US20050220717A1 - Steroid solution aerosol products with enhanced chemical stability - Google Patents

Steroid solution aerosol products with enhanced chemical stability Download PDF

Info

Publication number
US20050220717A1
US20050220717A1 US11/061,529 US6152905A US2005220717A1 US 20050220717 A1 US20050220717 A1 US 20050220717A1 US 6152905 A US6152905 A US 6152905A US 2005220717 A1 US2005220717 A1 US 2005220717A1
Authority
US
United States
Prior art keywords
metered dose
pressurized metered
dose inhalers
ethanol
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/061,529
Inventor
Zheng Wu
Nayna Govind
Peter Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22489103&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050220717(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/061,529 priority Critical patent/US20050220717A1/en
Publication of US20050220717A1 publication Critical patent/US20050220717A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • A61K9/124Aerosols; Foams characterised by the propellant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/38Details of the container body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/44Valves specially adapted therefor; Regulating devices
    • B65D83/52Valves specially adapted therefor; Regulating devices for metering
    • B65D83/54Metering valves ; Metering valve assemblies

Definitions

  • the present invention relates to medicinal aerosol products and, in particular, to aerosol products such as metered dose inhalers for delivery of steroids.
  • the invention is particularly related to certain 20-ketosteroids that have been found to be highly susceptible to chemical degradation when formulated as solution aerosol products, and provides a way of enhancing chemical stability of such steroids.
  • Structure I shown below is a typical core structure for a large number of natural and synthetic 20-ketosteroids, with the standard IUPAC numbering system of the carbon positions 1 to 21 indicated.
  • These types of steroids have many well-known therapeutic uses, especially based upon their anti-inflammatory activity. It is often desirable to deliver such steroids topically using aerosol spray devices, such as metered dose inhalers (MDIs).
  • MDIs are commonly used to deliver steroids, e.g., beclomethasone dipropionate, to the airways of patients via oral or nasal inhalation for the treatment of asthma and allergic rhinitis.
  • HFC non-CFC hydrofluorocarbon
  • solution formulations are disclosed in U.S. Pat. No. 5,766,573 which are surprisingly chemically stable in propellant HFC 134a and/or 227 and ethanol in a conventional aluminum canister.
  • ciclesonide formulations are surprisingly chemically stable in certain solution MDI formulations disclosed in WO 98/52542.
  • Solution formulations of flunisolide are disclosed in U.S. Pat. No.
  • WO 98/13031 discloses recent work on reformulating budesonide as a non-CFC suspension formulation.
  • suspension formulations of a medicament are more likely to encounter problems with physical instability (e.g., agglomeration, crystal growth and deposition on the container wall, all resulting in inconsistent dosage delivery).
  • a drug delivery device providing medicinal steroid solution formulations with enhanced chemical stability would offer some significant advantages over suspension formulations. Besides homogeneity, solution formulations have been found in some cases—e.g., using HFC propellants and low ethanol content—to give dramatically higher respirable fractions (i.e., the percentage of active ingredient able to reach the airways of the lung) compared to a particulate suspension of the steroid drug. See U.S. Pat. No. 5,776,432. Furthermore, an aerosol product providing a chemically and physically stable aerosol steroid formulation using non-CFC propellant would offer the advantage of being more ozone friendly than currently available aerosol products with CFCs.
  • C-17/21 OH 20-ketosteroids those steroids in particular having a C-20 ketone and an OH group at the C-17 position or, especially, the C-21 position or both (hereafter collectively referred to as “C-17/21 OH 20-ketosteroids”) are subject to enhanced chemical degradation when stored in contact with a metal container (particularly the metal oxide e.g., Al 2 O 3 layer that forms on the interior surface of the container).
  • a metal container particularly the metal oxide e.g., Al 2 O 3 layer that forms on the interior surface of the container.
  • aerosol containers made of metal, usually aluminum.
  • the present invention is especially preferred with respect to C-21 OH 20-ketosteroids (with or without a C-17 OH group).
  • the C-21 OH group can substantially increase biological activity of a steroid, but such steroids are also much more susceptible to chemical degradation in the presence of metal.
  • Particularly preferred 20-ketosteroids are budesonide, triamcinolone acetonide, dexamethasone, and betamethasone 17-valerate, all of which have an OH group at the C-21 position.
  • These steroids are all currently on the market as CFC particulate suspension formulations in metered dose inhalers and, at least in the case of budesonide, work has been conducted to reformulate this important steroid as a non-CFC suspension product in HFA propellants. See PCT published application WO98/13031.
  • the most preferred type of container for use in the present invention is a conventional aluminum (or aluminum alloy) aerosol canister, but with an interior coating of an inert material, such as a spray-coated, baked epoxy-phenolic lacquer (available from Cebal Printal U.K. Ltd.).
  • an inert material such as a spray-coated, baked epoxy-phenolic lacquer (available from Cebal Printal U.K. Ltd.).
  • Other metals, such as stainless steel may likewise be used with an inert interior coating.
  • the internal surfaces of metal valve components in contact with the formulation are similarly coated with an inert material.
  • Another preferred coating for the inside of the container is perfluoroethylenepropylene (FEP).
  • a preferred coating for the metal valve components is a very thin layer of glass, or other material, deposited by gas vapor deposition. Such coating is preferably used on all of the metal valve components in contact with the formulation, including the inside and outside of the metering chamber, inside and outside of the bottle emptier (if any), and the inside and outside of the valve stem (if metal), and may also be used to coat the inside of the canister.
  • the preferred such coating technique is the SilcosteelTM process available from Restek Corporation, Bellefonte, Pa.
  • the SilcosteelTM aspect of the invention is useful even outside the context of the chemical degradation problem, for both solution and suspension formulations.
  • Preferred formulations use a liquified propellant such as hydrogen-containing (non-CFC) propellants, more preferably hydrofluorocarbons, such as 134a and/or 227.
  • a liquified propellant such as hydrogen-containing (non-CFC) propellants, more preferably hydrofluorocarbons, such as 134a and/or 227.
  • Particularly preferred formulations include about 0.1 to 0.5% C-17/21 OH 20-ketosteroid about 75 to 99% 134a and/or 227, and about 1 to 25% w/w ethanol, more preferably about 80 to 95% 134a and/or 227, and about 5 to 20% ethanol.
  • the most preferred medicinal aerosol products according to the invention are MDI's comprising about 0.1 to 0.5% budesonide or triamcinolone acetonide dissolved in about 80-95% 134a and/or 227 and about 5-20% ethanol, contained in a coated aluminum aerosol canister equipped with a metering valve.
  • the present invention provides a medicinal aerosol steroid solution formulation product with enhanced chemical stability.
  • Such product includes a container equipped with a dispensing valve and containing a medicinal aerosol formulation having a 20-ketosteroid drug dissolved therein.
  • the 20-ketosteroid is other than flunisolide and has an OH group at the C-17 or C-21 position or both, and the container is provided with a non-metal interior surface so as to reduce chemical degradation.
  • the invention further provides a process for making a chemically stable 20-ketosteroid solution aerosol product, by filling into a container an aerosol formulation comprising a dissolved 20-ketosteroid other than flunisolide, said 20-ketosteroid having an OH group at the C-17 position or C-21 position or both, and said container having an inert non-metal interior surface so as to avoid chemical degradation of the 20-ketosteroid due to interaction with the container.
  • FIG. 1 is a cross-sectional view of a metered dose inhaler containing a medicinal 20-ketosteroid formulation with enhanced chemical stability according to the present invention
  • FIG. 2 is the same is FIG. 1 , but with a modified valve configuration.
  • a medicinal aerosol device 10 comprising a pressurizable metal aerosol container 16 equipped with a metering valve 18 .
  • the metal container 16 is preferably made of aluminum (i.e. aluminum or aluminum alloy) and has an inert interior coating layer 14 .
  • the metering valve 18 includes a metal metering chamber 20 with a coating layer 22 .
  • FIG. 2 shows an alternative preferred embodiment that is essentially the same as FIG. 1 , but utilizes a fixed bottle emptier 26 , with coating layer 28 . Also, a solution gasket 30 is used to further prevent contact of the formulation with metal components.
  • the medicinal aerosol formulation 12 preferably includes a non-CFC propellant, a cosolvent (if necessary), and a therapeutically effective amount of dissolved C-17/21 OH 20-ketosteroid.
  • a therapeutically effective amount will nornally be a concentration so as to provide in the range of about 100 to 1500 mg per day using one to eight puffs.
  • Preferred propellants include hydrogen containing propellants, such as HFCs 134a and/or 227.
  • Ethanol is a preferred cosolvent, although other cosolvents and solubilization aids (e.g., surfactants) may be used.
  • the amount of cosolvent used is preferably an amount sufficient to completely dissolve the 20-ketosteroid.
  • the formulation 12 may also include other excipients, such as stabilizers, antioxidants, flavoring agents, and the like.
  • R 1 is H or an alkyl group
  • R 2 is an alkyl group
  • X is not H.
  • R 1 and/or R 2 alkyl groups are methyl, ethyl, propyl, butyl, pentyl, and hexyl groups, including their branched and cyclic isomers.
  • R 1 may form a ring with R 2 , preferably a cyclopentyl or cyclohexyl ring.
  • Examples of known 20-ketosteroids according to structure V include budesonide, triamcinolone acetonide, desonide, and fluocinolone acetonide.
  • Q is OH, H, Cl, or PO(ONa) 2 ;
  • X is H, Cl, or F;
  • Y is H, F, or Me;
  • Z is H or Cl;
  • R 1 is H, OH or propionate provided that when Q is not OH, then R 1 must be OH; and
  • R 2 is H, OH, or Me.
  • Examples of known 20-ketosteroids according to structure VI include alclometasone, beclomethasone, beclomethasone 17-monopropionate, betamethasone, betamethasone 17-valerate, clocortolone, desoximetasone, dexamethasone, dexamethasone sodium phosphate, dexamethasone 21-isonicotinate, diflorasone, flumethasone, methylprednisolone, paramethasone, prednisolone, tramcinolone, clobetasol, and fluorometholone.
  • C-17/21 OH 20-ketosteroids for particular structural examples, four preferred C-17/21 OH 20-ketosteroids according to the present invention, budesonide, triamcinolone acetonide, betamethasone 17-valerate, and dexamethasone, have the following structures:
  • the C-17/21 OH 20-ketosteroid is dissolved in the aerosol formulation and preferably contained in an inertly coated metal container.
  • coated simply refer to a non-metal interior coating that does not promote degradation at the OH substituents on C-17/21 OH 20-ketosteroids.
  • Inert coating materials include any suitable polymer, lacquer, resin, or other coating treatment that creates a barrier to chemical interaction of the dissolved C-17/21 OH 20-ketosteroid and metal on the container (especially metal oxides).
  • suitable interior coatings include epoxy-phenolic resins, epoxy-urea-formaldehyde resins, polytetrafluroethylene (PTFE), perfluoroethylenepropylene (FEP), perfluoroalkoxyalkane (PFA), ethylene tetrafluoroethylene (ETFE), poly(vinyldiene fluoride) (PVDF), and chlorinated ethylene tetrafluoroethylene.
  • PTFE polytetrafluroethylene
  • FEP perfluoroethylenepropylene
  • PFA perfluoroalkoxyalkane
  • ETFE ethylene tetrafluoroethylene
  • PVDF poly(vinyldiene fluoride)
  • Chinated ethylene tetrafluoroethylene tetrafluoroethylene
  • Blends may be used of fluorinated polymers with non-fluorinated polymers such as polyamides, polyimides, polyethersulfones, polyphenylene sulfides, and amine
  • Specific blends include PTFE/FEP/polyamideimide, PTFE/polyether sulphone (PES) and FEP-benzoguanamine.
  • Preferred interior coating materials are epoxy-phenolic resins, epoxy-urea-formaldehyde resins, PTFE, and FEP. Additional information regarding interior can coatings is taught in, e.g., EP 642992, WO 96/32099, WO 96/32150, WO 96/32151, and WO 96/32345, which disclose interior can coatings for drug suspension formulation products.
  • a preferred coating for the metal valve components is a very thin layer of fused silica glass, or other material, deposited by gas vapor deposition. Such coating is preferably used on all of the metal valve components in contact with the formulation, including the inside and outside of the metering chamber, inside and outside of the bottle emptier (if any), and the inside and outside of the valve stem (if metal).
  • the preferred such coating technique is the SilcosteelTM process available from Restek Corporation, Bellefonte, Pa. This process deposits a submicron layer of fused silica glass on the metal components and can be used both on the valve components and on the interior of the canister.
  • the SilcosteelTM aspect of the invention is thus useful even outside the context of the chemical degradation problem, for both solution and suspension formulations.
  • the Silcosteel process is performed at a temperature of 400° C., which has the added benefit of thermally removing residual oils on the metal surface.
  • containers made from non-metal materials such as glass or plastic (e.g., polyethylene terephthalate, from Precise Plastic Ltd., U.K.).
  • glass containers it is preferred to use glass having a low metal oxide content.
  • ASTM American Society for Testing and Materials
  • Type I/Class A glass contains 2% aluminum oxide
  • Type II/Class B glass contains 7% aluminum oxide. The former is therefore preferred.
  • Type III (soda-lime) glass vials may also be used (available from Wheaton Coated Products).
  • High metal oxide content glass should also be avoided during development and testing of formulations containing C-17 and/or C-21 OH 20-ketosteroids because such use could cause unsuspected chemical degradation due to the glass metal oxide content.
  • Coated containers can be made by pre-coating the metal roll stock before forming the container or by coating the container after it is made, by various techniques known in the art of coating.
  • suitable coating procedures include plasma coating, electrostatic dry powder coating, impregnating/spraying, hard anodization with polymer deposition, chemical vapor deposition (CVD), physical vapor deposition (PVD), as well as other procedures known in the art for this purpose.
  • the containers are coated with an epoxy resin and then baked.
  • Suitable coated containers can be obtained from, for example, Cebal Printal U.K. Ltd.
  • Preferred products/devices according to the present invention are pressurized aerosols such as MDIs that use liquefied gas propellants, including chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), fluorocarbons (FCs), hydrocarbons (HCs), hydrochlorofluorocarbons (HCFCs), and dimethyl ether (DME).
  • CFCs chlorofluorocarbons
  • HFCs hydrofluorocarbons
  • FCs fluorocarbons
  • HCs hydrocarbons
  • HCFCs hydrochlorofluorocarbons
  • DME dimethyl ether
  • Propellants containing hydrogen are preferred.
  • Ethanol may also be included to assist in solubilizing the 20-ketosteroid, preferably in an amount of about 1-25%.
  • Formulations comprising dissolved C-17/21 OH 20-ketosteroid, HFC propellant, such as 134a and/or 227, with 5-20% ethanol are particularly preferred
  • the formulations are essentially non-aqueous, meaning that they do not include added water, although very small amounts of water may be present due to water ingress and/or as a residual in formulation components (such as ethanol).
  • Formulations will preferably have less than about 3%, and more preferably less than about 0.5% water content.
  • the containers can be equipped with any suitable conventional or unconventional dispensing valve, preferably a metered dose valve.
  • Example 1 illustrates the effect of aluminum oxide in the degradation of another C-17/21 OH 20-ketosteroid, in this case triamcinolone acetonide, which has an OH attached to the C-21 carbon position.
  • Example illustrates the effect of aluminum oxide in the degradation of C-17/21 OH 20-ketosteroid, in the case dexamethasone, which has one OH attached to C-21 and another OH attached to C-17.
  • dexamethasone At ambient temperature, a 3 mL ethanol solution of dexamethasone (0.007 M) was mixed with 0.1 g of aluminum oxide (Aldrich, neutral, activated Brockmann I, 150 mesh), which mimics aluminum oxide existing on the inner surface of aluminum containers. The mixture was held at 75° C. for several hours, and an aliquot was taken at each of the time intervals given in Table 3. Each aliquote was filtered with a syringe filter and diluted with acetonitrile by 20 times for HPLC analysis to determine the recoveries of dexamethasone with respect to the inital concentration. The recoveries of dexamethasone were compared with a reference, which contained the same concentration of dexamethasone but in ethanol solution without aluminum oxide.
  • aluminum oxide Aldrich, neutral, activated Brockmann I, 150 mesh
  • dexamethasone completely degrades after ten hours at 75° C. In contrast, without aluminum oxide the recovery of dexamethasone is as high as 90% after 168 hours at the same temperature.
  • the data demonstrate that aluminum oxide substantially facilitates degradation of dexamethasone in ethanol solution. Ethanol, however, appears to play a only a minor role in degradation.
  • Example 5 and 6 were manufactured on a pilot-scale cold filler and filled into metered dose inhaler vials having various different components: different valve types, coated versus uncoated aluminum cans, and with and without a nylon desiccant insert. The units were then inverted and stored at either 40° C./85% RH for 14 days or 30° C./30% RH for 17 days prior to analysis of budesonide degradation.
  • valve used also had an impact on chemical stability.
  • the greatest chemical stability enhancement was found in units using a Bespak 357 valve with EPDM seals, a Cebal epoxy lacquered can, and the formulation of Example 6. Nearly as stable were units equipped with a 3M Neotechnic SpraymiserTM HFA valve, a Cebal epoxy lacquered can, and the formulations of Examples 5 or 6. Also, none of the valves tested were coated and it is expected that this would further enhance chemical stability.
  • Formulations using propellant 227 appeared to be slightly more stable. Containers having a desiccant generally exhibited reduced degradation compared to those without desiccant inserts. This suggests that water may increase degradation and that using dried ethanol may thus help further enhance chemical stability. Also, the use of certain antioxidants such as ascorbic acid and ascorbyl palmitate (but not vitamin E) appeared to enhance chemical stability, while the use of oleic acid appeared to reduce chemical stability.
  • Graph A shows comparative tests results on a budesonide solution formulation comprising 0.22% w/w budesonide, 11% w/w ethanol, and the remainder 134a.
  • Three lots were stored at 40° C./75% RH.
  • One lot (identified as “Coated A”) was contained in aluminum cans coated with an epoxy-phenolic coating (Cebal Printal Ltd. U.K.) and capped with a blind ferrule and a continuous gasket (made of DFDB 1085 elastomer, Union Carbide) so as to completely isolate the formulation from contact with metal surfaces.
  • Coated B Another lot (“Coated B”) was contained in the same type of cans as Coated A, but equipped with a functional valve ferrule (3M Neotechnic SpraymiserTM solution valve) having a solution gasket to partially prevent contact of the formulation with the underside of the valve ferrule.
  • a third lot (“Uncoated”) was contained in uncoated aluminum cans equipped with the same valves as for Coated B.
  • Example 8 the formulation contained 0.22% w/w budesonide dissolved in a mixture of 134a and 13% w/w ethanol.
  • the Example 9 formulation had 0.17% w/w budesonide dissolved in 134a and 15% w/w ethanol. In both cases, shown in Graphs B and C, respectively, the degradation rate was much greater in the Uncoated can, and degradation was least for Coated A.
  • the data indicates the epoxy can is superior to the FEP in preventing degradation. Without wishing to be held to any particular mechanism to explain the difference in results between the two coating types, it is hypothisized that it is not that the phenolic epoxy provides a better barrier, but rather that some adsorption of degradation products is taking place. Essentially, the phenolic epoxy may be “soaking up” the degradates. A small amount of budesonide may also be adsorbed too, but the amount is apparently too small to affect the target content amount.

Abstract

A medicinal aerosol steroid solution formulation product with enhanced chemical stability. The steroid is a 20-ketosteroid having an OH group at the C-17 or C-21 position and the aerosol container has a non-metal interior surface which has been found to reduce chemical degradation of such steroids.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of earlier filed provisional application 60/139,961, filed on Jun. 18, 1999.
  • FIELD
  • The present invention relates to medicinal aerosol products and, in particular, to aerosol products such as metered dose inhalers for delivery of steroids. The invention is particularly related to certain 20-ketosteroids that have been found to be highly susceptible to chemical degradation when formulated as solution aerosol products, and provides a way of enhancing chemical stability of such steroids.
  • BACKGROUND
  • Structure I shown below is a typical core structure for a large number of natural and synthetic 20-ketosteroids, with the standard IUPAC numbering system of the carbon positions 1 to 21 indicated.
    Figure US20050220717A1-20051006-C00001

    These types of steroids, with varying substituents and bonding, have many well-known therapeutic uses, especially based upon their anti-inflammatory activity. It is often desirable to deliver such steroids topically using aerosol spray devices, such as metered dose inhalers (MDIs). MDIs are commonly used to deliver steroids, e.g., beclomethasone dipropionate, to the airways of patients via oral or nasal inhalation for the treatment of asthma and allergic rhinitis.
  • One common difficulty, however, in making products for delivering steroids has been that they are often chemically unstable in aerosol formulations and degrade during storage. A great deal of research has been directed at steroid degradation. Chemical degradation is especially problematic when the steroid is dissolved in the formulation and, consequently, the vast majority of marketed MDI steroid products are formulated as particulate suspensions of the steroid, which are much less susceptible to chemical degradation than solutions. For example, it is believed that all currently marketed CFC-containing MDI products for delivering steroids are available only as particulate suspension formulations in CFC propellants.
  • More recently, some selected steroids have been reformulated as solutions in non-CFC hydrofluorocarbon (HFC) propellants with ethanol. In the case of beclomethasone dipropionate, for example, solution formulations are disclosed in U.S. Pat. No. 5,766,573 which are surprisingly chemically stable in propellant HFC 134a and/or 227 and ethanol in a conventional aluminum canister. Likewise, ciclesonide formulations are surprisingly chemically stable in certain solution MDI formulations disclosed in WO 98/52542. Solution formulations of flunisolide are disclosed in U.S. Pat. No. 5,776,433, where it is indicated that chemical stability may be enhanced by using additives like water, sorbitan trioleate, and cetylpyridinium chloride, and also that certain containers such as glass and resin coated aluminum enhance chemical stability and/or minimize the absorption of flunisolide onto the container wall. Also, WO 96/40042 discloses that aqueous formulations of triamcinolone acetonide in neutral or basic solutions undergo oxidative degradation catalyzed by trace levels of metal ions, especially copper, and proposes the use of EDTA as sequestering agent and/or adjusting pH.
  • Despite these limited examples, though, most commercial MDI formulations of steroids and other drugs have continued to be particulate suspensions. WO 98/13031, for example, discloses recent work on reformulating budesonide as a non-CFC suspension formulation. However, suspension formulations of a medicament are more likely to encounter problems with physical instability (e.g., agglomeration, crystal growth and deposition on the container wall, all resulting in inconsistent dosage delivery).
  • A drug delivery device providing medicinal steroid solution formulations with enhanced chemical stability would offer some significant advantages over suspension formulations. Besides homogeneity, solution formulations have been found in some cases—e.g., using HFC propellants and low ethanol content—to give dramatically higher respirable fractions (i.e., the percentage of active ingredient able to reach the airways of the lung) compared to a particulate suspension of the steroid drug. See U.S. Pat. No. 5,776,432. Furthermore, an aerosol product providing a chemically and physically stable aerosol steroid formulation using non-CFC propellant would offer the advantage of being more ozone friendly than currently available aerosol products with CFCs.
  • Nevertheless, despite a substantial need, the problem of chemical degradation in steroid solution aerosol products has been poorly understood. Until now there has been no way to identify which steroids are likely to be most stable as solution aerosols and which will be most sensitive to degradation in solution aerosol products or how to reduce such degradation.
  • SUMMARY
  • It has now been found that those steroids in particular having a C-20 ketone and an OH group at the C-17 position or, especially, the C-21 position or both (hereafter collectively referred to as “C-17/21 OH 20-ketosteroids”) are subject to enhanced chemical degradation when stored in contact with a metal container (particularly the metal oxide e.g., Al2O3 layer that forms on the interior surface of the container). Moreover, the vast majority of MDI's on the market, including all MDI steroid products, use aerosol containers made of metal, usually aluminum. By utilizing an aerosol container having a non-metal interior surface it is possible to produce solution aerosol formulations of C-17/21 OH 20-ketosteroids having enhanced chemical stability.
  • Generic structures for typical C-17 OH, C-21 OH, and C-17 and 21 OH 20-ketosteroids are shown below in structures II-IV, respectively.
    Figure US20050220717A1-20051006-C00002
  • The present invention is especially preferred with respect to C-21 OH 20-ketosteroids (with or without a C-17 OH group). The C-21 OH group can substantially increase biological activity of a steroid, but such steroids are also much more susceptible to chemical degradation in the presence of metal. Particularly preferred 20-ketosteroids are budesonide, triamcinolone acetonide, dexamethasone, and betamethasone 17-valerate, all of which have an OH group at the C-21 position. These steroids are all currently on the market as CFC particulate suspension formulations in metered dose inhalers and, at least in the case of budesonide, work has been conducted to reformulate this important steroid as a non-CFC suspension product in HFA propellants. See PCT published application WO98/13031.
  • The most preferred type of container for use in the present invention is a conventional aluminum (or aluminum alloy) aerosol canister, but with an interior coating of an inert material, such as a spray-coated, baked epoxy-phenolic lacquer (available from Cebal Printal U.K. Ltd.). Other metals, such as stainless steel, may likewise be used with an inert interior coating. It is also preferred that the internal surfaces of metal valve components in contact with the formulation are similarly coated with an inert material. Another preferred coating for the inside of the container is perfluoroethylenepropylene (FEP).
  • A preferred coating for the metal valve components is a very thin layer of glass, or other material, deposited by gas vapor deposition. Such coating is preferably used on all of the metal valve components in contact with the formulation, including the inside and outside of the metering chamber, inside and outside of the bottle emptier (if any), and the inside and outside of the valve stem (if metal), and may also be used to coat the inside of the canister. The preferred such coating technique is the Silcosteel™ process available from Restek Corporation, Bellefonte, Pa. The Silcosteel™ aspect of the invention is useful even outside the context of the chemical degradation problem, for both solution and suspension formulations.
  • Preferred formulations use a liquified propellant such as hydrogen-containing (non-CFC) propellants, more preferably hydrofluorocarbons, such as 134a and/or 227. Particularly preferred formulations include about 0.1 to 0.5% C-17/21 OH 20-ketosteroid about 75 to 99% 134a and/or 227, and about 1 to 25% w/w ethanol, more preferably about 80 to 95% 134a and/or 227, and about 5 to 20% ethanol. The most preferred medicinal aerosol products according to the invention are MDI's comprising about 0.1 to 0.5% budesonide or triamcinolone acetonide dissolved in about 80-95% 134a and/or 227 and about 5-20% ethanol, contained in a coated aluminum aerosol canister equipped with a metering valve.
  • It should also be noted that chemical stability is especially critical for MDIs since these medicinal aerosol products must remain stable and deliver accurate dosing throughout their shelf life (typically 2 to 3 years) and in use. Only a very small amount of chemical degradation can be tolerated. Moreover, by providing chemically stable solutions of C-17/21 OH 20-ketosteroids, such as budesonide, triamcinolone acetonide, dexamethasone, and betamethasone 17-valerate, MDIs can be made that produce extra-fine aerosols resulting in higher respirable fractions than suspension formulation products.
  • It can thus be seen that the present invention provides a medicinal aerosol steroid solution formulation product with enhanced chemical stability. Such product includes a container equipped with a dispensing valve and containing a medicinal aerosol formulation having a 20-ketosteroid drug dissolved therein. The 20-ketosteroid is other than flunisolide and has an OH group at the C-17 or C-21 position or both, and the container is provided with a non-metal interior surface so as to reduce chemical degradation.
  • Also provided is a method of reducing the chemical degradation of a medicinal 20-ketosteroid dissolved in a formulation contained in a metal container, said 20-ketosteroid being other than flunisolide and having an OH group at the C-17 position or C-21 position or both, comprising the step of providing a coating of inert material on the interior surface of the metal container so as to reduce reaction of the 20-ketosteroid with metal oxides from the container.
  • The invention further provides a process for making a chemically stable 20-ketosteroid solution aerosol product, by filling into a container an aerosol formulation comprising a dissolved 20-ketosteroid other than flunisolide, said 20-ketosteroid having an OH group at the C-17 position or C-21 position or both, and said container having an inert non-metal interior surface so as to avoid chemical degradation of the 20-ketosteroid due to interaction with the container.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be described with reference to the following drawing, wherein:
  • FIG. 1 is a cross-sectional view of a metered dose inhaler containing a medicinal 20-ketosteroid formulation with enhanced chemical stability according to the present invention;
  • FIG. 2 is the same is FIG. 1, but with a modified valve configuration.
  • DETAILED DESCRIPTION
  • Turning to FIG. 1, there is shown a medicinal aerosol device 10 comprising a pressurizable metal aerosol container 16 equipped with a metering valve 18. The metal container 16 is preferably made of aluminum (i.e. aluminum or aluminum alloy) and has an inert interior coating layer 14. The metering valve 18 includes a metal metering chamber 20 with a coating layer 22. Moreover, although not shown, it is preferred that as many other metal surfaces in contact with the formulation 12 as feasible are also coated with an inert layer (e.g., the interior of the metering chamber). It is also preferred to use a valve design that minimizes metal surfaces in contact with the formulation 12. For example, it is preferred in the context of the present invention to use a plastic valve stem 24 instead of metal.
  • FIG. 2 shows an alternative preferred embodiment that is essentially the same as FIG. 1, but utilizes a fixed bottle emptier 26, with coating layer 28. Also, a solution gasket 30 is used to further prevent contact of the formulation with metal components.
  • The medicinal aerosol formulation 12 preferably includes a non-CFC propellant, a cosolvent (if necessary), and a therapeutically effective amount of dissolved C-17/21 OH 20-ketosteroid. A therapeutically effective amount will nornally be a concentration so as to provide in the range of about 100 to 1500 mg per day using one to eight puffs. Preferred propellants include hydrogen containing propellants, such as HFCs 134a and/or 227. Ethanol is a preferred cosolvent, although other cosolvents and solubilization aids (e.g., surfactants) may be used. The amount of cosolvent used is preferably an amount sufficient to completely dissolve the 20-ketosteroid. The formulation 12 may also include other excipients, such as stabilizers, antioxidants, flavoring agents, and the like.
  • Although there are many possible C-17/21 OH 20-ketosteroids, there are two preferred types set forth below as structures V and VI:
    Figure US20050220717A1-20051006-C00003
  • Wherein X is H, Cl, or F; Y is H, F, or Me; R1 is H or an alkyl group; R2 is an alkyl group; and provided that when Y is F, then X is not H. Preferred R1 and/or R2 alkyl groups are methyl, ethyl, propyl, butyl, pentyl, and hexyl groups, including their branched and cyclic isomers. R1 may form a ring with R2, preferably a cyclopentyl or cyclohexyl ring.
  • Examples of known 20-ketosteroids according to structure V include budesonide, triamcinolone acetonide, desonide, and fluocinolone acetonide.
    Figure US20050220717A1-20051006-C00004
  • Wherein Q is OH, H, Cl, or PO(ONa)2; X is H, Cl, or F; Y is H, F, or Me; Z is H or Cl; R1 is H, OH or propionate provided that when Q is not OH, then R1 must be OH; and R2 is H, OH, or Me.
  • Examples of known 20-ketosteroids according to structure VI include alclometasone, beclomethasone, beclomethasone 17-monopropionate, betamethasone, betamethasone 17-valerate, clocortolone, desoximetasone, dexamethasone, dexamethasone sodium phosphate, dexamethasone 21-isonicotinate, diflorasone, flumethasone, methylprednisolone, paramethasone, prednisolone, tramcinolone, clobetasol, and fluorometholone.
  • Within the group of C-17/21 OH 20-ketosteroids, those having an OH group at C-21, with or without an OH group at C-17, suffer from more severe degradation in the presence of metal oxide than 20-ketosteroids having an OH group at C-17, but not at C-21. For example, beclomethasone 17-monopropionate (17-BMP, 21-OH) degrades in ethanol/Al2O3 about 100 times faster than its isomer 21-BMP (17-OH). This is important since it has been reported that the Structure-Activity Relationship for a C-21 OH group has an enhancement factor toward anti-inflammatory activity of 25 compared to an enhancement factor of only 4 for a C-17 OH group. See Doerge, R. F., Wilson and Grisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 8th Edition, p. 703, table 18-13 (J. B. Lippincott Co., Philidelphia, 1982).
  • For particular structural examples, four preferred C-17/21 OH 20-ketosteroids according to the present invention, budesonide, triamcinolone acetonide, betamethasone 17-valerate, and dexamethasone, have the following structures:
    Figure US20050220717A1-20051006-C00005
  • The C-17/21 OH 20-ketosteroid is dissolved in the aerosol formulation and preferably contained in an inertly coated metal container. As used herein, the terms “coated”, “inert coating” and the like simply refer to a non-metal interior coating that does not promote degradation at the OH substituents on C-17/21 OH 20-ketosteroids. Inert coating materials include any suitable polymer, lacquer, resin, or other coating treatment that creates a barrier to chemical interaction of the dissolved C-17/21 OH 20-ketosteroid and metal on the container (especially metal oxides).
  • Examples of suitable interior coatings include epoxy-phenolic resins, epoxy-urea-formaldehyde resins, polytetrafluroethylene (PTFE), perfluoroethylenepropylene (FEP), perfluoroalkoxyalkane (PFA), ethylene tetrafluoroethylene (ETFE), poly(vinyldiene fluoride) (PVDF), and chlorinated ethylene tetrafluoroethylene. Blends may be used of fluorinated polymers with non-fluorinated polymers such as polyamides, polyimides, polyethersulfones, polyphenylene sulfides, and amine-formaldehyde thermosetting resins. Specific blends include PTFE/FEP/polyamideimide, PTFE/polyether sulphone (PES) and FEP-benzoguanamine. Preferred interior coating materials are epoxy-phenolic resins, epoxy-urea-formaldehyde resins, PTFE, and FEP. Additional information regarding interior can coatings is taught in, e.g., EP 642992, WO 96/32099, WO 96/32150, WO 96/32151, and WO 96/32345, which disclose interior can coatings for drug suspension formulation products.
  • A preferred coating for the metal valve components is a very thin layer of fused silica glass, or other material, deposited by gas vapor deposition. Such coating is preferably used on all of the metal valve components in contact with the formulation, including the inside and outside of the metering chamber, inside and outside of the bottle emptier (if any), and the inside and outside of the valve stem (if metal). The preferred such coating technique is the Silcosteel™ process available from Restek Corporation, Bellefonte, Pa. This process deposits a submicron layer of fused silica glass on the metal components and can be used both on the valve components and on the interior of the canister. Not only is it helpful in preventing chemical reaction with the metal, but passivation of the metal surface using the Silcosteel process can provide a smooth surface on, for example, the valve stem so as to reduce friction and help prevent valve clogging, and can also reduce oxidation of the metal that can introduce particulate material into the system. The Silcosteel™ aspect of the invention is thus useful even outside the context of the chemical degradation problem, for both solution and suspension formulations. The Silcosteel process is performed at a temperature of 400° C., which has the added benefit of thermally removing residual oils on the metal surface.
  • It is also possible to use containers made from non-metal materials, such as glass or plastic (e.g., polyethylene terephthalate, from Precise Plastic Ltd., U.K.). In the case of glass containers, however, it is preferred to use glass having a low metal oxide content. According to the American Society for Testing and Materials (ASTM), Type I/Class A glass contains 2% aluminum oxide, whereas Type II/Class B glass contains 7% aluminum oxide. The former is therefore preferred. Type III (soda-lime) glass vials may also be used (available from Wheaton Coated Products). High metal oxide content glass should also be avoided during development and testing of formulations containing C-17 and/or C-21 OH 20-ketosteroids because such use could cause unsuspected chemical degradation due to the glass metal oxide content.
  • Coated containers can be made by pre-coating the metal roll stock before forming the container or by coating the container after it is made, by various techniques known in the art of coating. For example, suitable coating procedures include plasma coating, electrostatic dry powder coating, impregnating/spraying, hard anodization with polymer deposition, chemical vapor deposition (CVD), physical vapor deposition (PVD), as well as other procedures known in the art for this purpose. Preferably, the containers are coated with an epoxy resin and then baked. Suitable coated containers can be obtained from, for example, Cebal Printal U.K. Ltd.
  • Preferred products/devices according to the present invention are pressurized aerosols such as MDIs that use liquefied gas propellants, including chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), fluorocarbons (FCs), hydrocarbons (HCs), hydrochlorofluorocarbons (HCFCs), and dimethyl ether (DME). Propellants containing hydrogen are preferred. Ethanol may also be included to assist in solubilizing the 20-ketosteroid, preferably in an amount of about 1-25%. Formulations comprising dissolved C-17/21 OH 20-ketosteroid, HFC propellant, such as 134a and/or 227, with 5-20% ethanol are particularly preferred. Also, it is generally preferred that the formulations are essentially non-aqueous, meaning that they do not include added water, although very small amounts of water may be present due to water ingress and/or as a residual in formulation components (such as ethanol). Formulations will preferably have less than about 3%, and more preferably less than about 0.5% water content.
  • The containers can be equipped with any suitable conventional or unconventional dispensing valve, preferably a metered dose valve.
  • The following examples illustrate various aspects of the invention.
  • EXAMPLE 1
  • The following illustrates the effect of a metal oxide (Al2O3) in the degradation of a C-17/21 OH 20-ketosteroid, in this case budesonide, which has an OH group attached on the C-21 carbon position.
  • At ambient temperature, a 3 mL ethanol solution of budesonide (0.007 M) was mixed with 0.1 g of aluminum oxide (Aldrich, neutral, activated Brockmann I, 150 mesh), which mimics aluminum oxide existing on the inner surface of aluminum containers. The mixture was held at 75° C. for several days, and an aliquot was taken at each of the time intervals given in the Table 1. Each aliquot was filtered with a syringe filter and diluted with acetonitrile by 20 times for HPLC analysis to determine the recovery of budesonide with respect to the initial concentration. The recoveries of budesonide were compared with a reference, which contained the same concentration of budesonide but in ethanol solution without aluminum oxide. The results are summarized in Table 1.
    TABLE 1
    Recovery (%) of budesonide in a mixture of ethanol/aluminum
    oxide at 75° C. or in ethanol at 75° C.
    Time In Ethanol/
    (Hours) Aluminum Oxide In Ethanol
    0 100 100
    6 4.97
    24 0.20 99.2
    48 0.22 99.4
    168 95.5
  • In the presence of aluminum oxide, budesonide was almost totally consumed in 6 hours at 75° C. In contrast, without aluminum oxide the recovery of budesonide was as high as 95.5% in 168 hours at the same temperature. The data demonstrate that the presence of aluminum oxide substantially facilitates the decomposition of budesonide. Ethanol, however, appears to play only a minor role in the decomposition.
  • EXAMPLE 2
  • The following Example illustrates the effect of aluminum oxide in the degradation of another C-17/21 OH 20-ketosteroid, in this case triamcinolone acetonide, which has an OH attached to the C-21 carbon position.
  • At ambient temperature, a 3 mL ethanol solution of triamcinolone acetonide (0.007 M) was mixed with 0.1 g of aluminum oxide (Aldrich, neutral, activated Brockmann I, 150 mesh), which mimics aluminum oxide existing on the inner surface of aluminum containers. The mixture was held at 75° C. for several days, and an aliquot was taken at each of the time intervals given in the Table 2. Each aliquot was filtered with a syringe filter and diluted with acetonitrile by 20 times for HPLC analysis to determine the recovery of triamcinolone acetonide with respect to the initial concentration. The recoveries of triamcinolone acetonide were compared with a reference, which contained the same concentration of triamcinolone acetonide but in ethanol solution without aluminum oxide. The results are summarized in Table 2.
    TABLE 2
    Recovery (%) of triamcinolone acetonide in a mixture of
    ethanol/aluminum oxide at 75° C. or in ethanol at 75° C.
    Time In Ethanol/
    (Hours) Aluminum Oxide In Ethanol
    0 100 100
    6 70.2
    24 19.6 98.6
    48 12.4 98.5
    168 97.5
  • In the presence of aluminum oxide, triamcinolone acetonide recovery was 12.4% in 48 hours at 75° C. In contrast, without aluminum oxide the recovery of triamcinolone acetonide was as high as 97.5% in 168 hours at the same temperature. The data demonstrate that the presence of aluminum oxide substantially facilitates the decomposition of triamcinolone acetonide. Ethanol, however, appears to play only a minor role in the decomposition.
  • EXAMPLE 3
  • The following Example illustrates the effect of aluminum oxide in the degradation of C-17/21 OH 20-ketosteroid, in the case dexamethasone, which has one OH attached to C-21 and another OH attached to C-17.
  • At ambient temperature, a 3 mL ethanol solution of dexamethasone (0.007 M) was mixed with 0.1 g of aluminum oxide (Aldrich, neutral, activated Brockmann I, 150 mesh), which mimics aluminum oxide existing on the inner surface of aluminum containers. The mixture was held at 75° C. for several hours, and an aliquot was taken at each of the time intervals given in Table 3. Each aliquote was filtered with a syringe filter and diluted with acetonitrile by 20 times for HPLC analysis to determine the recoveries of dexamethasone with respect to the inital concentration. The recoveries of dexamethasone were compared with a reference, which contained the same concentration of dexamethasone but in ethanol solution without aluminum oxide. The results are summarized in following Table 3.
    TABLE 3
    Recovery (%) of dexamethasone in a mixture of ethanol/aluminum
    oxide at 75° C. or in ethanol at 75° C.
    Time in Ethanol/
    (hours) Aluminum Oxide in Ethanol
    0 100 100
    3 6.0
    6 4.0
    10 0.0
    24 98.0
    72 96.0
    168 90.0
  • In the presence of aluminum oxide, dexamethasone completely degrades after ten hours at 75° C. In contrast, without aluminum oxide the recovery of dexamethasone is as high as 90% after 168 hours at the same temperature. The data demonstrate that aluminum oxide substantially facilitates degradation of dexamethasone in ethanol solution. Ethanol, however, appears to play a only a minor role in degradation.
  • EXAMPLE 4
  • Table 4 below shows results of solubility testing in mg/g of budesonide in P134a and P227 formulations at approximately 5° C.
    TABLE 4
    Solubility of budesonide
    Budesonide
    Solubility
    mg/g (5° C.)
    Sample 1 2 MEAN
    P134a 0.013 0.010 0.012
    P134a/5% EtOH 0.459 0.471 0.465
    P134a/10% EtOH 1.370 1.394 1.382
    P134a/15% EtOH 2.686 2.711 2.699
    P134a/20% EtOH 4.329 4.390 4.360
    P227 0.017 0.015 0.016
    P227/5% EtOH 0.652 0.661 0.657
    P227/10% EtOH 1.698 1.707 1.703
    P227/15% EtOH 2.952 3.008 2.98
    P227/20% EtOH 4.387 4.483 4.435
  • EXAMPLES 5-6
  • Experiments were conducted to test the influence of various factors on chemical stability of two exemplary budesonide solution formulations, examples 5 and 6, shown in Table 5.
    TABLE 5
    Exemplary budesonide formulations
    % w/w
    Example 5
    Budesonide 0.362
    Oleic acid 0.029
    Ethanol absolute 20.000
    Propellant 134a 79.609
    Example 6
    Budesonide 0.327
    Oleic acid 0.029
    Ethanol absolute 20.000
    Propellant 227 79.644
  • The above formulations of Examples 5 and 6 were manufactured on a pilot-scale cold filler and filled into metered dose inhaler vials having various different components: different valve types, coated versus uncoated aluminum cans, and with and without a nylon desiccant insert. The units were then inverted and stored at either 40° C./85% RH for 14 days or 30° C./30% RH for 17 days prior to analysis of budesonide degradation.
  • The test results indicate that epoxy-phenolic lacquer-coated aluminum containers (from Cebal Printal U.K. Ltd.) showed in all but one case significantly enhanced chemical stability versus formulations in uncoated cans.
  • The type of valve used also had an impact on chemical stability. The greatest chemical stability enhancement was found in units using a Bespak 357 valve with EPDM seals, a Cebal epoxy lacquered can, and the formulation of Example 6. Nearly as stable were units equipped with a 3M Neotechnic Spraymiser™ HFA valve, a Cebal epoxy lacquered can, and the formulations of Examples 5 or 6. Also, none of the valves tested were coated and it is expected that this would further enhance chemical stability.
  • Other factors also appeared to affect chemical stability. Formulations using propellant 227 appeared to be slightly more stable. Containers having a desiccant generally exhibited reduced degradation compared to those without desiccant inserts. This suggests that water may increase degradation and that using dried ethanol may thus help further enhance chemical stability. Also, the use of certain antioxidants such as ascorbic acid and ascorbyl palmitate (but not vitamin E) appeared to enhance chemical stability, while the use of oleic acid appeared to reduce chemical stability.
  • EXAMPLE 7
  • The following Graph A shows comparative tests results on a budesonide solution formulation comprising 0.22% w/w budesonide, 11% w/w ethanol, and the remainder 134a. Three lots were stored at 40° C./75% RH. One lot (identified as “Coated A”) was contained in aluminum cans coated with an epoxy-phenolic coating (Cebal Printal Ltd. U.K.) and capped with a blind ferrule and a continuous gasket (made of DFDB 1085 elastomer, Union Carbide) so as to completely isolate the formulation from contact with metal surfaces. Another lot (“Coated B”) was contained in the same type of cans as Coated A, but equipped with a functional valve ferrule (3M Neotechnic Spraymiser™ solution valve) having a solution gasket to partially prevent contact of the formulation with the underside of the valve ferrule. A third lot (“Uncoated”) was contained in uncoated aluminum cans equipped with the same valves as for Coated B.
  • It can be seen from Graph A that the formulation in the Uncoated containers underwent much greater chemical degradation compared to the two coated containers, and that the Coated A lot underwent the least amount of degradation.
    Figure US20050220717A1-20051006-P00001
  • EXAMPLES 8-9
  • The same type of comparison (using the same kind of Coated A, Coated B, and Uncoated containers as in example 7) was made for formulation Examples 8 and 9. In Example 8 the formulation contained 0.22% w/w budesonide dissolved in a mixture of 134a and 13% w/w ethanol. The Example 9 formulation had 0.17% w/w budesonide dissolved in 134a and 15% w/w ethanol. In both cases, shown in Graphs B and C, respectively, the degradation rate was much greater in the Uncoated can, and degradation was least for Coated A.
    Figure US20050220717A1-20051006-P00002
    Figure US20050220717A1-20051006-P00003
  • EXAMPLE 10
  • Test was also conducted on solution formulations of about 0.2% w/w budesonide, 13% anhydrous ethanol, and 134a to determine the effect of different coating types on chemical stability. Two types of canister coatings were compared: phenolic epoxy coating (Cebal) vs. an FEP coating (teflon-like polymer) from DuPont. Coated and uncoated valves similar to the design of FIG. 2 were compared: uncoated valves (“UV”) vs. coated valves (“CV”) with Restek's SilcoSteel coated parts. The interior and exterior surfaces of the valve stem, metering tank, and bottle emptier were made of stainless steel and were coated with a submicron layer of fused silica. The results are summarized in Tables 6 and 7 below.
    TABLE 6
    1 month
    Container Closure Initial Testing* @40° C./75% RH
    System Total Impurities % w/w Total Impurities % w/w
    UV/Epoxy lot A 1.09 0.98
    CV/FEP lot B 1.17 1.36
    UV/FEP lot C 1.36 2.31
    CV/Epoxy lot D 1.17 0.95
  • TABLE 7
    1 month
    Initial Testing* @40° C./75% RH
    Container Closure % Degradation % Degradation
    System Compared to Standard Compared to Standard
    UV/Cebal lot A 0.03 0.17
    CV/FEP lot B 0.11 0.55
    FV/FEP lot C 0.30 1.50
    UV/Epoxy lot D 0.11 0.14

    *Note:

    the units were made and stored at ambient for about 2 months before “initial” testing. They were then placed in 40° C./75% RH chamber for stability. Thus, the initials are actually about 2 months @ ambient and the 1 month @ 40° C./75% RH is in addition to that period.
  • The results in Tables 6 and 7 indicate (1) that the coated valves (CV) improve chemical stability, and (2) that the epoxy coated canisters result in lower impurities than the FEP coating. These differing results based on the coating type are interesting because the FEP coating should provide equal protection to the formulation and, since the extractables profile of the FEP is believed to be much cleaner than the epoxy canister, the FEP would have been expected to result in lower impurities.
  • However, the data indicates the epoxy can is superior to the FEP in preventing degradation. Without wishing to be held to any particular mechanism to explain the difference in results between the two coating types, it is hypothisized that it is not that the phenolic epoxy provides a better barrier, but rather that some adsorption of degradation products is taking place. Essentially, the phenolic epoxy may be “soaking up” the degradates. A small amount of budesonide may also be adsorbed too, but the amount is apparently too small to affect the target content amount.
  • The description and examples set forth above are intended to illustrate the invention, but are not intended to be limiting. To the contrary, it will be understood that the invention is intended to include all variations and modifications falling within the scope of the appended claims. Also, although the invention is specifically applicable to C-17/21 20-ketosteroids in solution, it will be understood that particular steroid structures may have variations that modify the IUPAC carbon position numbering, thereby resulting in a position number other than 17 and/or 21 for OH groups that are nonetheless at effectively the same relative location. For example, if one were to remove the C-19 carbon atom, the numbering would change such that C-21 would be renamed C-20. Such variations are intended to be within the scope of the invention and thus reference to “C-17” and “C-21” is intended herein to refer to the relative position based on the generic structures given above.
  • All percentages given herein are on a weight/weight (w/w) basis unless otherwise indicated. Also, all of the publications referred to herein are hereby incorporated by reference.

Claims (12)

1-28. (canceled)
29. Pressurized metered dose inhalers containing a solution of an active ingredient in a hydrofluorocarbon propellant, a co-solvent and optionally a low-volatility component characterized in that part or all of the internal surfaces of said inhalers consist of stainless steel, anodized aluminum or are lined with an inert organic coating.
30. Pressurized metered dose inhalers according to claim 29, wherein the active ingredients are selected from β2 agonists, steroids or anti-cholinergic agents and their combinations.
31. Pressurized metered dose inhalers according to claim 30, wherein the active ingredient is ipratropium bromide, oxitropium bromide, tiotropium bromide, flunisolide, triamcinolone acetonide, fluticasone propionate, mometasone furoate, budesonide, ciclesonide, rofleponide and epimers thereof.
32. Pressurized metered dose inhalers according to any of claims from 29 to 31, containing a low-volatility component selected from glycerol, polyethylene glycol and isopropyl myristate.
33. Pressurized metered dose inhalers according to any of claims from 29 to 32, wherein the co-solvent is ethanol.
34. Pressurized metered dose inhalers according to any of claims from 29 to 33, wherein the propellant is selected from HFA 227, HFA 134a and their mixtures.
35. Pressurized metered dose inhalers according to any of claims 29 to 34 wherein the inert organic coating is perfluoroalkoxyalkane, epoxy-phenol resin or fluorinated-ethylenepropylene polyether sulfone.
36. Pressurized metered dose inhalers according to any of claims 29 to 35 wherein part or all of the internal surfaces are coated with an epoxy phenol resin.
37. Pressurized metered dose inhalers according to claims 29 to 34 wherein part or all of the internal surfaces consist of anodized aluminum.
38. Stabilized aerosol solution formulation consisting of an active ingredient in a hydrofluorocarbon propellant, a co-solvent and optionally a low-volatility component for use in a pressurized metered dose inhaler as claimed in any of claims 29 to 37.
39. Aerosol solution formulation of dexbudesonide in a hydrofluorocarbon propellant and ethanol as a co-solvent, further comprising a low volatility compound selected from glycerol, ispropylmyristate and polyethylene glycol.
US11/061,529 1999-06-18 2005-02-22 Steroid solution aerosol products with enhanced chemical stability Abandoned US20050220717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/061,529 US20050220717A1 (en) 1999-06-18 2005-02-22 Steroid solution aerosol products with enhanced chemical stability

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13996199P 1999-06-18 1999-06-18
US09/592,885 US6315985B1 (en) 1999-06-18 2000-06-13 C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
US09/970,746 US6610273B2 (en) 1999-06-18 2001-10-04 Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US10/630,414 US20040033201A1 (en) 1999-06-18 2003-07-30 Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US11/061,529 US20050220717A1 (en) 1999-06-18 2005-02-22 Steroid solution aerosol products with enhanced chemical stability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/630,414 Continuation US20040033201A1 (en) 1999-06-18 2003-07-30 Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products

Publications (1)

Publication Number Publication Date
US20050220717A1 true US20050220717A1 (en) 2005-10-06

Family

ID=22489103

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/592,885 Expired - Lifetime US6315985B1 (en) 1999-06-18 2000-06-13 C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
US09/970,746 Expired - Lifetime US6610273B2 (en) 1999-06-18 2001-10-04 Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US10/630,414 Abandoned US20040033201A1 (en) 1999-06-18 2003-07-30 Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US11/061,529 Abandoned US20050220717A1 (en) 1999-06-18 2005-02-22 Steroid solution aerosol products with enhanced chemical stability

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/592,885 Expired - Lifetime US6315985B1 (en) 1999-06-18 2000-06-13 C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
US09/970,746 Expired - Lifetime US6610273B2 (en) 1999-06-18 2001-10-04 Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US10/630,414 Abandoned US20040033201A1 (en) 1999-06-18 2003-07-30 Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products

Country Status (8)

Country Link
US (4) US6315985B1 (en)
EP (2) EP1693053B1 (en)
JP (1) JP4777560B2 (en)
AT (2) ATE523190T1 (en)
AU (1) AU777505B2 (en)
CA (1) CA2371931A1 (en)
DE (1) DE60026840T2 (en)
WO (1) WO2000078286A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050095206A1 (en) * 2003-10-30 2005-05-05 Laboratorio Pablo Cassara S.R.L. Aerosol pharmaceutical solution formulation containing glucocorticoids stable to the storage; method for stabilizing formulations and use of a stabilizer
US20090145427A1 (en) * 2007-12-07 2009-06-11 Groeger Joseph H Method for Applying a Polymer Coating to an Internal Surface of a Container
US20090208424A1 (en) * 2008-02-19 2009-08-20 Todd Maibach Compositions and methods for delivery of solution to the skin
US20120085345A1 (en) * 2010-10-12 2012-04-12 Teva Branded Pharmaceutical Products R&D, Inc. Nasal spray device

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010031244A1 (en) * 1997-06-13 2001-10-18 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
DZ2947A1 (en) * 1998-11-25 2004-03-15 Chiesi Farma Spa Pressure metered dose inhaler.
US6315985B1 (en) * 1999-06-18 2001-11-13 3M Innovative Properties Company C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
IT1313553B1 (en) 1999-07-23 2002-09-09 Chiesi Farma Spa OPTIMIZED FORMULATIONS CONSTITUTED BY SOLUTIONS OF STEROIDS GIVEN BY INHALATION.
FR2798290B1 (en) * 1999-09-11 2003-09-12 Glaxo Group Ltd PHARMACEUTICAL FORMULATION OF FLUTICASONE PROPIONATE
ATE291898T1 (en) * 1999-12-24 2005-04-15 Glaxo Group Ltd PHARMACEUTICAL AEROSOL FORMULATION CONTAINING SALMETEROL AND FLUTICASONE
IT1317846B1 (en) 2000-02-22 2003-07-15 Chiesi Farma Spa FORMULATIONS CONTAINING AN ANTICOLINERGIC DRUG FOR THE TREATMENT OF CHRONIC OBSTRUCTIVE BRONCOPNEUMOPATHY.
IT1318514B1 (en) * 2000-05-12 2003-08-27 Chiesi Farma Spa FORMULATIONS CONTAINING A GLUCOCORTICOSTEROID DRUG FOR THE TREATMENT OF BRONCOPOLMONARY DISEASES.
JP5392880B2 (en) 2000-05-22 2014-01-22 キエシ・フアルマチエウテイチ・ソチエタ・ペル・アチオニ Stable pharmaceutical solution formulation for pressurized metered dose inhalers
TW523409B (en) * 2000-09-15 2003-03-11 Baxter Int Container for inhalation anesthetic
GB0025092D0 (en) * 2000-10-13 2000-11-29 Glaxo Group Ltd Medicament dispenser
WO2002030499A2 (en) * 2000-10-13 2002-04-18 Glaxo Group Limited Medicament dispenser
US20020085978A1 (en) * 2000-11-10 2002-07-04 Mina Buenafe Degradation-resistant glucocorticosteroid formulations
DE10062564A1 (en) * 2000-12-15 2002-06-20 Linde Ag Shielding gas and arc welding method
GB0106046D0 (en) 2001-03-12 2001-05-02 Glaxo Group Ltd Canister
EP1241113A1 (en) 2001-03-12 2002-09-18 CHIESI FARMACEUTICI S.p.A. Inhaler with means for improving chemical stability of medicinal aerosol solution contained therein
SI1273292T1 (en) * 2001-07-02 2004-12-31 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
GB0122725D0 (en) * 2001-09-21 2001-11-14 Glaxo Group Ltd Drug dispensing components
AU2002361850A1 (en) * 2001-12-21 2003-07-30 3M Innovative Properties Company Medicinal aerosol formulations comprising ion pair complexes
EP3536344B1 (en) * 2002-03-01 2020-02-19 Chiesi Farmaceutici S.p.A. Formoterol superfine formulation
US20030215400A1 (en) * 2002-05-15 2003-11-20 The Procter & Gamble Company Pressurized package made of a polyamide resin and containing dimethyl ether
US7344707B2 (en) * 2002-05-15 2008-03-18 The Procter & Gamble Company Low combustion aerosol products in plastic packages having a reduced fire hazard classification that subsequently reduces storage costs
JP3691459B2 (en) * 2002-06-14 2005-09-07 久光メディカル株式会社 Powder inhalant composition
CA2534566A1 (en) * 2003-08-04 2005-02-24 Alexza Pharmaceuticals, Inc. Substrates for drug delivery device and methods of preparing and use
JP2007502288A (en) 2003-08-12 2007-02-08 スリーエム イノベイティブ プロパティズ カンパニー Oxime-substituted imidazo-containing compounds
EP1658076B1 (en) 2003-08-27 2013-03-06 3M Innovative Properties Company Aryloxy and arylalkyleneoxy substituted imidazoquinolines
AU2004270201A1 (en) 2003-09-05 2005-03-17 3M Innovative Properties Company Treatment for CD5+ B cell lymphoma
BRPI0414856A (en) 2003-10-03 2006-11-21 3M Innovative Properties Co alkoxy-substituted imidazoquinolines
US7544697B2 (en) 2003-10-03 2009-06-09 Coley Pharmaceutical Group, Inc. Pyrazolopyridines and analogs thereof
CA2545774A1 (en) 2003-11-14 2005-06-02 3M Innovative Properties Company Oxime substituted imidazo ring compounds
WO2005048945A2 (en) 2003-11-14 2005-06-02 3M Innovative Properties Company Hydroxylamine substituted imidazo ring compounds
US8691837B2 (en) 2003-11-25 2014-04-08 3M Innovative Properties Company Substituted imidazo ring systems and methods
US20050121025A1 (en) 2003-12-04 2005-06-09 Gamard Stephan C.F. Portable gas operating inhaler
WO2005066170A1 (en) 2003-12-29 2005-07-21 3M Innovative Properties Company Arylalkenyl and arylalkynyl substituted imidazoquinolines
US8735421B2 (en) 2003-12-30 2014-05-27 3M Innovative Properties Company Imidazoquinolinyl sulfonamides
EP1595531A1 (en) 2004-05-13 2005-11-16 CHIESI FARMACEUTICI S.p.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
WO2005094531A2 (en) 2004-03-24 2005-10-13 3M Innovative Properties Company Amide substituted imidazopyridines, imidazoquinolines, and imidazonaphthyridines
WO2005123080A2 (en) 2004-06-15 2005-12-29 3M Innovative Properties Company Nitrogen-containing heterocyclyl substituted imidazoquinolines and imidazonaphthyridines
WO2006009826A1 (en) 2004-06-18 2006-01-26 3M Innovative Properties Company Aryloxy and arylalkyleneoxy substituted thiazoloquinolines and thiazolonaphthyridines
WO2006065280A2 (en) 2004-06-18 2006-06-22 3M Innovative Properties Company Isoxazole, dihydroisoxazole, and oxadiazole substituted imidazo ring compounds and methods
WO2006038923A2 (en) 2004-06-18 2006-04-13 3M Innovative Properties Company Aryl substituted imidazonaphthyridines
CA2594674C (en) 2004-12-30 2016-05-17 3M Innovative Properties Company Substituted chiral fused [1,2]imidazo[4,5-c] ring compounds
WO2006074003A2 (en) 2004-12-30 2006-07-13 3M Innovative Properties Company CHIRAL FUSED [1,2]IMIDAZO[4,5-c] RING COMPOUNDS
US9248127B2 (en) 2005-02-04 2016-02-02 3M Innovative Properties Company Aqueous gel formulations containing immune response modifiers
US7968563B2 (en) 2005-02-11 2011-06-28 3M Innovative Properties Company Oxime and hydroxylamine substituted imidazo[4,5-c] ring compounds and methods
CA2594127C (en) 2005-02-25 2013-10-15 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol formulations for pressurized metered dose inhalers comprising a sequestering agent
AU2006232375A1 (en) 2005-04-01 2006-10-12 Coley Pharmaceutical Group, Inc. 1-substituted pyrazolo (3,4-c) ring compounds as modulators of cytokine biosynthesis for the treatment of viral infections and neoplastic diseases
EP1869043A2 (en) 2005-04-01 2007-12-26 Coley Pharmaceutical Group, Inc. Pyrazolopyridine-1,4-diamines and analogs thereof
US8277780B2 (en) * 2005-05-27 2012-10-02 Taro Pharmaceutical North America, Inc. Stable liquid desoximethasone compositions with reduced oxidized impurity
WO2007112312A2 (en) * 2006-03-24 2007-10-04 3M Innovative Properties Company Medicinal formulation container with a treated metal surface
US20070231396A1 (en) * 2006-03-29 2007-10-04 Ray Charles D Medication spray formulation
US20070286814A1 (en) * 2006-06-12 2007-12-13 Medispray Laboratories Pvt. Ltd. Stable aerosol pharmaceutical formulations
GB0613761D0 (en) * 2006-07-11 2006-08-23 Norton Healthcare Ltd A pharmaceutical formulation and method for the preparation thereof
US7906506B2 (en) 2006-07-12 2011-03-15 3M Innovative Properties Company Substituted chiral fused [1,2] imidazo [4,5-c] ring compounds and methods
RU2009123496A (en) * 2006-11-20 2010-12-27 Сипла Лимитед (In) AEROSOL DEVICE
WO2008112661A2 (en) 2007-03-09 2008-09-18 Alexza Pharmaceuticals, Inc. Heating unit for use in a drug delivery device
KR20100095437A (en) * 2007-11-07 2010-08-30 아스트라제네카 아베 Dry powder formulations comprising ascorbic acid derivates
US9278048B2 (en) * 2009-05-06 2016-03-08 Baxter International, Inc. Pharmaceutical product and method of use
EP2512438B1 (en) 2009-12-16 2017-01-25 3M Innovative Properties Company Formulations and methods for controlling mdi particle size delivery
US20120204871A1 (en) * 2011-02-10 2012-08-16 Julio Cesar Vega Stable, non-corrosive formulations for pressurized metered dose inhalers
DE102014112595A1 (en) * 2014-09-02 2016-03-03 Reinhard Caliebe Can for a medical, pharmaceutical or cosmetic fluid
CN111939143A (en) * 2019-05-16 2020-11-17 鲁南制药集团股份有限公司 Budesonide solution type aerosol and preparation method thereof
US11877848B2 (en) 2021-11-08 2024-01-23 Satio, Inc. Dermal patch for collecting a physiological sample

Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868691A (en) * 1956-03-21 1959-01-13 Riker Laboratories Inc Self-propelling compositions for inhalation therapy containing a salt of isoproterenol or epinephrine
US3361306A (en) * 1966-03-31 1968-01-02 Merck & Co Inc Aerosol unit dispensing uniform amounts of a medically active ingredient
US3755302A (en) * 1969-06-26 1973-08-28 Warner Lambert Pharmaceutical Process for the production of 17-monesters of 17{60 , 21-dihydroxy-steroids and products thereof
US3923484A (en) * 1974-01-11 1975-12-02 Corning Glass Works Flame method of producing glass
US4185100A (en) * 1976-05-13 1980-01-22 Johnson & Johnson Topical anti-inflammatory drug therapy
US4499108A (en) * 1983-06-08 1985-02-12 Schering Corporation Stable pleasant-tasting albuterol sulfate pharmaceutical formulations
US4579854A (en) * 1983-12-24 1986-04-01 Tanabe Seiyaku Co., Ltd. Bronchodilating 8-hydroxy-5-{(1R)-1-hydroxy-2-[N-((1R)-2-(p-methoxyphenyl)-1-methylethyl)-amino]ethyl} carbostyril
US4835145A (en) * 1984-06-11 1989-05-30 Sicor Societa' Italiana Corticosteroidi S.P.A. 16,17 acetals of pregnane derivatives and pharmaceutical compositions containing them
US5192528A (en) * 1985-05-22 1993-03-09 Liposome Technology, Inc. Corticosteroid inhalation treatment method
US5415853A (en) * 1992-03-17 1995-05-16 Asta Medica Aktiengesellschaft Compressed gas packages using polyoxyethylene glyceryl oleates
US5435297A (en) * 1991-08-29 1995-07-25 Christoph Klein Medical device for inhaling metered aerosols
US5605674A (en) * 1988-12-06 1997-02-25 Riker Laboratories, Inc. Medicinal aerosol formulations
US5642728A (en) * 1992-12-11 1997-07-01 Ab Astra System for dispensing pharmaceutically active compounds
US5653961A (en) * 1995-03-31 1997-08-05 Minnesota Mining And Manufacturing Company Butixocort aerosol formulations in hydrofluorocarbon propellant
US5676930A (en) * 1992-12-09 1997-10-14 Boehringer Ingelheim Pharmaceuticals, Inc. Stabilized medicinal aerosol solution formulations
US5743251A (en) * 1996-05-15 1998-04-28 Philip Morris Incorporated Aerosol and a method and apparatus for generating an aerosol
US5766573A (en) * 1988-12-06 1998-06-16 Riker Laboratories, Inc. Medicinal aerosol formulations
US5776433A (en) * 1993-12-20 1998-07-07 Minnesota Mining And Manufacturing Company Flunisolide aerosol formulations
US5776432A (en) * 1990-10-18 1998-07-07 Minnesota Mining And Manufacturing Company Beclomethasone solution aerosol formulations
US5891419A (en) * 1997-04-21 1999-04-06 Aeropharm Technology Limited Environmentally safe flunisolide aerosol formulations for oral inhalation
US5891420A (en) * 1997-04-21 1999-04-06 Aeropharm Technology Limited Environmentally safe triancinolone acetonide aerosol formulations for oral inhalation
US5954047A (en) * 1997-10-17 1999-09-21 Systemic Pulmonary Development, Ltd. Methods and apparatus for delivering aerosolized medication
US6004537A (en) * 1998-12-18 1999-12-21 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes, budesonide and formoterol
US6006745A (en) * 1990-12-21 1999-12-28 Minnesota Mining And Manufacturing Company Device for delivering an aerosol
US6039932A (en) * 1996-09-27 2000-03-21 3M Innovative Properties Company Medicinal inhalation aerosol formulations containing budesonide
US6045784A (en) * 1998-05-07 2000-04-04 The Procter & Gamble Company Aerosol package compositions containing fluorinated hydrocarbon propellants
US6131566A (en) * 1995-04-14 2000-10-17 Glaxo Wellcome Inc. Metered dose inhaler for albuterol
US6143277A (en) * 1995-04-14 2000-11-07 Glaxo Wellcome Inc. Metered dose inhaler for salmeterol
US6150418A (en) * 1998-10-17 2000-11-21 Boehringer Ingelheim Pharma Kg Active substance concentrate with formoterol, suitable for storage
US6149892A (en) * 1995-04-14 2000-11-21 Glaxowellcome, Inc. Metered dose inhaler for beclomethasone dipropionate
US6241969B1 (en) * 1998-06-26 2001-06-05 Elan Corporation Plc Aqueous compositions containing corticosteroids for nasal and pulmonary delivery
US6253762B1 (en) * 1995-04-14 2001-07-03 Glaxo Wellcome Inc. Metered dose inhaler for fluticasone propionate
US6290930B1 (en) * 1998-12-18 2001-09-18 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes and budesonide
US20010031244A1 (en) * 1997-06-13 2001-10-18 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US6315985B1 (en) * 1999-06-18 2001-11-13 3M Innovative Properties Company C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
US6322053B1 (en) * 2000-02-08 2001-11-27 Valiant Machine & Tool Inc. Balancing system with a force multiplying device
US20020025299A1 (en) * 2000-05-22 2002-02-28 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US6413496B1 (en) * 1996-12-04 2002-07-02 Biogland Ireland (R&D) Limited Pharmaceutical compositions and devices for their administration
US6451285B2 (en) * 1998-06-19 2002-09-17 Baker Norton Pharmaceuticals, Inc. Suspension aerosol formulations containing formoterol fumarate and a fluoroalkane propellant
US20030066525A1 (en) * 1998-11-25 2003-04-10 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20030157028A1 (en) * 2000-02-22 2003-08-21 David Lewis Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
US20030190289A1 (en) * 2000-05-12 2003-10-09 David Lewis Formulations containing a glucocorticoid drug for the treatment of bronchopulmonary diseases
US6645466B1 (en) * 1998-11-13 2003-11-11 Jago Research Ag Dry powder for inhalation
US6713047B1 (en) * 1998-11-25 2004-03-30 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition containing HFA 227 and HFA 134a
US20050129621A1 (en) * 2002-03-01 2005-06-16 Chiesi Farmaceutici S.P.A. Aerosol formulations for pulmonary administration of medicaments to produce a systemic effect
US20050154013A1 (en) * 2002-03-01 2005-07-14 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers containing solutions of beta-2 agonists
US20050165603A1 (en) * 2002-05-31 2005-07-28 Bruno Bessette Method and device for frequency-selective pitch enhancement of synthesized speech
US20050220718A1 (en) * 2004-02-27 2005-10-06 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US20060120966A1 (en) * 2002-10-23 2006-06-08 Chiesi Farmaceutici S.P.A. Salmeterol superfine formulation
US20060257324A1 (en) * 2000-05-22 2006-11-16 Chiesi Farmaceutici S.P.A. Pharmaceutical solution formulations for pressurised metered dose inhalers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US577433A (en) * 1897-02-23 Door-alarm
US3622053A (en) * 1969-12-10 1971-11-23 Schering Corp Aerosol inhaler with flip-up nozzle
DE68915203T2 (en) 1988-03-22 1994-09-22 Fisons Plc Pharmaceutical blends.
US6596260B1 (en) 1993-08-27 2003-07-22 Novartis Corporation Aerosol container and a method for storage and administration of a predetermined amount of a pharmaceutically active aerosol
WO1996040042A2 (en) 1995-06-07 1996-12-19 Rhone-Poulenc Rorer Pharmaceuticals Inc. Stabilized steroid compositions
US5776573A (en) 1996-04-16 1998-07-07 Cd Magic, Inc. Compact disc revitalizer formulations and revitalizer
GB9620187D0 (en) 1996-09-27 1996-11-13 Minnesota Mining & Mfg Medicinal aerosol formulations
WO1998024420A1 (en) 1996-12-04 1998-06-11 Bioglan Ireland (R & D) Limited Pharmaceutical compositions and devices for their administration
US6126919A (en) * 1997-02-07 2000-10-03 3M Innovative Properties Company Biocompatible compounds for pharmaceutical drug delivery systems
US6120752A (en) 1997-05-21 2000-09-19 3M Innovative Properties Company Medicinal aerosol products containing formulations of ciclesonide and related steroids
GB9805938D0 (en) 1998-03-19 1998-05-13 Glaxo Group Ltd Valve for aerosol container
US6261539B1 (en) * 1998-12-10 2001-07-17 Akwete Adjei Medicinal aerosol formulation

Patent Citations (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868691A (en) * 1956-03-21 1959-01-13 Riker Laboratories Inc Self-propelling compositions for inhalation therapy containing a salt of isoproterenol or epinephrine
US3361306A (en) * 1966-03-31 1968-01-02 Merck & Co Inc Aerosol unit dispensing uniform amounts of a medically active ingredient
US3755302A (en) * 1969-06-26 1973-08-28 Warner Lambert Pharmaceutical Process for the production of 17-monesters of 17{60 , 21-dihydroxy-steroids and products thereof
US3923484A (en) * 1974-01-11 1975-12-02 Corning Glass Works Flame method of producing glass
US4185100A (en) * 1976-05-13 1980-01-22 Johnson & Johnson Topical anti-inflammatory drug therapy
US4499108A (en) * 1983-06-08 1985-02-12 Schering Corporation Stable pleasant-tasting albuterol sulfate pharmaceutical formulations
US4579854A (en) * 1983-12-24 1986-04-01 Tanabe Seiyaku Co., Ltd. Bronchodilating 8-hydroxy-5-{(1R)-1-hydroxy-2-[N-((1R)-2-(p-methoxyphenyl)-1-methylethyl)-amino]ethyl} carbostyril
US4835145A (en) * 1984-06-11 1989-05-30 Sicor Societa' Italiana Corticosteroidi S.P.A. 16,17 acetals of pregnane derivatives and pharmaceutical compositions containing them
US5192528A (en) * 1985-05-22 1993-03-09 Liposome Technology, Inc. Corticosteroid inhalation treatment method
US5683677A (en) * 1988-12-06 1997-11-04 Riker Laboratories, Inc. Medicinal aerosol formulations
US5605674A (en) * 1988-12-06 1997-02-25 Riker Laboratories, Inc. Medicinal aerosol formulations
US5766573A (en) * 1988-12-06 1998-06-16 Riker Laboratories, Inc. Medicinal aerosol formulations
US5695743A (en) * 1988-12-06 1997-12-09 Riker Laboratories, Inc. Medicinal aerosol formulations
US5776432A (en) * 1990-10-18 1998-07-07 Minnesota Mining And Manufacturing Company Beclomethasone solution aerosol formulations
US6006745A (en) * 1990-12-21 1999-12-28 Minnesota Mining And Manufacturing Company Device for delivering an aerosol
US5435297A (en) * 1991-08-29 1995-07-25 Christoph Klein Medical device for inhaling metered aerosols
US5415853A (en) * 1992-03-17 1995-05-16 Asta Medica Aktiengesellschaft Compressed gas packages using polyoxyethylene glyceryl oleates
US5676930A (en) * 1992-12-09 1997-10-14 Boehringer Ingelheim Pharmaceuticals, Inc. Stabilized medicinal aerosol solution formulations
US5955058A (en) * 1992-12-09 1999-09-21 Boehringer Ingelheim Pharmaceuticals, Inc. Stabilized medicinal aerosol solution formulations containing ipratropium bromide
US6045778A (en) * 1992-12-09 2000-04-04 Boehringer Ingelheim Pharmaceuticals, Inc. Stabilized medicinal aerosol solution formulations
US5642728A (en) * 1992-12-11 1997-07-01 Ab Astra System for dispensing pharmaceutically active compounds
US5776433A (en) * 1993-12-20 1998-07-07 Minnesota Mining And Manufacturing Company Flunisolide aerosol formulations
US5653961A (en) * 1995-03-31 1997-08-05 Minnesota Mining And Manufacturing Company Butixocort aerosol formulations in hydrofluorocarbon propellant
US6253762B1 (en) * 1995-04-14 2001-07-03 Glaxo Wellcome Inc. Metered dose inhaler for fluticasone propionate
US6149892A (en) * 1995-04-14 2000-11-21 Glaxowellcome, Inc. Metered dose inhaler for beclomethasone dipropionate
US6143277A (en) * 1995-04-14 2000-11-07 Glaxo Wellcome Inc. Metered dose inhaler for salmeterol
US6131566A (en) * 1995-04-14 2000-10-17 Glaxo Wellcome Inc. Metered dose inhaler for albuterol
US5743251A (en) * 1996-05-15 1998-04-28 Philip Morris Incorporated Aerosol and a method and apparatus for generating an aerosol
US6039932A (en) * 1996-09-27 2000-03-21 3M Innovative Properties Company Medicinal inhalation aerosol formulations containing budesonide
US6413496B1 (en) * 1996-12-04 2002-07-02 Biogland Ireland (R&D) Limited Pharmaceutical compositions and devices for their administration
US5891420A (en) * 1997-04-21 1999-04-06 Aeropharm Technology Limited Environmentally safe triancinolone acetonide aerosol formulations for oral inhalation
US5891419A (en) * 1997-04-21 1999-04-06 Aeropharm Technology Limited Environmentally safe flunisolide aerosol formulations for oral inhalation
US20040062720A1 (en) * 1997-06-13 2004-04-01 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US20030206870A1 (en) * 1997-06-13 2003-11-06 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US20030190287A1 (en) * 1997-06-13 2003-10-09 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US20010031244A1 (en) * 1997-06-13 2001-10-18 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US6026808A (en) * 1997-10-17 2000-02-22 Sheffield Pharmaceuticals, Inc. Methods and apparatus for delivering aerosolized medication
US5954047A (en) * 1997-10-17 1999-09-21 Systemic Pulmonary Development, Ltd. Methods and apparatus for delivering aerosolized medication
US6045784A (en) * 1998-05-07 2000-04-04 The Procter & Gamble Company Aerosol package compositions containing fluorinated hydrocarbon propellants
US20030077230A1 (en) * 1998-06-19 2003-04-24 Blondino Frank E. Pressurized metered dose inhalers and pharmaceutical aerosol fomulations
US6451285B2 (en) * 1998-06-19 2002-09-17 Baker Norton Pharmaceuticals, Inc. Suspension aerosol formulations containing formoterol fumarate and a fluoroalkane propellant
US6241969B1 (en) * 1998-06-26 2001-06-05 Elan Corporation Plc Aqueous compositions containing corticosteroids for nasal and pulmonary delivery
US6150418A (en) * 1998-10-17 2000-11-21 Boehringer Ingelheim Pharma Kg Active substance concentrate with formoterol, suitable for storage
US6645466B1 (en) * 1998-11-13 2003-11-11 Jago Research Ag Dry powder for inhalation
US20040096399A1 (en) * 1998-11-25 2004-05-20 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20030066525A1 (en) * 1998-11-25 2003-04-10 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20050142071A1 (en) * 1998-11-25 2005-06-30 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20030089369A1 (en) * 1998-11-25 2003-05-15 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US6713047B1 (en) * 1998-11-25 2004-03-30 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition containing HFA 227 and HFA 134a
US7223381B2 (en) * 1998-11-25 2007-05-29 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20040184993A1 (en) * 1998-11-25 2004-09-23 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition containing HFA 227 and HFA 134a
US6290930B1 (en) * 1998-12-18 2001-09-18 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes and budesonide
US6004537A (en) * 1998-12-18 1999-12-21 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes, budesonide and formoterol
US6610273B2 (en) * 1999-06-18 2003-08-26 3M Innovative Properties Company Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US20040033201A1 (en) * 1999-06-18 2004-02-19 3M Innovative Properties Company Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US6315985B1 (en) * 1999-06-18 2001-11-13 3M Innovative Properties Company C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
US6322053B1 (en) * 2000-02-08 2001-11-27 Valiant Machine & Tool Inc. Balancing system with a force multiplying device
US6964759B2 (en) * 2000-02-22 2005-11-15 Chiesi Farmaceutici S.P.A. Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
US20030157028A1 (en) * 2000-02-22 2003-08-21 David Lewis Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
US20030190289A1 (en) * 2000-05-12 2003-10-09 David Lewis Formulations containing a glucocorticoid drug for the treatment of bronchopulmonary diseases
US6716414B2 (en) * 2000-05-22 2004-04-06 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US20040047809A1 (en) * 2000-05-22 2004-03-11 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US7018618B2 (en) * 2000-05-22 2006-03-28 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US20060083693A1 (en) * 2000-05-22 2006-04-20 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US20060257324A1 (en) * 2000-05-22 2006-11-16 Chiesi Farmaceutici S.P.A. Pharmaceutical solution formulations for pressurised metered dose inhalers
US20020025299A1 (en) * 2000-05-22 2002-02-28 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US20050129621A1 (en) * 2002-03-01 2005-06-16 Chiesi Farmaceutici S.P.A. Aerosol formulations for pulmonary administration of medicaments to produce a systemic effect
US20050154013A1 (en) * 2002-03-01 2005-07-14 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers containing solutions of beta-2 agonists
US20050152846A1 (en) * 2002-03-01 2005-07-14 Chiesi Farmaceutici S.P.A. Formoterol superfine formulation
US20050165603A1 (en) * 2002-05-31 2005-07-28 Bruno Bessette Method and device for frequency-selective pitch enhancement of synthesized speech
US20060120966A1 (en) * 2002-10-23 2006-06-08 Chiesi Farmaceutici S.P.A. Salmeterol superfine formulation
US20050220718A1 (en) * 2004-02-27 2005-10-06 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050095206A1 (en) * 2003-10-30 2005-05-05 Laboratorio Pablo Cassara S.R.L. Aerosol pharmaceutical solution formulation containing glucocorticoids stable to the storage; method for stabilizing formulations and use of a stabilizer
US20090145427A1 (en) * 2007-12-07 2009-06-11 Groeger Joseph H Method for Applying a Polymer Coating to an Internal Surface of a Container
US8227027B2 (en) 2007-12-07 2012-07-24 Presspart Gmbh & Co. Kg Method for applying a polymer coating to an internal surface of a container
US8703306B2 (en) 2007-12-07 2014-04-22 Presspart Gmbh & Co. Kg Method for applying a polymer coating to an internal surface of a container
US20090208424A1 (en) * 2008-02-19 2009-08-20 Todd Maibach Compositions and methods for delivery of solution to the skin
US20120085345A1 (en) * 2010-10-12 2012-04-12 Teva Branded Pharmaceutical Products R&D, Inc. Nasal spray device
AU2011316124B2 (en) * 2010-10-12 2014-12-11 Ivax Pharmaceuticals Ireland Nasal spray device
US10188811B2 (en) 2010-10-12 2019-01-29 Teva Branded Pharmaceutical Products R&D, Inc. Nasal spray device

Also Published As

Publication number Publication date
US20020071810A1 (en) 2002-06-13
EP1693053B1 (en) 2011-09-07
EP1194121A1 (en) 2002-04-10
EP1693053A2 (en) 2006-08-23
DE60026840D1 (en) 2006-05-11
JP4777560B2 (en) 2011-09-21
AU5614200A (en) 2001-01-09
CA2371931A1 (en) 2000-12-28
JP2003502357A (en) 2003-01-21
ATE320794T1 (en) 2006-04-15
EP1194121B1 (en) 2006-03-22
DE60026840T2 (en) 2006-10-12
EP1693053A3 (en) 2007-06-27
AU777505B2 (en) 2004-10-21
US6610273B2 (en) 2003-08-26
US6315985B1 (en) 2001-11-13
WO2000078286A1 (en) 2000-12-28
ATE523190T1 (en) 2011-09-15
US20040033201A1 (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US6610273B2 (en) Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
EP1787639B1 (en) Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US7381402B2 (en) Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US11311502B2 (en) Pharmaceutical composition
EP3787598B1 (en) Pharmaceutical composition comprising salbutamol
NZ528443A (en) Reduction of chemical degradation by peroxides and other leachables comprising a pressurised aerosol solution canister with a rubber rim that has rounded edges
US8877164B2 (en) Pharmaceutical aerosol formulations for pressurized metered dose inhalers comprising a sequestering agent
US20070025920A1 (en) Stable Pharmaceutical Solution Formulations for Pressurized Metered Dose Inhalers
KR20220108047A (en) Stainless steel cans for pressurized metered dose inhalers
MXPA06009584A (en) Stable pharmaceutical solution formulations for pressurized metered dose inhalers

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION