US20050206031A1 - Extrusion die - Google Patents

Extrusion die Download PDF

Info

Publication number
US20050206031A1
US20050206031A1 US10/803,161 US80316104A US2005206031A1 US 20050206031 A1 US20050206031 A1 US 20050206031A1 US 80316104 A US80316104 A US 80316104A US 2005206031 A1 US2005206031 A1 US 2005206031A1
Authority
US
United States
Prior art keywords
male
female
complex shape
die portion
peaks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/803,161
Inventor
Hans Groeblacher
James Nixon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Maplan Corp
Original Assignee
American Maplan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Maplan Corp filed Critical American Maplan Corp
Priority to US10/803,161 priority Critical patent/US20050206031A1/en
Assigned to AMERICAN MAPLAN CORPORATION reassignment AMERICAN MAPLAN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NIXON, JAMES W., GROEBLACHER, HANS
Priority to EP05102064A priority patent/EP1577074A1/en
Publication of US20050206031A1 publication Critical patent/US20050206031A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/325Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride

Abstract

An extrusion die includes an inner die portion having a male form. The male form has a male complex shape with peaks and a valley. An outer die portion is included having a female form. The female form has a female complex shape with peaks and a valley which corresponds to the male complex shape of the male form. The female complex shape surrounds and is separated from the male complex shape by a gap. Flowable material is capable of being extruded through the gap between the male and female complex shapes to form a hollow profile. An adjustment mechanism is included having an outer member which surrounds the outer die portion. At least eight adjustment screws are threaded through the outer member and engage the outer die portion at equidistant angular locations. This enables controlled adjustment of the female complex shape relative to the male complex shape for adjusting the gap, and for adjusting the position and orientation of the corresponding peaks and valleys of the male and female complex shapes relative to each other.

Description

    BACKGROUND
  • Extrusion dies can be used for extruding complex hollow plastic profiles. A typical extrusion die in the prior art has an inner die portion and an outer die portion where plastic is extruded through the gap between the die portions to form the plastic profile. If the extruded profile is not formed with the desired wall thickness characteristics, for example, a consistent wall thickness, the die must be taken apart and metal is removed from the die to attempt to obtain the desired wall thickness characteristics. The die is then reassembled and additional product is extruded. If the newly extruded plastic profile still does not have the desired wall thickness characteristics, the die is taken apart again and more metal is removed from the die. This process can be performed a number of times before the desired profile can be achieved. Such a process is both time consuming and inefficient.
  • SUMMARY
  • The present invention includes an extrusion die which can be adjusted during the extrusion process so that the desired wall thickness characteristics of the extruded profile can be quickly and easily achieved.
  • In a particular embodiment, an extrusion die includes an inner die portion having a male form. The male form has a male complex shape with peaks and a valley. An outer die portion is included having a female form. The female form has a female complex shape with peaks and a valley which corresponds to the male complex shape of the male form. The female complex shape surrounds and is separated from the male complex shape by a gap. Flowable material is capable of being extruded through the gap between the male and female complex shapes to form a hollow profile. An adjustment mechanism is included having an outer member which surrounds the outer die portion. At least eight adjustment screws are threaded through the outer member and engage the outer die portion at equidistant angular locations. This enables controlled adjustment of the female complex shape relative to the male complex shape for adjusting the gap, and for adjusting the position and orientation of the corresponding peaks and valleys of the male and female complex shapes relative to each other.
  • In particular embodiments, the male complex shape of the inner die portion can be surrounded by the female complex shape of the outer die portion on all sides. The male and female complex shapes can have multiple valleys. For example, the male complex shape can have at least four peaks and two valleys. The peaks and valleys can by symmetrically divided on opposite sides of a central axis. The inner die portion can be fixed within a spider pipe and the outer member of the adjustment mechanism can be a retaining ring which secures the outer die portion to the spider pipe. The adjustment screws are threaded radially inwardly through the retaining ring to engage the outer die portion.
  • The present invention also includes a method of adjusting an extrusion die where the extrusion die includes an inner die portion having a male form. The male form has a male complex shape with peaks and a valley. The die includes an outer die portion having a female form. The female form has a female complex shape with peaks and a valley which corresponds to the male complex shape of the male form. The female complex shape surrounds and is separated from the male complex shape by a gap. Flowable material is capable of being extruded through the gap between the male and female complex shapes to form a hollow profile. An adjustment mechanism has an outer member which surrounds the outer die portion. At least eight adjustment screws are threaded through the outer member and engage the outer die portion at equidistant angular locations and in opposed pairs. Each opposed pair has a first and a second adjustment screw. When adjusting the die, particular opposed pairs of adjustment screws are selected where, sequentially and repeatedly, the first adjustment screw is loosened and the second adjustment screw is tightened in a pair, so that incremental lateral movement of the outer die portion relative to the inner die portion is obtained. Subsequent adjustment is made of the remaining adjustment screws to relieve compression or remove slack caused by the lateral movement. The selective incremental movement enables controlled adjustment of the female complex shape relative to the male complex shape for adjusting the gap, and for adjusting the position and orientation of the corresponding peaks and valleys of the male and female complex shapes relative to each other.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
  • FIG. 1 is a perspective cross sectional view of an embodiment of an extrusion die secured to a spider pipe.
  • FIG. 2 is a perspective view of the extrusion die of FIG. 1 secured to the spider pipe.
  • FIG. 3 is a perspective view of the extrusion die of FIG. 2 with the retaining ring removed.
  • FIG. 4 is a side sectional view of the inner and outer die portions of the extrusion die of FIG. 1.
  • FIG. 5 is a front view of the extrusion die of FIG. 1.
  • FIG. 6 is a front view of another embodiment of an extrusion die.
  • FIG. 7 is a front view of a profile formed by another embodiment of the extrusion die.
  • FIG. 8 is a perspective view of a section of the profile of FIG. 7.
  • FIG. 9 is a front view of another profile formed by yet another embodiment of the extrusion die.
  • FIG. 10 is a perspective view of a section of the profile of FIG. 9.
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1-5, in one embodiment of the present invention, an extrusion die 10 includes an inner die portion 16 with a complex male form 16 a and an outer die portion 22 with a complex female form 22 a. The female form 22 a surrounds the male form 16 a and is separated from the male form 16 a by a complex gap 24 through which flowable material is extruded for forming extruded profiles.
  • The inner die portion 16 is fixed or mounted by a spider 26 within a spider pipe 12 (FIG. 1). The inner die portion 16 extends along a longitudinal axis L within a flow passage 14 with the male form 16 a extending beyond the end 12 a of the spider pipe 12. Typically, the flow passage 14 of the spider pipe 12 receives molten polymer such as PVC from an extruder (not shown) and has a tapered section 14 a (FIG. 4) extending into the gap 24.
  • The outer die portion 22 is mounted to the end 12 a of the spider pipe 12 by a retaining ring 18 which is secured to the end 12 a by a series of screws 32. The outer die portion 22 has a flange 28 which is captured by an annular shoulder 30 a of a bore 30 within the retaining ring 18 to trap the retaining ring 18 against the spider pipe 12. The retaining ring 18 also has an opening 19 through which the outer die portion 22 passes. The diameters of bore 30 and the opening 19 are sized to allow some lateral movement of the flange 28 and outer die portion 22. At least eight inwardly directed adjustment screws 20 extend through threaded holes 18 a within the retaining ring 18 and engage against the outer surfaces of the flange 28 of the outer die portion 22. The adjustment screws 20 are positioned equidistantly about the retaining ring 18 and the flange 28, for example, in opposed pairs along four axes, a horizontal axis X, a vertical axis Y, and two 45° axes 40 and 42 (FIG. 5). The retaining ring 18 and the adjustment screws 20 form an adjustment mechanism 21 for adjusting the position of the outer die portion 22 relative to the inner die portion 16.
  • The complex male form 16 a and the complex female form 22 a both have multiple peaks and valleys or indented portions relative to a center point C. For example, the male form 16 a and the female form 22 a have multiple valleys at locations 25 and multiple peaks at locations 27. The gap 24 has a shape which corresponds to both the male form 16 a on the inside and the female form 22 a on the outside. The nature of the gap 24 dictates the extruded profile. In the embodiment depicted in FIGS. 2 and 3, the male 16 a and female 22 a forms have a vertical axis of symmetry about axis Y, where the axis Y separates mirror image sides. In this embodiment, the male 16 a and female 22 a forms each have at least two peaks and two valleys on each side of the axis Y, and one straddling the axis Y. In addition, the female form 22 can completely surround the male form 16 a.
  • Although the male 16 a and female 22 a forms are complex, the gap 24 between the male form 16 a and the female form 22 a can be easily and quickly adjusted by the adjustment mechanism 21 even during the extrusion process so that a profile can be extruded through the gap 24 with the desired wall thickness characteristics. In addition, the adjustment mechanism 21 can adjust the position and orientation of the corresponding peaks and valleys of the male 16 a and female 22 a forms relative to each other. Such adjusting of the peaks and valleys can include adjusting the distance between the male 16 a and female 22 a forms laterally, as well as angular orientation relative to each other.
  • Referring to FIG. 5, in order to make an adjustment of the position of the outer die portion 22 relative to the inner die portion 16, opposing adjustment screws 20 along axes X, Y, 40 and 42 can be loosened and tightened to move the outer die portion 22 in either direction along those four axes as shown by the arrows. For example, in order to move the outer die portion 22 towards position 7 or to the left, along the horizontal axis X, the adjustment screw 20 at position 7 is loosened and the opposing adjustment screw 20 at position 3 is tightened. This moves the outer die portion 22 incrementally towards position 7 or to the left along axis X. The adjustment screws 20 and/or the outer die portion 22 at positions 6 and 8 can compress or deflect slightly to allow the incremental movement. Additionally, the adjustment screws 20 at adjacent positions 6 and 8 can be loosened at the same time as the adjustment screw 20 at position 7 to allow movement towards position 7. The incremental movement is typically in the thousandths of an inch. Although the adjustment screws 20 at positions 1 and 5 along the vertical axis Y might possibly lose contact with the shifted outer die portion 22, as do those at positions 2 and 4, the contact of the adjustment screws 20 at position 3 and the 45° positions 6 and 8, prevent unwanted rotation or vertical movement of the outer die portion 22 relative to the inner die portion 16 so that the movement toward position 7 is conducted along a straight path only along axis X. In order to move the outer die portion 22 further towards position 7, the previously described process is repeated. Before repeating the process, the loading of the adjustment screws 20 at positions 1, 2, 4, 5, 6 and 8 can be readjusted to relieve compression or take up or remove slack. This incremental movement of the outer die portion 22 can be conducted a number of times. In addition, such incremental movement can be also conducted along axis Y for vertical movement, or the axes 40 or 42 for 45° movement. Also, multiple adjustment screws 20 can be loosened to allow rotation of the outer die portion 22.
  • If the ultimate desired direction of movement is not directly on the axes X, Y, 40 or 42, then sequential incremental movement of the outer die portion 22 can be conducted along combinations of more than one axis until the desired position is achieved. Incremental rotation of the outer die portion 22 can also be achieved by sequential incremental movement along the appropriate axes and in the appropriate directions. The center point of such rotation can be varied. By making incremental adjustments of the outer die portion 22 along different axes or directions without unwanted rotation or movement, the position and orientation of the female form 22 a can be adjusted relative to the male form 16 a with precision so that the proper gap 24 on all sides of the male form 16 a can be made. In addition, the corresponding peaks and valleys of the male 16 a and female 22 a forms can be properly positioned and oriented relative to each other. Prior systems have not been able to adequately adjust multiple peaks and valleys due to the complexity of such adjustments. The incremental adjustments made by adjustment mechanism 21 are capable of being made while a profile is being extruded. In some situations, outer die portion 22 might be moved vertically, horizontally and rotated.
  • In some embodiments, extrusion die 10 can have more than eight adjustment screws 20, for example, 10, 12, 14, or 16 adjustment screws 20, that are equidistantly spaced and positioned in opposed pairs. However, with the increasing amount of adjustment screws, the number of adjustment screw axes increases, so that adjustment of the outer die portion 22 becomes more complicated and can take more time.
  • Referring to FIG. 6, extrusion die 38 is another embodiment in the present invention where the male form 16 a and female form 22 a are generally rectangular but have two valleys relative to center point C on opposite sides of axis Y at locations 25.
  • FIGS. 7 and 8 depict an example of a profile 34 that can be extruded by an embodiment of the present invention. Profile 34 is symmetrical about axis Y and has three peaks and three valleys at respective locations 27 and 25 on each side of axis Y with another peak straddling axis Y at another location 27.
  • FIGS. 9 and 10 depict an example of another profile 36 that can be formed with an embodiment of the present invention. Profile 36 is similar to profile 34 but has a base 36 a with two peaks on one side of axis Y while the base 34 a of profile 34 has one peak. As can be seen, a variety of different complex profiles can be formed with embodiments of the present invention, such as profiles having a single valley or multiple valleys.
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
  • For example, although the extrusion die in the present invention has been described for forming a plastic or polymer profile, it is understood that other suitable flowable materials can be extruded, for example, composite materials such as a wood/plastic composite, or metals. In addition, although the terms vertical, horizontal, etc., have been used, such terms are employed for describing the present invention and are not meant to limit the orientation of the male 16 a and female 22 a forms.

Claims (13)

1. An extrusion die comprising:
an inner die portion having a male form, the male form having a male complex shape with peaks and a valley;
an outer die portion having a female form, the female form having a female complex shape with peaks and a valley which corresponds to the male complex shape of the male form, the female complex shape surrounding and being separated from the male complex shape by a gap, flowable material capable of being extruded through the gap between the male and female complex shapes to form a hollow profile; and
an adjustment mechanism comprising an outer member surrounding the outer die portion, and at least eight adjustment screws threaded through the outer member and engaging the outer die portion at equidistant angular locations to enable controlled adjustment of the female complex shape relative to the male complex shape for adjusting the gap and for adjusting the position and orientation of the corresponding peaks and valleys of the male and female complex shapes relative to each other.
2. The die of claim 1 in which the male complex shape of the inner die portion is surrounded by the female complex shape of the outer die portion on all sides.
3. The die of claim 1 in which the male and female complex shapes have multiple valleys.
4. The die of claim 3 in which the male complex shape has at least four peaks and two valleys.
5. The die of claim 4 in which the peaks and valleys are symmetrically divided on opposite sides of a central axis.
6. The die of claim 1 in which the inner die portion is fixed within a spider pipe.
7. The die of claim 6 in which the outer member of the adjustment mechanism is a retaining ring which secures the outer die portion to the spider pipe, the adjustment screws being threaded radially inwardly through the retaining ring to engage the outer die portion.
8. An extrusion die comprising:
an inner die portion having a male form, the male form having a male complex shape with multiple peaks and valleys;
an outer die portion having a female form, the female form having a female complex shape with multiple peaks and valleys which corresponds to the male complex shape of the male form, the female complex shape surrounding the male complex shape on all sides and being separated from the male complex shape by a gap, flowable material capable of being extruded through the gap between the male and female complex shapes to form a hollow profile; and
an adjustment mechanism comprising a retaining ring surrounding the outer die portion, and at least eight adjustment screws threaded through the retaining ring and engaging the outer die portion at equidistant angular locations to enable controlled adjustment of the female complex shape relative to the male complex shape for adjusting the gap and for adjusting the position and orientation of the corresponding peaks and valleys of the male and female complex shapes relative to each other.
9. The die of claim 8 in which the male complex shape has at least four peaks and two valleys.
10. The die of claim 9 in which the peaks and valleys are symmetrically divided on opposite sides of a central axis.
11. The die of claim 8 in which the inner die portion is fixed within a spider pipe.
12. The die of claim 11 in which the retaining ring secures the outer die portion to the spider pipe, the adjustment screws being threaded radially inwardly through the retaining ring to engage the outer die portion.
13. A method of adjusting an extrusion die, the extrusion die comprising an inner die portion having a male form, the male form having a male complex shape with peaks and a valley, and an outer die portion having a female form, the female form having a female complex shape which with peaks and a valley which corresponds to the male complex shape of the male form, the female complex shape surrounding and being separated from the male complex shape by a gap, flowable material capable of being extruded through the gap between the male and female complex shapes to form a hollow profile, and an adjustment mechanism comprising an outer member surrounding the outer die portion, at least eight adjustment screws being threaded through the outer member and engaging the outer die portion at equidistant angular locations in opposed pairs, the method comprising:
in selected opposed pairs of adjustment screws, each having a first and second adjustment screw, sequentially and repeatedly loosening the first adjustment screw and tightening the second adjustment screw of a pair to obtain incremental lateral movement of the outer die portion relative to the inner die portion and subsequently adjusting the remaining adjustment screws to relieve compression or remove slack caused by the lateral movement, the incremental movement enabling controlled adjustment of the female complex shape relative to the male complex shape for adjusting the gap, and for adjusting the position and orientation of the corresponding peaks and valleys of the male and female complex shapes relative to each other.
US10/803,161 2004-03-17 2004-03-17 Extrusion die Abandoned US20050206031A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/803,161 US20050206031A1 (en) 2004-03-17 2004-03-17 Extrusion die
EP05102064A EP1577074A1 (en) 2004-03-17 2005-03-16 Extrusion Die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/803,161 US20050206031A1 (en) 2004-03-17 2004-03-17 Extrusion die

Publications (1)

Publication Number Publication Date
US20050206031A1 true US20050206031A1 (en) 2005-09-22

Family

ID=34838914

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/803,161 Abandoned US20050206031A1 (en) 2004-03-17 2004-03-17 Extrusion die

Country Status (2)

Country Link
US (1) US20050206031A1 (en)
EP (1) EP1577074A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090160083A1 (en) * 2007-12-21 2009-06-25 John Michael Wallen Swept leg spider for an extrusion apparatus
US20110095450A1 (en) * 2009-09-22 2011-04-28 American Maplan Corporation Extrusion Head With High Volume Reservoir
US20110095449A1 (en) * 2009-09-22 2011-04-28 American Maplan Corporation Multiple Spider Head

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1114870A (en) * 1913-11-17 1914-10-27 Harry C Ehrick Adjustable brick or tile die.
US1500757A (en) * 1924-02-15 1924-07-08 Bloomfield H Howard Casting for feeders for ingot molds
US3221371A (en) * 1963-03-25 1965-12-07 Stevens Alexander Michael Extruding dies
US3461501A (en) * 1967-04-18 1969-08-19 Allied Chem Blown tubular film dies
US3535739A (en) * 1966-12-30 1970-10-27 Conduco Ag Diehead for plastic extrusion machines
US3570062A (en) * 1969-02-14 1971-03-16 Pennwalt Corp Midstream radial valve for in-line extrusion of viscous thermoplastics
US3649148A (en) * 1969-12-24 1972-03-14 Ethyl Corp Apparatus for parison extrusion
US4201534A (en) * 1978-06-14 1980-05-06 Condec Corporation Foam extrusion die assembly
US5116211A (en) * 1989-03-30 1992-05-26 Tomi Machinery Manufacturing Co., Ltd. Apparatus for controlling thickness of film formed by melt extrusion
US5674440A (en) * 1995-05-05 1997-10-07 Graham Engineering Corporation Die head with adjustable mandrel and method
US5733491A (en) * 1995-04-14 1998-03-31 Grossfillex S.A.R.L. Extrusion device and process for two-layer section members
US5756016A (en) * 1996-05-13 1998-05-26 Huang; Yean-Jenq Method for modeling a high speed extrusion die
US5908642A (en) * 1995-03-15 1999-06-01 Machinefabriek "De Rollepaal" B.V. Extrusion head for plastics extruder
US6769899B2 (en) * 2001-02-09 2004-08-03 American Maplan Corporation Independent X/Y flow adjustable extrusion die

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1157682B (en) * 1953-12-04 1963-11-21 Elektro Schmitz O H G Control device for cable extrusion machines
US4548570A (en) * 1983-05-12 1985-10-22 Cosden Technology, Inc. Extrusion apparatus for producing thermoplastic pipe
DE3936496A1 (en) * 1989-11-02 1991-05-08 Krauss Maffei Ag CENTERING DEVICE FOR A TUBE EXTRUSION HEAD
US5462423A (en) * 1993-04-13 1995-10-31 Sencorp Systems, Inc. Apparatus for non-mechanical die lip temperature adjustment in an extruder
US5622732A (en) * 1993-04-13 1997-04-22 Sencorp Systems Inc. Foam sheet extrusion die apparatus, and system with adjustable choke area

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1114870A (en) * 1913-11-17 1914-10-27 Harry C Ehrick Adjustable brick or tile die.
US1500757A (en) * 1924-02-15 1924-07-08 Bloomfield H Howard Casting for feeders for ingot molds
US3221371A (en) * 1963-03-25 1965-12-07 Stevens Alexander Michael Extruding dies
US3535739A (en) * 1966-12-30 1970-10-27 Conduco Ag Diehead for plastic extrusion machines
US3461501A (en) * 1967-04-18 1969-08-19 Allied Chem Blown tubular film dies
US3570062A (en) * 1969-02-14 1971-03-16 Pennwalt Corp Midstream radial valve for in-line extrusion of viscous thermoplastics
US3649148A (en) * 1969-12-24 1972-03-14 Ethyl Corp Apparatus for parison extrusion
US4201534A (en) * 1978-06-14 1980-05-06 Condec Corporation Foam extrusion die assembly
US5116211A (en) * 1989-03-30 1992-05-26 Tomi Machinery Manufacturing Co., Ltd. Apparatus for controlling thickness of film formed by melt extrusion
US5908642A (en) * 1995-03-15 1999-06-01 Machinefabriek "De Rollepaal" B.V. Extrusion head for plastics extruder
US5733491A (en) * 1995-04-14 1998-03-31 Grossfillex S.A.R.L. Extrusion device and process for two-layer section members
US5674440A (en) * 1995-05-05 1997-10-07 Graham Engineering Corporation Die head with adjustable mandrel and method
US5756016A (en) * 1996-05-13 1998-05-26 Huang; Yean-Jenq Method for modeling a high speed extrusion die
US6769899B2 (en) * 2001-02-09 2004-08-03 American Maplan Corporation Independent X/Y flow adjustable extrusion die

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090160083A1 (en) * 2007-12-21 2009-06-25 John Michael Wallen Swept leg spider for an extrusion apparatus
US8096799B2 (en) 2007-12-21 2012-01-17 American Maplan Corporation Swept leg spider for an extrusion apparatus
US8333580B2 (en) 2007-12-21 2012-12-18 American Maplan Corporation Swept leg spider for an extrusion apparatus
US20110095450A1 (en) * 2009-09-22 2011-04-28 American Maplan Corporation Extrusion Head With High Volume Reservoir
US20110095449A1 (en) * 2009-09-22 2011-04-28 American Maplan Corporation Multiple Spider Head
US8758003B2 (en) 2009-09-22 2014-06-24 American Maplan Corporation Multiple spider head
US8936460B2 (en) 2009-09-22 2015-01-20 American Maplan Corporation Extrusion head with high volume reservoir

Also Published As

Publication number Publication date
EP1577074A1 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
US20030205838A1 (en) Molding die assembly for rubber members and rubber member produced thereby
US20040020260A1 (en) Manufacturing device of the curved metal tube and rod with an arbitrary section
EP1577074A1 (en) Extrusion Die
EP2512773B1 (en) Adjustable nozzle
US9744709B2 (en) Variable extrusion die apparatus
JP2018083215A (en) Manufacturing method of metallic member
JPS60229726A (en) Die for extrusion of sheet
JP7049088B2 (en) Coextrusion feed block device
DE102012022409B3 (en) Hose head for use with trifunctional component for discharging molten tube for manufacturing of capillaries, tubes or pipes, has sleeve-shaped housing, in which melt is fed, where housing surrounds core
US20060062869A1 (en) Molding apparatus with mold blocks having profiled face adjustment
JP2004017129A (en) Extruding die for hollow shape member
US20140183781A1 (en) Die for extruding a pipe and method therof
WO2014193260A1 (en) Method and device for extruding plasticized powdered materials (variants)
WO2016013405A1 (en) Method for manufacturing oval swaged collar
EP1722956A1 (en) Blown film extrusion system
CN112246906A (en) Ultrathin strip extrusion die
EP3003597B1 (en) Assembly comprising fastening means and method
JP2008238727A (en) Parison uneven thickness control method and apparatus in hollow molding machine
RU2272707C2 (en) Method for extruding plastic and plasticized materials and apparatus for performing the same
CN213887625U (en) Ultrathin strip extrusion die
EP2873506A1 (en) Method and apparatus for preventing the die drool at plastic pipe extrusion molding
CN213856367U (en) Special pipe stripper
RU2042447C1 (en) Apparatus for extruding tubes
KR20050037562A (en) A seal structure for sealing the inlet/exit passageway of an elongated object
JPH08294720A (en) Die for variable cross section extrusion and variable cross section extruding method

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMERICAN MAPLAN CORPORATION, KANSAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GROEBLACHER, HANS;NIXON, JAMES W.;REEL/FRAME:014917/0282;SIGNING DATES FROM 20040712 TO 20040719

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION