US20050178817A1 - Friction spot joint structure - Google Patents

Friction spot joint structure Download PDF

Info

Publication number
US20050178817A1
US20050178817A1 US11/011,064 US1106404A US2005178817A1 US 20050178817 A1 US20050178817 A1 US 20050178817A1 US 1106404 A US1106404 A US 1106404A US 2005178817 A1 US2005178817 A1 US 2005178817A1
Authority
US
United States
Prior art keywords
plate member
rotary tool
joint structure
joint
friction spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/011,064
Inventor
Kenji Takase
Tomoyuki Iwashita
Kikuo Kato
Toshiyuki Gendou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Assigned to MAZDA MOTOR CORPORATION reassignment MAZDA MOTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENDOU, TOSHIYUKI, IWASHITA, TOMOYUKI, KATO, KIKUO, TAKASE, KENJI
Publication of US20050178817A1 publication Critical patent/US20050178817A1/en
Priority to US11/727,480 priority Critical patent/US7562803B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1265Non-butt welded joints, e.g. overlap-joints, T-joints or spot welds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C15/00Calendering, pressing, ironing, glossing or glazing textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics

Definitions

  • the present invention relates to a friction spot joint structure in which a plurality of plate members are overlapped and joined by plastic-flowing the plate members.
  • friction spot joint structure in which plate members are point joined by fusing a part thereof by friction, for example, as disclosed in Japanese Patent Application Laid Open Publication No. 2002-292479A.
  • a friction spot joint apparatus including: a rotary tool having a pin portion at its tip end and a shoulder portion of a diameter larger than that of the pin portion at the base end of the pin portion; and a receiving member arranged so as to face the rotary tool in the axial direction of the rotation axis, first and second plate members overlapped with each other are interposed between the rotary tool and the receiving member, the pin portion is pressed into the first plate member and the second plate member, while rotating the rotary tool, and the shoulder portion is pressed against the first plate member in the axial direction by, whereby the plate members are point joined.
  • the present invention has been made in view of the above problems and has its object of obtaining a joint structure of constant joint quality at high joint strength by devising a joint structure of two plate members.
  • the plate members are joined by mechanical joint in the present invention.
  • the first invention is directed to a friction spot joint structure in which a fist plate member and a second plate member are point joined with each other by plastic flow in a manner that using a rotary tool having: a pin portion at a tip end thereof and a shoulder portion having a larger diameter than that of the pin portion at a base end of the pin portion; and a receiving member arranged so as to face the rotary tool in an axial direction of a rotary axis, the first plate member and the second plate member overlapped with each other is interposed between the rotary tool and the receiving member, the pin portion is pressed into the first plate member while rotating the rotary tool, and the shoulder portion is pressed against the first plate member in the axial direction.
  • the friction spot joint structure includes: a concave portion formed by the pin portion and including a continuous interface between the first plate member and the second plate member; and an annular bulging portion of the second plate member which protrudes by plastic flow into the first plate around an entire outer periphery of the concave portion.
  • the continuous interface between the first plate member and the second plate member exists. Therefore, the pressed second plate member plastic-flows into the first plate member in a solid phase state when the first and the second plate members interposed between the rotary tool and the receiving member are softened by friction heat caused at the rotating shoulder and pin portions.
  • the first plate member and the second plate member are joined to each other mechanically, forming the annular bulging portion around the concave portion.
  • the joint strength depends on the size of a mechanically joined part of the bulging portion, which can be easily adjusted by changing joining conditions such as the pressure and number of rotation of the rotary tool, the joining period and the like. Hence, a target joint strength can be obtained constantly.
  • the continuous interface remains between the first plate member and the second plate member at the bottom of the concave portion, and therefore, stress concentration is hard to be invited compared with the case with a discontinuous interface. Accordingly, cracking is prevented and the shear fracture strength is increased. Furthermore, the second plate member is not exposed to the wall face forming the concave portion. Therefore, in the case using a material having an anti-corrosion characteristic as the first plate member, even if the second plate member is inferior in anti-corrosion characteristic, the anti-corrosion characteristic at the joint part is ensured and easy quality management for surface treatment, coating and the like can be attained because the same material exists continuously in the surface portion.
  • a protruding portion is formed so as to protrude outward from the annular bulging portion.
  • the first plate member and the second plate member are made of a light metal.
  • light metals having small specific gravities, such as aluminum, magnesium plastic flow in a solid phase state is easily caused at comparatively low temperatures.
  • the effects of the present invention are remarkably exhibited.
  • FIG. 1 is a side view showing a joint gun.
  • FIG. 2 is a section showing, in an enlarged scale, a friction spot joint structure according to an embodiment of the present invention.
  • FIG. 3 is a graph illustrating dependencies of a diameter of a fractured part and tensile shear strength on a joining period in the friction spot joint structure according to Embodiment 1.
  • FIG. 4 is a section showing a joint part obtained at joining period of 0.4 sec.
  • FIG. 5 is a view corresponding to FIG. 4 and showing a joint part obtained at joining period of 0.7 sec.
  • FIG. 6 is a section showing, in an enlarged scale, a bulging portion in FIG. 5 .
  • FIG. 7 is a section showing a joint part in a friction spot joint structure according to Embodiment 2.
  • FIG. 8 is a section showing, in an enlarged scale, an encircled part C in FIG. 7 .
  • FIG. 1 shows a joint gun 1 installed in a friction point joining apparatus (the whole construction is not shown) according to the embodiments of the present invention.
  • the joint gun 1 which is fitted to, for example, a wrist of a robot, is provided for point-joining a plurality of plate members made of a light metal such as an aluminum alloy, a magnesium alloy, a zinc alloy used for bodies and the like of automobiles in a state that they are overlapped with each other in the thickness direction thereof, to form a friction joint structure.
  • a light metal such as an aluminum alloy, a magnesium alloy, a zinc alloy used for bodies and the like of automobiles
  • the joint gun 1 includes a joint tool 6 composed of a rotary tool 4 and a receiving member 5 , and the rotary tool 4 and the receiving member 5 interpose a part to be joined of a work W, which is composed of a first plate member W 1 and a second plate member W 2 overlapped with each other in the thickness direction thereof.
  • the rotary tool 4 includes a pin portion 42 in a column shape at a tip end portion 41 thereof, and a shoulder portion 43 of which diameter is larger than the diameter of the pin portion 42 is formed at the tip end portion 41 on the base end side of the pin portion 42 .
  • the rotary tool 4 is arranged along a rotation axis X (axial line) intersecting at a right angle with an overlap plane S 1 between the first and second plate members W 1 , W 2 of the work W, and is rotated around the rotation axis X by a rotary shaft motor 11 . Further, the rotary tool 4 moves up and down along the rotation axis X by a pressing shaft motor 12 .
  • the first and second plate members W 1 , W 2 may be made of the same material or different materials and its combination is not limited only if each of them is made of a light metal.
  • the receiving member 5 is formed of a main body 51 in column shape having a top face 52 of which shape and area are substantially the same as or larger than those of the tip end portion 41 of the rotary tool 4 . Further, the receiving member 5 is mounted in the rotary axis X to the tip end of a substantially L-shaped arm 13 so as to face the rotary tool 4 , with the work W interposed.
  • the rotary tool 4 is rotated around the rotation axis X by the rotary shaft motor 11 of the joint gun 1 .
  • the rotary tool 4 is brought down by the pressing shaft motor 12 so as to be in contact with the surface of the work W (first plate member W 1 ), while rotating the rotary tool 4 .
  • the work W is interposed between the rotary tool 4 and the receiving member 5 and is pressed in the direction of the rotation axis X (downward in FIG. 2 ). In this manner, the pin portion 42 of the rotary tool 4 is pressed into the work W.
  • the receiving member 5 supports the work W at a top face 52 thereof By this supporting, the pressure of the rotary tool 4 to the work W is received at the top face 52 of the receiving member 5 , thereby preventing the work W from deformation toward the receiving member 5 .
  • the rotary tool 4 is further pressed toward the work W, while rotating the rotary tool 4 .
  • the pin portion 42 of the rotary tool 4 is squeezed into the first plate member W 1 , to generate heat.
  • the shoulder portion 43 of the rotary tool 4 and the surface of the first plate member W 1 are rubbed against each other to generate friction heat. The thus generated friction heat is transferred from the first plate member W 1 to the second plate member W 2 , thereby softening the second plate member W 2 .
  • the rotation and the pressing of the rotary tool 4 are continued to generate plastic flow in the rotation direction in the first and second plate members W 1 , W 2 .
  • the further continuation of the rotation and the pressing of the rotary tool 4 increases the range of the plastic flow in the work W.
  • annular bulging portion 63 is formed in the first plate member W 1 so as to surround the concave portion 61 with the rotation axis X as a center. Accompanied by the rotation of the shoulder portion 43 , further plastic flow is caused outward in the radial direction around the annular bulging portion 63 , so that a protruding portion 64 protruding outward in the radial direction is formed around the annular bulging portion 63 .
  • the protruding portion 64 of the second plate member W 2 encroaches in and is joined to the first plate member W 2 .
  • the rotary tool 4 is raised by the pressing shaft motor 12 , while rotating the rotary tool 4 , so that the rotary tool 4 is pulled out from the work W.
  • the concave portion 61 is formed by the pin portion 42 , with the continuous interface S 2 between the first plate member W 1 and the second plate member W 2 remained by pressing the first plate member W 1 toward the second plate member W 2 between the rotary tool 4 and the receiving member 5 , and the annular bulging portion 63 of the second plate member W 2 is formed which protrudes into the first plate member W 1 by plastic flow of the first and second plate members W 1 , W 2 .
  • the joint strength depends on the size of a mechanically joined part of the bulging portion 63 , which can be easily adjusted by changing joining conditions such as the pressure and number of rotation of the rotary tool 4 , ajoining period and the like. Accordingly, a target joint strength can be obtained constantly. Further, with the interface S 2 , the shear fracture strength is increased and easy quality management for surface treatment, coating and the like are attained.
  • the protruding portion 64 formed around the bulging portion 63 exhibits an effect as an anchor, thereby increasing the strength against a load in a direction of force to separate the joint part.
  • first and second plate members W 1 , W 2 are made of a light metal, which easily causes plastic flow in a solid phase state, thereby remarkably exhibiting the effects of the present embodiment.
  • the receiving member 5 is fixed in the above embodiment but may be movable in the rotation axis X. Further, the receiving member 5 is formed of the column shaped main body 51 having the top face 52 of which shape and area are substantially the same as or larger than those of the tip end portion 41 of the rotary tool 4 in the present invention, but the receiving member 5 may be in a plate shape.
  • a 6000 series aluminum alloy of 1 mm in thickness was used as the first plate member W 1 and a 3000 series aluminum alloy of 1 mm in thickness was used as the second plate member W 2 .
  • the work W was joined using the aforementioned friction point joining apparatus.
  • the rotary tool 4 having the shoulder portion 43 of 8 mm in diameter was used, the pressure and number of rotation thereof were set to 3.42 kN and 2500 rpm, respectively, and a plurality of joint parts were formed in a single work W with the joining period changed per 0.1 sec. Then, the work W was cut into joint parts per joining period to observe each section thereof Further, the tensile shear strength of each joint part per joining period was measured.
  • FIG. 3 shows studied results of dependencies of diameters R of fractured parts and tensile shear strength on the joining period.
  • FIG. 4 is a section showing the joint part obtained at the joining period of 0.4 sec.
  • FIG. 5 is a section showing the joint part obtained at the joining period of 0.7 sec.
  • Each diameter R of the fractured parts correspond substantially to the maximum diameter of the bulging portion 63 and to an effective diameter of a mechanically joined part in the overlap plane S 1 between the first plate member W 1 and the second plate member W 2 .
  • the first plate member W 1 and the second plate member W 2 were mechanically joined to each other in a range of the diameter R of the fractured part with no space.
  • a minute space between the first plate member W 1 and the second plate member W 2 was observed at the outside of the range of the diameter R.
  • the bulging portion 63 grows and the diameter R of the fractured part is increased.
  • the diameter R of the fractured part is increased as the joining period is longer to some extent, accompanying increase in tensile shear strength.
  • the joining period is 0.7 sec.
  • the protruding portion 64 is formed at the bulging portion 63 , as shown in an enlarged scale in FIG. 6 , and the tensile shear strength is further increased.
  • the joining period is longer than a given period (0.8 sec. in the present working example)
  • the tensile shear strength is reduced contrarily because the first plate member W 1 at the interface S 2 becomes too thin, and so on.
  • a range B in FIG. 3 indicates a range of the joint period where the fractured part is formed in a button shape (annular) in a plan view in the tensile shear test, and the most excellent joint strength was obtained in this range B.
  • a range A indicates a range of the joint period where the fractured part in a plan view is discontinuous and does not form an annular shape in the tensile shear test. In the range A, the joint strength was lower than in the range B. Wherein, in the joining period of 0.4 sec., the annular bulging portion 63 was formed as shown in FIG. 4 , and the tensile shear strength was increased.
  • the size of the mechanically joined part that is, the diameter R of the fractured part can be easily adjusted by changing the joining conditions such as the pressure and number of rotation of the rotary tool 4 , the joining period and the like, and therefore, it was found that a target joint strength can be obtained constantly.
  • a 6000 series aluminum alloy of 1 mm in thickness was used as the first plate member W 1 and a 5000 series aluminum alloy of 2 mm in thickness was used as the second plate member W 2 .
  • the work W was joined using the aforementioned friction point joining apparatus in which the pressure of the rotary tool 4 was set to be 3.92 kN, the number of rotation thereof was set to be 3500 rpm and the joining period was set to be 0.8 sec.
  • the joint part obtained is shown in an enlarged scale in FIG. 7 . It is understood that the bulging portion 63 was formed excellently in the friction spot joint structure in Working Example 2. It was found, as shown in an enlarged scale in FIG. 8 , that the continuous interface S 2 between the first plate member W 1 and the second plate member W 2 was formed at the bottom (encircled part C in FIG. 7 ) of the concave portion 61 .

Abstract

In a friction spot joint structure, a first plate member is pressed against a second plate member by using a rotary tool and a receiving member. A concave portion is formed by a rotating pin portion of the rotating tool, with an interface between the first plate member and the second plate member remained. In this time, the first and second plate members are allowed to plastic-flow, so that an annular bulging portion of the second plate member raised into the first plate member is formed around the concave portion.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This Non-provisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No. 2004-037708 filed in Japan on Feb. 16, 2004, the entire contents of which are hereby incorporated by reference.
  • BACKGROUND ART
  • 1. Field of the Invention
  • The present invention relates to a friction spot joint structure in which a plurality of plate members are overlapped and joined by plastic-flowing the plate members.
  • 2. Description of the Prior Art
  • It has been known conventionally that light metals, particularly aluminum and the like are unsuitable for fused joint such as arc welding, compared with steels, because they are more conductive and transfer more heat than steels.
  • Taking the above into consideration, friction spot joint structure has been known in which plate members are point joined by fusing a part thereof by friction, for example, as disclosed in Japanese Patent Application Laid Open Publication No. 2002-292479A. In detail, in a friction spot joint apparatus including: a rotary tool having a pin portion at its tip end and a shoulder portion of a diameter larger than that of the pin portion at the base end of the pin portion; and a receiving member arranged so as to face the rotary tool in the axial direction of the rotation axis, first and second plate members overlapped with each other are interposed between the rotary tool and the receiving member, the pin portion is pressed into the first plate member and the second plate member, while rotating the rotary tool, and the shoulder portion is pressed against the first plate member in the axial direction by, whereby the plate members are point joined.
  • In the conventional friction spot joint structure, the pressure and number of rotation of the rotary tool and the joining period must be adjusted precisely. However, the adjustment is difficult because the relationship between the joint quality and such joining conditions is unclear. Hence, variation of the joint quality becomes large. Further, the point joint is performed by fusing plate materials by friction, which requires a considerable time period.
  • SUMMARY OF THE INVENTION
  • The present invention has been made in view of the above problems and has its object of obtaining a joint structure of constant joint quality at high joint strength by devising a joint structure of two plate members.
  • To attain the above object, the plate members are joined by mechanical joint in the present invention.
  • Specifically, the first invention is directed to a friction spot joint structure in which a fist plate member and a second plate member are point joined with each other by plastic flow in a manner that using a rotary tool having: a pin portion at a tip end thereof and a shoulder portion having a larger diameter than that of the pin portion at a base end of the pin portion; and a receiving member arranged so as to face the rotary tool in an axial direction of a rotary axis, the first plate member and the second plate member overlapped with each other is interposed between the rotary tool and the receiving member, the pin portion is pressed into the first plate member while rotating the rotary tool, and the shoulder portion is pressed against the first plate member in the axial direction.
  • The friction spot joint structure includes: a concave portion formed by the pin portion and including a continuous interface between the first plate member and the second plate member; and an annular bulging portion of the second plate member which protrudes by plastic flow into the first plate around an entire outer periphery of the concave portion.
  • With the above structure, the continuous interface between the first plate member and the second plate member exists. Therefore, the pressed second plate member plastic-flows into the first plate member in a solid phase state when the first and the second plate members interposed between the rotary tool and the receiving member are softened by friction heat caused at the rotating shoulder and pin portions. Thus, that the first plate member and the second plate member are joined to each other mechanically, forming the annular bulging portion around the concave portion. The joint strength depends on the size of a mechanically joined part of the bulging portion, which can be easily adjusted by changing joining conditions such as the pressure and number of rotation of the rotary tool, the joining period and the like. Hence, a target joint strength can be obtained constantly.
  • Further, the continuous interface remains between the first plate member and the second plate member at the bottom of the concave portion, and therefore, stress concentration is hard to be invited compared with the case with a discontinuous interface. Accordingly, cracking is prevented and the shear fracture strength is increased. Furthermore, the second plate member is not exposed to the wall face forming the concave portion. Therefore, in the case using a material having an anti-corrosion characteristic as the first plate member, even if the second plate member is inferior in anti-corrosion characteristic, the anti-corrosion characteristic at the joint part is ensured and easy quality management for surface treatment, coating and the like can be attained because the same material exists continuously in the surface portion.
  • In the second invention, a protruding portion is formed so as to protrude outward from the annular bulging portion. By this formation, the protruding portion of the second plate member encroaches into the first plate member outward from the bulging portion, whereby, the protruding portion exhibits an effect as an anchor to increase the strength against a load in a direction of force to separate the first plate member from the second plate member.
  • In the third and fourth inventions, the first plate member and the second plate member are made of a light metal. In light metals having small specific gravities, such as aluminum, magnesium, plastic flow in a solid phase state is easily caused at comparatively low temperatures. Hence, with the light metal employed, the effects of the present invention are remarkably exhibited.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view showing a joint gun.
  • FIG. 2 is a section showing, in an enlarged scale, a friction spot joint structure according to an embodiment of the present invention.
  • FIG. 3 is a graph illustrating dependencies of a diameter of a fractured part and tensile shear strength on a joining period in the friction spot joint structure according to Embodiment 1.
  • FIG. 4 is a section showing a joint part obtained at joining period of 0.4 sec.
  • FIG. 5 is a view corresponding to FIG. 4 and showing a joint part obtained at joining period of 0.7 sec.
  • FIG. 6 is a section showing, in an enlarged scale, a bulging portion in FIG. 5.
  • FIG. 7 is a section showing a joint part in a friction spot joint structure according to Embodiment 2.
  • FIG. 8 is a section showing, in an enlarged scale, an encircled part C in FIG. 7.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Embodiments of the present invention will be described below with reference to accompanying drawings. Wherein, the following embodiments are preferred examples essentially and do not intend to limit application, use and scope of the present invention.
  • Construction of Joint Gun
  • FIG. 1 shows a joint gun 1 installed in a friction point joining apparatus (the whole construction is not shown) according to the embodiments of the present invention. The joint gun 1, which is fitted to, for example, a wrist of a robot, is provided for point-joining a plurality of plate members made of a light metal such as an aluminum alloy, a magnesium alloy, a zinc alloy used for bodies and the like of automobiles in a state that they are overlapped with each other in the thickness direction thereof, to form a friction joint structure. The joint gun 1 includes a joint tool 6 composed of a rotary tool 4 and a receiving member 5, and the rotary tool 4 and the receiving member 5 interpose a part to be joined of a work W, which is composed of a first plate member W1 and a second plate member W2 overlapped with each other in the thickness direction thereof.
  • As schematically shown in FIG. 2, the rotary tool 4 includes a pin portion 42 in a column shape at a tip end portion 41 thereof, and a shoulder portion 43 of which diameter is larger than the diameter of the pin portion 42 is formed at the tip end portion 41 on the base end side of the pin portion 42.
  • The rotary tool 4 is arranged along a rotation axis X (axial line) intersecting at a right angle with an overlap plane S1 between the first and second plate members W1, W2 of the work W, and is rotated around the rotation axis X by a rotary shaft motor 11. Further, the rotary tool 4 moves up and down along the rotation axis X by a pressing shaft motor 12. The first and second plate members W1, W2 may be made of the same material or different materials and its combination is not limited only if each of them is made of a light metal.
  • The receiving member 5 is formed of a main body 51 in column shape having a top face 52 of which shape and area are substantially the same as or larger than those of the tip end portion 41 of the rotary tool 4. Further, the receiving member 5 is mounted in the rotary axis X to the tip end of a substantially L-shaped arm 13 so as to face the rotary tool 4, with the work W interposed.
  • Work Joining Sequence
  • As shown in FIG. 2, the rotary tool 4 is rotated around the rotation axis X by the rotary shaft motor 11 of the joint gun 1. After the number of rotation of the rotary tool 4 reaches a predetermined value, the rotary tool 4 is brought down by the pressing shaft motor 12 so as to be in contact with the surface of the work W (first plate member W1), while rotating the rotary tool 4. In so doing, the work W is interposed between the rotary tool 4 and the receiving member 5 and is pressed in the direction of the rotation axis X (downward in FIG. 2). In this manner, the pin portion 42 of the rotary tool 4 is pressed into the work W. On the other hand, the receiving member 5 supports the work W at a top face 52 thereof By this supporting, the pressure of the rotary tool 4 to the work W is received at the top face 52 of the receiving member 5, thereby preventing the work W from deformation toward the receiving member 5.
  • Next, the rotary tool 4 is further pressed toward the work W, while rotating the rotary tool 4. In this association, the pin portion 42 of the rotary tool 4 is squeezed into the first plate member W1, to generate heat. Further, after the pin portion 42 is buried in the first plate member W1, the shoulder portion 43 of the rotary tool 4 and the surface of the first plate member W1 are rubbed against each other to generate friction heat. The thus generated friction heat is transferred from the first plate member W1 to the second plate member W2, thereby softening the second plate member W2.
  • The rotation and the pressing of the rotary tool 4 are continued to generate plastic flow in the rotation direction in the first and second plate members W1, W2. The further continuation of the rotation and the pressing of the rotary tool 4 increases the range of the plastic flow in the work W.
  • Furthermore, when the pin portion 42 and the shoulder portion 43 are rotated and press the first plate member W1 toward the second plate member W2, the pin portion 42 and shoulder portion 43 are buried into the work W and a concave portion 61 is formed by the pin portion 42, with a continuous interface S2 between the first plate member W1 and the second plate member W2 remained. In this time, the first and second plate members W1, W2 plastic-flow in a solid phase state and the second plate member W2 pressed between the rotary tool 4 and the receiving member 5 flows outward in radial direction of the concave portion 61 into a part of the first plate member W1 where internal pressure is smaller than the side wall face of the concave portion 61. In this association, an annular bulging portion 63 is formed in the first plate member W1 so as to surround the concave portion 61 with the rotation axis X as a center. Accompanied by the rotation of the shoulder portion 43, further plastic flow is caused outward in the radial direction around the annular bulging portion 63, so that a protruding portion 64 protruding outward in the radial direction is formed around the annular bulging portion 63. The protruding portion 64 of the second plate member W2 encroaches in and is joined to the first plate member W2.
  • After continuation of the plastic flow in the work W for a given period of time in this way, the rotary tool 4 is raised by the pressing shaft motor 12, while rotating the rotary tool 4, so that the rotary tool 4 is pulled out from the work W.
  • Thereafter, the work W is cooled quickly to be hardened, thereby completing the joining of the work W.
  • Effects of Embodiment
  • In the friction spot joint structure according to the above embodiment, the concave portion 61 is formed by the pin portion 42, with the continuous interface S2 between the first plate member W1 and the second plate member W2 remained by pressing the first plate member W1 toward the second plate member W2 between the rotary tool 4 and the receiving member 5, and the annular bulging portion 63 of the second plate member W2 is formed which protrudes into the first plate member W1 by plastic flow of the first and second plate members W1, W2. The joint strength depends on the size of a mechanically joined part of the bulging portion 63, which can be easily adjusted by changing joining conditions such as the pressure and number of rotation of the rotary tool 4, ajoining period and the like. Accordingly, a target joint strength can be obtained constantly. Further, with the interface S2, the shear fracture strength is increased and easy quality management for surface treatment, coating and the like are attained.
  • Moreover, the protruding portion 64 formed around the bulging portion 63 exhibits an effect as an anchor, thereby increasing the strength against a load in a direction of force to separate the joint part.
  • In addition, the first and second plate members W1, W2 are made of a light metal, which easily causes plastic flow in a solid phase state, thereby remarkably exhibiting the effects of the present embodiment.
  • Modified Example of Embodiment
  • The receiving member 5 is fixed in the above embodiment but may be movable in the rotation axis X. Further, the receiving member 5 is formed of the column shaped main body 51 having the top face 52 of which shape and area are substantially the same as or larger than those of the tip end portion 41 of the rotary tool 4 in the present invention, but the receiving member 5 may be in a plate shape.
  • WORKING EXAMPLES
  • Working Examples that were performed practically will be described next.
  • Working Example 1
  • Referring to the work W, a 6000 series aluminum alloy of 1 mm in thickness was used as the first plate member W1 and a 3000 series aluminum alloy of 1 mm in thickness was used as the second plate member W2. The work W was joined using the aforementioned friction point joining apparatus.
  • Specifically, the rotary tool 4 having the shoulder portion 43 of 8 mm in diameter was used, the pressure and number of rotation thereof were set to 3.42 kN and 2500 rpm, respectively, and a plurality of joint parts were formed in a single work W with the joining period changed per 0.1 sec. Then, the work W was cut into joint parts per joining period to observe each section thereof Further, the tensile shear strength of each joint part per joining period was measured.
  • FIG. 3 shows studied results of dependencies of diameters R of fractured parts and tensile shear strength on the joining period. FIG. 4 is a section showing the joint part obtained at the joining period of 0.4 sec., and FIG. 5 is a section showing the joint part obtained at the joining period of 0.7 sec. Each diameter R of the fractured parts correspond substantially to the maximum diameter of the bulging portion 63 and to an effective diameter of a mechanically joined part in the overlap plane S1 between the first plate member W1 and the second plate member W2. Specifically, as shown in an enlarged scale in FIG. 6, the first plate member W1 and the second plate member W2 were mechanically joined to each other in a range of the diameter R of the fractured part with no space. On the other hand, though not appearing in the drawing, a minute space between the first plate member W1 and the second plate member W2 was observed at the outside of the range of the diameter R.
  • As can be understood from comparison of FIG. 4 with FIG. 5, by setting joining period longer, the bulging portion 63 grows and the diameter R of the fractured part is increased. In other words, it is found that, as shown in FIG. 3, the diameter R of the fractured part is increased as the joining period is longer to some extent, accompanying increase in tensile shear strength. When the joining period is 0.7 sec., the protruding portion 64 is formed at the bulging portion 63, as shown in an enlarged scale in FIG. 6, and the tensile shear strength is further increased. It should be noted that it is found that in the case where the joining period is longer than a given period (0.8 sec. in the present working example), the tensile shear strength is reduced contrarily because the first plate member W1 at the interface S2 becomes too thin, and so on.
  • A range B in FIG. 3 indicates a range of the joint period where the fractured part is formed in a button shape (annular) in a plan view in the tensile shear test, and the most excellent joint strength was obtained in this range B. A range A indicates a range of the joint period where the fractured part in a plan view is discontinuous and does not form an annular shape in the tensile shear test. In the range A, the joint strength was lower than in the range B. Wherein, in the joining period of 0.4 sec., the annular bulging portion 63 was formed as shown in FIG. 4, and the tensile shear strength was increased.
  • As described above, the size of the mechanically joined part, that is, the diameter R of the fractured part can be easily adjusted by changing the joining conditions such as the pressure and number of rotation of the rotary tool 4, the joining period and the like, and therefore, it was found that a target joint strength can be obtained constantly.
  • Working Example 2
  • Referring to the work W, a 6000 series aluminum alloy of 1 mm in thickness was used as the first plate member W1 and a 5000 series aluminum alloy of 2 mm in thickness was used as the second plate member W2. The work W was joined using the aforementioned friction point joining apparatus in which the pressure of the rotary tool 4 was set to be 3.92 kN, the number of rotation thereof was set to be 3500 rpm and the joining period was set to be 0.8 sec. The joint part obtained is shown in an enlarged scale in FIG. 7. It is understood that the bulging portion 63 was formed excellently in the friction spot joint structure in Working Example 2. It was found, as shown in an enlarged scale in FIG. 8, that the continuous interface S2 between the first plate member W1 and the second plate member W2 was formed at the bottom (encircled part C in FIG. 7) of the concave portion 61.

Claims (4)

1. A friction spot joint structure in which a fist plate member and a second plate member are point joined with each other by plastic flow in a manner that using a rotary tool having: a pin portion at a tip end thereof and a shoulder portion having a larger diameter than that of the pin portion at a base end of the pin portion; and a receiving member arranged so as to face the rotary tool in an axial direction of a rotary axis, the first plate member and the second plate member overlapped with each other is interposed between the rotary tool and the receiving member, the pin portion is pressed into the first plate member while rotating the rotary tool, and the shoulder portion is pressed against the first plate member in the axial direction, comprising:
a concave portion formed by the pin portion and including a continuous interface between the first plate member and the second plate member; and
an annular bulging portion of the second plate member which protrudes by plastic flow into the first plate member around an entire outer periphery of the concave portion.
2. The friction spot joint structure of claim 1, wherein
a protruding portion is formed so as to protrude outward from the annular bulging portion.
3. The friction spot joint structure of claim 1, wherein
the first plate member and the second plate member are made of a light metal.
4. The friction spot joint structure of claim 2, wherein
the first plate member and the second plate member are made of a light metal.
US11/011,064 2004-02-16 2004-12-15 Friction spot joint structure Abandoned US20050178817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/727,480 US7562803B2 (en) 2004-02-16 2007-03-27 Friction spot joint structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-037708 2004-02-16
JP2004037708A JP4148152B2 (en) 2004-02-16 2004-02-16 Friction spot joint structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/727,480 Division US7562803B2 (en) 2004-02-16 2007-03-27 Friction spot joint structure

Publications (1)

Publication Number Publication Date
US20050178817A1 true US20050178817A1 (en) 2005-08-18

Family

ID=34697937

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/011,064 Abandoned US20050178817A1 (en) 2004-02-16 2004-12-15 Friction spot joint structure
US11/727,480 Active 2025-05-12 US7562803B2 (en) 2004-02-16 2007-03-27 Friction spot joint structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/727,480 Active 2025-05-12 US7562803B2 (en) 2004-02-16 2007-03-27 Friction spot joint structure

Country Status (6)

Country Link
US (2) US20050178817A1 (en)
EP (1) EP1563943B1 (en)
JP (1) JP4148152B2 (en)
KR (1) KR20050081871A (en)
CN (1) CN100418692C (en)
ES (1) ES2597378T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080048005A1 (en) * 2006-08-24 2008-02-28 Mariana G Forrest Friction stir welding system and method
US20130318779A1 (en) * 2011-02-18 2013-12-05 Erwan Vigneras Method for sealing an impregnation opening of an energy storage assembly
US20150174697A1 (en) * 2012-09-06 2015-06-25 Uacj Corporation Rotating tool for friction stir welding and friction stir welding method using same
US9764375B2 (en) 2012-03-02 2017-09-19 Brigham Young University Friction bit joining of materials using a friction rivet
US10876637B2 (en) 2015-10-02 2020-12-29 Vat Holding Ag Closure element for a vacuum seal having a friction stir welding connection

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2651536C (en) * 2006-04-11 2012-08-07 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for inspecting joined object formed by friction stir joining
JP2007301573A (en) * 2006-05-08 2007-11-22 Honda Motor Co Ltd Friction stirring and joining method and friction stirred and joined structure
JP2009137387A (en) * 2007-12-05 2009-06-25 Koito Mfg Co Ltd Fitting structure and welding method
KR101395794B1 (en) * 2007-12-20 2014-05-19 재단법인 포항산업과학연구원 Friction spot joint apparatus and method thereof
WO2011024320A1 (en) * 2009-08-31 2011-03-03 三菱日立製鉄機械株式会社 Both- side friction stir bonding method, bonding device, bonding method of metal plate in cold rolling facility and cold rolling facility
WO2012018853A2 (en) * 2010-08-02 2012-02-09 Megastir Technologies Llc System for using high rotary speed for minimizing the load during friction stir welding
JP5843547B2 (en) * 2010-12-24 2016-01-13 本田技研工業株式会社 Method of manufacturing friction stir welding material
JP2012218009A (en) * 2011-04-05 2012-11-12 Suzuki Motor Corp Method of bonding dissimilar metal materials and bonded body of dissimilar metal materials
JP6098526B2 (en) * 2014-01-14 2017-03-22 マツダ株式会社 Method of joining metal member and resin member
JP2019195826A (en) * 2018-05-09 2019-11-14 川崎重工業株式会社 Friction welding device and operation method therefor
WO2020032141A1 (en) * 2018-08-08 2020-02-13 川崎重工業株式会社 Friction stir welding device and operation method therefor
CN112770863B (en) * 2018-10-11 2022-07-29 川崎重工业株式会社 Friction stir welding device, method of operating the same, and joint structure
JP7223651B2 (en) * 2019-07-01 2023-02-16 川崎重工業株式会社 Welding system and its operation method
EP4129550A4 (en) * 2020-03-27 2023-12-13 Toyama Prefecture Joining method for metal material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831711A (en) * 1987-04-01 1989-05-23 Eugen Rapp Method for joining thin plates stacked on one another
US5051020A (en) * 1989-11-13 1991-09-24 Tech-Line Engineering Co. Leak proof joint
US5432989A (en) * 1992-10-27 1995-07-18 Archer Manufacturing Corporation Apparatus and method for joining sheet material
US5517743A (en) * 1992-12-05 1996-05-21 Eckold Gmbh & Co. Kg Method and apparatus for joining superposes metal sheets
US5984563A (en) * 1994-07-22 1999-11-16 Btm Corporation Apparatus for joining sheet material and joint formed therein
US6325584B1 (en) * 1999-03-30 2001-12-04 Richard Bergner Gmbh Self-piercing rivet
US20030141343A1 (en) * 2001-03-29 2003-07-31 Kotoyoshi Murakami Joining method and apparatus using frictional agitation
US20040168297A1 (en) * 2002-11-29 2004-09-02 Makoto Nishimura Assembly of sheet materials, tube assembly, drawing method and tools for drawing
US6802682B2 (en) * 2002-11-18 2004-10-12 General Motors Corporation Spiraled self-piercing rivet
US6843405B2 (en) * 2002-09-20 2005-01-18 Hitachi, Ltd. Method of joining metallic materials

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630271C2 (en) * 1996-07-26 2002-06-06 Burkhardt Suthoff Method for connecting a plasticizable workpiece to another workpiece
JP3429475B2 (en) * 2000-05-08 2003-07-22 川崎重工業株式会社 Spot joining apparatus and spot joining method
JP3401499B2 (en) 2001-03-29 2003-04-28 マツダ株式会社 Welding equipment using friction stir
US6543670B2 (en) * 2001-08-29 2003-04-08 The Boeing Company Interface preparation for weld joints
JP4183964B2 (en) * 2002-04-12 2008-11-19 川崎重工業株式会社 Friction stir welding equipment
JP3538419B2 (en) * 2002-08-20 2004-06-14 川崎重工業株式会社 Friction stir welding equipment
JP4772260B2 (en) 2002-10-09 2011-09-14 川崎重工業株式会社 Friction stir welding equipment
JP3864888B2 (en) * 2002-10-28 2007-01-10 マツダ株式会社 Joining method using friction stir
JP3498086B1 (en) * 2003-05-14 2004-02-16 川崎重工業株式会社 Friction stir welding method and friction stir welding device
JP4134837B2 (en) * 2003-07-15 2008-08-20 マツダ株式会社 Friction welding method and friction welding structure
US7367487B2 (en) * 2003-08-22 2008-05-06 Honda Motor Co., Ltd. Method for friction stir welding, jig therefor, member with friction stir-welded portion, and tool for friction stir welding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831711A (en) * 1987-04-01 1989-05-23 Eugen Rapp Method for joining thin plates stacked on one another
US5051020A (en) * 1989-11-13 1991-09-24 Tech-Line Engineering Co. Leak proof joint
US5432989A (en) * 1992-10-27 1995-07-18 Archer Manufacturing Corporation Apparatus and method for joining sheet material
US5517743A (en) * 1992-12-05 1996-05-21 Eckold Gmbh & Co. Kg Method and apparatus for joining superposes metal sheets
US5984563A (en) * 1994-07-22 1999-11-16 Btm Corporation Apparatus for joining sheet material and joint formed therein
US6325584B1 (en) * 1999-03-30 2001-12-04 Richard Bergner Gmbh Self-piercing rivet
US20030141343A1 (en) * 2001-03-29 2003-07-31 Kotoyoshi Murakami Joining method and apparatus using frictional agitation
US6843405B2 (en) * 2002-09-20 2005-01-18 Hitachi, Ltd. Method of joining metallic materials
US6802682B2 (en) * 2002-11-18 2004-10-12 General Motors Corporation Spiraled self-piercing rivet
US20040168297A1 (en) * 2002-11-29 2004-09-02 Makoto Nishimura Assembly of sheet materials, tube assembly, drawing method and tools for drawing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080048005A1 (en) * 2006-08-24 2008-02-28 Mariana G Forrest Friction stir welding system and method
US20130318779A1 (en) * 2011-02-18 2013-12-05 Erwan Vigneras Method for sealing an impregnation opening of an energy storage assembly
US9136062B2 (en) * 2011-02-18 2015-09-15 Blue Solutions Method for sealing an impregnation opening of an energy storage assembly
US9764375B2 (en) 2012-03-02 2017-09-19 Brigham Young University Friction bit joining of materials using a friction rivet
US20150174697A1 (en) * 2012-09-06 2015-06-25 Uacj Corporation Rotating tool for friction stir welding and friction stir welding method using same
US9676055B2 (en) * 2012-09-06 2017-06-13 Uacj Corporation Rotating tool for friction stir welding and friction stir welding method using same
US10876637B2 (en) 2015-10-02 2020-12-29 Vat Holding Ag Closure element for a vacuum seal having a friction stir welding connection

Also Published As

Publication number Publication date
JP2005224846A (en) 2005-08-25
CN1657215A (en) 2005-08-24
US7562803B2 (en) 2009-07-21
JP4148152B2 (en) 2008-09-10
EP1563943B1 (en) 2016-07-13
CN100418692C (en) 2008-09-17
KR20050081871A (en) 2005-08-19
EP1563943A1 (en) 2005-08-17
ES2597378T3 (en) 2017-01-18
US20070170229A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US7562803B2 (en) Friction spot joint structure
JP4404052B2 (en) Friction stir welding method
US9925617B2 (en) Electrode for spot welding
US5054980A (en) Composite weldable stud and method of using same
EP1902810A1 (en) Friction stir spot welding method
KR20010052329A (en) Friction stir welding tool
JP2005161382A (en) Spot-welding method for metallic member and device therefor
US6598778B2 (en) Aluminum-based metal link for vehicles and a method for producing same
JPH07208449A (en) Ball joint having high mechanical resistance and manufacture thereof
JP2005288525A (en) Spot welding method of different kind of metallic member
KR100501655B1 (en) Self Piercing Friction Rivet for Aluminum and Joining methond of Aluminum Sheets
US6765170B2 (en) Method for single sided spot welding
JP2007054885A (en) Joining tool, and friction stir joining method
JP4853184B2 (en) Friction spot welding device
CA2909875C (en) Aluminum spot welding method
JP2006102756A (en) Spot friction welding equipment
JP4505855B2 (en) Rotating tool for friction welding equipment
US2707825A (en) Method of pressure welding
EP4159356A1 (en) Friction-stir spot-welding device and joint structure
JP7265282B2 (en) Friction welding device and friction welding method
JP2003209984A (en) Oscillator, its manufacturing method, oscillation wave driver, and apparatus comprising it
US6044552A (en) Tappet made of light metal and a method of manufacturing the same
JPH02241675A (en) Manufacture of welded body
US20200398367A1 (en) Weld rivet and method for joining workpieces of dissimilar materials
JP2000094217A (en) Cutter mechanism for forming resistance welding electrode tip

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAZDA MOTOR CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKASE, KENJI;IWASHITA, TOMOYUKI;KATO, KIKUO;AND OTHERS;REEL/FRAME:016089/0535;SIGNING DATES FROM 20041117 TO 20041124

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION