructional materials teaching the use of the peptide(s) or pairs of amino acids in the treatment of a pathology characterized by inflammation.
143. The kit of claim 142, wherein said pathology is a pathology selected from the group consisting of atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Altzheimer's disease, chronic obstructive pulmonary disease, asthma, multiple sclerosis, diabetes, and a viral illnesses.
144. A method of mitigating one or more symptoms of atherosclerosis in a mammal, said method comprising administering to said mammal an effective amount of the peptide of claims 1, 5, 6, 31, 54, 76, 98, 116, 117, and 119, or a pair of amino acids according to claim 120.
145. The method of claim 144, wherein said peptide is in a pharmaceutically acceptable excipient.
146. The method of claim 144, wherein said peptide is administered in conjunction with a lipid.
147. The method of claim 144, wherein said peptide is in a pharmaceutically acceptable excipient suitable for oral administration.
148. The method of claim 144, wherein said peptide is administered as a unit dosage formulation.
149. The method of claim 144, wherein said administering comprises administering said peptide by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection.
150. The method of claim 144, wherein said mammal is a mammal diagnosed as having one or more symptoms of atherosclerosis.
151. The method of claim 144, wherein said mammal is a mammal diagnosed as at risk for stroke or atherosclerosis.
152. The method of claim 144, wherein said mammal is a human.
153. The method of claim 144, wherein said mammal is non-human mammal.
154. A method of mitigating one or more symptoms of an inflammatory pathology, , said method comprising administering to said mammal an effective amount of the peptide of claims 1, 5, 6, 31, 54, 76, 98, 116, 117, and 119, or a pair of amino acids according to claim 120.
155. The method of claim 154, wherein said inflammatory pathology is a pathology selected from the group consisting of atherosclerosis, rheumatoid arthritis, lupus erythematous, polyarteritis nodosa, osteoporosis, Altzheimer's disease, multiple sclerosis, chronic obstructive pulmonary disease, asthma, diabetes, and a viral illnesses.
156. The method of claim 154, wherein said peptide is in a pharmaceutically acceptable excipient.
157. The method of claim 154, wherein said peptide is administered in conjunction with a lipid.
158. The method of claim 154, wherein said peptide is in a pharmaceutically acceptable excipient suitable for oral administration.
159. The method of claim 154, wherein said peptide is administered as a unit dosage formulation.
160. The method of claim 154, wherein said administering comprises administering said peptide by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection.
161. The method of claim 154, wherein said mammal is a mammal diagnosed as at risk for stroke.
162. The method of claim 154, wherein said mammal is a human.
163. The method of claim 154, wherein said mammal is non-human mammal.
164. A method of enhancing the activity of a statin in a mammal, said method comprising coadministering with said statin an effective amount of the peptide of claims 1, 5, 6, 31, 54, 76, 98, 116, 117, and 119, or a pair of amino acids according to claim 120;
165. The method of claim 164, wherein said statin is selected from the group consisting of cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, and pitavastatin.
166. The method of claim 164, wherein said peptide is administered simultaneously with said statin.
167. The method of claim 164, wherein said peptide is administered before said statin.
168. The method of claim 164, wherein said peptide is administered after said statin.
169. The method of claim 164, wherein said peptide and/or said statin are administered as a unit dosage formulation.
170. The method of claim 164, wherein said administering comprises administering said peptide and/or said statin by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, and intramuscular injection.
171. The method of claim 164, wherein said mammal is a mammal diagnosed as having one or more symptoms of atherosclerosis.
172. The method of claim 164, wherein said mammal is a mammal diagnosed as at risk for stroke or atherosclerosis.
173. The method of claim 164, wherein said mammal is a human.
174. The method of claim 164, wherein said mammal is non-human mammal.
175. A method of mitigating one or more symptoms associated with atherosclerosis in a mammal, said method comprising:
administering to said mammal an effective amount of a statin; and
an effective amount of a peptide of claims 1, 5, 6, 31, 54, 76, 98, 116, 117, and 119, or a pair of amino acids according to claim 120;
wherein the effective amount of the statin is lower than the effective amount of a statin administered without said peptide.
176. The method of claim 175, wherein the effective amount of the peptide is lower than the effective amount of the peptide administered without said statin.
177. The method of claim 175, wherein said statin is selected from the group consisting of cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, and pitavastatin.
178. The method of claim 175, wherein said peptide is administered simultaneously with said statin.
179. The method of claim 175, wherein said peptide is administered before said statin.
180. The method of claim 175, wherein said peptide is administered after said statin.
181. The method of claim 175, wherein said peptide and/or said statin are administered as a unit dosage formulation.
182. The method of claim 175, wherein said administering comprises orally administering said composition.
183. The method of claim 175, wherein said administering is by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, inhalation administration, and intramuscular injection.
184. The method of claim 175, wherein said mammal is a mammal diagnosed as having one or more symptoms of atherosclerosis.
185. The method of claim 175, wherein said mammal is a mammal diagnosed as at risk for stroke or atherosclerosis.
186. The method of claim 175, wherein said mammal is a human.
187. The method of claim 175, wherein said mammal is non-human mammal.
188. A pharmaceutical formulation, the formulation comprising:
a statin and/or Ezetimibe; and
a peptide or a concatamer of a peptide according to any of claims 1, 5, 6, 31, 54, 76, 98, 116, 117, and 119, or a pair of amino acids according to claim 120.
189. The pharmaceutical formulation of claim 188, wherein the peptide and/or the statin are present in an effective dose.
190. The pharmaceutical formulation of claim 189, wherein the effective amount of the statin is lower than the effective amount of the statin administered without the peptide.
191. The pharmaceutical formulation of claim 189, wherein the effective amount of the peptide is lower than the effective amount of the peptide administered without the statin.
192. The pharmaceutical formulation of claim 189, wherein the effective amount of the Ezetimibe is lower than the effective amount of the Ezetimibe administered without the peptide.
193. The pharmaceutical formulation of claim 189, wherein the effective amount of the peptide is lower than the effective amount of the peptide administered without the Ezetimibe.
194. The pharmaceutical formulation of claim 188, wherein the statin is selected from the group consisting of cerivastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, lovastatin. rosuvastatin, and pitavastatin.
195. The pharmaceutical formulation of claim 188, wherein the Ezetimibe, the statin, and/or the peptide are in a time release formulation.
196. The pharmaceutical formulation of claim 188, wherein the formulation is formulated as a unit dosage formulation.
197. The pharmaceutical formulation of claim 188, wherein the formulation is formulated for oral administration.
198. The pharmaceutical formulation of claim 188, wherein the formulation is formulated for administration by a route selected from the group consisting of oral administration, inhalation, rectal administration, intraperitoneal injection, intravascular injection, subcutaneous injection, transcutaneous administration, inhalation administration, and intramuscular injection.
199. The pharmaceutical formulation of claim 188, wherein the formulation further comprises one or more phospholipids.
200. A method of reducing or inhibiting one or more symptoms of osteoporosis in a mammal, the method comprising administering to the mammal one or more peptide according to claims 1, 5, 6, 31, 54, 76, 98, 116, 117, and 119, or a pair of amino acids according to claim 120, wherein the peptide or pair of amino acids is administered in a concentration sufficient to reduce or eliminate one or more symptoms of osteoporosis.
201. The method of claim 200, wherein the peptide is administered in a concentration sufficient to reduce or eliminate decalcification of a bone.
202. The method of claim 200, wherein the peptide is administered in a concentration sufficient to induce recalcification of a bone.
203. The method of claim 200, wherein the peptide is mixed with a pharmacologically acceptable excipient.
204. The method of claim 200, wherein the peptide is mixed with a pharmacologically acceptable excipient suitable for oral administration to a mammal.
US10/913,800 2003-08-11 2004-08-06 Orally administered small peptides synergize statin activity Abandoned US20050164950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/913,800 US20050164950A1 (en) 2003-08-11 2004-08-06 Orally administered small peptides synergize statin activity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US49444903P 2003-08-11 2003-08-11
US10/649,378 US7148197B2 (en) 2000-08-24 2003-08-26 Orally administered small peptides synergize statin activity
US10/913,800 US20050164950A1 (en) 2003-08-11 2004-08-06 Orally administered small peptides synergize statin activity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/649,378 Continuation US7148197B2 (en) 2000-08-24 2003-08-26 Orally administered small peptides synergize statin activity

Publications (1)

Publication Number Publication Date
US20050164950A1 true US20050164950A1 (en) 2005-07-28

Family

ID=34197999

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/649,378 Expired - Fee Related US7148197B2 (en) 2000-08-24 2003-08-26 Orally administered small peptides synergize statin activity
US10/913,800 Abandoned US20050164950A1 (en) 2003-08-11 2004-08-06 Orally administered small peptides synergize statin activity
US11/485,620 Abandoned US20070060527A1 (en) 2000-08-24 2006-07-11 Orally administered small peptides synergize statin activity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/649,378 Expired - Fee Related US7148197B2 (en) 2000-08-24 2003-08-26 Orally administered small peptides synergize statin activity

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/485,620 Abandoned US20070060527A1 (en) 2000-08-24 2006-07-11 Orally administered small peptides synergize statin activity

Country Status (13)

Country Link
US (3) US7148197B2 (en)
EP (1) EP1660112A4 (en)
JP (1) JP2007512228A (en)
KR (1) KR20060079799A (en)
AU (1) AU2004264944C1 (en)
BR (1) BRPI0412981A2 (en)
CA (1) CA2534676A1 (en)
CZ (1) CZ2006163A3 (en)
HU (1) HUP0700157A3 (en)
MX (1) MXPA06001743A (en)
NO (1) NO20061139L (en)
RU (1) RU2006107605A (en)
WO (1) WO2005016280A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060205669A1 (en) * 2004-09-16 2006-09-14 The Regents Of The University Of California G-type peptides and other agents to ameliorate atherosclerosis and other pathologies
US20060234908A1 (en) * 2004-12-06 2006-10-19 The Regents Of The University Of California Methods for improving the structure and function of arterioles
WO2006118805A2 (en) 2005-04-29 2006-11-09 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US20070060527A1 (en) * 2000-08-24 2007-03-15 The Regents of the University of California and Orally administered small peptides synergize statin activity
US20070101448A1 (en) * 2002-11-13 2007-05-03 Anantharamiah Gattadahalli M Synthetic single domain polypeptides mimicking apolipoprotein E and methods of use
US20080045459A1 (en) * 2000-08-24 2008-02-21 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20080095821A1 (en) * 2000-08-24 2008-04-24 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US20080293639A1 (en) * 2005-04-29 2008-11-27 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
WO2009021077A2 (en) * 2007-08-06 2009-02-12 THE GOVERMENT OF THE UNITED STATES OF AMERICA. as represented by THE SECRETARY OF THE NAVY Beta helical peptide structures stable in aqueous and non-aqueous media and methods for preparing same
US20090163408A1 (en) * 2006-08-08 2009-06-25 The Regents Of The University Of California Salicylanilides enhance oral delivery of therapeutic peptides
FR2927336A1 (en) * 2008-02-12 2009-08-14 Cie Des Peches Saint Malo Sant FISH PROTEIN HYDROLYSAT HAVING BONE CAPITAL STIMULATING AND MAINTAINING ACTIVITY, NUTRACEUTICAL AND PHARMACOLOGICAL COMPOSITIONS COMPRISING SUCH HYDROLYSAT AND PROCESS FOR OBTAINING THE SAME
US8557767B2 (en) 2007-08-28 2013-10-15 Uab Research Foundation Synthetic apolipoprotein E mimicking polypeptides and methods of use
US8568766B2 (en) 2000-08-24 2013-10-29 Gattadahalli M. Anantharamaiah Peptides and peptide mimetics to treat pathologies associated with eye disease
US9422363B2 (en) 2007-08-28 2016-08-23 Uab Research Foundation Synthetic apolipoprotein E mimicking polypeptides and methods of use
US9539300B2 (en) 2012-03-31 2017-01-10 The Regents Of The University Of California Modulating disease through genetic engineering of plants
US10426817B2 (en) 2017-01-24 2019-10-01 Macregen, Inc. Treatment of age-related macular degeneration and other eye diseases with apolipoprotein mimetics
US10653747B2 (en) 2014-07-31 2020-05-19 Uab Research Foundation ApoE mimetic peptides and higher potency to clear plasma cholesterol
US10905736B2 (en) 2016-09-28 2021-02-02 The Regents Of The University Of California Ezetimibe-associated ApoA-I mimetic peptides showing enhanced synergism

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159362A1 (en) * 2003-04-22 2005-07-21 Sircar Jagadish C. Mediators of reverse cholesterol transport for the treatment of hypercholesterolemia
CA2548790A1 (en) * 2003-12-17 2005-06-30 Dainippon Sumitomo Pharma Co., Ltd. Medicinal compositions and combinations
AR049216A1 (en) * 2004-06-09 2006-07-05 Avanir Pharmaceuticals HETEROCICLIC DERIVATIVES AS MEDIATORS OF INVERSE TRANSPORTATION OF CHOLESTEROL FOR THE TREATMENT OF HYPERLIPIDEMIA AND RELATED CARDIOVASCULAR DISEASES
UY28951A1 (en) * 2004-06-09 2006-01-31 Avanir Pharmaceuticals SMALL MOLECULES FOR THE TREATMENT OF HYPERCHOLESTEROLEMIA AND RELATED DISEASES
UY28952A1 (en) * 2004-06-09 2006-01-31 Avanir Pharmaceuticals CHOLESTEROL INVERSE TRANSPORTATION MEDIATORS FOR THE TREATMENT OF HYPERCHOLESTEROLEMIA
WO2006020652A2 (en) * 2004-08-11 2006-02-23 The Regents Of The University Of California Orally administered small peptides synergize statin activity
US20060046996A1 (en) * 2004-08-31 2006-03-02 Kowa Co., Ltd. Method for treating hyperlipidemia
US8206750B2 (en) 2005-03-24 2012-06-26 Cerenis Therapeutics Holding S.A. Charged lipoprotein complexes and their uses
WO2006108583A2 (en) * 2005-04-15 2006-10-19 Cenix Bioscience Gmbh Human marker genes and agents for cardiovascular disorders and artherosclerosi s
EP1782819A1 (en) * 2005-11-03 2007-05-09 Cognis IP Management GmbH Oligopeptides and their use
WO2007055873A2 (en) * 2005-11-04 2007-05-18 Avanir Pharmaceuticals Process for the manufacture of peptide facilitators of reverse cholesterol transport
US8536120B2 (en) * 2006-04-28 2013-09-17 The Administrators Of The Tulane Educational Fund Ghrelin/growth hormone releasing peptide/growth hormone secretatogue receptor antagonists and uses thereof
US20080199398A1 (en) * 2006-06-16 2008-08-21 Brewer H Bryan Novel Peptides That Promote Lipid Efflux
US20080206142A1 (en) * 2006-06-16 2008-08-28 Lipid Sciences, Inc. Novel Peptides That Promote Lipid Efflux
US20080227686A1 (en) * 2006-06-16 2008-09-18 Lipid Sciences, Inc. Novel Peptides that Promote Lipid Efflux
WO2008039843A2 (en) * 2006-09-26 2008-04-03 Lipid Sciences, Inc. Novel peptides that promote lipid efflux
WO2009026614A1 (en) * 2007-08-24 2009-03-05 Dia-B Tech Limited Hypoglycaemic tripeptide and methods of use thereof
US7985728B1 (en) 2007-09-20 2011-07-26 Abbott Cardiovascular Systems Inc. Sustained release of Apo A-I mimetic peptides and methods of treatment
US8101565B2 (en) * 2007-09-20 2012-01-24 Abbott Cardiovascular Systems Inc. Sustained release of Apo A-I mimetic peptides and methods of treatment
US9173890B2 (en) * 2007-09-20 2015-11-03 Abbott Cardiovascular Systems Inc. Sustained release of Apo A-I mimetic peptides and methods of treatment
US7985727B1 (en) 2007-09-20 2011-07-26 Abbott Cardiovascular Systems Inc. Apo A-I mimetic peptides and methods of treatment
US8044021B2 (en) * 2007-09-20 2011-10-25 Abbott Cardiovascular Systems Inc. Sustained release of apo A-I mimetic peptides and methods of treatment
WO2010030343A1 (en) * 2008-09-09 2010-03-18 Promega Corporation Bioluminescent assays using cyanobenzothiazole compounds
US9724381B2 (en) 2009-05-12 2017-08-08 The Administrators Of The Tulane Educational Fund Methods of inhibiting the ghrelin/growth hormone secretatogue receptor pathway and uses thereof
US10894098B2 (en) 2012-04-09 2021-01-19 Signablok, Inc. Methods and compositions for targeted imaging
US10525152B2 (en) 2009-10-09 2020-01-07 Signablok, Inc. Methods and compositions for targeted imaging
JO3417B1 (en) 2010-01-08 2019-10-20 Regeneron Pharma Stabilized formulations containing anti-interleukin-6 receptor (il-6r) antibodies
WO2011112966A1 (en) * 2010-03-11 2011-09-15 Promega Corporation Bioluminescent assays using cyanobenzothiazole compounds
PT2673296T (en) 2011-02-07 2019-01-31 Cerenis Therapeutics Holding Sa Lipoprotein complexes and manufacturing and uses thereof
EP2729486B1 (en) * 2011-07-09 2017-12-13 The Regents of The University of California Leukemia stem cell targeting ligands and methods of use
AR087305A1 (en) 2011-07-28 2014-03-12 Regeneron Pharma STABILIZED FORMULATIONS CONTAINING ANTI-PCSK9 ANTIBODIES, PREPARATION METHOD AND KIT
TWI589299B (en) 2011-10-11 2017-07-01 再生元醫藥公司 Compositions for the treatment of rheumatoid arthritis and methods of using same
RU2528094C2 (en) * 2012-08-03 2014-09-10 Татьяна Георгиевна Емельянова Peptide agent possessing analgesic anti-inflammatory action, and based dosage forms
EP2853259A1 (en) 2013-09-30 2015-04-01 Université Pierre et Marie Curie (Paris 6) Reconstituted high density lipoproteins composition and uses thereof
EP3137899A2 (en) 2014-05-02 2017-03-08 Cerenis Therapeutics Holding SA Hdl therapy markers
WO2017031151A1 (en) 2015-08-18 2017-02-23 Regeneron Pharmaceuticals, Inc. Anti-pcsk9 inhibitory antibodies for treating patients with hyperlipidemia undergoing lipoprotein apheresis
WO2017034990A1 (en) 2015-08-21 2017-03-02 Portola Pharmaceuticals, Inc. Composition and methods of use of tetrahydroisoquinoline small molecules to bind and modulate pcsk9 protein activity
EP3337788A4 (en) 2015-08-21 2019-03-27 Portola Pharmaceuticals, Inc. Phenylpiperazine proprotein convertase subtilisin/kexin type 9 (pcsk9) modulators and their use
US10821106B2 (en) 2015-08-21 2020-11-03 Srx Cardio, Llc Composition and methods of use of novel phenylalanine small organic compounds to directly modulate PCSK9 protein activity
US20190119236A1 (en) 2016-02-23 2019-04-25 Portola Pharmaceuticals, Inc. Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9)
CN114206442A (en) 2019-01-31 2022-03-18 赛诺菲生物技术公司 anti-IL-6 receptor antibodies for the treatment of juvenile idiopathic arthritis
IL297336A (en) 2020-04-16 2022-12-01 Abionyx Pharma Sa Methods for treating acute conditions using lipid binding protein-based complexes
MX2023003877A (en) 2020-10-01 2023-04-18 Abionyx Pharma Sa Compositions comprising lipid binding protein-based complexes for use for treating eye diseases.
AU2022258815A1 (en) 2021-04-15 2023-10-19 Abionyx Pharma Sa Use of lipid binding protein-based complexes in organ preservation solutions
WO2023194798A1 (en) 2022-04-06 2023-10-12 Abionyx Pharma Sa Methods for treating leukocytosis, endothelial dysfunction and carditis using lipid binding protein-based complexes
WO2023194797A1 (en) 2022-04-06 2023-10-12 Abionyx Pharma Sa Methods for treating eye diseases using lipid binding protein-based complexes
WO2023237935A2 (en) 2022-06-10 2023-12-14 Abionyx Pharma Sa Methods for treating acute conditions using lipid binding protein-based complexes
WO2023237927A2 (en) 2022-06-10 2023-12-14 Abionyx Pharma Sa Methods for treating hyperinflammatory conditions using lipid binding protein -based complexes

Citations (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767040A (en) * 1971-03-01 1973-10-23 Minnesota Mining & Mfg Pressure-sensitive polyurethane adhesives
US4155913A (en) * 1973-02-08 1979-05-22 Hoffmann-La Roche Inc. Thienotriazolodiazepine derivatives
US4643988A (en) * 1984-05-15 1987-02-17 Research Corporation Amphipathic peptides
US4684520A (en) * 1984-04-09 1987-08-04 Seuref A.G. Pharmaceutical compositions having cerebral antianoxic and metabolic activities
US5298490A (en) * 1988-05-19 1994-03-29 Immunobiology Research Institute, Inc. Tetra and penta-peptides useful in regulating the immune system
US5304470A (en) * 1991-01-23 1994-04-19 Forschungszentrum Juelich Gmbh Process for the enzymatic preparation of protected and unprotected di- and oligopeptides in aqueous solutions
US5344822A (en) * 1992-08-12 1994-09-06 The Rogosin Institute Methods useful in endotoxin prophylaxis and therapy
US5358934A (en) * 1992-12-11 1994-10-25 The United States Of America As Represented By The Secretary Of Agriculture Materials and methods for control of pests
US5480869A (en) * 1990-01-09 1996-01-02 The Regents Of The University Of California Anti-inflammatory peptide analogs and treatment to inhibit vascular leakage in injured tissues
US5595973A (en) * 1994-09-12 1997-01-21 Biomeasure Incorporated Protection of hemopoietic cells during chemotherapy or radiotherapy
US5721138A (en) * 1992-12-15 1998-02-24 Sandford University Apolipoprotein(A) promoter and regulatory sequence constructs and methods of use
US5733549A (en) * 1992-08-14 1998-03-31 Shino-Test Corporation Peptides including amino acid sequences selected from lipoprotein (a) and apolipoprotein (a), antibodies recognizing these amino acid sequences, and methods of determination using these antibodies
US5733879A (en) * 1992-06-12 1998-03-31 N.V. Innogenetics, S.A. Peptides and proteins, process for their preparation and their use as cholesterol acceptors
US5814467A (en) * 1990-06-07 1998-09-29 The Scripps Research Institute APO AI polypeptides, diagnostic methods and systems for quantifying APO AI, and therapeutic methods
US5854238A (en) * 1995-09-09 1998-12-29 Hoffmann-La Roche Inc. Use of a thienotriazolodiazephine to increase apolipoprotein A-I levels
US6004925A (en) * 1997-09-29 1999-12-21 J. L. Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6019739A (en) * 1998-06-18 2000-02-01 Baxter International Inc. Minimally invasive valve annulus sizer
US6037323A (en) * 1997-09-29 2000-03-14 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6046166A (en) * 1997-09-29 2000-04-04 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6086918A (en) * 1996-03-15 2000-07-11 Unigene Laboratories, Inc. Oral peptide pharmaceutical products
US6126939A (en) * 1996-09-03 2000-10-03 Yeda Research And Development Co. Ltd. Anti-inflammatory dipeptide and pharmaceutical composition thereof
US6172071B1 (en) * 1998-07-30 2001-01-09 Hughes Institute Lipid-lowering quinazoline derivative
US6191151B1 (en) * 1997-11-12 2001-02-20 Howard M. Zik Therapy for herpes neurological viral conditions utilizing 1,4-dihydropyridine calcium channel blockers
US6228989B1 (en) * 1998-11-13 2001-05-08 The Regents Of The University Of California Peptide substrates phosphorylated by P21-activated protein kinase
US20010005714A1 (en) * 1996-03-29 2001-06-28 Dario Boffelli Amphipathic molecules as cholesterol and other lipid uptake inhibitors
US6265382B1 (en) * 1997-04-11 2001-07-24 Warner-Lambert Company Dipeptide inhibitors of protein farnesyltransferase
US6277826B1 (en) * 1996-08-27 2001-08-21 Praecis Pharmaceuticals, Inc. Modulators of β-amyloid peptide aggregation comprising D-amino acids
US20010016207A1 (en) * 2000-02-10 2001-08-23 Martin Missbach Dipeptide nitrile cathepsin K inhibitors
US6287590B1 (en) * 1997-10-02 2001-09-11 Esperion Therapeutics, Inc. Peptide/lipid complex formation by co-lyophilization
US6297216B1 (en) * 1994-05-12 2001-10-02 Solvo Biotechnology Compounds for reversing drug resistance
US6303619B1 (en) * 1998-03-12 2001-10-16 University Of Virginia Meta-substituted acidic 8-phenylxanthine antagonists of A3 human adenosine receptors
US6320017B1 (en) * 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
US20020042441A1 (en) * 2000-07-25 2002-04-11 Acton John J. N-substituted indoles useful in the treatment of diabetes
US6383808B1 (en) * 2000-09-11 2002-05-07 Isis Pharmaceuticals, Inc. Antisense inhibition of clusterin expression
US6444681B1 (en) * 2000-06-09 2002-09-03 The Ohio State University Research Foundation Methods and compositions for treating Raynaud's Phenomenon and scleroderma
US6444230B1 (en) * 1997-04-24 2002-09-03 Chemoxal Sa Synergistic composition of peracetic acid and amine oxide
US6464975B2 (en) * 1998-12-11 2002-10-15 The Research Foundation Of State University Of New York Compositions and methods for altering cell migration
US20020177586A1 (en) * 2000-07-13 2002-11-28 Egan John J. Method for treating fibrotic diseases or other indications ID
US6498038B1 (en) * 1997-07-15 2002-12-24 Bioprobes, Inc. Loss of sialic acid from apolipoprotein j as an indicator of alcohol intake and/or alcohol related liver damage
US20030027769A1 (en) * 2001-02-16 2003-02-06 Scialdone Mark A. Angiogenesis-inhibitory tripeptides, compositions and their methods of use
US6518412B1 (en) * 1997-09-29 2003-02-11 Jean-Louis Dasseux Gene therapy approaches to supply apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US20030040505A1 (en) * 2000-03-31 2003-02-27 The Regents Of The University Of California Synthetic phospholipids to ameliorate atherosclerosis and other inflammatory conditions
US20030045460A1 (en) * 2000-08-24 2003-03-06 Fogelman Alan M. Orally administered peptides to ameliorate atherosclerosis
US20030077641A1 (en) * 1998-03-11 2003-04-24 Laskowitz Daniel T. Methods of suppressing microglial activation and systemic inflammatory responses
US6555651B2 (en) * 1997-10-09 2003-04-29 The Trustees Of Columbia University In The City Of New York Ligand binding site of rage and uses thereof
US20030096737A1 (en) * 2001-04-19 2003-05-22 Anita Diu-Hercend Caspase inhibitors and uses thereof
US20030125260A1 (en) * 2001-10-31 2003-07-03 Fortuna Haviv Tetra-and pentapeptides having antiangiogenic activity
US6635623B1 (en) * 1997-06-13 2003-10-21 Baylor College Of Medicine Lipoproteins as nucleic acid vectors
US6696545B1 (en) * 1997-04-11 2004-02-24 Sangstat Medical Corporation Cytomodulating lipophilic peptides for modulating immune system activity and inhibiting inflammation
US20040059110A1 (en) * 2001-02-02 2004-03-25 Ajinomoto Co., Inc. Novel cystine derivative and agent for suppressing activation of inflammatory factors
US6717031B2 (en) * 1995-06-07 2004-04-06 Kate Dora Games Method for selecting a transgenic mouse model of alzheimer's disease
US6727063B1 (en) * 1999-09-10 2004-04-27 Millennium Pharmaceuticals, Inc. Single nucleotide polymorphisms in genes
US20040136989A1 (en) * 2002-07-19 2004-07-15 Abbott Laboratories S.A. Treatment of vasculitides using TNFalpha inhibitors
US20040152623A1 (en) * 2002-12-04 2004-08-05 Atul Varadhachary Lactoferrin in the reduction of circulating cholesterol, vascular inflammation, atherosclerosis and cardiovascular disease
US20040266663A1 (en) * 2001-12-07 2004-12-30 Schwartz Daniel M. Methods to increase reverse cholesterol transport in the retinal pigment epithelium (RPE) and bruch's membrane (BM)
US6846636B1 (en) * 1998-05-15 2005-01-25 American National Red Cross Methods and compositions for HDL holoparticle uptake receptor
US6849714B1 (en) * 1999-05-17 2005-02-01 Conjuchem, Inc. Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components
US6869568B2 (en) * 2000-03-31 2005-03-22 The Regents Of The University Of California Functional assay of high-density lipoprotein
US20050070996A1 (en) * 2003-04-08 2005-03-31 Dinh Thomas Q. Drug-eluting stent for controlled drug delivery
US6887470B1 (en) * 1999-09-10 2005-05-03 Conjuchem, Inc. Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components
US20050154046A1 (en) * 2004-01-12 2005-07-14 Longgui Wang Methods of treating an inflammatory-related disease
US6936691B2 (en) * 1999-11-02 2005-08-30 Human Genome Sciences, Inc. Secreted protein HCE3C63
US20050197381A1 (en) * 2001-12-13 2005-09-08 Longgui Wang Methods of treating an inflammatory-related disease
US20050239136A1 (en) * 2003-12-05 2005-10-27 Hazen Stanley L Risk markers for cardiovacular disease
US6982348B2 (en) * 2001-01-26 2006-01-03 Takeda Pharmaceutical Company Limited Aminoethanol derivatives
US20060069030A1 (en) * 2004-07-16 2006-03-30 Trustees Of Tufts College Apolipoprotein A1 mimetics and uses thereof
US20060205669A1 (en) * 2004-09-16 2006-09-14 The Regents Of The University Of California G-type peptides and other agents to ameliorate atherosclerosis and other pathologies
US20060217298A1 (en) * 2003-02-04 2006-09-28 Srivastava Pramod K Immunogenic cd91 ligand-antigenic molecule complexes and fusion proteins
US20060217307A1 (en) * 2001-06-26 2006-09-28 Biomarck Pharmaceuticals, Ltd. Methods for regulating inflammatory mediators and peptides useful therein
US20060234908A1 (en) * 2004-12-06 2006-10-19 The Regents Of The University Of California Methods for improving the structure and function of arterioles
US7144862B2 (en) * 2000-08-24 2006-12-05 The Regents Of The University Of California Orally administered peptides to ameliorate atherosclerosis
US7148197B2 (en) * 2000-08-24 2006-12-12 The Regents Of The University Of California Orally administered small peptides synergize statin activity
US7166578B2 (en) * 2000-08-24 2007-01-23 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20070032430A1 (en) * 2000-08-24 2007-02-08 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US7199102B2 (en) * 2000-08-24 2007-04-03 The Regents Of The University Of California Orally administered peptides synergize statin activity
US7291590B2 (en) * 2003-06-12 2007-11-06 Queen's University At Kingston Compositions and methods for treating atherosclerosis
US20080293639A1 (en) * 2005-04-29 2008-11-27 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622587B1 (en) * 1987-10-30 1990-12-21 Inst Vaisseaux Sang PEPTIDE LYSYL-ARGINYL-ASPARTYL-SERINE AND ITS APPLICATIONS AS A MEDICAMENT, ESPECIALLY ANTITHROMBOTIC
FR2735131B1 (en) * 1995-06-12 1997-08-22 Rech De Pathologie Appliquee S CONJUGATES OF MSH WITH A FATTY ACID, THEIR PREPARATION PROCESS AND THEIR USE AS MEDICAMENTS
IN185761B (en) 1997-05-13 2001-04-28 Council Scient Ind Res
AU3356899A (en) 1998-03-17 1999-10-11 Uab Research Foundation, The Synthetic peptides that enhance ldl uptake

Patent Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767040A (en) * 1971-03-01 1973-10-23 Minnesota Mining & Mfg Pressure-sensitive polyurethane adhesives
US4155913A (en) * 1973-02-08 1979-05-22 Hoffmann-La Roche Inc. Thienotriazolodiazepine derivatives
US4684520A (en) * 1984-04-09 1987-08-04 Seuref A.G. Pharmaceutical compositions having cerebral antianoxic and metabolic activities
US4643988A (en) * 1984-05-15 1987-02-17 Research Corporation Amphipathic peptides
US5298490A (en) * 1988-05-19 1994-03-29 Immunobiology Research Institute, Inc. Tetra and penta-peptides useful in regulating the immune system
US5480869A (en) * 1990-01-09 1996-01-02 The Regents Of The University Of California Anti-inflammatory peptide analogs and treatment to inhibit vascular leakage in injured tissues
US5814467A (en) * 1990-06-07 1998-09-29 The Scripps Research Institute APO AI polypeptides, diagnostic methods and systems for quantifying APO AI, and therapeutic methods
US5304470A (en) * 1991-01-23 1994-04-19 Forschungszentrum Juelich Gmbh Process for the enzymatic preparation of protected and unprotected di- and oligopeptides in aqueous solutions
US5733879A (en) * 1992-06-12 1998-03-31 N.V. Innogenetics, S.A. Peptides and proteins, process for their preparation and their use as cholesterol acceptors
US5344822A (en) * 1992-08-12 1994-09-06 The Rogosin Institute Methods useful in endotoxin prophylaxis and therapy
US5733549A (en) * 1992-08-14 1998-03-31 Shino-Test Corporation Peptides including amino acid sequences selected from lipoprotein (a) and apolipoprotein (a), antibodies recognizing these amino acid sequences, and methods of determination using these antibodies
US5358934A (en) * 1992-12-11 1994-10-25 The United States Of America As Represented By The Secretary Of Agriculture Materials and methods for control of pests
US5721138A (en) * 1992-12-15 1998-02-24 Sandford University Apolipoprotein(A) promoter and regulatory sequence constructs and methods of use
US6297216B1 (en) * 1994-05-12 2001-10-02 Solvo Biotechnology Compounds for reversing drug resistance
US5595973A (en) * 1994-09-12 1997-01-21 Biomeasure Incorporated Protection of hemopoietic cells during chemotherapy or radiotherapy
US6717031B2 (en) * 1995-06-07 2004-04-06 Kate Dora Games Method for selecting a transgenic mouse model of alzheimer's disease
US5854238A (en) * 1995-09-09 1998-12-29 Hoffmann-La Roche Inc. Use of a thienotriazolodiazephine to increase apolipoprotein A-I levels
US6086918A (en) * 1996-03-15 2000-07-11 Unigene Laboratories, Inc. Oral peptide pharmaceutical products
US20010005714A1 (en) * 1996-03-29 2001-06-28 Dario Boffelli Amphipathic molecules as cholesterol and other lipid uptake inhibitors
US6277826B1 (en) * 1996-08-27 2001-08-21 Praecis Pharmaceuticals, Inc. Modulators of β-amyloid peptide aggregation comprising D-amino acids
US6126939A (en) * 1996-09-03 2000-10-03 Yeda Research And Development Co. Ltd. Anti-inflammatory dipeptide and pharmaceutical composition thereof
US6696545B1 (en) * 1997-04-11 2004-02-24 Sangstat Medical Corporation Cytomodulating lipophilic peptides for modulating immune system activity and inhibiting inflammation
US6265382B1 (en) * 1997-04-11 2001-07-24 Warner-Lambert Company Dipeptide inhibitors of protein farnesyltransferase
US6444230B1 (en) * 1997-04-24 2002-09-03 Chemoxal Sa Synergistic composition of peracetic acid and amine oxide
US6635623B1 (en) * 1997-06-13 2003-10-21 Baylor College Of Medicine Lipoproteins as nucleic acid vectors
US6498038B1 (en) * 1997-07-15 2002-12-24 Bioprobes, Inc. Loss of sialic acid from apolipoprotein j as an indicator of alcohol intake and/or alcohol related liver damage
US6753313B1 (en) * 1997-09-29 2004-06-22 Jean-Louis Dasseux Multimeric Apoa-I agonist compounds
US6734169B2 (en) * 1997-09-29 2004-05-11 Jean Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6004925A (en) * 1997-09-29 1999-12-21 J. L. Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6046166A (en) * 1997-09-29 2000-04-04 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6630450B1 (en) * 1997-09-29 2003-10-07 Jean-Louis Dasseux Method of treating dyslipidemia
US6518412B1 (en) * 1997-09-29 2003-02-11 Jean-Louis Dasseux Gene therapy approaches to supply apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6716816B1 (en) * 1997-09-29 2004-04-06 Jean-Louis Dasseux Multimeric Apo A-I agonist compounds
US6329341B1 (en) * 1997-09-29 2001-12-11 Esperion Therapeutics, Inc. Method of treating septic shock
US6602854B1 (en) * 1997-09-29 2003-08-05 Jean-Louis Dasseux Branched multimeric Apo A-I agonist compounds
US6376464B1 (en) * 1997-09-29 2002-04-23 Esperion Therapeutics, Inc. Lipid complexes of APO A-1 agonist compounds
US6037323A (en) * 1997-09-29 2000-03-14 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6573239B1 (en) * 1997-09-29 2003-06-03 Jean-Louis Dasseux Apolipoprotein A-I agonist compounds
US6265377B1 (en) * 1997-09-29 2001-07-24 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6455088B1 (en) * 1997-10-02 2002-09-24 Jean-Louis Dasseux Peptide/lipid complex formation by co-lyophilization
US6287590B1 (en) * 1997-10-02 2001-09-11 Esperion Therapeutics, Inc. Peptide/lipid complex formation by co-lyophilization
US6555651B2 (en) * 1997-10-09 2003-04-29 The Trustees Of Columbia University In The City Of New York Ligand binding site of rage and uses thereof
US6191151B1 (en) * 1997-11-12 2001-02-20 Howard M. Zik Therapy for herpes neurological viral conditions utilizing 1,4-dihydropyridine calcium channel blockers
US6320017B1 (en) * 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
US20030077641A1 (en) * 1998-03-11 2003-04-24 Laskowitz Daniel T. Methods of suppressing microglial activation and systemic inflammatory responses
US6303619B1 (en) * 1998-03-12 2001-10-16 University Of Virginia Meta-substituted acidic 8-phenylxanthine antagonists of A3 human adenosine receptors
US6846636B1 (en) * 1998-05-15 2005-01-25 American National Red Cross Methods and compositions for HDL holoparticle uptake receptor
US6019739A (en) * 1998-06-18 2000-02-01 Baxter International Inc. Minimally invasive valve annulus sizer
US6172071B1 (en) * 1998-07-30 2001-01-09 Hughes Institute Lipid-lowering quinazoline derivative
US6228989B1 (en) * 1998-11-13 2001-05-08 The Regents Of The University Of California Peptide substrates phosphorylated by P21-activated protein kinase
US6464975B2 (en) * 1998-12-11 2002-10-15 The Research Foundation Of State University Of New York Compositions and methods for altering cell migration
US6849714B1 (en) * 1999-05-17 2005-02-01 Conjuchem, Inc. Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components
US6727063B1 (en) * 1999-09-10 2004-04-27 Millennium Pharmaceuticals, Inc. Single nucleotide polymorphisms in genes
US6887470B1 (en) * 1999-09-10 2005-05-03 Conjuchem, Inc. Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components
US6936691B2 (en) * 1999-11-02 2005-08-30 Human Genome Sciences, Inc. Secreted protein HCE3C63
US20010016207A1 (en) * 2000-02-10 2001-08-23 Martin Missbach Dipeptide nitrile cathepsin K inhibitors
US20030040505A1 (en) * 2000-03-31 2003-02-27 The Regents Of The University Of California Synthetic phospholipids to ameliorate atherosclerosis and other inflammatory conditions
US6869568B2 (en) * 2000-03-31 2005-03-22 The Regents Of The University Of California Functional assay of high-density lipoprotein
US6444681B1 (en) * 2000-06-09 2002-09-03 The Ohio State University Research Foundation Methods and compositions for treating Raynaud's Phenomenon and scleroderma
US20020177586A1 (en) * 2000-07-13 2002-11-28 Egan John J. Method for treating fibrotic diseases or other indications ID
US20020042441A1 (en) * 2000-07-25 2002-04-11 Acton John J. N-substituted indoles useful in the treatment of diabetes
US20070032430A1 (en) * 2000-08-24 2007-02-08 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US20070254839A1 (en) * 2000-08-24 2007-11-01 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20070060527A1 (en) * 2000-08-24 2007-03-15 The Regents of the University of California and Orally administered small peptides synergize statin activity
US7166578B2 (en) * 2000-08-24 2007-01-23 The Regents Of The University Of California Orally administered peptides synergize statin activity
US7148197B2 (en) * 2000-08-24 2006-12-12 The Regents Of The University Of California Orally administered small peptides synergize statin activity
US20030045460A1 (en) * 2000-08-24 2003-03-06 Fogelman Alan M. Orally administered peptides to ameliorate atherosclerosis
US7144862B2 (en) * 2000-08-24 2006-12-05 The Regents Of The University Of California Orally administered peptides to ameliorate atherosclerosis
US20080096814A1 (en) * 2000-08-24 2008-04-24 The Regents Of The University Of California Orally administered peptides synergize statin activity
US7199102B2 (en) * 2000-08-24 2007-04-03 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20080095821A1 (en) * 2000-08-24 2008-04-24 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US20080045459A1 (en) * 2000-08-24 2008-02-21 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20080096816A1 (en) * 2000-08-24 2008-04-24 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20080096815A1 (en) * 2000-08-24 2008-04-24 The Regents Of The University Of California Orally administered peptides synergize statin activity
US6383808B1 (en) * 2000-09-11 2002-05-07 Isis Pharmaceuticals, Inc. Antisense inhibition of clusterin expression
US6982348B2 (en) * 2001-01-26 2006-01-03 Takeda Pharmaceutical Company Limited Aminoethanol derivatives
US20040059110A1 (en) * 2001-02-02 2004-03-25 Ajinomoto Co., Inc. Novel cystine derivative and agent for suppressing activation of inflammatory factors
US20030027769A1 (en) * 2001-02-16 2003-02-06 Scialdone Mark A. Angiogenesis-inhibitory tripeptides, compositions and their methods of use
US20030096737A1 (en) * 2001-04-19 2003-05-22 Anita Diu-Hercend Caspase inhibitors and uses thereof
US20060217307A1 (en) * 2001-06-26 2006-09-28 Biomarck Pharmaceuticals, Ltd. Methods for regulating inflammatory mediators and peptides useful therein
US20030125260A1 (en) * 2001-10-31 2003-07-03 Fortuna Haviv Tetra-and pentapeptides having antiangiogenic activity
US20040266663A1 (en) * 2001-12-07 2004-12-30 Schwartz Daniel M. Methods to increase reverse cholesterol transport in the retinal pigment epithelium (RPE) and bruch's membrane (BM)
US20050197381A1 (en) * 2001-12-13 2005-09-08 Longgui Wang Methods of treating an inflammatory-related disease
US20040136989A1 (en) * 2002-07-19 2004-07-15 Abbott Laboratories S.A. Treatment of vasculitides using TNFalpha inhibitors
US20060205634A1 (en) * 2002-12-04 2006-09-14 Atul Varadhachary Lactoferrin in the reduction of circulating cholesterol, vascular inflammation, atherosclerosis and cardiovascular disease
US20040152623A1 (en) * 2002-12-04 2004-08-05 Atul Varadhachary Lactoferrin in the reduction of circulating cholesterol, vascular inflammation, atherosclerosis and cardiovascular disease
US20060217298A1 (en) * 2003-02-04 2006-09-28 Srivastava Pramod K Immunogenic cd91 ligand-antigenic molecule complexes and fusion proteins
US20050070996A1 (en) * 2003-04-08 2005-03-31 Dinh Thomas Q. Drug-eluting stent for controlled drug delivery
US7291590B2 (en) * 2003-06-12 2007-11-06 Queen's University At Kingston Compositions and methods for treating atherosclerosis
US20050239136A1 (en) * 2003-12-05 2005-10-27 Hazen Stanley L Risk markers for cardiovacular disease
US20050154046A1 (en) * 2004-01-12 2005-07-14 Longgui Wang Methods of treating an inflammatory-related disease
US20060069030A1 (en) * 2004-07-16 2006-03-30 Trustees Of Tufts College Apolipoprotein A1 mimetics and uses thereof
US20060205669A1 (en) * 2004-09-16 2006-09-14 The Regents Of The University Of California G-type peptides and other agents to ameliorate atherosclerosis and other pathologies
US20060234908A1 (en) * 2004-12-06 2006-10-19 The Regents Of The University Of California Methods for improving the structure and function of arterioles
US20080293639A1 (en) * 2005-04-29 2008-11-27 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080095821A1 (en) * 2000-08-24 2008-04-24 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US8048851B2 (en) 2000-08-24 2011-11-01 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US7531514B2 (en) 2000-08-24 2009-05-12 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20070060527A1 (en) * 2000-08-24 2007-03-15 The Regents of the University of California and Orally administered small peptides synergize statin activity
US8568766B2 (en) 2000-08-24 2013-10-29 Gattadahalli M. Anantharamaiah Peptides and peptide mimetics to treat pathologies associated with eye disease
US20080045459A1 (en) * 2000-08-24 2008-02-21 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20070101448A1 (en) * 2002-11-13 2007-05-03 Anantharamiah Gattadahalli M Synthetic single domain polypeptides mimicking apolipoprotein E and methods of use
US8084423B2 (en) 2002-11-13 2011-12-27 Uab Research Foundation Synthetic single domain polypeptides mimicking apolipoprotein E and methods of use
US20060205669A1 (en) * 2004-09-16 2006-09-14 The Regents Of The University Of California G-type peptides and other agents to ameliorate atherosclerosis and other pathologies
US8236754B2 (en) 2004-12-06 2012-08-07 The Regents Of The University Of California Methods for improving the structure and function of arterioles
US7579319B2 (en) 2004-12-06 2009-08-25 The Regents Of The University Of California Methods for improving the structure and function of arterioles
US20060234908A1 (en) * 2004-12-06 2006-10-19 The Regents Of The University Of California Methods for improving the structure and function of arterioles
US20080293639A1 (en) * 2005-04-29 2008-11-27 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
EP2368561A1 (en) 2005-04-29 2011-09-28 The Regents of The University of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
WO2006118805A2 (en) 2005-04-29 2006-11-09 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US20090163408A1 (en) * 2006-08-08 2009-06-25 The Regents Of The University Of California Salicylanilides enhance oral delivery of therapeutic peptides
US8148328B2 (en) 2006-08-08 2012-04-03 The Regents Of The University Of California Salicylanilides enhance oral delivery of therapeutic peptides
US8163874B2 (en) 2007-08-06 2012-04-24 The United States Of America, As Represented By The Secretary Of The Navy Beta helical peptide structures stable in aqueous and non-aqueous media and methods for preparing same
WO2009021077A2 (en) * 2007-08-06 2009-02-12 THE GOVERMENT OF THE UNITED STATES OF AMERICA. as represented by THE SECRETARY OF THE NAVY Beta helical peptide structures stable in aqueous and non-aqueous media and methods for preparing same
US20090076244A1 (en) * 2007-08-06 2009-03-19 Kulp John L Beta Helical Peptide Structures Stable in Aqueous and non-Aqueous Media and Methods for preparing same
WO2009021077A3 (en) * 2007-08-06 2009-04-23 Goverment Of The United States Beta helical peptide structures stable in aqueous and non-aqueous media and methods for preparing same
US8557767B2 (en) 2007-08-28 2013-10-15 Uab Research Foundation Synthetic apolipoprotein E mimicking polypeptides and methods of use
US9422363B2 (en) 2007-08-28 2016-08-23 Uab Research Foundation Synthetic apolipoprotein E mimicking polypeptides and methods of use
FR2927336A1 (en) * 2008-02-12 2009-08-14 Cie Des Peches Saint Malo Sant FISH PROTEIN HYDROLYSAT HAVING BONE CAPITAL STIMULATING AND MAINTAINING ACTIVITY, NUTRACEUTICAL AND PHARMACOLOGICAL COMPOSITIONS COMPRISING SUCH HYDROLYSAT AND PROCESS FOR OBTAINING THE SAME
WO2009101146A1 (en) * 2008-02-12 2009-08-20 Compagnie Des Peches Saint Malo Sante Fish protein hydrolysate having a bone-stimulating and ‑maintaining activity, nutraceutical and pharmacological compositions comprising such a hydrolysate and method for obtaining same
US20110124570A1 (en) * 2008-02-12 2011-05-26 Compagnie Des Peches Saint Malo Sante Fish protein hydrolysate having a bone-stimulating and maintaining activity, nutraceutical and pharmacological compositions comprising such a hydrolysate and method for obtaining same
US9346863B2 (en) 2008-02-12 2016-05-24 Compagnie Des Peches Saint Malo Sante Fish protein hydrolysate having a bone-stimulating and maintaining activity, nutraceutical and pharmacological compositions comprising such a hydrolysate and method for obtaining same
US9539300B2 (en) 2012-03-31 2017-01-10 The Regents Of The University Of California Modulating disease through genetic engineering of plants
US10653747B2 (en) 2014-07-31 2020-05-19 Uab Research Foundation ApoE mimetic peptides and higher potency to clear plasma cholesterol
US10905736B2 (en) 2016-09-28 2021-02-02 The Regents Of The University Of California Ezetimibe-associated ApoA-I mimetic peptides showing enhanced synergism
US10426817B2 (en) 2017-01-24 2019-10-01 Macregen, Inc. Treatment of age-related macular degeneration and other eye diseases with apolipoprotein mimetics

Also Published As

Publication number Publication date
US20070060527A1 (en) 2007-03-15
EP1660112A2 (en) 2006-05-31
CZ2006163A3 (en) 2006-07-12
US20040254120A1 (en) 2004-12-16
RU2006107605A (en) 2006-07-27
BRPI0412981A2 (en) 2015-08-04
MXPA06001743A (en) 2006-05-12
EP1660112A4 (en) 2010-03-03
WO2005016280A2 (en) 2005-02-24
JP2007512228A (en) 2007-05-17
HUP0700157A3 (en) 2009-03-02
CA2534676A1 (en) 2005-02-24
AU2004264944B2 (en) 2011-03-10
KR20060079799A (en) 2006-07-06
WO2005016280A3 (en) 2006-01-05
HUP0700157A1 (en) 2007-05-29
US7148197B2 (en) 2006-12-12
AU2004264944C1 (en) 2011-09-01
AU2004264944A1 (en) 2005-02-24
NO20061139L (en) 2006-05-08

Similar Documents

Publication Publication Date Title
US7148197B2 (en) Orally administered small peptides synergize statin activity
US8404635B2 (en) Orally administered peptides synergize statin activity
US7166578B2 (en) Orally administered peptides synergize statin activity
US6930085B2 (en) G-type peptides to ameliorate atherosclerosis
US20060173067A1 (en) Small molecules for the treatment of atherosclerosis
ZA200601638B (en) Orally administered small peptides synergize statin activity
AU2003284129B2 (en) Orally administered peptides synergize statin activity

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOGELMAN, ALAN M.;NAVAB, MOHAMAD;REEL/FRAME:015989/0718;SIGNING DATES FROM 20041111 TO 20050127

Owner name: UNIVERSITY OF ALABAMA RESEARCH FOUNDATION, THE, AL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANANTHARAMAIAH, GATTADAHALLI M.;REEL/FRAME:015990/0683

Effective date: 20041115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION