US20050218166A1 - Dispenser device - Google Patents

Dispenser device Download PDF

Info

Publication number
US20050218166A1
US20050218166A1 US10/516,917 US51691705A US2005218166A1 US 20050218166 A1 US20050218166 A1 US 20050218166A1 US 51691705 A US51691705 A US 51691705A US 2005218166 A1 US2005218166 A1 US 2005218166A1
Authority
US
United States
Prior art keywords
dispenser device
transport passage
vessel
unfilled
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/516,917
Inventor
Terrence Mehan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20050218166A1 publication Critical patent/US20050218166A1/en
Priority to US12/645,447 priority Critical patent/US20100163134A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B39/00Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
    • B65B39/007Guides or funnels for introducing articles into containers or wrappers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0877Arrangements for metering and dispensing developer from a developer cartridge into the development unit
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0877Arrangements for metering and dispensing developer from a developer cartridge into the development unit
    • G03G15/0881Sealing of developer cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/04Methods of, or means for, filling the material into the containers or receptacles
    • B65B1/06Methods of, or means for, filling the material into the containers or receptacles by gravity flow

Definitions

  • the present invention relates generally to materials handling and in particular to apparatus for dispensing materials in fine powder form, such as for example toner.
  • Known methods of dispensing materials in powdered form incorporate funnel-shaped devices, wide at their inlet and narrow at their outlet, and generally utilise gravity for dispensing material.
  • fine powders in these systems can often form blockages and jam in the funnel, stopping material flow.
  • Agitating means are used to unblock the funnel or prevent blockages, but require energy, labour, maintenance, and may be noisy and costly.
  • the present invention seeks to alleviate at least some of the abovementioned disadvantages.
  • a dispenser device including: a dispenser device body having an inlet end and an outlet end; a transport passage arranged therebetween, wherein the cross-sectional internal dimension at the inlet end of the transport passage are smaller than the cross-sectional internal dimension at the outlet end of the transport passage; at least two sealing connector sections, located at or near the inlet and outlet ends respectively, the device when in use being sealingly connectable with filler vessels and unfilled vessels respectively.
  • the arrangement is such that the sealable connection between said dispenser device and said unfilled vessel provides a substantially air tight seal so that air within the unfilled vessel is displaced by powder from the filler vessel, and passes through the transport passage during a filling operation.
  • This provides for a significant advantage in that the air causes agitation of the material within the passage, reducing the chances of clogging and blockage.
  • the sealable connecting section may be any suitable shape, and may take advantage of known sealing methods, including threaded portions, foam or rubber strips and light friction fits. It may also take the form of a flat or contoured plate, or indeed any shaped face which corresponds with another surface to reduce leakage of dust particles during dispensing from vessel to vessel. A plurality of sizes and shapes of seal may be incorporated on one apparatus, making one apparatus transferable across differing brands and styles of vessel, using a plurality of discrete sealing sizes, or tapered sections.
  • the transport passage may include rounded shoulders at its inlet end.
  • the inner surface of the inner wall of the transport passage is preferably a continuous generally smooth tapered configuration, tapering outwardly from the inlet end towards the outlet end.
  • the contour formed by the inner wall of the transport passage may differ from the contour formed by the exterior wall of the transport passage.
  • the exterior wall of the transport passage may be shaped to correspond to the inlet or access portion of the unfilled vessel, thereby incorporating the sealable connector portion.
  • the dispenser device body may be constructed from any suitable material, such as for example, any suitable polymer, machinable or mouldable in injection moulding processes, or from suitable metals or alloys.
  • the device may include one or more parts, and may be constructed from one or more materials, for example, the sealing means as mentioned above may be constructed from foam or rubber, operatively connected to other parts of the device.
  • Locating means may be provided for locating with a retaining portion on the unfilled vessel.
  • the locating means is in the form of one or more projections mounted on the external periphery of the dispenser device, which locates into or underneath a holding ledge, for maintaining sealing contact between dispenser device and the unfilled vessel.
  • Clips may be used to retain the device against the unfilled vessel.
  • the clips may engage the locating means and assist in maintaining sealing contact between dispenser device and unfilled vessel.
  • the filler vessel and unfilled vessel are preferably sealed, except for their respective filling outlet and filling inlet. This allows the air transferred from the unfilled vessel to the filler vessel during the filling operation to be contained within the vessels.
  • FIG. 1 shows section views (a), (c), and (e) and perspective views (b), (d) and (f) of three example embodiments according to the present invention.
  • FIG. 2 shows section view (a), plan view (b) and perspective view (c) of another embodiment according to the present invention.
  • FIG. 3 shows section view (a), plan view (b) and perspective view (c) of yet another embodiment according to the present invention.
  • FIG. 4 shows plan view (a) and perspective view (b) of another example embodiment according to the present invention.
  • FIG. 5 shows section view (a) and perspective view (b) of yet another embodiment of the present invention.
  • FIGS. 6-10 show examples of different ways that the dispenser devices may interrelate in order to transfer material from filling vessel to unfilled vessel.
  • FIGS. 1-5 like numerals have been used to describe like parts.
  • a dispensing apparatus generally indicated at 10 , including an inlet end 14 , an outlet end 16 , an enclosed transport passage 12 , an inlet sealable connector section 18 and outlet sealable connector section 30 .
  • the transport passage 12 is a hollow cylinder. Its internal diameter at its inlet end 22 is smaller than the internal diameter at its outlet end 16 , and the internal wall 24 forms an outwardly tapering tube.
  • the sealable connector sections 18 and 30 take the form of threaded connections 20 (inlet) and 26 (outlet).
  • the outlet sealable connector section 130 does not include threaded connection as in FIGS. 1 ( a ) and ( b ), but a push fit which includes protruding rings 126 .
  • a taper in the external wall 130 of the transport passage 112 at 12 S allows location and sealing of the device in the opening of an unfilled vessel (not shown). The taper allows one or more opening sizes to be accommodated.
  • FIGS. 1 ( e ) and 1 ( f ) there is shown a similar embodiment to FIGS. 1 ( c ) and ( d ), however, rather than a sealable connector section suitable for a small range of opening sizes, FIGS. 1 ( e ) and ( f ) show an embodiment suitable for sealing three discrete opening sizes over a larger range. That is, external walls 230 of the transport passage 212 gradually accommodate for larger variations in aperture size in the unfilled vessel, where discrete increases in external diameter 228 , 229 and 2 - 31 are formed into the shaft of the transport passage 212 . From the inlet end of the interior wall of the transport passage the rounded shoulders 222 widen rapidly to point 225 and then the wall 224 of the transport passage 212 lightly outwardly tapers to the outlet.
  • the outlet sealable connector section 330 takes the form of a plate 332 with an arcuate section 335 to correspond with the inlet of a particular unfilled vessel (not shown).
  • the plate 332 includes a foam adhered to its underside (not shown), substantially at its perimeter, to further improve the sealing effect of the plate 332 .
  • the transport passage 312 is essentially constant diameter throughout or lightly outwardly tapering, assisting material flow.
  • the inlet section 314 is sealed not with a threaded section as with previous example embodiments but with a simple push-fit system, incorporating essentially parallel internal walls at 320 .
  • Retaining means are provided at 350 in the form of projections or lugs 351 and 352 . These retaining means 350 engage with corresponding holding means (not shown) on the unfilled vessel (not shown).
  • Further retaining means 350 in the form of a drop-down plate section 353 is used in conjunction with clip (not shown) to hold the dispenser device against the unfilled vessel (not shown).
  • FIG. 3 The embodiment shown in FIG. 3 is similar to that shown in FIG. 2 however there is no arcuate section, simply a plate shown at 432 . Again, foam (not shown) improves the sealing qualities of the plate 432 .
  • FIG. 3 Similar retaining means as in FIG. 2 are shown in FIG. 3 at 450 , and 453 .
  • FIG. 4 there is shown another example embodiment according to the present invention wherein the outlet sealable connector section 530 is located at the outer face of a triangular plate, corresponding to the inlet of an unfilled vessel (not shown).
  • a very short transport passage 512 is employed, and the material quickly flows from the inlet side 514 to the outlet side 516 of the apparatus.
  • FIG. 5 there is shown an embodiment similar to those shown in FIGS. 2 and 3 , however the plate 632 is angled. Other aspects of the embodiment are the same as those shown in FIGS. 2 and 3 , with like numerals denoting like parts.
  • the invention may operate singly or in combination with other example embodiments.
  • a filling vessel may be screwed into inlet end 114 or 214 , of devices 110 and 210 respectively, and the outlet ends 116 and 216 thereof may be push-fitted into the openings of unfilled vessels (not shown). Once the filling vessel is inverted, flow occurs. Agitation is not required during flow, however some small agitation may be required before inversion and flow occurs.
  • a filling vessel (not shown) may be screwed into the inlet end 214 of device 210 .
  • the outlet 216 of vessel 210 may then be push-fitted into inlet ends 314 , 514 , or 614 .
  • the corresponding outlet ends 316 , 516 , 616 are then sealably connected to the openings of unfilled vessels (not shown).
  • a filling vessel (not shown) may be screwed into the inlet end 114 of device 110 .
  • the outlet 116 of vessel 110 may then be push-fitted into inlet end 414 .
  • the corresponding outlet ends 416 are then sealably connected to the opening of unfilled vessel (not shown).
  • outlet end of a filling vessel may be screwed into the inlet end 14 of device 10 .
  • the outlet end 16 is then screwed into the inlet 114 or 214 of devices 110 or 210 respectively to form assemblies 650 ( FIG. 6 ( iv )) and 660 ( FIG. 6 ( v )).
  • outlet end 116 and 216 of assembly 660 ( FIG. 6 ( v )) or 650 ( FIG. 6 ( iv )) may be push-fitted into an unfilled vessel (not shown).
  • Outlet end 116 of assembly 660 may be inserted, for example into: the inlet end 414 of device 410 to form dispenser assembly 680 ( FIG. 8 ).
  • Outlet end 216 of assembly 650 may be inserted, for example, into one of the following:
  • the outlet sealable connector part ( 130 , etc) of the dispenser devices 110 , 210 or dispenser assemblies ( 660 , etc) is sealingly connected to the inlet of an unfilled vessel (not shown) by pushing into (eg FIGS. 1 ( c )- 1 ( f ), 6 ( iv ), 6 ( v ) and 9 ) or by placing against (eg FIGS. 7, 8 and 10 ). If they are not already, the apparatus and vessels are arranged such that the filling vessel (not shown) is generally vertically above the device ( 10 , 110 etc) and the unfilled vessel (not shown). The filling vessel is inverted in this position, so that gravity may assist the downward flow of the powder through the mouth of the filling vessel, which is below its base.

Abstract

The present invention relates generally to materials handling and in particular to apparatus for dispensing materials in fine powder form, such as for example toner. According to one aspect of the present invention, there is provided a dispenser device including: a dispenser device body (10) having an inlet end (14) and an outlet end (16); a transport passage (12) arranged therebetween, wherein the cross-sectional internal dimension at the inlet end (22) of the transport passage (12) are equal to or smaller than the cross-sectional internal dimension at the outlet end (16) of the transport passage (12); at least two sealable connector sections (18, 20), located at or near the inlet (14) and outlet ends (16), the device when in use being sealingly connectable with filler vessels and unfilled vessels respectively. The arrangement is such that the sealable connection between said dispenser device and said unfilled vessel provides a substantially air tight seal so that air within the unfilled vessel is displaced by powder from the filler vessel and passes through the transport passage during the filling operation. This provides for a significant advantage in that the air causes agitation of the material within the passage, reducing the chances of clogging and blockage.

Description

  • The present invention relates generally to materials handling and in particular to apparatus for dispensing materials in fine powder form, such as for example toner.
  • Known methods of dispensing materials in powdered form incorporate funnel-shaped devices, wide at their inlet and narrow at their outlet, and generally utilise gravity for dispensing material. However, fine powders in these systems can often form blockages and jam in the funnel, stopping material flow. Agitating means are used to unblock the funnel or prevent blockages, but require energy, labour, maintenance, and may be noisy and costly.
  • The present invention seeks to alleviate at least some of the abovementioned disadvantages.
  • According to one aspect of the present invention, there is provided a dispenser device including: a dispenser device body having an inlet end and an outlet end; a transport passage arranged therebetween, wherein the cross-sectional internal dimension at the inlet end of the transport passage are smaller than the cross-sectional internal dimension at the outlet end of the transport passage; at least two sealing connector sections, located at or near the inlet and outlet ends respectively, the device when in use being sealingly connectable with filler vessels and unfilled vessels respectively.
  • The arrangement is such that the sealable connection between said dispenser device and said unfilled vessel provides a substantially air tight seal so that air within the unfilled vessel is displaced by powder from the filler vessel, and passes through the transport passage during a filling operation. This provides for a significant advantage in that the air causes agitation of the material within the passage, reducing the chances of clogging and blockage.
  • The sealable connecting section may be any suitable shape, and may take advantage of known sealing methods, including threaded portions, foam or rubber strips and light friction fits. It may also take the form of a flat or contoured plate, or indeed any shaped face which corresponds with another surface to reduce leakage of dust particles during dispensing from vessel to vessel. A plurality of sizes and shapes of seal may be incorporated on one apparatus, making one apparatus transferable across differing brands and styles of vessel, using a plurality of discrete sealing sizes, or tapered sections.
  • The transport passage may include rounded shoulders at its inlet end. In one form of the invention, the inner surface of the inner wall of the transport passage is preferably a continuous generally smooth tapered configuration, tapering outwardly from the inlet end towards the outlet end.
  • The contour formed by the inner wall of the transport passage may differ from the contour formed by the exterior wall of the transport passage. The exterior wall of the transport passage may be shaped to correspond to the inlet or access portion of the unfilled vessel, thereby incorporating the sealable connector portion.
  • The dispenser device body may be constructed from any suitable material, such as for example, any suitable polymer, machinable or mouldable in injection moulding processes, or from suitable metals or alloys. The device may include one or more parts, and may be constructed from one or more materials, for example, the sealing means as mentioned above may be constructed from foam or rubber, operatively connected to other parts of the device.
  • Locating means may be provided for locating with a retaining portion on the unfilled vessel. In one form the locating means is in the form of one or more projections mounted on the external periphery of the dispenser device, which locates into or underneath a holding ledge, for maintaining sealing contact between dispenser device and the unfilled vessel.
  • Clips may be used to retain the device against the unfilled vessel. The clips may engage the locating means and assist in maintaining sealing contact between dispenser device and unfilled vessel.
  • The filler vessel and unfilled vessel are preferably sealed, except for their respective filling outlet and filling inlet. This allows the air transferred from the unfilled vessel to the filler vessel during the filling operation to be contained within the vessels.
  • Preferred embodiments will now be described with reference to the accompanying drawings, and in those drawings:
  • FIG. 1 shows section views (a), (c), and (e) and perspective views (b), (d) and (f) of three example embodiments according to the present invention.
  • FIG. 2 shows section view (a), plan view (b) and perspective view (c) of another embodiment according to the present invention.
  • FIG. 3 shows section view (a), plan view (b) and perspective view (c) of yet another embodiment according to the present invention.
  • FIG. 4 shows plan view (a) and perspective view (b) of another example embodiment according to the present invention.
  • FIG. 5 shows section view (a) and perspective view (b) of yet another embodiment of the present invention.
  • FIGS. 6-10 show examples of different ways that the dispenser devices may interrelate in order to transfer material from filling vessel to unfilled vessel.
  • Referring to FIGS. 1-5, like numerals have been used to describe like parts. Thus, referring to FIG. 1, there is shown a dispensing apparatus generally indicated at 10, including an inlet end 14, an outlet end 16, an enclosed transport passage 12, an inlet sealable connector section 18 and outlet sealable connector section 30.
  • Referring to FIGS. 1(a) and 1(b), in the form shown the transport passage 12 is a hollow cylinder. Its internal diameter at its inlet end 22 is smaller than the internal diameter at its outlet end 16, and the internal wall 24 forms an outwardly tapering tube. The sealable connector sections 18 and 30 take the form of threaded connections 20 (inlet) and 26 (outlet).
  • Referring to FIGS. 1(c) and 1(d), as stated above, like numerals denote like parts, however, some points of difference include: the outlet sealable connector section 130 does not include threaded connection as in FIGS. 1(a) and (b), but a push fit which includes protruding rings 126. A taper in the external wall 130 of the transport passage 112 at 12S allows location and sealing of the device in the opening of an unfilled vessel (not shown). The taper allows one or more opening sizes to be accommodated.
  • Referring to FIGS. 1(e) and 1(f) there is shown a similar embodiment to FIGS. 1(c) and (d), however, rather than a sealable connector section suitable for a small range of opening sizes, FIGS. 1(e) and (f) show an embodiment suitable for sealing three discrete opening sizes over a larger range. That is, external walls 230 of the transport passage 212 gradually accommodate for larger variations in aperture size in the unfilled vessel, where discrete increases in external diameter 228, 229 and 2-31 are formed into the shaft of the transport passage 212. From the inlet end of the interior wall of the transport passage the rounded shoulders 222 widen rapidly to point 225 and then the wall 224 of the transport passage 212 lightly outwardly tapers to the outlet.
  • Referring to FIG. 2 there is shown an embodiment according to the present invention wherein the outlet sealable connector section 330 takes the form of a plate 332 with an arcuate section 335 to correspond with the inlet of a particular unfilled vessel (not shown). The plate 332 includes a foam adhered to its underside (not shown), substantially at its perimeter, to further improve the sealing effect of the plate 332. The transport passage 312 is essentially constant diameter throughout or lightly outwardly tapering, assisting material flow. The inlet section 314 is sealed not with a threaded section as with previous example embodiments but with a simple push-fit system, incorporating essentially parallel internal walls at 320.
  • Retaining means are provided at 350 in the form of projections or lugs 351 and 352. These retaining means 350 engage with corresponding holding means (not shown) on the unfilled vessel (not shown).
  • Further retaining means 350 in the form of a drop-down plate section 353 is used in conjunction with clip (not shown) to hold the dispenser device against the unfilled vessel (not shown).
  • The embodiment shown in FIG. 3 is similar to that shown in FIG. 2 however there is no arcuate section, simply a plate shown at 432. Again, foam (not shown) improves the sealing qualities of the plate 432.
  • Similar retaining means as in FIG. 2 are shown in FIG. 3 at 450, and 453.
  • Referring to FIG. 4 there is shown another example embodiment according to the present invention wherein the outlet sealable connector section 530 is located at the outer face of a triangular plate, corresponding to the inlet of an unfilled vessel (not shown). A very short transport passage 512 is employed, and the material quickly flows from the inlet side 514 to the outlet side 516 of the apparatus.
  • Referring to FIG. 5 there is shown an embodiment similar to those shown in FIGS. 2 and 3, however the plate 632 is angled. Other aspects of the embodiment are the same as those shown in FIGS. 2 and 3, with like numerals denoting like parts. The invention may operate singly or in combination with other example embodiments. For example, a filling vessel may be screwed into inlet end 114 or 214, of devices 110 and 210 respectively, and the outlet ends 116 and 216 thereof may be push-fitted into the openings of unfilled vessels (not shown). Once the filling vessel is inverted, flow occurs. Agitation is not required during flow, however some small agitation may be required before inversion and flow occurs.
  • Other combinations may be made, for example, a filling vessel (not shown) may be screwed into the inlet end 214 of device 210. The outlet 216 of vessel 210 may then be push-fitted into inlet ends 314, 514, or 614. The corresponding outlet ends 316, 516, 616 are then sealably connected to the openings of unfilled vessels (not shown).
  • Still, other combinations may be made: for example, a filling vessel (not shown) may be screwed into the inlet end 114 of device 110. The outlet 116 of vessel 110 may then be push-fitted into inlet end 414. The corresponding outlet ends 416, are then sealably connected to the opening of unfilled vessel (not shown).
  • In further combinations, the outlet end of a filling vessel (not shown) may be screwed into the inlet end 14 of device 10. The outlet end 16 is then screwed into the inlet 114 or 214 of devices 110 or 210 respectively to form assemblies 650 (FIG. 6(iv)) and 660 (FIG. 6(v)).
  • The outlet end 116 and 216 of assembly 660 (FIG. 6(v)) or 650 (FIG. 6(iv)) may be push-fitted into an unfilled vessel (not shown).
  • Outlet end 116 of assembly 660 may be inserted, for example into: the inlet end 414 of device 410 to form dispenser assembly 680 (FIG. 8).
  • Outlet end 216 of assembly 650 may be inserted, for example, into one of the following:
      • the inlet end 314 of device 310 to form dispenser assembly 690 (FIG. 7);
      • the inlet end 514 of device 510 to form dispenser assembly 670 (FIG. 9);
      • the inlet end 614 of device 610 to form dispenser assembly 700 (FIG. 10).
  • To commence flow of material, the outlet sealable connector part (130, etc) of the dispenser devices 110, 210 or dispenser assemblies (660, etc) is sealingly connected to the inlet of an unfilled vessel (not shown) by pushing into (eg FIGS. 1(c)-1(f), 6(iv), 6(v) and 9) or by placing against (eg FIGS. 7, 8 and 10). If they are not already, the apparatus and vessels are arranged such that the filling vessel (not shown) is generally vertically above the device (10, 110 etc) and the unfilled vessel (not shown). The filling vessel is inverted in this position, so that gravity may assist the downward flow of the powder through the mouth of the filling vessel, which is below its base. No agitation of the filling vessel is required during filling of the unfilled vessel, however, some minor agitation of the filling vessel may be required before attachment to a dispenser device (10, 110). The outwardly tapered or parallel cross-section of the interior of the transport passage (12, 112 etc) and seals between vessels and dispenser device allow air exchange from the unfilled vessel to the filling vessel. Thus, displaced air from the unfilled vessel bubbles through the powder and transport passage and into the filler vessel, agitating the powder. Blocking of the transport passage (12, 112, etc) with lumps of powder is therefore minimised, promoting free flow of the powder.
  • Finally, various alterations, modifications and/or additions may be incorporated into the various constructions and arrangements of parts without departing from the spirit or ambit of the invention.

Claims (17)

1. A dispenser device including: a dispenser device body having an inlet end and an outlet end; a transport passage arranged therebetween, wherein the cross-sectional internal dimensions at the inlet end of the transport passage are smaller than the cross-sectional internal dimension at the outlet end of the transport passage; at least two sealing connector sections, located at or near the inlet and outlet ends respectively, the device when in use being sealingly connectable with filler vessels and unfilled vessels respectively.
2. A dispenser device according to claim 1, wherein the sealable connection between said dispenser device and said unfilled vessel provides a substantially air tight seal, so that air within the unfilled vessel is displaced by powder from the filler vessel and passes through the transport passage during a filling operation.
3. A dispenser device according to claim 1 wherein the sealable connecting section is in the form of threaded portions, foam or rubber strips, light friction fits, or flat or contoured plates which correspond to the connector surface of the unfilled vessel.
4. A dispenser device according to claim 1 wherein the transport passage includes rounded shoulders at its inlet end.
5. A dispenser device according to claim 1 wherein an inner surface of an inner wall of the transport passage is a continuous generally smooth tapered configuration, tapering outwardly from the inlet end towards the outlet end.
6. A dispenser device according to claim 1 wherein a contour formed by an inner wall of the transport passage differs from the contour formed by an exterior wall of the transport passage.
7. A dispenser device according to claim 1 wherein an exterior wall of the transport passage is shaped to correspond to an inlet or access portion of any one of a plurality of unfilled vessels having access or inlet portions of differing diameters or shapes, the exterior wall thereby incorporating the sealable connector section.
8. A dispenser device according to claim 7 wherein the exterior wall is tapered outwardly as the longitudinal direction is traversed from the outlet end to the inlet end.
9. A dispenser device according to claim 1 wherein the dispenser device body is constructed from suitable plastics, machinable or mouldable, or from suitable metals or metal alloys.
10. A dispenser device according to claim 1 wherein the device is constructed from more than one part or one or more materials.
11. A dispenser device according to claim 1 wherein an adaptor is provided to seal an inlet or access portion of an unfilled vessel.
12. A dispenser device according to claim 11 wherein the adaptor is in the form of a plate, having inlet and outlet sealable portions, to seal with the inlet or access portion of an unfilled vessel, and the outlet end of the dispenser body.
13. A dispenser device according to claim 12 wherein the plate is contoured or flat to conform with at least portions of the unfilled vessel.
14. A dispenser device according to claim 1 wherein a locating means is provided to locate with a retaining portion on the unfilled vessel.
15. A dispenser device according to claim 14 wherein the locating means is in the form of one or more projections mounted on the external periphery of the dispenser device.
16. A dispenser device according to claim 15 wherein clips are used to locate with the retaining means to retain the device against the unfilled vessel.
17. (canceled)
US10/516,917 2002-06-20 2003-06-20 Dispenser device Abandoned US20050218166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/645,447 US20100163134A1 (en) 2002-06-20 2009-12-22 Dispenser device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPS3036A AUPS303602A0 (en) 2002-06-20 2002-06-20 Dispenser device
AUPS3036 2002-06-20
PCT/AU2003/000761 WO2004000648A1 (en) 2002-06-20 2003-06-20 Dispenser device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/645,447 Continuation US20100163134A1 (en) 2002-06-20 2009-12-22 Dispenser device

Publications (1)

Publication Number Publication Date
US20050218166A1 true US20050218166A1 (en) 2005-10-06

Family

ID=3836597

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/516,917 Abandoned US20050218166A1 (en) 2002-06-20 2003-06-20 Dispenser device
US12/645,447 Abandoned US20100163134A1 (en) 2002-06-20 2009-12-22 Dispenser device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/645,447 Abandoned US20100163134A1 (en) 2002-06-20 2009-12-22 Dispenser device

Country Status (6)

Country Link
US (2) US20050218166A1 (en)
EP (1) EP1539581A4 (en)
AU (1) AUPS303602A0 (en)
BR (1) BR0311944A (en)
CA (1) CA2488820C (en)
WO (1) WO2004000648A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237480A1 (en) * 2005-04-26 2006-10-26 Fluid Management Operations Llc Shelving systems and holders for flexible bags for containing fluid for use in fluid dispensing systems
US20070084520A1 (en) * 2005-10-13 2007-04-19 Fluid Management Operations Llc Apparatuses for dispensing materials volumetrically and gravimetrically based on a stored formula and methods of dispensing formulas using the same
US20120085792A1 (en) * 2010-10-06 2012-04-12 Carriere D Michael Fluid nozzle system
CN114030662A (en) * 2021-12-03 2022-02-11 广东众大智能科技有限公司 New forms of energy material seals and presss from both sides bag packing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059879A (en) * 2016-01-29 2016-10-26 深圳市禾望电气股份有限公司 Control system and control method thereof
CN110654579B (en) * 2019-09-29 2021-02-23 冀东水泥重庆合川有限责任公司 Environment-friendly cement packaging machine

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1816141A (en) * 1928-04-12 1931-07-28 Michael T Daley Container
US2107228A (en) * 1936-08-06 1938-02-01 Axel E Zimmerman Condiment holder
US2743844A (en) * 1956-05-01 livingstone
US2802609A (en) * 1954-01-11 1957-08-13 Milton D Donovan Pouring attachment
US2885949A (en) * 1955-03-07 1959-05-12 Wilbur Curtis Company Inc Connecting and sealing means for coffee-brewing apparatus
US3201015A (en) * 1964-04-10 1965-08-17 Monoosnock Entpr Inc Supplemental container for a bottle
US3252635A (en) * 1964-09-08 1966-05-24 Cort A Rosenhan Extension collar for liquid containers such as paint cans
US3400865A (en) * 1966-12-02 1968-09-10 Curtis Margaret A Beverage decanter construction
US4273166A (en) * 1979-10-04 1981-06-16 Bradley Alan V Combination funnel and siphon
US4598844A (en) * 1984-08-27 1986-07-08 William Morris Container and dispenser for material in granular or powder form
US4600125A (en) * 1983-08-15 1986-07-15 Maynard Jr Walter P Liquid funnel and pouring spout combination
US5137188A (en) * 1990-10-03 1992-08-11 Thompson Terry A Pouring extension for cans
US5295981A (en) * 1988-06-20 1994-03-22 Smith William L Eyedrop applicator attachment
US5549227A (en) * 1992-08-21 1996-08-27 Klotz; James Bidirectional dispenser
US5762120A (en) * 1996-01-16 1998-06-09 Smith; Alan Threaded jar funnel
US5927353A (en) * 1997-11-19 1999-07-27 Persson; Jens H. Funnel for use with reusable plastic containers
US6209737B1 (en) * 1998-09-08 2001-04-03 Elmer Bliss Cup assembly for bottle with attachment mechanism
US6340038B1 (en) * 2001-04-18 2002-01-22 Hopkins Manufacturing Corporation Versatile pouring system including a funnel and spouts
US6425424B1 (en) * 1996-12-30 2002-07-30 Janet H. Ellis Calvo Multi use funnels
US20030154689A1 (en) * 2002-02-16 2003-08-21 Werner Schlosser Filling sleeve
US7313476B2 (en) * 2002-08-15 2007-12-25 Trimble Navigation Limited Method and system for controlling a valuable movable item

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB501863A (en) * 1937-01-12 1939-03-07 Cherry Burrell Corp Improvements in or relating to apparatus for and method of filling a receptacle with plastic edible material, for example semi-frozen ice cream
US4060105A (en) * 1975-09-11 1977-11-29 Xerox Corporation Toner loading apparatus with replenishing supply container
DE3210724A1 (en) * 1982-03-24 1983-10-06 Bosch Gmbh Robert Device for metering and filling portions of product into packaging containers
JPS5951090A (en) * 1982-08-27 1984-03-24 四国化工機株式会社 Nozzle with square nose section
GB8620839D0 (en) * 1986-08-28 1986-10-08 Stott L E Powder dispensing apparatus
US4942432A (en) * 1989-06-28 1990-07-17 Eastman Kodak Company Apparatus for adding toner to an electrostatographic development station
GB9300091D0 (en) * 1993-01-05 1993-03-03 Total Process Containment Ltd Process material transfer
FR2720372B1 (en) * 1994-05-31 1996-08-14 Sne Calhene Interface device for the transfer of fluid products between two containers.
US5477895A (en) * 1994-07-18 1995-12-26 Carter Holt Harvey Plastic Products Group Limited Outlet metering assembly
JP3670047B2 (en) * 1995-03-10 2005-07-13 藤森工業株式会社 Packaging equipment
US6196278B1 (en) * 1997-04-01 2001-03-06 Xerox Corporation Powder filling utilizing vibrofluidization
US6000446A (en) * 1998-03-16 1999-12-14 Xerox Corporation Apparatus for particulate processing
US6266506B1 (en) * 1999-09-29 2001-07-24 Xerox Corporation Mechanical keying concept for refillable print cartridge/toner bottle strategy
US6553201B1 (en) * 2000-05-18 2003-04-22 Nexpress Solutions Llc Replenisher mechanism interface
US7607460B2 (en) * 2006-06-12 2009-10-27 Jpro Dairy International, Inc. Coupling assembly

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743844A (en) * 1956-05-01 livingstone
US1816141A (en) * 1928-04-12 1931-07-28 Michael T Daley Container
US2107228A (en) * 1936-08-06 1938-02-01 Axel E Zimmerman Condiment holder
US2802609A (en) * 1954-01-11 1957-08-13 Milton D Donovan Pouring attachment
US2885949A (en) * 1955-03-07 1959-05-12 Wilbur Curtis Company Inc Connecting and sealing means for coffee-brewing apparatus
US3201015A (en) * 1964-04-10 1965-08-17 Monoosnock Entpr Inc Supplemental container for a bottle
US3252635A (en) * 1964-09-08 1966-05-24 Cort A Rosenhan Extension collar for liquid containers such as paint cans
US3400865A (en) * 1966-12-02 1968-09-10 Curtis Margaret A Beverage decanter construction
US4273166A (en) * 1979-10-04 1981-06-16 Bradley Alan V Combination funnel and siphon
US4600125A (en) * 1983-08-15 1986-07-15 Maynard Jr Walter P Liquid funnel and pouring spout combination
US4598844A (en) * 1984-08-27 1986-07-08 William Morris Container and dispenser for material in granular or powder form
US5295981A (en) * 1988-06-20 1994-03-22 Smith William L Eyedrop applicator attachment
US5137188A (en) * 1990-10-03 1992-08-11 Thompson Terry A Pouring extension for cans
US5549227A (en) * 1992-08-21 1996-08-27 Klotz; James Bidirectional dispenser
US5762120A (en) * 1996-01-16 1998-06-09 Smith; Alan Threaded jar funnel
US6425424B1 (en) * 1996-12-30 2002-07-30 Janet H. Ellis Calvo Multi use funnels
US5927353A (en) * 1997-11-19 1999-07-27 Persson; Jens H. Funnel for use with reusable plastic containers
US6209737B1 (en) * 1998-09-08 2001-04-03 Elmer Bliss Cup assembly for bottle with attachment mechanism
US6340038B1 (en) * 2001-04-18 2002-01-22 Hopkins Manufacturing Corporation Versatile pouring system including a funnel and spouts
US6450219B1 (en) * 2001-04-18 2002-09-17 Hopkins Manufacturing Corporation Versatile pouring system including a funnel and spouts
US20030154689A1 (en) * 2002-02-16 2003-08-21 Werner Schlosser Filling sleeve
US7313476B2 (en) * 2002-08-15 2007-12-25 Trimble Navigation Limited Method and system for controlling a valuable movable item

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237480A1 (en) * 2005-04-26 2006-10-26 Fluid Management Operations Llc Shelving systems and holders for flexible bags for containing fluid for use in fluid dispensing systems
US7320416B2 (en) 2005-04-26 2008-01-22 Fluid Management Operations Llc Shelving systems and holders for flexible bags for containing fluid for use in fluid dispensing systems
US20070084520A1 (en) * 2005-10-13 2007-04-19 Fluid Management Operations Llc Apparatuses for dispensing materials volumetrically and gravimetrically based on a stored formula and methods of dispensing formulas using the same
US7527078B2 (en) 2005-10-13 2009-05-05 Fluid Management, Llc Apparatuses for dispensing materials volumetrically and gravimetrically based on a stored formula and methods of dispensing formulas using the same
US20120085792A1 (en) * 2010-10-06 2012-04-12 Carriere D Michael Fluid nozzle system
CN114030662A (en) * 2021-12-03 2022-02-11 广东众大智能科技有限公司 New forms of energy material seals and presss from both sides bag packing apparatus

Also Published As

Publication number Publication date
EP1539581A4 (en) 2010-01-06
CA2488820A1 (en) 2003-12-31
WO2004000648A1 (en) 2003-12-31
BR0311944A (en) 2005-03-29
EP1539581A1 (en) 2005-06-15
AUPS303602A0 (en) 2002-07-11
US20100163134A1 (en) 2010-07-01
CA2488820C (en) 2009-08-04

Similar Documents

Publication Publication Date Title
US20100163134A1 (en) Dispenser device
TWI262104B (en) Small liquid supply assembly
US5979516A (en) Funnel
US6419118B1 (en) Containers with flexible pouch and closure member
US7762434B2 (en) Refillable material transfer system
EP2695549A3 (en) No-spill drinking products
WO1995010963A1 (en) Arrangement for portioning viscous materials from a pack
BRPI0907849B1 (en) MOUNTING SYSTEM FOR MOUNTING A VALVE TO ACCOMMODATE FLOW OF A SUBSTANCE FROM A SUPPLY OF THE SUBSTANCE
US5511595A (en) Funnel device
US4815893A (en) Self-contained underwater drinking apparatus for scuba divers
US5397027A (en) Stopper for a metered dispensing unit
US5186362A (en) Liquid transfer assembly
JP4439029B2 (en) Centrifuge container cap
AU2003232522B2 (en) Dispenser device
JPH02297372A (en) Apparatus for liquid transfer into bottle of therapeutical liquid
US6105639A (en) Closed delivery system
US6691902B2 (en) Bottle filling device
ATE94042T1 (en) DEVICE FOR DELIVERING FLOWABLE MEDIA.
JP2007507347A (en) System for supplying solid material to a pressurized pipeline
US20190308868A1 (en) Device for filling tanks with intermediate container
CN212791023U (en) Liquid transfer device
US6738995B1 (en) Bucket filler
CN113828367A (en) Liquid transfer device
US10799871B1 (en) Aspiration adapter and system
GB2157805A (en) Floating valve member

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION