Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20050178657 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 11/099,066
Fecha de publicación18 Ago 2005
Fecha de presentación5 Abr 2005
Fecha de prioridad9 Oct 2003
También publicado comoUS7101792, US7701039, US20050077630, US20060180940
Número de publicación099066, 11099066, US 2005/0178657 A1, US 2005/178657 A1, US 20050178657 A1, US 20050178657A1, US 2005178657 A1, US 2005178657A1, US-A1-20050178657, US-A1-2005178657, US2005/0178657A1, US2005/178657A1, US20050178657 A1, US20050178657A1, US2005178657 A1, US2005178657A1
InventoresKyle Kirby, Warren Farnworth
Cesionario originalKirby Kyle K., Farnworth Warren M.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Systems and methods of plating via interconnects
US 20050178657 A1
Resumen
Methods for filling high aspect ratio vias with conductive material. At least one high aspect ratio via is formed in the backside of a semiconductor substrate. The at least one via is closed at one end by a conductive element forming a conductive structure of the semiconductor substrate. The backside of the semiconductor substrate is exposed to an electroplating solution containing a conductive material in solution with the active surface semiconductor substrate isolated therefrom. An electric potential is applied across the conductive element through the electroplating solution and a conductive contact pad in direct or indirect electrical communication with the conductive element at the closed end of the at least one via (or forming such conductive element) to cause conductive material to electrochemically deposit from the electroplating solution and fill the at least one via. Semiconductor devices and in-process semiconductor devices are also disclosed.
Imágenes(5)
Previous page
Next page
Reclamaciones(31)
1. A system for placing conductive material in at least one via in a semiconductor substrate, the system comprising:
a container for forming a reservoir for containing an electroplating solution in contact with a semiconductor substrate, wherein a major surface of the semiconductor substrate forms a portion of a surface of the reservoir;
at least one seal for sealing the container to the major surface of the semiconductor substrate; and
a contact pad for contacting a conductive material another opposing major surface of the semiconductor substrate in electrical contact with a conductive element at a bottom of at least one via extending from the major surface of the semiconductor substrate.
2. The system of claim 1, wherein the at least one seal for sealing the container to the major surface of the semiconductor substrate comprises a seal locate and configured to isolate another opposing major surface of the semiconductor substrate from contact with the electroplating solution.
3. The system of claim 1, wherein the at least one seal is selected from the group consisting of an O-ring, a flexible elastomer face seal, and a wiper type seal.
4. The system of claim 1, wherein the at least one seal comprises an adhesive disposed between the container and the major surface of the semiconductor substrate.
5. The system of claim 1, wherein the conductive contact pad comprises a plate.
6. The system of claim 5, wherein the conductive contact pad comprises a plate with a number of probe elements extending therefrom.
7. The system of claim 1, wherein the contact pad comprises a contact structure having a deformable polymeric surface bearing conductive elements.
8. The system of claim 1, wherein the conductive contact pad comprises a furry surface.
9. The system of claim 8, wherein the conductive contact pad comprises a conductive polymeric material.
10. The system of claim 1, wherein the major surface of the semiconductor substrate forms the bottom surface of the reservoir.
11. The system of claim 1, further comprising a system for achieving reduced ambient pressure in the reservoir relative to the ambient pressure outside the reservoir.
12. The system of claim 1, wherein the container for forming a reservoir may be drained by rotating the reservoir about a horizontal axis.
13. A system for plating conductive material on a semiconductor substrate, the system comprising:
a bottomless vessel for forming a reservoir for containing an electroplating solution in contact with a bulk semiconductor substrate, wherein a major surface of the bulk semiconductor substrate forms the bottom of the reservoir; and
at least one seal for sealing the bottomless vessel to the major surface of the bulk semiconductor substrate.
14. The system of claim 13, wherein the least one seal comprises a seal located and configured to isolate another opposing major surface of the bulk semiconductor substrate from contact with the electroplating solution.
15. The system of claim 13, wherein the at least one seal is selected from the group consisting of an O-ring, a flexible elastomer face seal, and a wiper type seal.
16. The system of claim 13, wherein the at least one seal comprises an adhesive disposed between the bottomless vessel and the major surface of the semiconductor substrate.
17. The system of claim 13, further comprising a conductive contact pad for contacting a conductive material on another opposing major surface of the bulk semiconductor substrate in electrical contact with a conductive element at a bottom of at least one via extending from the major surface of the semiconductor substrate
18. The system of claim 17, wherein the conductive contact pad comprises a plate for contacting the another opposing major surface of the semiconductor substrate.
19. The system of claim 18, wherein the conductive contact pad comprises a plate with a number of probe elements extending therefrom.
20. The system of claim 17, wherein the conductive contact pad comprises a contact structure having a deformable polymeric surface bearing conductive elements.
21. The system of claim 17, wherein the conductive contact pad comprises a furry surface.
22. The system of claim 13, wherein the bottomless vessel may be drained by rotating the vessel about a horizontal axis.
23. A method of creating a reservoir for plating conductive material on a semiconductor substrate, the method comprising:
providing a bottomless vessel; and
sealing a major surface of a semiconductor substrate to the bottomless vessel.
24. The method of claim 23, wherein sealing a major surface of a semiconductor substrate to the bottomless vessel comprises isolating another, opposing major surface of the bulk semiconductor substrate from contact with an electroplating solution in the reservoir.
25. The method of claim 23, wherein sealing a major surface of a semiconductor substrate to the bottomless vessel comprises forming a seal between a lower periphery of the bottomless vessel and the major surface of the semiconductor substrate with at least one seal selected from the group consisting of an O-ring, a flexible elastomer face seal, and a wiper type seal.
26. The method of claim 23, wherein sealing a major surface of a semiconductor substrate to the bottomless vessel comprises disposing an adhesive between a lower periphery of the bottomless vessel and the major surface of the semiconductor substrate.
27. The method of claim 23, further comprising contacting a conductive contact pad to a conductive material on another, opposing major surface of the semiconductor substrate in electrical contact with a conductive element at a bottom of at least one via extending from the major surface of the semiconductor substrate.
28. The method of claim 27, wherein contacting a conductive contact pad to a conductive material on another, opposing surface of the semiconductor substrate comprises contacting a conductive plate thereto.
29. The method of claim 28, wherein contacting a conductive plate to another, opposing major surface of the semiconductor substrate comprises a contacting a conductive plate with a number of probe elements extending therefrom thereto.
30. The method of claim 27, wherein contacting a conductive contact pad to a conductive material on another, opposing major surface of the semiconductor substrate comprises contacting a conductive contact pad with a furry surface thereto.
31. The method of claim 23, further comprising draining the reservoir by rotating the bottomless vessel and attached semiconductor substrate around a horizontal axis.
Descripción
    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    This application is a continuation of pending application Ser. No. 10/682,703, filed Oct. 9, 2003 and entitled METHOD OF PLATING VIA INTERCONNECTS, the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates generally to the field of integrated circuits formed on a semiconductor substrate, such as a silicon wafer or die, including vias formed therethrough and, more particularly although not necessarily limited to, semiconductor substrates that include through-vias filled with conductive material and methods for their fabrication.
  • [0004]
    2. State of the Art
  • [0005]
    In order to function, integrated circuits must be in electrical communication with signal inputs and outputs as well as power and ground or bias connections external to the integrated circuit. For example, power and ground or other reference voltage must be supplied for operation of the integrated circuit, and other connections, such as for input, output and timing signals, may also be required. These connections are typically made through leads or other conductive elements connected to bond pads present on the active surface of a semiconductor die.
  • [0006]
    As electronic devices have become smaller and more sophisticated, the challenge of expanding capabilities while minimizing the space, or “real estate,” used by an integrated circuit has continued to increase. Techniques for reducing the space required by a semiconductor die or chip include the use of a redistribution layer (RDL) as an additional level of wiring to reposition bond pads providing inputs and outputs for a semiconductor die from the perimeter or along the centerline to alternative locations, for example, to define an array of locations for flip-chip attachment to a substrate. Use of bond pad redistribution may be necessary if perimeter or central bond pads have to be rerouted into another I/O layout. For example, if perimeter or central bond pad pitch (spacing) is too fine or is otherwise unsuitable for connection to the terminal pad layout of a carrier substrate, repositioning may be required.
  • [0007]
    Where present, the traces of an RDL may be embedded into a dielectric material. Suitable dielectric materials may include benzocyclobutene (BCB), polyimide, and photosensitive dielectrics. The process steps depend on whether the redistribution traces are aluminum or copper. For aluminum traces, the aluminum is sputtered onto the wafer surface and the traces are etched using a photolithography-defined etch mask pattern comprising a resist. In the case of copper traces, the metal is electroplated onto the wafer surface and then selectively etched to form traces. A redistribution layer is typically applied on the active surface of a semiconductor die to enable flip-chip mounting of the resulting “chip-scale” package on a carrier substrate such as an interposer or a printed circuit board.
  • [0008]
    Another technique for reducing the real estate required on a carrier substrate is the use of stacked semiconductor chips in a single package. In stacked chip-scale packages, two or more semiconductor chips will be mounted in a stack and electrically interconnected to a carrier substrate and/or to one another. This reduces the space taken on the underlying carrier substrate in comparison to mounting separate chips directly to the substrate.
  • [0009]
    Stacked chip-scale packages may require vias to be formed through the entire thickness of a semiconductor die between the active surface and backside thereof, allowing electrical connection therethrough to one or more dice stacked thereon. Such vias may require high aspect ratios (the ratio of via depth to diameter) due to the limited available area for positioning the vias in the semiconductor die, making them difficult to fill with electrically conductive material. Electroless plating of vias with a conductive material typically requires the placement of a seed layer of conductive material, such as copper or aluminum, in the via. Typically, this is accomplished by a sputtering or chemical vapor deposition (“CVD”) process, which can experience difficulty in depositing the conductive material on the bottom of a relatively high aspect via, for example, 10:1 or greater. Such high aspect ratios via may even have aspects of 15:1 or greater. Where a portion of the seed layer is deposited on the side of a high aspect ratio via, the material depositing during filling can fill across the via above the bottom, funneling or bridging off the underlying portion of the via. Other techniques, such as depositing conductive material over the surface of the wafer to fill the vias can similarly lead to the funneling or bridging off of a high aspect ratio via near the top of the via. Conventional electroplating typically requires the via to be open on both ends to enable a conductive contact plate to be placed on one side of the wafer to cover the bottom of the via and the electroplating solution to enter the via from the other side. This technique thus may limit the placement or order of the via fill in the wafer fabrication process. Some electroplating techniques also may require placement of a seed layer, resulting in similar funneling or bridging off problems. For example, a relatively new process employs metal organic chemical vapor deposition (MOCVD) to place a copper seed layer prior to electroplating of copper in the via. In addition to the extra step required to place the seed layer, there are reliability issues with this approach.
  • [0010]
    Accordingly, a method or system for effectively filling high aspect ratio vias without the need for placing a seed layer would be an improvement in the art. Such a technique that might be used for filling blind (or closed end) vias would constitute a further improvement in the art.
  • BRIEF SUMMARY OF THE INVENTION
  • [0011]
    The present invention, in several embodiments, includes methods for filling high aspect ratio vias with conductive material to enable electrical communication therethrough. At least one high aspect ratio via is formed in the backside of a semiconductor substrate. The at least one via may be closed at one end by a conductive element, forming a conductive structure of the semiconductor substrate. The backside of the semiconductor substrate may be exposed to an electroplating solution containing a conductive material in solution with the active surface isolated therefrom. An electric potential is applied across the conductive element by applying an electric current either directly through the conductive element at the closed end of the at least one via or through one or more other conductive structures of the semiconductor substrate electrically connected to the conductive element exposed at the bottom of the at least one via. The conductive material electrochemically deposits from the electroplating solution in response to the current flow, adhering to the exposed portion of the conductive element and filling the at least one via with conductive material.
  • [0012]
    Embodiments of semiconductor devices and in-process semiconductor devices fabricated in accordance with the methods of the present invention are also encompassed by the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    In the drawings, which, in conjunction with the accompanying text, discloses the best mode presently known to the inventors for carrying out the present invention:
  • [0014]
    FIG. 1 is a side view of a semiconductor substrate useful in practicing methods in accordance with the present invention.
  • [0015]
    FIG. 2 is a side view of the semiconductor substrate of FIG. 1, including additional layers of material applied thereto, useful in practicing some embodiments of the present invention.
  • [0016]
    FIG. 3 is an enlarged side cross-sectional view of a portion of the semiconductor substrate of FIGS. 1 and 2 after a via has been created therein from the backside thereof.
  • [0017]
    FIG. 4 is a side view of a representation of a semiconductor substrate undergoing deposition of conductive material in vias thereof from an electroplating solution with a conductive contact pad of an electroplating apparatus in contact with a conductive structure of the semiconductor substrate.
  • [0018]
    FIG. 4A is an enlarged side cross-sectional view of an area of contact between a conductive contact pad of an electroplating apparatus and another conductive structure of a semiconductor substrate.
  • [0019]
    FIG. 4B is an enlarged side cross-sectional view of an area of contact between a conductive contact pad of an electroplating apparatus and yet another conductive structure of a semiconductor substrate.
  • [0020]
    FIG. 4C is an enlarged side cross-sectional view of an area of contact between a conductive contact pad of an electroplating apparatus and still another conductive structure of a semiconductor substrate.
  • [0021]
    FIG. 5 is a side view of a semiconductor substrate having vias filled with a conductive material in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • [0022]
    The present invention provides methods for filling vias in semiconductor substrates, as well as semiconductor substrates having filled vias created by those methods. It will be appreciated by those of ordinary skill in the art that the embodiments herein described, while illustrating certain specific and exemplary implementations of the invention, do not limit the invention or the scope of the appended claims. Those of ordinary skill in the art will also understand that various combinations or modifications of the disclosed embodiments may be made without departing from the scope of the invention.
  • [0023]
    FIG. 1 depicts a semiconductor substrate 10. The semiconductor substrate 10 may comprise primarily silicon, as formed in the art by growing a single crystal in the form of a cylinder, which is then segmented or sliced transversely to form a plurality of wafers. Alternatively, the semiconductor substrate 10 includes an active surface 12 and a backside 14 and may comprise a bulk semiconductor substrate comprising a layer of semiconductor material, such as a silicon on sapphire (SOS) substrate, a silicon on glass (SOG) substrate, or other type of silicon on insulator (SOI) substrate. The active surface 12 of the semiconductor substrate may be doped as shown schematically at 13, in accordance with techniques well known in the art. For example, a P-type substrate may be used. It will be appreciated that other suitable semiconductor substrates may be used, such as N-type substrates or even nonsilicon semiconducting substrates such as those of gallium arsenide or indium phosphide, where appropriate electrophoretic and chemical reactions may be designed. All such alternative structures are within the scope of the present invention.
  • [0024]
    FIG. 2 shows the semiconductor substrate 10 of FIG. 1 with a dielectric layer 16 and conductive layer 18 disposed on the active surface 12 thereof. The dielectric layer 16 may be an interlayer dielectric and may be formed of any suitable dielectric material, such as BCB, polyimide, a photosensitive dielectric, or any other suitable dielectric or passivating material. Electrically conductive elements may be formed at desired via locations from conductive layer 18, as by blanket deposition and selective etching. Conductive layer 18 may, for example, be the same layer used to define bond pads for semiconductor substrate 10. Conductive layer 18 may comprise a metallic material and an elemental metal is currently preferred, although it will be appreciated that alternate conductive materials, such as alloys or even a conductive or conductor-filled polymeric material may be used.
  • [0025]
    Turning to FIG. 3, an enlarged portion of semiconductor substrate 10 is shown with exemplary vias 20 formed through the backside 14 thereof. As depicted, the vias 20 pass substantially entirely through the depth of the semiconductor substrate 10 and are closed at one end by conductive elements on active surface 12 in the form of contacts 18 c connected by trace 18 t formed, as by etching, from conductive layer 18. It will be appreciated that vias 20 which do not pass substantially entirely through the substrate 10 but merely penetrate to a selected depth therein may be created and used in methods in accordance with the present invention, so long as the end of each via 20 is covered with a contact 18 c of conductive material in electrically communicative connection with a conductive structure on the active surface 12 of the semiconductor substrate 10, as will be discussed in further detail herein. It will be further appreciated that, although, for simplicity of understanding, only two vias 20 are depicted, the methods of the present invention maybe, and in most instances would be, simultaneously conducted with a large plurality of vias 20 in a semiconductor substrate 10. It will also be appreciated by those of ordinary skill in the art that the methods of the present invention will typically be applied on a wafer or other bulk semiconductor substrate scale for efficiency, although the invention is not so limited.
  • [0026]
    Vias 20 may be formed after the application of the dielectric layer 16 and conductive contacts 18 c, as depicted by the process of FIGS. 2 and 3, or may be created prior to the application of one or both of such layers to the active surface 12, as is desired for ease of processing steps. Vias 20 may be created in any suitable fashion. Vias 20 may be of round, polygonal or any other suitable cross-sectional shape and will typically be characterized by having a high aspect ratio. Such vias 20 may be formed by drilling, by laser ablation, or by any other suitable method known in the art. Laser ablation may be effected using any suitable equipment, such as the Model 5000-series lasers, offered currently by ElectroScientific Industries (ESI) of Portland, Oreg. One specific, suitable piece of equipment is a 355 nm wavelength UV YAG laser, ESI Model 2700, which may be used to form vias as little as 25 μm in diameter. One hundred pulses using this laser will form a 750 μm deep via through silicon. Another suitable laser is the Model 200, offered by Xsil Limited of Dublin, Ireland. If desired, a TMAH (tetramethyl ammonium hydroxide) solution may be used to clean the vias 20 after formation, which can result in a squared cross-section for the vias.
  • [0027]
    Alternatively, vias 20 may be formed by etching the semiconductor substrate 10 with a suitable etchant. Where vias 20 are formed by etching, additional acts, including the application and patterning of an etchant-resistive material such as a photoresist material to backside 14 of the semiconductor substrate 10, followed by etching with a suitable wet or dry etchant, may be required. Any other suitable method for forming vias 20 in a semiconductor substrate 10 known now, or in the future, to those of ordinary skill in the art may be used and is within the scope of the present invention. Vias 20 may be of substantially round cross-section, or otherwise, as noted above. Currently, an anisotropic etch is preferred in forming vias 20 for practicing the methods of the present invention, although it will be appreciated that any suitable via-forming technology or procedure may be used.
  • [0028]
    Another nonlimiting example of a suitable technology for forming the vias 20 is the so-called atmospheric downstream plasma (ADP) process offered by Tru-Si Technologies, Inc. of Sunnyvale, Calif. As applied to via formation, the ADP process is implemented using an aluminum mask layer formed over a surface of a semiconductor substrate patterned with apertures to define via locations. An argon carrier gas is employed, with fluorine as the reactant gas. The etch effected is substantially isotropic. Once the vias 20 are created and, if necessary, cleaned, the contact 18 c formed from conductive layer 18 is exposed at the bottoms thereof. Where necessary, the vias 20 may be cleaned using any suitable process to provide a clean and porous surface at the sidewalls of vias 20.
  • [0029]
    As depicted in FIG. 3, additional processing steps may be carried out on the semiconductor substrate 10 prior to filling of vias 20 with conductive material, such as the application of additional passivation or dielectric layers, or the formation of conductive traces for the RDL or through intervening layers, even to the formation of under bump metallization (“UBM”) structures to facilitate formation of solder bumps thereon for flip-chip configuration of semiconductor dice singulated from the substrate 10. Where additional material layers are present, the portions of conductive contacts 18 c accessible through the vias 20 are in electrically conductive contact with a conductive structure on the exposed side (active surface 12 side) of the substrate, as through a UBM structure. Any additional steps or procedures needed to apply the additional layers, place or etch conductive traces, and form UBM structures may be performed as desired to facilitate the processing of the semiconductor substrate 10. For example, and again with reference to FIG. 3, conductive contacts 18 c may comprise pads or traces etched from a blanket layer of metal (conductive layer 18), as previously discussed, and extend under the bottoms of more than one via 20. One or more passivation layers 24 of, for example, tetraethyloxysilicate (TEOS), may be formed over and adjacent contacts 18 c and trace 18 t formed from conductive layer 18. Another passivation layer 26 of, for example, silicon nitride, may also be formed. Finally, a layer 28 of polybenzoxazole (“PBO”), available from Sumitomo Plastics America, Inc. or of polyimide may be formed over the preceding layers. Layers 24, 26 and 28 may then be etched after masking with a photoresist and patterning to define the location of one or more contact vias 30. Contact vias 30 are then formed by etching, which may be by wet or dry, isotropic or anisotropic etch, as known in the art.
  • [0030]
    As described above, a blanket conductive layer 32 may be formed, for example, of copper or aluminum, over dielectric layer 28 as an RDL precursor layer. As further described above, blanket conductive layer 32 may then be etched to form traces 32 t (FIG. 4B) of the redistribution layer. In either instance, blanket conductive layer 32 also fills contact vias 30.
  • [0031]
    Finally, and as depicted in FIG. 3, another dielectric layer 34 of, for example, polyimide may be formed over the redistribution layer traces 32 t (FIG. 4B) and apertures 36 etched therethrough at locations where discrete conductive elements at the new I/O locations provided by the RDL are to be placed. The apertures 36 at such locations may be filled, for example, with nickel to provide a UBM structure 38 if a tin/lead solder is to be used to form solder balls as discrete conductive elements by reflow. Of course, discrete conductive elements in the form of balls, bumps, studs, columns or pillars may be formed from a wide variety of conductive materials.
  • [0032]
    Where desired, the vias 20 may be lined with a dielectric material prior to filling. This lining may provide protection from the effects of current flowing through the vias 20 during operation of the semiconductor substrate 10. For example, where the substrate 10 is silicon, the sidewalls of the vias 20 may be oxidized to provide an insulative coating of silicon dioxide. Alternatively, a dielectric material may be disposed on the sidewalls of the vias 20. Some examples of suitable dielectric materials include Parylene™, offered by Specialty Coating Systems of Indianapolis, Ind., and TEOS, although any suitable dielectric material may be used. Dielectric coating materials that may be applied through application into vias 20 as a vapor that condenses on the sidewalls thereof may be especially desirable. A dielectric lining 22 on the sidewalls of vias 20 is shown in FIG. 3.
  • [0033]
    Turning to FIG. 4, the electrodeposition of a conductive material 40 in via 20 is illustrated in connection with an exemplary electroplating system 100. While electrochemical deposition may be accomplished using any conventional technique known now, or in the future, to those of ordinary skill in the art, the currently preferred system is depicted in order to fully disclose the principles of the present invention.
  • [0034]
    Backside 14 of the substrate 10, including vias 20, forms a surface (such as a bottom surface) of a reservoir 102 containing an electroplating solution 104. Electroplating solution 104 may be any suitable fluid with a conductive material 40 in solution or otherwise suspended therein, and the term “solution” as used herein encompasses any such fluid including conductive material. Any fluid suitable for dissolving or otherwise suspending a conductive material 40 such as a metal therein and allowing the conductive material 40 to be electrochemically deposited therefrom may be used.
  • [0035]
    The active surface 12 of substrate 10 remains outside the reservoir and is not exposed to the electroplating solution. Where present, UBM structures 38, additional passivating layers, conductive traces and/or a metal layer as well as integrated circuitry present on active surface 12 are thus isolated from the electroplating solution 104. This removes the need for additional protection, such as coating structures on the active surface 12 with a protective or nonconductive material to prevent deposition or interaction with a potentially caustic solution. A seal may be formed around an edge of the substrate 10 by a sealing member 106, which may comprise an O-ring, a flexible elastomer face seal, a wiper-type seal or another suitable seal configuration. Where desirable, the pressure in the reservoir 102 may be reduced relative to that outside the reservoir to assist the seal formation and maintenance. In other embodiments, the substrate 10 may be temporarily attached to the reservoir 102 with a suitable adhesive sealing compound to form the sealing member 106.
  • [0036]
    A conductive contact pad 105 may be placed adjacent the active surface 12 of semiconductor substrate 10. The conductive contact pad 105 may be a conductive plate, such as a steel plate or another substrate bearing a conductive layer that contacts an exposed conductive element on the active surface 12. It will be appreciated that the conductive contact pad 105 may include one or more conductive elements of any desired shape in contact with a conductive structure on the active surface 12 of the semiconductor substrate 10. As depicted schematically in FIG. 4A, conductive layer 18 or traces 18 t and contact pads 18 c may be placed in contact with conductive contact pad 105. As another example, a blanket conductive layer 32 comprising an RDL precursor is illustrated in contact with the conductive contact pad 105 in FIG. 4A, while FIG. 4B depicts a conductive contact pad 105 in contact with traces 32 t of a redistribution layer and FIG. 4C depicts a conductive contact pad 105 in contact with an exposed UBM structure 38.
  • [0037]
    Currently, a contact pad having an irregular, or “furry,” surface is preferred as it has an increased surface area for making electrical contact, although any suitable contact may be used. A conductive polymeric material, such as a conductive or conductor-filled polymer, for example, an anisotropically conductive z-axis polymer, may be used to form the conductive contact pad 105. It is desirable that the conductive contact pad 105 or portions thereof may be somewhat yieldable under physical pressure so as to be able to at least conform to any irregularities in the topography of active surface 12 of substrate 10. For example, a conductive contact pad 105 having a surface with a number of conductive probe elements 107, such as a conductive plate with a number of probe elements extending in the form of conductive or conductor-coated whiskers or a contact structure having a deformable polymeric surface bearing conductive elements, may be used. Such a conductive contact pad 105 may have an improved ability to make electrically communicative contact with an exposed conductive surface, such as a UBM structure 38, an exposed blanket conductive layer 32 or redistribution layer traces 32 t. The ability to use any of these conductive structures that form a part of the substrate 10 adds an additional degree of flexibility to the processing of the substrate 10.
  • [0038]
    Following any further desired, or required, preparations, the conductive material 40 may be electrochemically deposited in the vias 20. For example, where appropriate, copper may be used as the conductive material 40 in a copper sulfate electroplating solution 104. Current is applied through the solution (as through anode 108 immersed in electroplating solution 104) and conductive layer 18, contacts 18 c and trace 18 t, blanket conductive layer 32, or redistribution layer traces 32 t in electrical communication with contacts 18 c at the bottoms of vias 20, either in direct communication with conductive contact pad 105 or through additional conductive structures (UBM structures 38) of substrate 10 in electrical communication therewith, to electrochemically deposit the copper from the electroplating solution 104 onto the exposed portion of the conductive contact 18 c at the bottom of each via 20. The deposition process continues until the vias 20 are filled, creating conductive studs 50 therethrough as depicted in FIG. 5 with respect to an embodiment wherein conductive layer 18 is used for contact with conductive contact pad 105. The surface 52 of the conductive stud 50 may be used as a contact pad to enable electrical communication with, for example, another semiconductor substrate to be stacked on semiconductor substrate 10.
  • [0039]
    Any other suitable conductive material 40 may be deposited as described above by adapting known electrochemical protocols. For example, aluminum, nickel, gold, silver or any other metal may be electroplated from an appropriate metal salt solution.
  • [0040]
    The backside 14, or any other exposed surface of semiconductor substrate 10, may be nonconductive or provided with a nonconductive coating, and will not be deposited upon as the conductive material 40 will only be deposited on conductive contacts 18 c. The deposition of conductive material 40 can thus be selective for the vias 20 only.
  • [0041]
    Once the conductive stud 50 is created, the conductive contact pad 105 is removed from the semiconductor substrate 10. The reservoir 102 may be drained or rotated, or otherwise moved to remove the substrate 10 from contact with the electroplating solution 104. The semiconductor substrate 10 may then undergo additional processing, including singulation to form semiconductor dice therefrom. The individual semiconductor dice may be used in semiconductor assemblies including two or more stacked dice with electrical communication between dice in the stack occurring through the conductively filled vias 20.
  • [0042]
    Methods in accordance with the teachings of the present invention for forming conductive filled vias may be integrated into existing processes for manufacturing integrated circuits in any suitable fashion. Conductive filling of vias 20 may be conducted at any stage where the conductive contact pad 105 may be placed in electrical communication with a conductive contact 18 c, either directly or through other conductive structures of the substrate 10 in electrical communication therewith. For example, the vias 20 may be filled immediately after deposition of a conductive layer 18, prior to patterning to form conductive contacts 18 c and other structures such as bond pads from the same metallization. Similarly, the via filling may be performed after blanket deposition of an RDL precursor blanket conductive layer 32 or after redistribution traces 32 t are defined, by direct contact of conductive contact pad 105 with blanket conductive layer 32 or traces 32 t. Further, conductive filling of vias 20 may be effected after formation of UBM structures 38 by conductive contact therewith by conductive contact pad 105. For example, the filled via 20 may be formed prior to completing formation of the integrated circuitry of the semiconductor substrate. Alternatively, a filled via 20 may be formed after the creation of circuitry, using laser ablation to form the via through any layers, including protective layers formed on a substrate. Various acts used to create a filled via may be performed in connection with other processes as well. All such modifications and integrations are within the scope of the present invention.
  • [0043]
    It will be understood and appreciated by those of ordinary skill in the art that the methods of the present invention facilitate a via fill process by elimination of any requirement for a seed layer and through use of a faster method than electroless plating. Further, the methods of the present invention fit into the natural, existing flow of the wafer fabrication sequence and employ existing tools and techniques. The methods of the present invention provide the capability of completely filling the entire cross-section of a high aspect ratio via without the risk of funneling. It is also notable that the methods of the present invention may be practiced without risk of damage to the somewhat delicate active surface of a wafer or other bulk semiconductor substrate, as the vias are filled from the backside of the wafer with the active surface in isolation from the electroplating solution.
  • [0044]
    The methods herein described may be varied considerably without departing from the scope of the invention. Features and elements from different embodiments maybe combined and additions, deletions and modifications made to the embodiments described herein without departing from the scope of the invention, which is defined by the claims which follow, and equivalents thereof.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2820752 *4 Feb 195421 Ene 1958Du PontElectrodeposition of tetrafluoroethylene polymers
US3577324 *24 Ene 19684 May 1971Sondell Research Dev CoProcess of coating particles with metals
US4179800 *15 May 197825 Dic 1979Nippon Electric Company, Ltd.Printed wiring board comprising a conductive pattern retreating at least partly in a through-hole
US4211603 *1 May 19788 Jul 1980Tektronix, Inc.Multilayer circuit board construction and method
US4312897 *9 Jun 198026 Ene 1982Hughes Aircraft CompanyBuried resist technique for the fabrication of printed wiring
US4325780 *16 Sep 198020 Abr 1982Schulz Sr Robert MMethod of making a printed circuit board
US4487654 *27 Oct 198311 Dic 1984Ael Microtel LimitedMethod of manufacturing printed wiring boards
US4525246 *24 Jun 198225 Jun 1985Hadco CorporationMaking solderable printed circuit boards
US4605471 *27 Jun 198512 Ago 1986Ncr CorporationMethod of manufacturing printed circuit boards
US4692349 *3 Mar 19868 Sep 1987American Telephone And Telegraph Company, At&T Bell LaboratoriesSelective electroless plating of vias in VLSI devices
US4720324 *3 Oct 198519 Ene 1988Hayward John SProcess for manufacturing printed circuit boards
US4808273 *10 May 198828 Feb 1989Avantek, Inc.Method of forming completely metallized via holes in semiconductors
US4830264 *7 Oct 198716 May 1989International Business Machines CorporationMethod of forming solder terminals for a pinless ceramic module
US4954313 *3 Feb 19894 Sep 1990Amdahl CorporationMethod and apparatus for filling high density vias
US4978639 *10 Ene 198918 Dic 1990Avantek, Inc.Method for the simultaneous formation of via-holes and wraparound plating on semiconductor chips
US5160579 *5 Jun 19913 Nov 1992Macdermid, IncorporatedProcess for manufacturing printed circuit employing selective provision of solderable coating
US5168624 *15 Mar 19918 Dic 1992Nippon Cmk Corp.Method of manufacturing printed wiring board
US5218761 *8 Abr 199215 Jun 1993Nec CorporationProcess for manufacturing printed wiring boards
US5224265 *29 Oct 19916 Jul 1993International Business Machines CorporationFabrication of discrete thin film wiring structures
US5228966 *21 Ene 199220 Jul 1993Nec CorporationGilding apparatus for semiconductor substrate
US5245751 *25 Oct 199121 Sep 1993Circuit Components, IncorporatedArray connector
US5262718 *10 Jul 199016 Nov 1993Raychem LimitedAnisotropically electrically conductive article
US5285352 *15 Jul 19928 Feb 1994Motorola, Inc.Pad array semiconductor device with thermal conductor and process for making the same
US5309632 *2 Nov 199210 May 1994Hitachi Chemical Co., Ltd.Process for producing printed wiring board
US5374788 *5 Oct 199320 Dic 1994International Business Machines CorporationPrinted wiring board and manufacturing method therefor
US5421083 *1 Abr 19946 Jun 1995Motorola, Inc.Method of manufacturing a circuit carrying substrate having coaxial via holes
US5424245 *4 Ene 199413 Jun 1995Motorola, Inc.Method of forming vias through two-sided substrate
US5536908 *27 Sep 199516 Jul 1996Schlumberger Technology CorporationLead-free printed circuit assembly
US5674787 *16 Ene 19967 Oct 1997Sematech, Inc.Selective electroless copper deposited interconnect plugs for ULSI applications
US5689091 *19 Sep 199618 Nov 1997Vlsi Technology, Inc.Multi-layer substrate structure
US5853559 *9 Jul 199729 Dic 1998Mitsubishi Denki Kabushiki KaishaApparatus for electroplating a semiconductor substrate
US5876580 *12 Ene 19962 Mar 1999Micromodule SystemsRough electrical contact surface
US5897368 *10 Nov 199727 Abr 1999General Electric CompanyMethod of fabricating metallized vias with steep walls
US6027995 *18 Ago 199822 Feb 2000Intel CorporationMethod for fabricating an interconnect structure with hard mask and low dielectric constant materials
US6032527 *1 Jul 19987 Mar 2000Memsys, Inc.Solid state microanemometer
US6114768 *7 Jul 19985 Sep 2000Intersil CorporationSurface mount die by handle replacement
US6169024 *30 Sep 19982 Ene 2001Intel CorporationProcess to manufacture continuous metal interconnects
US6197664 *12 Ene 19996 Mar 2001Fujitsu LimitedMethod for electroplating vias or through holes in substrates having conductors on both sides
US6228754 *5 Ene 19998 May 2001Advanced Micro Devices, Inc.Method for forming semiconductor seed layers by inert gas sputter etching
US6242935 *21 Ene 19995 Jun 2001Micron Technology, Inc.Interconnect for testing semiconductor components and method of fabrication
US6255126 *2 Dic 19983 Jul 2001Formfactor, Inc.Lithographic contact elements
US6277412 *20 Abr 199821 Ago 2001Dr. Falk Pharma GmbhPellet-type formulation intended for treating the intestinal tract
US6277669 *15 Sep 199921 Ago 2001Industrial Technology Research InstituteWafer level packaging method and packages formed
US6291332 *12 Oct 199918 Sep 2001Advanced Micro Devices, Inc.Electroless plated semiconductor vias and channels
US6384481 *26 Oct 19997 May 2002Intel CorporationSingle step electroplating process for interconnect via fill and metal line patterning
US6406939 *10 May 200118 Jun 2002Charles W. C. LinFlip chip assembly with via interconnection
US6418616 *28 Feb 200116 Jul 2002International Business Machines CorporationFull additive process with filled plated through holes
US6444576 *16 Jun 20003 Sep 2002Chartered Semiconductor Manufacturing, Ltd.Three dimensional IC package module
US6448644 *22 Jul 199810 Sep 2002Charles W. C. LinFlip chip assembly with via interconnection
US6468889 *8 Ago 200022 Oct 2002Advanced Micro Devices, Inc.Backside contact for integrated circuit and method of forming same
US6479382 *8 Mar 200112 Nov 2002National Semiconductor CorporationDual-sided semiconductor chip and method for forming the chip with a conductive path through the chip that connects elements on each side of the chip
US6497800 *11 Oct 200024 Dic 2002Nutool Inc.Device providing electrical contact to the surface of a semiconductor workpiece during metal plating
US6529022 *15 Dic 20004 Mar 2003Eaglestone Pareners I, LlcWafer testing interposer for a conventional package
US6562709 *24 May 200113 May 2003Charles W. C. LinSemiconductor chip assembly with simultaneously electroplated contact terminal and connection joint
US6565729 *7 Dic 200020 May 2003Semitool, Inc.Method for electrochemically depositing metal on a semiconductor workpiece
US6565730 *29 Dic 199920 May 2003Intel CorporationSelf-aligned coaxial via capacitors
US6607938 *18 Jul 200219 Ago 2003Samsung Electronics Co., Ltd.Wafer level stack chip package and method for manufacturing same
US6620731 *4 Ene 200216 Sep 2003Micron Technology, Inc.Method for fabricating semiconductor components and interconnects with contacts on opposing sides
US6670269 *8 Oct 200230 Dic 2003Shinko Electric Industries Co., LtdMethod of forming through-hole or recess in silicon substrate
US6711812 *6 Abr 200030 Mar 2004Unicap Electronics Industrial CorporationMethod of making metal core substrate printed circuit wiring board enabling thermally enhanced ball grid array (BGA) packages
US6768205 *1 Mar 200227 Jul 2004Fujitsu LimitedThin-film circuit substrate
US6852627 *5 Mar 20038 Feb 2005Micron Technology, Inc.Conductive through wafer vias
US6863794 *21 Sep 20018 Mar 2005Applied Materials, Inc.Method and apparatus for forming metal layers
US6908845 *28 Mar 200221 Jun 2005Intel CorporationIntegrated circuit die and an electronic assembly having a three-dimensional interconnection scheme
US7007378 *12 Dic 20027 Mar 2006International Business Machines CorporationProcess for manufacturing a printed wiring board
US7108776 *8 Oct 200219 Sep 2006Electroplating Engineers Of Japan LimitedPlating apparatus and plating method
US20020115290 *22 Feb 200122 Ago 2002Halahan Patrick B.Semiconductor structures having multiple conductive layers in an opening, and methods for fabricating same
US20030168342 *12 Mar 200311 Sep 2003Intel CorporationSelf-aligned coaxial via capacitors
US20040173454 *16 Oct 20019 Sep 2004Applied Materials, Inc.Apparatus and method for electro chemical plating using backsid electrical contacte
US20040178495 *28 Ago 200316 Sep 2004Yean Tay WuuMicroelectronic devices and methods for packaging microelectronic devices
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US814826329 Dic 20093 Abr 2012Micron Technology, Inc.Methods for forming conductive vias in semiconductor device components
US8709870 *15 Ene 201029 Abr 2014Maxim Integrated Products, Inc.Method of forming solderable side-surface terminals of quad no-lead frame (QFN) integrated circuit packages
US915958614 Abr 201413 Oct 2015Maxim Integrated Products, Inc.Method of forming solderable side-surface terminals of quad no-lead frame (QFN) integrated circuit packages
US928720724 Feb 201215 Mar 2016Micron Technology, Inc.Methods for forming conductive vias in semiconductor device components
US20110033977 *15 Ene 201010 Feb 2011Maxim Integrated Products, Inc.Method of forming solderable side-surface terminals of quad no-lead frame (qfn) integrated circuit packages
WO2010093643A2 *9 Feb 201019 Ago 2010United Solar Ovonic LlcSolution deposition and method with substrate masking
WO2010093643A3 *9 Feb 201018 Nov 2010United Solar Ovonic LlcSolution deposition and method with substrate masking
Clasificaciones
Clasificación de EE.UU.204/194, 257/E23.011, 205/212, 257/E21.597, 257/E21.175
Clasificación internacionalH01L21/768, H01L21/288, H01L23/48
Clasificación cooperativaH01L2224/0401, Y10S438/928, H01L21/2885, H01L23/481, H01L21/76898, H01L2224/131, H01L2224/13024, H01L2224/05548, H01L2224/13022, H01L2224/02372
Clasificación europeaH01L23/48J, H01L21/288E, H01L21/768T