Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20050234433 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 11/080,198
Fecha de publicación20 Oct 2005
Fecha de presentación14 Mar 2005
Fecha de prioridad10 Ago 1992
También publicado comoUS5762458, US6001108, US6244809, US6905491, US6994703, US7025064, US7025761, US7027892, US7118582, US7390325, US7507199, US7785320, US7914521, US20030065310, US20030078474, US20030083650, US20030083651, US20030125716, US20030139733, US20030139753, US20060142881, US20060167441, US20080221731, US20110087238
Número de publicación080198, 11080198, US 2005/0234433 A1, US 2005/234433 A1, US 20050234433 A1, US 20050234433A1, US 2005234433 A1, US 2005234433A1, US-A1-20050234433, US-A1-2005234433, US2005/0234433A1, US2005/234433A1, US20050234433 A1, US20050234433A1, US2005234433 A1, US2005234433A1
InventoresYulun Wang, Darrin Uecker, Keith Laby, Jeff Wilson, Steve Jordan, James Wright
Cesionario originalIntuitive Surgical, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Apparatus for performing surgical procedures with a passively flexing robotic assembly
US 20050234433 A1
Resumen
A robotic system that moves a surgical instrument in response to the actuation of a foot pedal that can be operated by the foot of a surgeon. The robotic system has an end effector that is adapted to hold a surgical instrument such as an endoscope. The end effector is coupled to a robotic arm assembly which can move the endoscope relative to the patient. The system includes a computer which controls the movement of the robotic arm in response to input signals received from the foot pedal.
Imágenes(8)
Previous page
Next page
Reclamaciones(16)
1. A medical robotic system comprising:
a robotic assembly including a surgical instrument having a proximal end and a distal tip and a linkage movably supporting the proximal end of the instrument relative to a linkage base, the robotic assembly having an associated first coordinate system;
a monitor that can display an image of tissues adjacent the tip in a second coordinate system;
an input device that receives an input command from the surgeon to move the instrument tip with a desired movement, the input command being input in the second coordinate system; and
a controller that is coupled to said input device and said robotic linkage, said controller receives said input command from said input device and transmits an output command to said robotic linkage, said controller configured to transform the input command from the second coordinate system to a movement of said robotic linkage, as constrained by surrounding tissues, in the first coordinate system so that the instrument tip effects the desired movement.
2. The system as recited in claim 1, wherein the distal tip of the instrument is freely movable relative to the base when the instrument is unconstrained by surrounding tissues.
3. The system as recited in claim 2, wherein said robotic linkage comprises a passive joint between the base and the instrument.
4. The system as recited in claim 3, wherein said robotic linkage has a pair of passive joints between the base and a quick-disconnect instrument holder.
5. The system as recited in claim 1, wherein the instrument comprises a rigid shaft, and wherein the controller is configured to calculate a pivot point along the shaft at a minimally invasive aperture into the patient, the pivot point effected by the constraining of the shaft by the surrounding tissues adjacent the aperture.
6. The system as recited in claim 1, wherein said controller transforms the input command in the second coordinate system to an intermediate coordinate system and transforms from the intermediate coordinate system to the first coordinate system.
7. The system as recited in claim 1, wherein the instrument comprises an endoscope, and wherein the image displayed on the monitor is obtained from the tip of the endoscope.
8. The system as recited in claim 7, wherein said robotic linkage includes a mechanism to spin the endoscope about an axis of the endoscope.
9. The system as recited in claim 1, wherein said robotic linkage is enclosed by a sterile bag, and wherein the surgical instrument extends through the sterile bag and is in contact with the surrounding tissues of the patient.
10. A method to allow a surgeon to control a tip of a surgical instrument, the method comprising;
coupling the instrument to a robotic linkage to form a robotic assembly, the robotic assembly having an associated first coordinate system;
viewing tissues adjacent the tip of the instrument in a monitor in a second coordinate system;
inputting, in th second coordinate system, a first input command from a surgeon to move the endoscope tip a desired movement;
transforming the first input command in the second coordinate system to a movement of the robotic assembly, with the instrument constrained by surrounding tissue, in the first coordinate system; and
generating an output command to move the robotic linkage so that the instrument tip effects the desired movement.
11. The method of claim 10, further comprising allowing a shaft of the instrument to move laterally relative to the attached robotic linkage when the instrument is unconstrained by surrounding tissue.
12. The method of claim 10, further comprising determining a transformation from the first coordinate system to the second coordinate system from movements of the instrument tip as constrained by the surrounding tissue.
13. The method of claim 10, wherein the instrument comprises a rigid shaft, and further comprising calculating a pivot point along the shaft induced by the tissues, the tissues being disposed along a minimally invasive aperture.
14. The method of claim 1 0, further comprising transforming the input command in the second coordinate system to an intermediate coordinate system and transforming from the intermediate coordinate system to the first coordinate system.
15. The method of claim 10, wherein the image is obtained using the tip of the instrument, the instrument comprising an endoscope, and further comprising spinning the endoscope about a shaft of the endoscope.
16. The method of claim 10, wherein the desired movement is effected by passively pivoting a joint of the robotic assembly.
Descripción
    CROSS-REFERENCES TO RELATED APPLICATIONS
  • [0001]
    This is a continuation patent application which claims priority from U.S. patent application Ser. No. 09/000,934, filed on Dec. 30, 1997; which is a continuation-in-part of U.S. patent application Ser. No. 08/903,914, filed on Jul. 31, 1997, now U.S. Pat. No. 5,815,640; which is a continuation of U.S. patent application Ser. No. 08/613,866, filed on Mar. 11, 1996, now U.S. Pat. No. 5,907,664; which is a continuation application of U.S. patent application Ser. No. 08/603,543, filed on Feb. 20, 1996, now U.S. Pat. No. 5,762,458; which is a continuation application of U.S. patent application Ser. No. 08/072,982, filed on Jun. 3, 1993, now U.S. Pat. No. 5,524,180; which is a Continuation-in-Part of U.S. patent application Ser. No. 08/005,604, filed on Jan. 19, 1993, now abandoned; which is a Continuation-in-Part of U.S. patent application Ser. No. 07/927,801, filed on Aug. 10, 1992, now abandoned; the full disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates to a system and method for performing minimally invasive cardiac procedures.
  • [0004]
    2. Description of Related Art
  • [0005]
    Blockage of a coronary artery may deprive the heart of the blood and oxygen required to sustain life. The blockage may be removed with medication or by an angioplasty. For severe blockage a coronary artery bypass graft (CABG) is performed to bypass the blocked area of the artery. CABG procedures are typically performed by splitting the sternum and pulling open the chest cavity to provide access to the heart. An incision is made in the artery adjacent to the blocked area. The internal mammary artery (IMA) is then severed and attached to the artery at the point of incision. The IMA bypasses the blocked area of the artery to again provide a full flow of blood to the heart. Splitting the sternum and opening the chest cavity can create a tremendous trauma on the patient. Additionally, the cracked sternum prolongs the recovery period of the patient.
  • [0006]
    There have been attempts to perform CABG procedures without opening the chest cavity. Minimally invasive procedures are conducted by inserting surgical instruments and an endoscope through small incision in the skin of the patient. Manipulating such instruments can be awkward, particularly when suturing a graft to a artery. It has been found that a high level of dexterity is required to accurately control the instruments. Additionally, human hands typically have at least a minimal amount of tremor. The tremor further increases the difficulty of performing minimal invasive cardiac procedures. It would be desirable to provide a system for effectively performing minimally invasive coronary artery bypass graft procedures.
  • BRIEF SUMMARY OF THE INVENTION
  • [0007]
    The present invention is a system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The movement of the end effector can be controlled by an input button, so that the end effector only moves when the button is depressed by the surgeon. The input button allows the surgeon to adjust the position of the handles without moving the end effector, so that the handles can be moved to a more comfortable position. The system may also have a robotically controlled endoscope which allows the surgeon to remotely view the surgical site. A cardiac procedure can be performed by making small incisions in the patient's skin and inserting the instruments and endoscope into the patient. The surgeon manipulates the handles and moves the end effectors to perform a cardiac procedure such as a coronary artery bypass graft.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0008]
    The objects and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, wherein:
  • [0009]
    FIG. 1 is a perspective view of a minimally invasive surgical system of the present invention;
  • [0010]
    FIG. 2 is a schematic of a master of the system;
  • [0011]
    FIG. 3 is a schematic of a slave of the system;
  • [0012]
    FIG. 4 is a schematic of a control system of the system;
  • [0013]
    FIG. 5 is a schematic showing the instrument in a coordinate frame;
  • [0014]
    FIG. 6 is a schematic of the instrument moving about a pivot point;
  • [0015]
    FIG. 7 is an exploded view of an end effector of the system;
  • [0016]
    FIG. 8 is a top view of a master handle of the system;
  • [0017]
    FIG. 8 a is a side view of the master handle;
  • [0018]
    FIGS. 9-10A-J are illustrations showing an internal mammary artery being grafted to a coronary artery.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0019]
    Referring to the drawings more particularly by reference numbers, FIG. 1 shows a system 10 that can perform minimally invasive surgery. In the preferred embodiment, the system 10 is used to perform a minimally invasive coronary artery bypass graft (MI-CABG) and other anastomostic procedures. Although a MI-CABG procedure is shown and described, it is to be understood that the system may be used for other surgical procedures. For example, the system can be used to suture any pair of vessels.
  • [0020]
    The system 10 is used to perform a procedure on a patient 12 that is typically lying on an operating table 14. Mounted to the operating table 14 is a first articulate arm 16, a second articulate arm 18 and a third articulate arm 20. The articulate arms 16-20 are preferably mounted to the table so that the arms are at a same reference plane as the patient. Although three articulate arms are shown and described, it is to be understood that the system may have any number of arms.
  • [0021]
    The first and second articulate arms 16 and 18 each have a surgical instrument 22 and 24 coupled to a robotic arm 26. The third articulate arm 20 has an endoscope 28 that is held by a robotic arm 26. The instruments 22 and 24, and endoscope 28 are inserted through incisions cut into the skin of the patient. The endoscope has a camera 30 that is coupled to a television monitor 32 which displays images of the internal organs of the patient.
  • [0022]
    The robotic arms 26 each have a linear motor 34, a first rotary motor 36 and a second rotary motor 38. The robotic arms 26 also have a pair of passive joints 40 and 42. The articulate arm 20 also have a worm gear 44 and means to couple the instruments 22 and 24, and endoscope 28 to the robotic arm 26. The first, second, and third articulate arms are coupled to a controller 46 which can control the movement of the arms.
  • [0023]
    The controller 46 is connected to an input device 48 such as a foot pedal that can be operated by a surgeon to move the location of the endoscope and view a different portion of the patient by depressing a corresponding button(s) of the foot pedal 48. The controller 46 receives the input signals from the foot pedal 48 and moves the robotic arm 26 and endoscope 28 in accordance with the input commands of the surgeon. The robotic arms may be devices that are sold by the assignee of the present invention, Computer Motion, Inc. of Goleta, Calif., under the trademark AESOP. The system is also described in allowed U.S. application Ser. No. 08/305,415, which is hereby incorporated by reference. Although a foot pedal 46 is shown and described, it is to be understood that the system may have other input means such as a hand controller, or a speech recognition interface.
  • [0024]
    The instruments 22 of the first 16 and second 18 articulate arms are controlled by a pair of master handles 50 and 52 that can be manipulated by the surgeon. The handles 50 and 52, and arms 16 and 18, have a master-slave relationship so that movement of the handles produces a corresponding movement of the surgical instruments. The handles 50 and 52 may be mounted to a portable cabinet 54. A second television monitor 56 may be placed onto the cabinet 54 and coupled to the endoscope 28 so that the surgeon can readily view the internal organs of the patient. The handles 50 and 52 are also coupled to the controller 46. The controller 46 receives input signals from the handles 50 and 52, computes a corresponding movement of the surgical instruments, and provides output signals to move the robotic arms and instruments.
  • [0025]
    Each handle has multiple degrees of freedom provided by the various joints Jm1-Jm5 depicted in FIG. 2. Joints Jm1 and Jm2 allow the handle to rotate about a pivot point of the cabinet 54. Joint Jm3 allows the surgeon to move the handle into and out of the cabinet 54 in a linear manner. Joint Jm4 allows the surgeon to rotate the master handle about a longitudinal axis of the handle. The joint Jm5 allows a surgeon to open and close a gripper. Each joint Jm1-Jm5 has a position sensor which provides feedback signals that correspond to the relative position of the handle. The position sensors may be potentiometers, or any other feedback device, that provides an electrical signal which corresponds to a change of position.
  • [0026]
    FIG. 3 shows the various degrees of freedom of each articulate arm 16 and 18. The joints Js1, Js2 and Js3 correspond to the linear motor and rotary motors of the robotic arms 26, respectively. The joints Js4 and Js5 correspond to the passive joints 40 and 42 of the arms 26. The joint Js6 may be a motor which rotates the surgical instruments about the longitudinal axis of the instrument. The joint Js7 may be a pair of fingers that can open and close. The instruments 22 and 24 move about a pivot point P located at the incision of the patient.
  • [0027]
    FIG. 4 shows a schematic of a control system that translates a movement of a master handle into a corresponding movement of a surgical instrument. In accordance with the control system shown in FIG. 4, the controller 46 computes output signals for the articulate arms so that the surgical instrument moves in conjunction with the movement of the handle. Each handle may have an input button 58 which enables the instrument to move with the handle. When the input button 58 is depressed the surgical instrument follows the movement of the handle. When the button 58 is released the instrument does not track the movement of the handle. In this manner the surgeon can adjust or “ratchet” the position of the handle without creating a corresponding undesirable movement of the instrument. The “ratchet” feature allows the surgeon to continuously move the handles to more desirable positions without altering the positions of the arms. Additionally, because the handles are constrained by a pivot point the ratchet feature allows the surgeon to move the instruments beyond the dimensional limitations of the handles. Although an input button is shown and described, it is to be understood that the surgical instrument may be activated by other means such as voice recognition. The input button may be latched so that activation of the instrument toggles between active and inactive each time the button is depressed by the surgeon.
  • [0028]
    When the surgeon moves a handle, the position sensors provide feedback signals M1-M5 that correspond to the movement of the joints Jm1-Jm5, respectively. The controller 46 computes the difference between the new handle position and the original handle position in computation block 60 to generate incremental position values AM1-AM5.
  • [0029]
    The incremental position values AM1-AM5 are multiplied by scale factors S1-S5, respectively in block 62. The scale factors are typically set at less than one so that the movement of the instrument is less than the movement of the handle. In this manner the surgeon can produce very fine movements of the instruments with relatively coarse movements of the handles. The scale factors S1-S5 are variable so that the surgeon can vary the resolution of instrument movement. Each scale factor is preferably individually variable so that the surgeon can more finely control the instrument in certain directions. By way of example, by setting one of the scale factors at zero the surgeon can prevent the instrument from moving in one direction. This may be advantageous if the surgeon does not want the surgical instrument to contact an organ or certain tissue located in a certain direction relative to the patient. Although scale factors smaller than a unit one described, it is to be understood that a scale factor may be greater than one. For example, it may be desirable to spin the instrument at a greater rate than a corresponding spin of the handle.
  • [0030]
    The controller 46 adds the incremental values AM1-AM5 to the initial joint angles Mj1-Mj5 in adder element 64 to provide values Mr1-Mr5. The controller 46 then computes desired slave vector calculations in computation block 66 in accordance with the following equations.
    Rdx=Mr 3·sin (Mr 1)·cos (Mr 2)+Px
    Rdy=Mr 3·sin (Mr 1)·sin (Mr 2)+Py
    Rdz=Mr 3·cos (Mr 1)+Pz
    Sdr=Mr 4
    Sdg=Mr 5
    where;
      • Rdx, y, z=the new desired position of the end effector of the instrument.
      • Sdr=the angular rotation of the instrument about the instrument longitudinal axis.
      • Sdg=the amount of movement of the instrument fingers.
      • Px, y, z=the position of the pivot point P.
  • [0035]
    The controller 46 then computes the movement of the robotic arm 26 in computational block 68 in accordance with the following equations. Jsd1 = Rdz Jsd3 = p - cos - 1 é ê ê ê Rdx 2 + Rdy 2 - L1 2 - L2 2 2 L1 × L2 ù ú ú û Jsd2 = tan - 1 ( Rdy / Rdx ) + D for Jsd3 £ 0 Jsd2 = tan - 1 ( Rdy / Rdx ) - D for Jsd3 > 0 D = cos - 1 é ê ê ê ë Rdx 2 + Rdy 2 - L1 2 - L2 2 2 × L1 Rdx 2 + Rdy 2 ù ú ú ú û Jsd6 = Mr4 Jsd7 = Mr5
    where;
      • Jsd1=the movement of the linear motor.
      • Jsd2=the movement of the first rotary motor.
      • Jsd3=the movement of the second rotary motor.
      • Jsd6=the movement of the rotational motor.
      • Jsd7=the movement of the gripper.
      • L1=the length of the linkage arm between the first rotary motor and the second rotary motor.
      • L2=the length of the linkage arm between the second rotary motor and the passive joints.
  • [0043]
    The controller provides output signals to the motors to move the arm and instrument in the desired location in block 70. This process is repeated for each movement of the handle.
  • [0044]
    The master handle will have a different spatial position relative to the surgical instrument if the surgeon releases the input button and moves the handle. When the input button 58 is initially depressed, the controller 46 computes initial joint angles Mj1-Mj5 in computational block 72 with the following equations. Mj1 = tan - 1 ( ty / tx ) Mj2 = tan - 1 ( d / tz ) Mj3 = D Mj4 = Js6 Mj5 = Js7 d = tx 2 + ty 2 tx = Rsx - Px D ty = Rsy - Py D tz = Rsz - Pz D D = ( Rsx - Px ) 2 + ( Rsy - Py ) 2 + ( Rsz - Pz ) 2
  • [0045]
    The forward kinematic values are computed in block 74 with the following equations.
    Rsx=L 1·cos (Js 2)+L 2·cos (Js 2+Js 3)
    Rsy=L 1·cos (Js 2)−L 2·sin (Js 2+Js 3)
    Rsz=J1
  • [0046]
    The joint angles Mj are provided to adder 64. The pivot points Px, Py and Pz are computed in computational block 76 as follows. The pivot point is calculated by initially determining the original position of the intersection of the end effector and the instrument PO, and the unit vector Uo which has the same orientation as the instrument. The position P(x, y, z) values can be derived from various position sensors of the robotic arm. Referring to FIG. 5 the instrument is within a first coordinate frame (x, y, z) which has the angles θ 4 and θ 5. The unit vector Uo is computed by the transformation matrix: Uo = [ cos Θ 5 0 - sin Θ 5 - sin Θ 4 sin Θ 5 cos Θ 4 - sin Θ 4 cos Θ 5 cos Θ 4 sin Θ 5 sin Θ 4 cos Θ 4 ] [ 0 0 - 1 ]
  • [0047]
    After each movement of the end effector an angular movement of the instrument Δθ is computed by taking the arcsin of the cross-product of the first and second unit vectors Uo and U1 of the instrument in accordance with the following line equations Lo and L1.
    Δθ=arcsin (|T|)
    T=Uo×U 1
    where;
      • T=a vector which is a cross-product of unit vectors Uo and U1.
  • [0049]
    The unit vector of the new instrument position U1 is again determined using the positions sensors and the transformation matrix described above. If the angle Δθ is greater than a threshold value, then a new pivot point is calculated and Uo is set to U1. As shown in FIG. 6, the first and second instrument orientations can be defined by the line equations Lo and L1:
  • [0050]
    Lo:
    xo=Mx 0·Zo+Cxo
    yo=Myo·Zo+Cyo
  • [0051]
    L1:
    x 1=Mx 1·Z 1+Cx 1
    y 1=My 1·Z 1+Cy 1
    where;
      • Zo=a Z coordinate along the line Lo relative to the z axis of the first coordinate system.
      • Z1=a Z coordinate along the line L1 relative to the z axis of the first coordinate system.
      • Mxo=a slope of the line Lo as a function of Zo.
      • Myo=a slope of the line Lo as a function of Zo.
      • Mx1=a slope of the line L1 as a function of Z1.
      • My1=a slope of the line L1 as a function of Z1.
      • Cxo=a constant which represents the intersection of the line Lo and the x axis of the first coordinate system.
      • Cyo=a constant which represents the intersection of the line Lo and the y axis of the first coordinate system.
      • Cx1=a constant which represents the intersection of the L1 and the x axis of the first coordinate system.
      • Cy1=a constant which represents the intersection of the line L1 and the y axis of the first coordinate system.
  • [0062]
    The slopes are computed using the following algorithms:
    Mxo=Uxo/Uzo
    Myo=Uyo/Uzo
    Mx 1=Ux 1/Uzi
    My 1=Uy 1/Uz 1
    Cx 0=Pox−Mx 1·Poz
    Cy 0=Poy−My 1·Poz
    Cx 1=Plx−Mx 1·P 1 z
    Cy 1=Ply−My 1P 1 z
    where;
      • Uo (x, y and z)=the unit vectors of the instrument in the first position within the first coordinate system.
      • U1 (x, y and z)=the unit vectors of the instrument in the second position within the first coordinate system.
      • Po (x, y and z)=the coordinates of the intersection of the end effector and the instrument in the first position within the first coordinate system.
      • P1(x, y and z)=the coordinates of the intersection of the end effector and the instrument in the second position within the first coordinate system.
  • [0067]
    To find an approximate pivot point location, the pivot points of the instrument in the first orientation Lo (pivot point Ro) and in the second orientation L1 (pivot point R1) are determined, and the distance half way between the two points Ro and R1 is computed and stored as the pivot point Rave of the instrument. The pivot point Rave is determined by using the cross-product vector T.
  • [0068]
    To find the points Ro and RI the following equalities are set to define a line with the same orientation as the vector T that passes through both Lo and L1.
    tx=Tx/Tz
    ty=Ty/Tz
    where;
      • tx=the slope of a line defined by vector T relative to the Z-x plane of the first coordinate system.
      • ty=the slope of a line defined by vector T relative to the Z-y plane of the first coordinate system.
      • Tx=the x component of the vector T.
      • Ty=the y component of the vector T.
      • Tz=the z component of the vector T.
  • [0074]
    Picking two points to determine the slopes Tx, Ty and Tz (e.g. Tx=x1−xo, Ty=y1−yo and Tz=z1−z0) and substituting the line equations Lo and L1, provides a solution for the point coordinates for Ro (xo, yo, zo) and R1 (x1, y1, z1) as follows.
    zo=((Mx 1tx)z 1+Cx 1Cxo)/(Mxo−tx)
    z 1=((Cy−Cyo)(Mxo−tx)−(Cx 1Cxo)(Myo−ty))/((Myo−ty)(Mx 1tx)−(My 1ty)(Mxo−tx))
    yo=Myo·zo+Cyo
    y 1=My 1·z 1+Cy 1
    xo=Mxo·zo+Cxo
    x 1=Mx 1·z 1+Cx 1
  • [0075]
    The average distance between the pivot points Ro and R1 is computed with the following equation and stored as the pivot point of the instrument.
    R ave=((x 1+xo)/2, (y 1+yo)/2, (z 1+zo)/2)
  • [0076]
    The pivot point can be continually updated with the above described algorithm routine. Any movement of the pivot point can be compared to a threshold value and a warning signal can be issued or the robotic system can become disengaged if the pivot point moves beyond a set limit. The comparison with a set limit may be useful in determining whether the patient is being moved, or the instrument is being manipulated outside of the patient, situations which may result in injury to the patient or the occupants of the operating room.
  • [0077]
    To provide feedback to the surgeon the fingers of the instruments may have pressure sensors that sense the reacting force provided by the object being grasped by the end effector. Referring to FIG. 4, the controller 46 receives the pressure sensor signals Fs and generates corresponding signals Cm in block 78 that are provided to an actuator located within the handle. The actuator provides a corresponding pressure on the handle which is transmitted to the surgeon's hand. The pressure feedback allows the surgeon to sense the pressure being applied by the instrument. As an alternate embodiment, the handle may be coupled to the end effector fingers by a mechanical cable that directly transfers the grasping force of the fingers to the hands of the surgeon.
  • [0078]
    FIG. 7 shows a preferred embodiment of an end effector 80. The end effector 80 includes a tool 82 that is coupled to an arm 84 by a sterile coupler 86. The tool 82 has a first finger 88 that is pivotally connected to a second finger 90. The fingers can be manipulated to hold objects such as tissue or a suturing needle. The inner surface of the fingers may have a texture to increase the friction and grasping ability of the tool. The first finger 88 is coupled to a rod 92 that extends through a center channel 94 of the tool 82. The tool 82 may have an outer sleeve 96 which cooperates with a spring biased ball quick disconnect fastener 98 of the sterile coupler 86. The quick disconnect allows tools other than the finger grasper to be coupled to an arm. For example, the tool 82 may be decoupled from the coupler and replaced by a cutting tool. The coupler 86 allows the surgical instruments to be interchanged without having to re-sterilize the arm each time an instrument is plugged into the arm.
  • [0079]
    The sterile coupler 86 has a slot 100 that receives a pin 102 of the arm 84. The pin 102 locks the coupler 86 to the arm 84. The pin 102 can be released by depressing a spring biased lever 104. The sterile coupler 86 has a piston 106 that is attached to the tool rod and in abutment with an output piston 108 of a load cell 110 located within the arm 84.
  • [0080]
    The load cell 110 is mounted to a lead screw nut 112. The lead screw nut 112 is coupled to a lead screw 114 that extends from a gear box 116. The gear box 116 is driven by a reversible motor 118 that is coupled to an encoder 120. The entire arm 82 is rotated by a motor drive worm gear 122. In operation, the motor receives input commands from the controller 46 and activates, accordingly. The motor 118 rotates the lead screw 114 which moves the lead screw nut 112 and load cell 110 in a linear manner. Movement of the load cell 110 drives the coupler piston 106 and tool rod 92, which rotate the first finger 88. The load cell 110 senses the counteractive force being applied to the fingers and provides a corresponding feedback signal to the controller 46. The arm 84 may be covered with a sterile drape 124 so that the arm does not have to be sterilized after each surgical procedure.
  • [0081]
    FIGS. 8 and 8 a show a preferred embodiment of a master handle assembly 130. The assembly 130 includes a master handle 132 that is coupled to an arm 134. The master handle 132 may be coupled to the arm 134 by a pin 136 that is inserted into a corresponding slot 138 in the handle 132. The handle 132 has a control button 140 that can be depressed by the surgeon. The control button 140 is coupled to a switch 142 by a shaft 144. The control button 140 corresponds to the input button 58 shown in FIG. 4, and activates the movement of the end effector.
  • [0082]
    The master handle 132 has a first gripper 146 that is pivotally connected to a second stationary gripper 148. Rotation of the first gripper 146 creates a corresponding linear movement of a handle shaft 150. The handle shaft 150 moves a gripper shaft 152 that is coupled to a load cell 154 by a bearing 156. The load cell 154 senses the amount of pressure being applied thereto and provides an input signal to the controller 46. The controller 46 then provides an output signal to move the fingers of the end effector.
  • [0083]
    The load cell 154 is mounted to a lead screw nut 158 that is coupled to a lead screw 160. The lead screw 160 extends from a reduction box 162 that is coupled to a motor 164 which has an encoder 166. The controller 46 of the system receives the feedback signal of the load cell 110 in the end effector and provides a corresponding command signal to the motor to move the lead screw 160 and apply a pressure on the gripper so that the surgeon receives feedback relating to the force being applied by the end effector. In this manner the surgeon has a “feel” for operating the end effector.
  • [0084]
    The handle is attached to a swivel housing 168 that rotates about bearing 170. The swivel housing 168 is coupled to a position sensor 172 by a gear assembly 174. The position sensor 172 may be a potentiometer which provides feedback signals to the controller 46 that correspond to the relative position of the handle. The swivel movement is translated to a corresponding spin of the end effector by the controller and robotic arm.
  • [0085]
    The arm 134 may be coupled to a linear bearing 176 and corresponding position sensor 178 which allow and sense linear movement of the handle. The linear movement of the handle is translated into a corresponding linear movement of the end effector by the controller and robotic arm. The arm can pivot about bearings 180, and be sensed by position sensor 182 located in a stand 184. The stand 184 can rotate about bearing 186 which has a corresponding position sensor 188. The arm rotation is translated into corresponding pivot movement of the end effector by the controller and robotic arm.
  • [0086]
    A human hand will have a natural tremor typically resonating between 6-12 hertz. To eliminate tracking movement of the surgical instruments with the hand tremor, the system may have a filter that filters out any movement of the handles that occurs within the tremor frequency bandwidth. Referring to FIG. 4, the filter 184 may filter analog signals provided by the potentiometers in a frequency range between 6-12 hertz.
  • [0087]
    As shown in FIGS. 9 and 10A-J, the system is preferably used to perform a cardiac procedure such as a coronary artery bypass graft (CABG). The procedure is performed by initially cutting three incisions in the patient and inserting the surgical instruments 22 and 24, and the endoscope 26 through the incisions. One of the surgical instruments 22 holds a suturing needle and accompanying thread when inserted into the chest cavity of the patient. If the artery is to be grafted with a secondary vessel, such as a saphenous vein, the other surgical instrument 24 may hold the vein while the end effector of the instrument is inserted into the patient.
  • [0088]
    The internal mammary artery (IMA) may be severed and moved by one of the instruments to a graft location of the coronary artery. The coronary artery is severed to create an opening in the artery wall of a size that corresponds to the diameter of the IMA. The incision(s) may be performed by a cutting tool that is coupled to one of the end effectors and remotely manipulated through a master handle. The arteries are clamped to prevent a blood flow from the severed mammary and coronary arteries. The surgeon manipulates the handle to move the IMA adjacent to the opening of the coronary artery. Although grafting of the IMA is shown and described, it is to be understood that another vessel such as a severed saphaneous vein may be grafted to bypass a blockage in the coronary artery.
  • [0089]
    Referring to FIGS. 10A-J, the surgeon moves the handle to manipulate the instrument into driving the needle through the IMA and the coronary artery. The surgeon then moves the surgical instrument to grab and pull the needle through the coronary and graft artery as shown in FIG. 10B. As shown in FIG. 10C, the surgical instruments are then manipulated to tie a suture at the heel of the graft artery. The needle can then be removed from the chest cavity. As shown in FIGS. 10D-F, a new needle and thread can be inserted into the chest cavity to suture the toe of the graft artery to the coronary artery. As shown in FIGS. 10H-J, new needles can be inserted and the surgeon manipulates the handles to create running sutures from the heel to the toe, and from the toe to the heel. The scaled motion of the surgical instrument allows the surgeon to accurately move the sutures about the chest cavity. Although a specific graft sequence has been shown and described, it is to be understood that the arteries can be grafted with other techniques. In general the system of the present invention may be used to perform any minimally invasive anastomostic procedure.
  • [0090]
    While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3171549 *18 Jul 19622 Mar 1965Molins Machine Co LtdMechanical handling apparatus
US3250991 *29 Jun 196210 May 1966Frontier Dev IncTemperature measuring bridge circuit having a pair of zener diodes as part of the bridge circuit
US4367998 *5 Sep 198011 Ene 1983United Kingdom Atomic Energy AuthorityManipulators
US4456961 *5 Mar 198226 Jun 1984Texas Instruments IncorporatedApparatus for teaching and transforming noncoincident coordinate systems
US4460302 *12 May 198117 Jul 1984Commissariat A L'energie AtomiqueHandling equipment comprising a telescopic supporting assembly carrying a motorized orientation support for at least one articulated slave arm
US4491135 *3 Nov 19821 Ene 1985Klein Harvey ASurgical needle holder
US4503854 *16 Jun 198312 Mar 1985Jako Geza JLaser surgery
US4517963 *4 Ene 198321 May 1985Harold UngerImage-erecting barrel rotator for articulated optical arm
US4523884 *8 Oct 198118 Jun 1985Commissariat A L'energie AtomiqueRemote manipulation assembly
US4586398 *29 Sep 19836 May 1986Hamilton IndustriesFoot control assembly for power-operated tables and the like
US4635292 *17 Dic 19846 Ene 1987Matsushita Electric Industrial Co., Ltd.Image processor
US4641292 *21 Oct 19853 Feb 1987George TunnellVoice controlled welding system
US4655257 *1 Nov 19857 Abr 1987Kabushiki Kaisha Machida SeisakushoGuide tube assembly for industrial endoscope
US4672963 *7 Jun 198516 Jun 1987Israel BarkenApparatus and method for computer controlled laser surgery
US4676243 *31 Oct 198430 Jun 1987Aldebaran Xiii Consulting CompanyAutomated anterior capsulectomy instrument
US4728974 *30 May 19861 Mar 1988Yaskawa Electric Manufacturing Co., Ltd.Apparatus for supporting an imaging device
US4794912 *17 Ago 19873 Ene 1989Welch Allyn, Inc.Borescope or endoscope with fluid dynamic muscle
US4815006 *16 Sep 198721 Mar 1989Asea AktiebolagMethod and device for calibrating a sensor on an industrial robot
US4815450 *1 Feb 198828 Mar 1989Patel Jayendra IEndoscope having variable flexibility
US4837734 *26 Feb 19876 Jun 1989Hitachi, Ltd.Method and apparatus for master-slave manipulation supplemented by automatic control based on level of operator skill
US4837754 *11 Dic 19876 Jun 1989Fuji Electric Co., Ltd.Ultrasonic wave phase matching apparatus
US4852083 *22 Jun 198725 Jul 1989Texas Instruments IncorporatedDigital crossbar switch
US4930494 *28 Dic 19885 Jun 1990Olympus Optical Co., Ltd.Apparatus for bending an insertion section of an endoscope using a shape memory alloy
US4945479 *31 Jul 198531 Jul 1990Unisys CorporationTightly coupled scientific processing system
US4989253 *15 Abr 198829 Ene 1991The Montefiore Hospital Association Of Western PennsylvaniaVoice activated microscope
US4996975 *1 Jun 19905 Mar 1991Kabushiki Kaisha ToshibaElectronic endoscope apparatus capable of warning lifetime of electronic scope
US5019968 *29 Mar 198828 May 1991Yulan WangThree-dimensional vector processor
US5020001 *15 Sep 198928 May 1991Toyoda Koki Kabushiki KaishaRobot controller
US5078140 *23 Sep 19867 Ene 1992Kwoh Yik SImaging device - aided robotic stereotaxis system
US5086401 *11 May 19904 Feb 1992International Business Machines CorporationImage-directed robotic system for precise robotic surgery including redundant consistency checking
US5091656 *27 Oct 198925 Feb 1992Storz Instrument CompanyFootswitch assembly with electrically engaged detents
US5097829 *19 Mar 199024 Mar 1992Tony QuisenberryTemperature controlled cooling system
US5097839 *13 Feb 199024 Mar 1992Allen George SApparatus for imaging the anatomy
US5098426 *6 Feb 198924 Mar 1992Phoenix Laser Systems, Inc.Method and apparatus for precision laser surgery
US5105367 *16 Oct 198914 Abr 1992Hitachi, Ltd.Master slave manipulator system
US5109499 *29 Ago 198828 Abr 1992Hitachi, Ltd.Vector multiprocessor system which individually indicates the data element stored in common vector register
US5123095 *17 Ene 198916 Jun 1992Ergo Computing, Inc.Integrated scalar and vector processors with vector addressing by the scalar processor
US5131105 *21 Nov 199021 Jul 1992Diasonics, Inc.Patient support table
US5182641 *17 Jun 199126 Ene 1993The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationComposite video and graphics display for camera viewing systems in robotics and teleoperation
US5184601 *5 Ago 19919 Feb 1993Putman John MEndoscope stabilizer
US5187574 *21 Ago 199116 Feb 1993Kanda Tsushin Kogyo Co., Ltd.Method for automatically adjusting field of view of television monitor system and apparatus for carrying out the same
US5196688 *21 Feb 197823 Mar 1993Telefunken Systemtechnik GmbhApparatus for recognizing and following a target
US5201325 *18 Sep 199113 Abr 1993Andronic Devices Ltd.Advanced surgical retractor
US5201743 *5 May 199213 Abr 1993Habley Medical Technology Corp.Axially extendable endoscopic surgical instrument
US5217003 *18 Mar 19918 Jun 1993Wilk Peter JAutomated surgical system and apparatus
US5221283 *15 May 199222 Jun 1993General Electric CompanyApparatus and method for stereotactic surgery
US5228429 *30 Nov 199220 Jul 1993Tadashi HatanoPosition measuring device for endoscope
US5230623 *10 Dic 199127 Jul 1993Radionics, Inc.Operating pointer with interactive computergraphics
US5279309 *27 Jul 199218 Ene 1994International Business Machines CorporationSignaling device and method for monitoring positions in a surgical operation
US5282806 *21 Ago 19921 Feb 1994Habley Medical Technology CorporationEndoscopic surgical instrument having a removable, rotatable, end effector assembly
US5289273 *5 Nov 199222 Feb 1994Semborg-Recrob, Corp.Animated character system with real-time control
US5289365 *23 Dic 199122 Feb 1994Donnelly CorporationModular network control system
US5299288 *18 Sep 199129 Mar 1994International Business Machines CorporationImage-directed robotic system for precise robotic surgery including redundant consistency checking
US5300926 *2 May 19915 Abr 1994Siemens AktiengesellschaftMedical apparatus, having a single actuating device
US5303148 *30 Oct 199012 Abr 1994Picker International, Inc.Voice actuated volume image controller and display controller
US5304185 *4 Nov 199219 Abr 1994Unisurge, Inc.Needle holder
US5305203 *2 Oct 199019 Abr 1994Faro Medical Technologies Inc.Computer-aided surgery apparatus
US5305427 *15 May 199219 Abr 1994Sony CorporationRobot with virtual arm positioning based on sensed camera image
US5309717 *22 Mar 199310 May 1994Minch Richard BRapid shape memory effect micro-actuators
US5313306 *1 Jun 199317 May 1994Telerobotics International, Inc.Omniview motionless camera endoscopy system
US5320630 *23 Feb 199314 Jun 1994Munir AhmedEndoscopic ligating instrument for applying elastic bands
US5382885 *9 Ago 199317 Ene 1995The University Of British ColumbiaMotion scaling tele-operating system with force feedback suitable for microsurgery
US5388987 *17 Abr 199114 Feb 1995Cheval Freres, SaLaser beam dental instrument
US5395369 *13 Jul 19937 Mar 1995Symbiosis CorporationEndoscopic bipolar electrocautery instruments
US5397323 *30 Oct 199214 Mar 1995International Business Machines CorporationRemote center-of-motion robot for surgery
US5402801 *28 Abr 19944 Abr 1995International Business Machines CorporationSystem and method for augmentation of surgery
US5403319 *4 Jun 19934 Abr 1995Board Of Regents Of The University Of WashingtonBone imobilization device
US5408409 *20 Dic 199318 Abr 1995International Business Machines CorporationImage-directed robotic system for precise robotic surgery including redundant consistency checking
US5410638 *3 May 199325 Abr 1995Northwestern UniversitySystem for positioning a medical instrument within a biotic structure using a micromanipulator
US5417210 *27 May 199223 May 1995International Business Machines CorporationSystem and method for augmentation of endoscopic surgery
US5417701 *30 Mar 199323 May 1995Holmed CorporationSurgical instrument with magnetic needle holder
US5422521 *18 Nov 19936 Jun 1995Liebel-Flarsheim Co.Foot operated control system for a multi-function device
US5431645 *17 May 199311 Jul 1995Symbiosis CorporationRemotely activated endoscopic tools such as endoscopic biopsy forceps
US5434457 *30 Jul 199318 Jul 1995Josephs; HaroldFoot pedal safety switch and safety circuit
US5490117 *23 Mar 19946 Feb 1996Seiko Epson CorporationIC card with dual level power supply interface and method for operating the IC card
US5506912 *9 Nov 19949 Abr 1996Olympus Optical Co., Ltd.Imaging device capable of tracking an object
US5512919 *30 Mar 199330 Abr 1996Pioneer Electronic CorporationThree-dimensional coordinates input apparatus
US5515478 *13 Sep 19947 May 1996Computer Motion, Inc.Automated endoscope system for optimal positioning
US5609560 *10 Abr 199511 Mar 1997Olympus Optical Co., Ltd.Medical operation device control system for controlling a operation devices accessed respectively by ID codes
US5626595 *11 Oct 19946 May 1997Automated Medical Instruments, Inc.Automated surgical instrument
US5629594 *16 Oct 199513 May 1997Cybernet Systems CorporationForce feedback system
US5636259 *18 May 19953 Jun 1997Continental X-Ray CorporationUniversal radiographic/fluoroscopic digital room
US5649956 *7 Jun 199522 Jul 1997Sri InternationalSystem and method for releasably holding a surgical instrument
US5718038 *6 Jun 199517 Feb 1998National Semiconductor CorporationElectronic assembly for connecting to an electronic system and method of manufacture thereof
US5735290 *28 Jul 19947 Abr 1998Heartport, Inc.Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5737711 *30 Oct 19957 Abr 1998Fuji Jukogyo Kabuishiki KaishaDiagnosis system for motor vehicle
US5749362 *26 Ene 199512 May 1998International Business Machines CorporationMethod of creating an image of an anatomical feature where the feature is within a patient's body
US5754741 *16 Dic 199619 May 1998Computer Motion, Inc.Automated endoscope for optimal positioning
US5762458 *20 Feb 19969 Jun 1998Computer Motion, Inc.Method and apparatus for performing minimally invasive cardiac procedures
US5859934 *14 Ene 199712 Ene 1999Sri InternationalMethod and apparatus for transforming coordinate systems in a telemanipulation system
US5860995 *23 Sep 199619 Ene 1999Misener Medical Co. Inc.Laparoscopic endoscopic surgical instrument
US5876325 *30 Sep 19972 Mar 1999Olympus Optical Co., Ltd.Surgical manipulation system
US5878193 *16 Oct 19962 Mar 1999Computer Motion, Inc.Automated endoscope system for optimal positioning
US5882206 *29 Mar 199516 Mar 1999Gillio; Robert G.Virtual surgery system
US5887121 *17 Jul 199723 Mar 1999International Business Machines CorporationMethod of constrained Cartesian control of robotic mechanisms with active and passive joints
US6024695 *6 May 199915 Feb 2000International Business Machines CorporationSystem and method for augmentation of surgery
US6223100 *25 Mar 199824 Abr 2001Sri, InternationalApparatus and method for performing computer enhanced surgery with articulated instrument
US6714841 *26 Oct 199830 Mar 2004Computer Motion, Inc.Head cursor control interface for an automated endoscope system for optimal positioning
US6905491 *30 Dic 199714 Jun 2005Intuitive Surgical, Inc.Apparatus for performing minimally invasive cardiac procedures with a robotic arm that has a passive joint and system which can decouple the robotic arm from the input device
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US8123675 *21 Jul 200828 Feb 2012International Business Machines CorporationSystem and method for augmentation of endoscopic surgery
US905596015 Nov 201016 Jun 2015Intuitive Surgical Operations, Inc.Flexible surgical devices
US940261929 Sep 20142 Ago 2016Intuitive Surgical Operation, Inc.Rigidly-linked articulating wrist with decoupled motion transmission
US948618919 Sep 20128 Nov 2016Hitachi Aloka Medical, Ltd.Assembly for use with surgery system
US956612115 Mar 201414 Feb 2017Stryker CorporationEnd effector of a surgical robotic manipulator
US957979710 Abr 201528 Feb 2017Quanser Consulting Inc.Robotic systems and methods of operating robotic systems
US20090048611 *21 Jul 200819 Feb 2009International Business Machines CorporationSystem and method for augmentation of endoscopic surgery
WO2015154172A1 *10 Abr 201515 Oct 2015Quanser Consulting Inc.Robotic systems and methods of operating robotic systems
Eventos legales
FechaCódigoEventoDescripción
27 Jun 2017ASAssignment
Owner name: INTUITIVE SURGICAL OPERATIONS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTUITIVE SURGICAL, INC.;REEL/FRAME:043016/0543
Effective date: 20100219