US20050225812A1 - Two-dimensional CMOS sensor array to image documents and other flat objects - Google Patents

Two-dimensional CMOS sensor array to image documents and other flat objects Download PDF

Info

Publication number
US20050225812A1
US20050225812A1 US10/821,821 US82182104A US2005225812A1 US 20050225812 A1 US20050225812 A1 US 20050225812A1 US 82182104 A US82182104 A US 82182104A US 2005225812 A1 US2005225812 A1 US 2005225812A1
Authority
US
United States
Prior art keywords
photodetector array
scanner
carriage
gear
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/821,821
Inventor
J. Bledsoe
Gregory Carlson
Todd McClelland
Patrick Mckinley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marvell International Technology Ltd
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/821,821 priority Critical patent/US20050225812A1/en
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Assigned to AGILENT TECHNOLOGIES, INC. reassignment AGILENT TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLEDSOE, J. DAREN, CARLSON, GREGORY F., MCCLELLAND, TODD A., MCKINLEY, PATRICK A.
Priority to DE102005004393.3A priority patent/DE102005004393B4/en
Priority to JP2005108389A priority patent/JP4863188B2/en
Publication of US20050225812A1 publication Critical patent/US20050225812A1/en
Assigned to AVAGO TECHNOLOGIES GENERAL IP PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AGILENT TECHNOLOGIES, INC.
Assigned to AVAGO TECHNOLOGIES IMAGING IP (SINGAPORE) PTE. LTD. (COMPANY REGISTRATION NO. 200512334M) reassignment AVAGO TECHNOLOGIES IMAGING IP (SINGAPORE) PTE. LTD. (COMPANY REGISTRATION NO. 200512334M) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. (COMPANY REGISTRATION NO. 200512430D)
Assigned to MARVELL INTERNATIONAL TECHNOLOGY LTD. reassignment MARVELL INTERNATIONAL TECHNOLOGY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVAGO TECHNOLOGIES IMAGING IP (SINGAPORE) PTE. LTD.
Priority to US12/502,053 priority patent/US8542412B2/en
Priority to JP2009192506A priority patent/JP5322297B2/en
Priority to JP2011088350A priority patent/JP2011176861A/en
Priority to JP2013251220A priority patent/JP5959014B2/en
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 017206 FRAME: 0666. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: AGILENT TECHNOLOGIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/1013Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components
    • H04N1/1017Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components the main-scanning components remaining positionally invariant with respect to one another in the sub-scanning direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/0402Arrangements not specific to a particular one of the scanning methods covered by groups H04N1/04 - H04N1/207
    • H04N2201/0446Constructional details not otherwise provided for, e.g. mounting of scanning components

Definitions

  • a light source e.g., cold cathode fluorescent lamp, a xenon lamp, or light emitting diodes
  • a scan head e.g., consisting of mirrors, lens, filter, and image sensor array
  • the scan head is attached to a stabilizer bar to ensure that there is no wobble or deviation in the pass (i.e., a single complete scan of the document).
  • a typical charged coupled device (CCD) image sensor has 3 linear CCD sensor arrays. Each linear array has a different color filter (e.g., red, green, and blue) placed directly on top of the CCD sensors.
  • the scanner then combines the data from the linear CCD sensor arrays into a single full-color image.
  • a typical contact image sensor CIS
  • CMOS complementary metal oxide semiconductor
  • Scanners vary in resolution and sharpness. Most flatbed scanners have a true hardware resolution of at least 600 ⁇ 600 dots per inch (dpi).
  • the scanner's dpi is determined by the number of sensors in a single row (x-direction sampling rate) of the sensor array and by the precision of the stepper motor (y-direction sampling rate). For example, if the resolution is 600 ⁇ 600 dpi and the scanner is capable of scanning a letter-sized document, then the CCD image sensor would have three linear arrays each having 5,100 sensors while a CIS would have one linear array of 5,100 sensors.
  • the stepper motor in this example is able to move in increments equal to 1/600ths of an inch.
  • a scanner in one embodiment, includes a housing, a transparent platen atop the housing for receiving an object to be scanned, and a carriage operable to travel along a horizontal direction and a vertical direction.
  • the carriage includes a light source for illuminating the object and a rectangular photodetector array for simultaneously detecting light intensity of multiple scan lines.
  • FIG. 1 illustrates a top view of a flatbed scanner in one embodiment of the invention.
  • FIGS. 2 and 3 illustrate cross-sectional side views of the flatbed scanner of FIG. 1 in one embodiment of the invention.
  • FIGS. 4 and 5 illustrate movement of a rectangular photodetector array in embodiments of the invention.
  • FIG. 6 illustrates a cross-sectional side view of a sheet feeder scanner in one embodiment of the invention.
  • FIG. 7 illustrates a cross-sectional side view of a flatbed scanner in one embodiment of the invention.
  • FIG. 1 illustrates a flatbed scanner 10 in one embodiment of the invention.
  • Scanner 10 includes a housing 12 , a cover 14 hingedly attached to housing 12 , a transparent (e.g., glass) platen 16 atop housing 12 , and a carriage 18 within housing 12 .
  • Carriage 18 travels within housing 12 on a vertical gear channel 20 and a horizontal gear channel 22 .
  • Carriage 18 includes a rectangular photodetector array 24 and an illumination ring 26 .
  • photodetector array 24 has multiple (e.g., more than three) rows of complementary metal oxide semiconductor (CMOS) sensors.
  • CMOS complementary metal oxide semiconductor
  • photodetector array 24 consists of a variety of red, blue, and green photodiodes and the actual color at the site of each photodiode is interpolated from the colors of the neighboring photodiodes.
  • photodetector array 24 may have a resolution of 352 ⁇ 288 pixels.
  • photodetector array 24 may have 1.3 megapixel of resolution to enable the entire page to be scanned more quickly.
  • illumination ring 26 are light emitting diodes (LEDs) formed around photodetector array 24 on the same die.
  • FIG. 2 illustrates a cross-section view of carriage 18 along line A ( FIG. 1 ) in one embodiment of the invention.
  • Photodetector array 24 and illumination ring 26 are mounted on a plate 32 .
  • Mounting plate 32 includes a horizontal guide 34 .
  • a motor 36 and associated gear system 38 are mounted to plate 32 .
  • a horizontal carriage bar 40 defines a horizontal guide channel 42 that receives guide 34 .
  • Horizontal carriage bar 40 further defines gear channel 22 that receives a gear from gear system 38 .
  • Gear channel 22 includes teeth that engage gear system 38 .
  • motor 36 drives gear system 38 to move carriage 18 horizontally across the object to be scanned.
  • a flex cable 50 ( FIG. 3 ) moves the image data from photodetector array 24 to horizontal carriage bar 40 .
  • FIG. 3 illustrates a cross-section view of carriage 18 along line B ( FIG. 1 ) in one embodiment of the invention.
  • Horizontal carriage bar 40 includes vertical guides 44 A and 44 B.
  • a motor 46 and associated gear system 48 are mounted to horizontal carriage bar 40 .
  • Housing 12 defines vertical guide channels 52 A and 52 B that receive corresponding guides 44 A and 44 B.
  • Housing 12 further defines gear channel 20 that receives a gear from gear system 48 .
  • Gear channel 48 includes teeth that engage gear system 48 .
  • motor 46 drives gear system 48 to move carriage 18 vertically down the object to be scanned.
  • a flex cable 52 moves the image data from horizontal carriage bar 40 to the scanner base for the data to be processed by the scanner electronics.
  • FIG. 4 illustrates that, instead of slowly moving scan line by scan line as in conventional flatbed scanners, carriage 18 moves horizontally or vertically in large increments (e.g., exemplified by a movement 62 of sensor 64 ) equal to or greater than the corresponding width and height of photodetector array 24 in one embodiment of the invention. This allows for a faster scanning process.
  • software is used to interpolate pixel colors and to stitch together the scanned portions into a single color image of the object. Software can also be used to correct any non-uniform lighting.
  • FIG. 5 illustrates that the resolution can be increased by micro-stepping rectangular photodetector array 24 both horizontally and vertically in small increments (e.g., exemplified by a movement 66 of sensor 64 ) in one embodiment of the invention.
  • the horizontal increment is less than the horizontal spacing between adjacent sensors while the vertical increment is less than the vertical spacing between adjacent sensors.
  • photodetector array 24 produces 300 ⁇ 300 dpi
  • the resolution can be doubled to 600 ⁇ 600 dpi by (1) capturing an image of the object, (2) moving photodetector array 24 by half (1 ⁇ 2) a dpi in the horizontal and the vertical directions, and (3) capturing another image of the object.
  • Software is then used to combine the two images to form a 600 ⁇ 600 dpi image of the object.
  • carriage 18 can move horizontally or vertically in a large increment to scan the next area on the object, followed by another micro-step.
  • FIG. 6 illustrates a side cross-sectional view of a sheet feeder scanner 100 in one embodiment of the invention.
  • Scanner 100 includes a housing 102 , a sheet feeder 104 , feed rollers 106 , and a carriage 108 within housing 102 .
  • Sheet feeder 104 grabs a single sheet 110 of document from a stack 112 and moves it vertically to feed rollers 106 .
  • Feed rollers 106 move sheet 110 past carriage 108 .
  • Carriage 108 includes rectangular photodetector array 24 and illumination ring 26 . To scan sheet 110 , carriage 108 travels horizontally within housing 102 on horizontal gear channel 22 and horizontal guide channel 42 .
  • Carriage 108 is similar to carriage 18 but without the vertical travel components because feed rollers 106 function to move the paper vertically past carriage 108 . Instead of moving the paper slowly scan line by scan line as in conventional sheet feeder scanners, feed rollers 106 vertically move single sheet 110 in large increments equal to or greater than the height of photodetector array 24 . Again, this allows for a faster scanning process because portions of the documents are simultaneously captured as multiple scan lines by rectangular photodetector array 24 .
  • FIG. 7 illustrates a side cross-sectional view of a flatbed scanner 200 in one embodiment of the invention.
  • Scanner 200 includes a housing 212 , a glass platen 216 atop housing 212 , a stationary rectangular photodetector array 218 with optics 220 , and light sources 222 .
  • the object to be scanned (e.g., object 224 ) is placed on glass platen 16 .
  • Light sources 222 then illuminates the entire object by directing light onto object 224 or bouncing light off the sidewalls of housing 212 and then onto object 224 .
  • Light is reflected from object 224 and directed by optics 220 onto rectangular photodetector array 218 .
  • Photodetector array 218 converts the light intensity of the scanned object into electrical signals. Instead of moving a carriage as in conventional scanners, photodetector array 218 remains stationary and scans the entire object at once. Again, this allows for a faster scanning process because multiple scan lines are captured simultaneously by photodetector array 218 .
  • Software can be used to interpolate pixel colors and to correct any non-uniform lighting.

Abstract

A flatbed scanner includes a housing, a transparent platen atop the housing for receiving an object to be scanned, and a carriage operable to travel along a horizontal direction and a vertical direction. The carriage includes a light source for illuminating the object and a rectangular photodetector array for simultaneously detecting light intensity of multiple scan lines.

Description

    DESCRIPTION OF RELATED ART
  • When using a conventional flatbed scanner, the document is placed on the glass platen and the cover is closed. A light source (e.g., cold cathode fluorescent lamp, a xenon lamp, or light emitting diodes) is used to illuminate the document. A scan head (e.g., consisting of mirrors, lens, filter, and image sensor array) is moved slowly down the document (e.g., by a belt that is attached to a stepper motor or a gear set linked to a DC motor). The scan head is attached to a stabilizer bar to ensure that there is no wobble or deviation in the pass (i.e., a single complete scan of the document).
  • The image of the document is reflected by angled mirrors to form a folded light path. The last mirror reflects the image onto a lens. The lens focuses the image on an image sensor. A typical charged coupled device (CCD) image sensor has 3 linear CCD sensor arrays. Each linear array has a different color filter (e.g., red, green, and blue) placed directly on top of the CCD sensors. The scanner then combines the data from the linear CCD sensor arrays into a single full-color image. In comparison, a typical contact image sensor (CIS) has one linear complementary metal oxide semiconductor (CMOS) sensor array that captures an image sequentially illuminated by red, green, and blue light sources (e.g., light emitting diodes). The scanner then combines the data from the linear CMOS sensor array into a single full-color image.
  • Scanners vary in resolution and sharpness. Most flatbed scanners have a true hardware resolution of at least 600×600 dots per inch (dpi). The scanner's dpi is determined by the number of sensors in a single row (x-direction sampling rate) of the sensor array and by the precision of the stepper motor (y-direction sampling rate). For example, if the resolution is 600×600 dpi and the scanner is capable of scanning a letter-sized document, then the CCD image sensor would have three linear arrays each having 5,100 sensors while a CIS would have one linear array of 5,100 sensors. The stepper motor in this example is able to move in increments equal to 1/600ths of an inch.
  • SUMMARY
  • In one embodiment of the invention, a scanner includes a housing, a transparent platen atop the housing for receiving an object to be scanned, and a carriage operable to travel along a horizontal direction and a vertical direction. The carriage includes a light source for illuminating the object and a rectangular photodetector array for simultaneously detecting light intensity of multiple scan lines.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a top view of a flatbed scanner in one embodiment of the invention.
  • FIGS. 2 and 3 illustrate cross-sectional side views of the flatbed scanner of FIG. 1 in one embodiment of the invention.
  • FIGS. 4 and 5 illustrate movement of a rectangular photodetector array in embodiments of the invention.
  • FIG. 6 illustrates a cross-sectional side view of a sheet feeder scanner in one embodiment of the invention.
  • FIG. 7 illustrates a cross-sectional side view of a flatbed scanner in one embodiment of the invention.
  • Use of the same reference numbers in different figures indicates similar or identical elements.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates a flatbed scanner 10 in one embodiment of the invention. Scanner 10 includes a housing 12, a cover 14 hingedly attached to housing 12, a transparent (e.g., glass) platen 16 atop housing 12, and a carriage 18 within housing 12. Carriage 18 travels within housing 12 on a vertical gear channel 20 and a horizontal gear channel 22. Carriage 18 includes a rectangular photodetector array 24 and an illumination ring 26.
  • In one embodiment, photodetector array 24 has multiple (e.g., more than three) rows of complementary metal oxide semiconductor (CMOS) sensors. In one embodiment, photodetector array 24 consists of a variety of red, blue, and green photodiodes and the actual color at the site of each photodiode is interpolated from the colors of the neighboring photodiodes. In a lower-end scanner with a slower throughput, photodetector array 24 may have a resolution of 352×288 pixels. In a higher-end scanner with a faster throughput, photodetector array 24 may have 1.3 megapixel of resolution to enable the entire page to be scanned more quickly. In one embodiment, illumination ring 26 are light emitting diodes (LEDs) formed around photodetector array 24 on the same die.
  • FIG. 2 illustrates a cross-section view of carriage 18 along line A (FIG. 1) in one embodiment of the invention. Photodetector array 24 and illumination ring 26 are mounted on a plate 32. Mounting plate 32 includes a horizontal guide 34. A motor 36 and associated gear system 38 are mounted to plate 32. A horizontal carriage bar 40 defines a horizontal guide channel 42 that receives guide 34. Horizontal carriage bar 40 further defines gear channel 22 that receives a gear from gear system 38. Gear channel 22 includes teeth that engage gear system 38. In operation, motor 36 drives gear system 38 to move carriage 18 horizontally across the object to be scanned. A flex cable 50 (FIG. 3) moves the image data from photodetector array 24 to horizontal carriage bar 40.
  • FIG. 3 illustrates a cross-section view of carriage 18 along line B (FIG. 1) in one embodiment of the invention. Horizontal carriage bar 40 includes vertical guides 44A and 44B. A motor 46 and associated gear system 48 are mounted to horizontal carriage bar 40. Housing 12 defines vertical guide channels 52A and 52B that receive corresponding guides 44A and 44B. Housing 12 further defines gear channel 20 that receives a gear from gear system 48. Gear channel 48 includes teeth that engage gear system 48. In operation, motor 46 drives gear system 48 to move carriage 18 vertically down the object to be scanned. A flex cable 52 moves the image data from horizontal carriage bar 40 to the scanner base for the data to be processed by the scanner electronics.
  • During scanning, the object to be scanned is placed on glass platen 16. Illumination ring 26 then illuminates a portion of the object. Light is reflected from this portion of the object and simultaneously captured as multiple (e.g., more than three) scan lines by rectangular photodetector array 24. Photodetector array 24 converts the light intensity of this portion into electrical signals. FIG. 4 illustrates that, instead of slowly moving scan line by scan line as in conventional flatbed scanners, carriage 18 moves horizontally or vertically in large increments (e.g., exemplified by a movement 62 of sensor 64) equal to or greater than the corresponding width and height of photodetector array 24 in one embodiment of the invention. This allows for a faster scanning process. After the entire object is scanned, software is used to interpolate pixel colors and to stitch together the scanned portions into a single color image of the object. Software can also be used to correct any non-uniform lighting.
  • FIG. 5 illustrates that the resolution can be increased by micro-stepping rectangular photodetector array 24 both horizontally and vertically in small increments (e.g., exemplified by a movement 66 of sensor 64) in one embodiment of the invention. The horizontal increment is less than the horizontal spacing between adjacent sensors while the vertical increment is less than the vertical spacing between adjacent sensors. For example, if photodetector array 24 produces 300×300 dpi, then the resolution can be doubled to 600×600 dpi by (1) capturing an image of the object, (2) moving photodetector array 24 by half (½) a dpi in the horizontal and the vertical directions, and (3) capturing another image of the object. Software is then used to combine the two images to form a 600×600 dpi image of the object. After a micro-step, carriage 18 can move horizontally or vertically in a large increment to scan the next area on the object, followed by another micro-step.
  • FIG. 6 illustrates a side cross-sectional view of a sheet feeder scanner 100 in one embodiment of the invention. Scanner 100 includes a housing 102, a sheet feeder 104, feed rollers 106, and a carriage 108 within housing 102. Sheet feeder 104 grabs a single sheet 110 of document from a stack 112 and moves it vertically to feed rollers 106. Feed rollers 106 move sheet 110 past carriage 108. Carriage 108 includes rectangular photodetector array 24 and illumination ring 26. To scan sheet 110, carriage 108 travels horizontally within housing 102 on horizontal gear channel 22 and horizontal guide channel 42. Carriage 108 is similar to carriage 18 but without the vertical travel components because feed rollers 106 function to move the paper vertically past carriage 108. Instead of moving the paper slowly scan line by scan line as in conventional sheet feeder scanners, feed rollers 106 vertically move single sheet 110 in large increments equal to or greater than the height of photodetector array 24. Again, this allows for a faster scanning process because portions of the documents are simultaneously captured as multiple scan lines by rectangular photodetector array 24.
  • FIG. 7 illustrates a side cross-sectional view of a flatbed scanner 200 in one embodiment of the invention. Scanner 200 includes a housing 212, a glass platen 216 atop housing 212, a stationary rectangular photodetector array 218 with optics 220, and light sources 222.
  • During scanning, the object to be scanned (e.g., object 224) is placed on glass platen 16. Light sources 222 then illuminates the entire object by directing light onto object 224 or bouncing light off the sidewalls of housing 212 and then onto object 224. Light is reflected from object 224 and directed by optics 220 onto rectangular photodetector array 218. Photodetector array 218 converts the light intensity of the scanned object into electrical signals. Instead of moving a carriage as in conventional scanners, photodetector array 218 remains stationary and scans the entire object at once. Again, this allows for a faster scanning process because multiple scan lines are captured simultaneously by photodetector array 218. Software can be used to interpolate pixel colors and to correct any non-uniform lighting.
  • Various other adaptations and combinations of features of the embodiments disclosed are within the scope of the invention. Numerous embodiments are encompassed by the following claims.

Claims (18)

1. A flatbed scanner, comprising:
a housing;
a transparent platen atop the housing for receiving an object to be scanned;
a carriage operable to travel along a first direction and a second direction, the carriage comprising:
a light source for illuminating the object; and
a rectangular photodetector array for simultaneously detecting light intensity of multiple scan lines, the rectangular photodetector array comprising more than three rows of photodetectors.
2. The scanner of claim 1, wherein the carriage further comprises:
a mounting plate having a horizontal guide, the light source and the rectangular photodetector array being mounted on the mounting plate;
a first motor linked to a first gear; and
a horizontal carriage bar defining a horizontal guide channel for receiving the horizontal guide and a horizontal gear channel for receiving the first gear, the first motor being operable to drive the first gear to move the carriage along the horizontal direction.
3. The scanner of claim 2, wherein:
the horizontal carriage bar has vertical guides;
the carriage further comprises a second motor linked to a second gear; and
the housing defines vertical guide channels for receiving the vertical guides and a vertical gear channel for receiving the second gear, the second motor being operable to drive the second gear to move the carriage along the vertical direction.
4. The scanner of claim 1, wherein the light source comprises a ring of light emitting diodes formed around the rectangular photodetector array.
5. The scanner of claim 1, wherein the rectangular photodetector array comprises a complementary metal oxide semiconductor (CMOS) image sensor array.
6. The scanner of claim 5, wherein the light source comprises light emitting diodes located on the same die as the rectangular photodetector array.
7. A method for operating a flatbed scanner, comprising:
capturing a first image of an object placed on a transparent platen of the scanner with a rectangular photodetector array, the rectangular photodetector array comprising more than three rows of photodetectors;
moving the rectangular photodetector array in a first small increment along a first direction and a second small increment along a second direction, the first increment being less than a first spacing between adjacent photodetectors on the photodetector array along the first direction, the second increment being less than a second spacing between adjacent photodetectors on the photodetector array along the second direction; and
capturing a second image of the object.
8. The method of claim 7, further comprising combining the first and the second image to form a scanned image of the object.
9. The method of claim 7, further comprising:
moving the rectangular photodetector array in a large increment along the first direction; and
capturing a third image of the object.
10. The method of claim 9, wherein the large increment is at least a dimension of the rectangular photodetector array along the first direction.
11. The method of claim 9, further comprising:
moving the rectangular photodetector array in the first small increment along the first direction and the second small increment along the second direction; and
capturing a fourth image of the object.
12. The method of claim 11, further comprising combining the first, the second, the third, and the fourth image to form a scanned image of the object.
13. A sheet feed scanner, comprising:
a housing;
feed rollers that moves a document in a first direction;
a carriage operable to travel along a second direction, the carriage comprising:
a light source for illuminating the document; and
a rectangular photodetector array for simultaneously detecting light intensity of multiple scan lines, the rectangular photodetector array comprising more than three rows of photodetectors.
14. The scanner of claim 13, wherein the carriage further comprises:
a mounting plate having a horizontal guide, the light source and the rectangular photodetector array being mounted on the mounting plate;
a first motor linked to a first gear; and
a horizontal carriage bar defining a horizontal guide channel for receiving the horizontal guide and a horizontal gear channel for receiving the first gear, the first motor being operable to drive the first gear to move the carriage along the horizontal direction.
15. The scanner of claim 13, wherein the light source comprises a ring of light emitting diodes formed around the rectangular photodetector array.
16. The scanner of claim 13, wherein the rectangular photodetector array comprises a complementary metal oxide semiconductor (CMOS) photodetector array.
17. The scanner of claim 16, wherein the light source comprises light emitting diodes located on the same die as the rectangular photodetector array.
18. A flatbed scanner, comprising:
a housing;
a transparent platen atop the housing for receiving an object to be scanned;
a light source for illuminating the entire object;
optics for directing light reflecting off the entire object to a rectangular photodetector array; and
the rectangular photodetector array for simultaneously detecting light intensity of the entire object, the rectangular photodetector array comprising more than three rows of photodetectors.
US10/821,821 2004-04-08 2004-04-08 Two-dimensional CMOS sensor array to image documents and other flat objects Abandoned US20050225812A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/821,821 US20050225812A1 (en) 2004-04-08 2004-04-08 Two-dimensional CMOS sensor array to image documents and other flat objects
DE102005004393.3A DE102005004393B4 (en) 2004-04-08 2005-01-31 Two-dimensional CMOS sensor array for imaging documents and other flat objects
JP2005108389A JP4863188B2 (en) 2004-04-08 2005-04-05 Flatbed scanner for imaging documents and other flat subjects
US12/502,053 US8542412B2 (en) 2004-04-08 2009-07-13 Two-dimensional CMOS sensor array to image documents and other flat objects
JP2009192506A JP5322297B2 (en) 2004-04-08 2009-08-21 Flatbed scanner for imaging documents and other flat subjects
JP2011088350A JP2011176861A (en) 2004-04-08 2011-04-12 Flatbed scanner to image documents and other flat objects
JP2013251220A JP5959014B2 (en) 2004-04-08 2013-12-04 Two-dimensional CMOS sensor array for imaging documents and other flat subjects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/821,821 US20050225812A1 (en) 2004-04-08 2004-04-08 Two-dimensional CMOS sensor array to image documents and other flat objects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/502,053 Division US8542412B2 (en) 2004-04-08 2009-07-13 Two-dimensional CMOS sensor array to image documents and other flat objects

Publications (1)

Publication Number Publication Date
US20050225812A1 true US20050225812A1 (en) 2005-10-13

Family

ID=35060229

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/821,821 Abandoned US20050225812A1 (en) 2004-04-08 2004-04-08 Two-dimensional CMOS sensor array to image documents and other flat objects
US12/502,053 Expired - Fee Related US8542412B2 (en) 2004-04-08 2009-07-13 Two-dimensional CMOS sensor array to image documents and other flat objects

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/502,053 Expired - Fee Related US8542412B2 (en) 2004-04-08 2009-07-13 Two-dimensional CMOS sensor array to image documents and other flat objects

Country Status (3)

Country Link
US (2) US20050225812A1 (en)
JP (4) JP4863188B2 (en)
DE (1) DE102005004393B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203300A1 (en) * 2005-03-09 2006-09-14 Samsung Electronics Co., Ltd. Image scanning unit and image forming apparatus having the same
US20080007804A1 (en) * 2006-07-06 2008-01-10 Samsung Electronics Co., Ltd. Image sensor having improved resolution and image sensing method using the same
WO2012039594A1 (en) * 2010-09-24 2012-03-29 Pradotec Corporation Sdn. Bhd. Imaging device and imaging device attachment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225812A1 (en) * 2004-04-08 2005-10-13 Bledsoe J D Two-dimensional CMOS sensor array to image documents and other flat objects
DE102010008794A1 (en) * 2010-02-22 2011-08-25 Burgmer, Heinrich, 51789 Use of highly dissolving actuator in e.g. line camera system to form image, using technical system for detecting pixel data and/or pixel gradient data within dimension of pixel size with resolution level in pixel segments
US10543371B2 (en) 2015-06-30 2020-01-28 Cochlear Limited Systems and methods for alerting auditory prosthesis recipient
US20170126921A1 (en) * 2015-10-30 2017-05-04 Gheorghe Olaru Document Scanner-Copier with a Stationary Imaging and Illumination Engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29067E (en) * 1974-02-25 1976-12-07 Bell Telephone Laboratories, Incorporated Compact flatbed page scanner
US4865038A (en) * 1986-10-09 1989-09-12 Novametrix Medical Systems, Inc. Sensor appliance for non-invasive monitoring
US5734483A (en) * 1994-04-18 1998-03-31 Ricoh Company, Ltd. Image scanner having contact-type image sensor
US5734178A (en) * 1995-10-05 1998-03-31 Kabushiki Kaisha Toshiba Imaging system using area sensor
US6394349B1 (en) * 1997-10-15 2002-05-28 Denso Corporation Optical information reader and recording medium
US20030001076A1 (en) * 2001-06-21 2003-01-02 Brandenberger Sarah M. System and methodology for the use of optical positioning system for scanners
US6639697B1 (en) * 2000-01-06 2003-10-28 Hewlett-Packard Development Company, L.P. Automatic slide feeder for use with reflective optical scanner device
US6888083B2 (en) * 2001-04-09 2005-05-03 Hubert A. Hergeth Apparatus and method for monitoring cover sheet webs used in the manufacture of diapers
US6943922B2 (en) * 2000-04-25 2005-09-13 Nec Corporation Image reading method and apparatus for same
US7333250B2 (en) * 2002-01-31 2008-02-19 Hewlett-Packard Development Company, L.P. Image scanner with a single motor providing two-dimensional movement of photosensors

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767461A (en) 1980-10-13 1982-04-24 Sueji Umetsu Stacker for cloth
JPS5767461U (en) * 1980-10-13 1982-04-22
US4452524A (en) 1982-06-30 1984-06-05 Xerox Corporation Electrostatographic reproducing apparatus with spring loaded paper path
JPS599673U (en) * 1982-07-07 1984-01-21 三洋電機株式会社 Shading correction device for tubular light source
JPS6055158A (en) 1983-09-02 1985-03-30 株式会社ブリヂストン Water-proof connector and formation of water-proof layer by using the same
JPS6055158U (en) * 1983-09-20 1985-04-18 日本精密工業株式会社 reading device
US4723120A (en) * 1986-01-14 1988-02-02 International Business Machines Corporation Method and apparatus for constructing and operating multipoint communication networks utilizing point-to point hardware and interfaces
JPS62171250U (en) * 1986-04-18 1987-10-30
JPS63299457A (en) 1987-05-29 1988-12-06 Hitachi Ltd Image copying device
JPH027768A (en) 1988-06-27 1990-01-11 Nippon Telegr & Teleph Corp <Ntt> Picture input device
JPH03132638A (en) 1989-10-18 1991-06-06 Canon Inc Original illuminator
JP2787092B2 (en) * 1990-06-13 1998-08-13 株式会社ニコン Imaging device
JPH04107054A (en) 1990-08-28 1992-04-08 Brother Ind Ltd Picture reader
JPH04192659A (en) 1990-10-01 1992-07-10 Sharp Corp Image reader for copying machine
JPH0557558A (en) * 1991-08-29 1993-03-09 Matsushita Electric Ind Co Ltd Mobile guide
JP3114347B2 (en) * 1992-05-06 2000-12-04 日本電気株式会社 One-dimensional CCD imaging device
JPH06141148A (en) * 1992-05-26 1994-05-20 Dainippon Screen Mfg Co Ltd Picture reader
JPH05344290A (en) 1992-06-11 1993-12-24 Ricoh Co Ltd Picture reader
US5377022A (en) * 1993-12-29 1994-12-27 Xerox Corporation Method and apparatus for page imaging and document movement device
JPH09163092A (en) 1995-12-04 1997-06-20 Murata Mach Ltd Planar projection type scanning reader
JPH09181884A (en) * 1995-12-27 1997-07-11 Tec Corp Overhead projector
JPH09238232A (en) 1996-02-28 1997-09-09 Toyota Electron Kk Electronic magnification mirror
US5790281A (en) * 1996-10-02 1998-08-04 Xerox Corporation Method of correcting the measured reflectance of an image acquired by an image acquisition device for the integrating cavity effect
US6147780A (en) * 1998-04-17 2000-11-14 Primax Electronics Ltd. Scanner which takes samples from different positions of a document to increase its resolution
JPH11331510A (en) * 1998-05-12 1999-11-30 Rohm Co Ltd Image scanner
JP3810928B2 (en) 1998-10-05 2006-08-16 ローム株式会社 Image reading device
JP2000115470A (en) 1998-10-08 2000-04-21 Canon Inc Original reader
JP3137103B2 (en) 1999-01-25 2001-02-19 日本電気株式会社 Image scanner
TW416214B (en) 1999-06-25 2000-12-21 Microtek Int Inc Scanning device and recognition method capable of automatically identifying the range of object scanned
JP2001217994A (en) 2000-02-02 2001-08-10 Nichigaku Kk Method and device for lighting with uniform illuminance
JP4490540B2 (en) 2000-02-15 2010-06-30 岳 橋本 Image capture device
JP2001245133A (en) * 2000-02-29 2001-09-07 Konica Corp Image readout device and image forming device
TW527817B (en) * 2000-08-11 2003-04-11 Canon Kk Image sensor and image reading apparatus
US6747764B1 (en) * 2000-11-21 2004-06-08 Winbond Electronics Corp. High speed scanner
JP3593977B2 (en) 2000-12-25 2004-11-24 株式会社日立製作所 Image reading device
GB2372392A (en) 2001-02-16 2002-08-21 Hewlett Packard Co Improvements to image capture
US20030063333A1 (en) * 2001-10-03 2003-04-03 Boll David W. Flatbed scanner with apparatus for scanning light transmissive objects
JP2004088408A (en) 2002-08-27 2004-03-18 Minolta Co Ltd Digital camera
US7233419B2 (en) * 2002-10-08 2007-06-19 Chin-Lin Chang Scanner having a self collection light source
JP2004186734A (en) 2002-11-29 2004-07-02 Toshiba Corp Image reading apparatus
JP3482966B2 (en) 2003-03-24 2004-01-06 富士ゼロックス株式会社 Image reading device
US20050225812A1 (en) * 2004-04-08 2005-10-13 Bledsoe J D Two-dimensional CMOS sensor array to image documents and other flat objects

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29067E (en) * 1974-02-25 1976-12-07 Bell Telephone Laboratories, Incorporated Compact flatbed page scanner
US4865038A (en) * 1986-10-09 1989-09-12 Novametrix Medical Systems, Inc. Sensor appliance for non-invasive monitoring
US5734483A (en) * 1994-04-18 1998-03-31 Ricoh Company, Ltd. Image scanner having contact-type image sensor
US5734178A (en) * 1995-10-05 1998-03-31 Kabushiki Kaisha Toshiba Imaging system using area sensor
US6394349B1 (en) * 1997-10-15 2002-05-28 Denso Corporation Optical information reader and recording medium
US6639697B1 (en) * 2000-01-06 2003-10-28 Hewlett-Packard Development Company, L.P. Automatic slide feeder for use with reflective optical scanner device
US6943922B2 (en) * 2000-04-25 2005-09-13 Nec Corporation Image reading method and apparatus for same
US6888083B2 (en) * 2001-04-09 2005-05-03 Hubert A. Hergeth Apparatus and method for monitoring cover sheet webs used in the manufacture of diapers
US20030001076A1 (en) * 2001-06-21 2003-01-02 Brandenberger Sarah M. System and methodology for the use of optical positioning system for scanners
US7333250B2 (en) * 2002-01-31 2008-02-19 Hewlett-Packard Development Company, L.P. Image scanner with a single motor providing two-dimensional movement of photosensors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203300A1 (en) * 2005-03-09 2006-09-14 Samsung Electronics Co., Ltd. Image scanning unit and image forming apparatus having the same
US8743428B2 (en) * 2005-03-09 2014-06-03 Samsung Electronics Co., Ltd. Image scanning unit and image forming apparatus having the same
USRE48261E1 (en) * 2005-03-09 2020-10-13 Hewlett-Packard Development Company, L.P. Image scanning unit and image forming apparatus having the same
US20080007804A1 (en) * 2006-07-06 2008-01-10 Samsung Electronics Co., Ltd. Image sensor having improved resolution and image sensing method using the same
US7821680B2 (en) * 2006-07-06 2010-10-26 Samsung Electronics Co., Ltd. Image sensor having improved resolution and image sensing method using the same
WO2012039594A1 (en) * 2010-09-24 2012-03-29 Pradotec Corporation Sdn. Bhd. Imaging device and imaging device attachment

Also Published As

Publication number Publication date
US8542412B2 (en) 2013-09-24
JP2005304024A (en) 2005-10-27
DE102005004393A1 (en) 2005-11-17
JP5959014B2 (en) 2016-08-02
JP4863188B2 (en) 2012-01-25
US20090273817A1 (en) 2009-11-05
JP5322297B2 (en) 2013-10-23
JP2010022012A (en) 2010-01-28
JP2014045521A (en) 2014-03-13
JP2011176861A (en) 2011-09-08
DE102005004393B4 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
US8542412B2 (en) Two-dimensional CMOS sensor array to image documents and other flat objects
US7119934B2 (en) Image reading apparatus
US7633656B2 (en) Image reading unit and image reading apparatus having the same
US7557967B2 (en) Image reading apparatus
US7894105B2 (en) Image reading unit and image reader
US6278101B1 (en) Method for increasing the native resolution of an image sensor
EP0917084B1 (en) Illuminator apparatus for a scanner device
US20110141535A1 (en) Document scanner with automatic dust avoidance
US20100027869A1 (en) Optical Carriage Structure of Inspection Apparatus and its Inspection Method
US6762861B2 (en) Scanner with a movable mirror set in the scanning module for increasing the resolution of scanned images
US6532084B1 (en) Method for detecting the relative location of an image reading head and a light source
US6859338B2 (en) System and method for scanning a medium
JP5059327B2 (en) Illumination device for image reading apparatus
CA2605637C (en) Scanner to projection
US20020171877A1 (en) Bi-directional flatbed scanning and automatic document feed
EP2093993A1 (en) Scanner
CN2393156Y (en) Digital image output machine having multiple analytic degrees
JPH09135327A (en) Scanner head and scanner device using the head
JPH09168079A (en) Image reader
KR20000013007A (en) Scanning head of shuttle type complex device
JP2000196817A (en) Film scanner
JP2005260684A (en) Contact image sensor module and image reading apparatus provided with the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: AGILENT TECHNOLOGIES, INC., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLEDSOE, J. DAREN;CARLSON, GREGORY F.;MCCLELLAND, TODD A.;AND OTHERS;REEL/FRAME:015075/0994

Effective date: 20040402

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP PTE. LTD.,SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:017206/0666

Effective date: 20051201

Owner name: AVAGO TECHNOLOGIES GENERAL IP PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:017206/0666

Effective date: 20051201

AS Assignment

Owner name: AVAGO TECHNOLOGIES IMAGING IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. (COMPANY REGISTRATION NO. 200512430D);REEL/FRAME:017683/0113

Effective date: 20060127

AS Assignment

Owner name: MARVELL INTERNATIONAL TECHNOLOGY LTD., BERMUDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVAGO TECHNOLOGIES IMAGING IP (SINGAPORE) PTE. LTD.;REEL/FRAME:021849/0047

Effective date: 20070920

Owner name: MARVELL INTERNATIONAL TECHNOLOGY LTD.,BERMUDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVAGO TECHNOLOGIES IMAGING IP (SINGAPORE) PTE. LTD.;REEL/FRAME:021849/0047

Effective date: 20070920

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 017206 FRAME: 0666. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:038632/0662

Effective date: 20051201